1
|
Huang Y, Liu Y, Pu M, Zhang Y, Cao Q, Li S, Wei Y, Hou L. SOX2 interacts with hnRNPK to modulate alternative splicing in mouse embryonic stem cells. Cell Biosci 2024; 14:102. [PMID: 39160617 PMCID: PMC11331657 DOI: 10.1186/s13578-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND SOX2 is a determinant transcription factor that governs the balance between stemness and differentiation by influencing transcription and splicing programs. The role of SOX2 is intricately shaped by its interactions with specific partners. In the interactome of SOX2 in mouse embryonic stem cells (mESCs), there is a cohort of heterogeneous nuclear ribonucleoproteins (hnRNPs) that contributes to multiple facets of gene expression regulation. However, the cross-talk between hnRNPs and SOX2 in gene expression regulation remains unclear. RESULTS Here we demonstrate the indispensable role of the co-existence of SOX2 and heterogeneous nuclear ribonucleoprotein K (hnRNPK) in the maintenance of pluripotency in mESCs. While hnRNPK directly interacts with the SOX2-HMG DNA-binding domain and induces the collapse of the transcriptional repressor 7SK small nuclear ribonucleoprotein (7SK snRNP), hnRNPK does not influence SOX2-mediated transcription, either by modulating the interaction between SOX2 and its target cis-regulatory elements or by facilitating transcription elongation as indicated by the RNA-seq analysis. Notably, hnRNPK enhances the interaction of SOX2 with target pre-mRNAs and collaborates with SOX2 in regulating the alternative splicing of a subset of pluripotency genes. CONCLUSIONS These data reveal that SOX2 and hnRNPK have a direct protein-protein interaction, and shed light on the molecular mechanisms by which hnRNPK collaborates with SOX2 in alternative splicing in mESCs.
Collapse
Affiliation(s)
- Yanlan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuxuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mingyi Pu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuli Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Senru Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuanjie Wei
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany.
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
2
|
Fallatah A, Anastasakis DG, Manzourolajdad A, Sharma P, Wang X, Jacob A, Alsharif S, Elgerbi A, Coulombe PA, Hafner M, Chung BM. Keratin 19 binds and regulates cytoplasmic HNRNPK mRNA targets in triple-negative breast cancer. BMC Mol Cell Biol 2023; 24:26. [PMID: 37592256 PMCID: PMC10433649 DOI: 10.1186/s12860-023-00488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized. RESULTS Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO). CONCLUSIONS This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.
Collapse
Affiliation(s)
- Arwa Fallatah
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Amirhossein Manzourolajdad
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
- Department of Computer Science, Colgate University, Hamilton, NY, United States of America
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Xiantao Wang
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Alexis Jacob
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Sarah Alsharif
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC, United States of America.
| |
Collapse
|
3
|
Lu YW, Liang Z, Guo H, Fernandes T, Espinoza-Lewis RA, Wang T, Li K, Li X, Singh GB, Wang Y, Cowan D, Mably JD, Philpott CC, Chen H, Wang DZ. PCBP1 regulates alternative splicing of AARS2 in congenital cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.540420. [PMID: 37293078 PMCID: PMC10245752 DOI: 10.1101/2023.05.18.540420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alanyl-transfer RNA synthetase 2 (AARS2) is a nuclear encoded mitochondrial tRNA synthetase that is responsible for charging of tRNA-Ala with alanine during mitochondrial translation. Homozygous or compound heterozygous mutations in the Aars2 gene, including those affecting its splicing, are linked to infantile cardiomyopathy in humans. However, how Aars2 regulates heart development, and the underlying molecular mechanism of heart disease remains unknown. Here, we found that poly(rC) binding protein 1 (PCBP1) interacts with the Aars2 transcript to mediate its alternative splicing and is critical for the expression and function of Aars2. Cardiomyocyte-specific deletion of Pcbp1 in mice resulted in defects in heart development that are reminiscent of human congenital cardiac defects, including noncompaction cardiomyopathy and a disruption of the cardiomyocyte maturation trajectory. Loss of Pcbp1 led to an aberrant alternative splicing and a premature termination of Aars2 in cardiomyocytes. Additionally, Aars2 mutant mice with exon-16 skipping recapitulated heart developmental defects observed in Pcbp1 mutant mice. Mechanistically, we found dysregulated gene and protein expression of the oxidative phosphorylation pathway in both Pcbp1 and Aars2 mutant hearts; these date provide further evidence that the infantile hypertrophic cardiomyopathy associated with the disorder oxidative phosphorylation defect type 8 (COXPD8) is mediated by Aars2. Our study therefore identifies Pcbp1 and Aars2 as critical regulators of heart development and provides important molecular insights into the role of disruptions in metabolism on congenital heart defects.
Collapse
|
4
|
Jing H, Song Y, Li H, Duan E, Liu J, Ke W, Tao R, Li Y, Zhao P, Wang J, Cao S, Wang H, Sun Y, Zhang Y. HnRNP K reduces viral gene expression by targeting cytosine-rich sequences in porcine reproductive and respiratory syndrome virus-2 genome to dampen the viral growth. Virology 2023; 581:15-25. [PMID: 36842269 DOI: 10.1016/j.virol.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
HnRNP K is a well-known member of HnRNP family proteins that has been implicated in the regulation of protein expression. Currently, the impact of HnRNP K on the reproduction cycle of a broad range of virus were reported, while the precise function for PRRSV was lacking. In this study, we determined that both PRRSV infection and ectopic expression of N protein induced an enrichment of HnRNP K in the cytoplasm. Using RNA pulldown and RNA immunoprecipitation, we described the interactions between the KH2 domain of HnRNP K and cytosine-rich sequences (CRS) in PRRSV genomic RNA corresponding to Nsp7α coding region. Meanwhile, overexpression of HnRNP K inhibited viral gene expression and PRRSV replication, while silencing of HnRNP K resulted in an increased in virus yield. Taken together, this study assists in the understanding of PRRSV-host interactions, and the development of vaccines based on viral genome engineering.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| | - Yuzhen Song
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Huawei Li
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pandeng Zhao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Haihua Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| |
Collapse
|
5
|
Janecki DM, Swiatkowska A, Szpotkowska J, Urbanowicz A, Kabacińska M, Szpotkowski K, Ciesiołka J. Poly(C)-binding Protein 2 Regulates the p53 Expression via Interactions with the 5'-Terminal Region of p53 mRNA. Int J Mol Sci 2021; 22:ijms222413306. [PMID: 34948101 PMCID: PMC8708005 DOI: 10.3390/ijms222413306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The p53 protein is one of the major transcriptional factors which guards cell homeostasis. Here, we showed that poly(C)-binding protein 2 (PCBP2) can bind directly to the 5′ terminus of p53 mRNA by means of electrophoretic mobility shift assay. Binding sites of PCBP2 within this region of p53 mRNA were mapped using Pb2+-induced cleavage and SAXS methods. Strikingly, the downregulation of PCBP2 in HCT116 cells resulted in a lower level of p53 protein under normal and stress conditions. Quantitative analysis of p53 mRNA in PCBP2-downregulated cells revealed a lower level of p53 mRNA under normal conditions suggesting the involvement of PCBP2 in p53 mRNA stabilisation. However, no significant change in p53 mRNA level was observed upon PCBP2 depletion under genotoxic stress. Moreover, a higher level of p53 protein in the presence of rapamycin or doxorubicin and the combination of both antibiotics was noticed in PCBP2-overexpressed cells compared to control cells. These observations indicate the potential involvement of PCBP2 in cap-independent translation of p53 mRNA especially occurring under stress conditions. It has been postulated that the PCBP2 protein is engaged in the enhancement of p53 mRNA stability, probably via interacting with its 3′ end. Our data show that under stress conditions PCBP2 also modulates p53 translation through binding to the 5′ terminus of p53 mRNA. Thus PCBP2 emerges as a double-function factor in the p53 expression.
Collapse
|
6
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
7
|
Nakamoto MY, Lammer NC, Batey RT, Wuttke DS. hnRNPK recognition of the B motif of Xist and other biological RNAs. Nucleic Acids Res 2020; 48:9320-9335. [PMID: 32813011 PMCID: PMC7498318 DOI: 10.1093/nar/gkaa677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
Heterogeneous nuclear ribonuclear protein K (hnRNPK) is an abundant RNA-binding protein crucial for a wide variety of biological processes. While its binding preference for multi-cytosine-patch (C-patch) containing RNA is well documented, examination of binding to known cellular targets that contain C-patches reveals an unexpected breadth of binding affinities. Analysis of in-cell crosslinking data reinforces the notion that simple C-patch preference is not fully predictive of hnRNPK localization within transcripts. The individual RNA-binding domains of hnRNPK work together to interact with RNA tightly, with the KH3 domain being neither necessary nor sufficient for binding. Rather, the RG/RGG domain is implicated in providing essential contributions to RNA-binding, but not DNA-binding, affinity. hnRNPK is essential for X chromosome inactivation, where it interacts with Xist RNA specifically through the Xist B-repeat region. We use this interaction with an RNA motif derived from this B-repeat region to determine the RNA-structure dependence of C-patch recognition. While the location preferences of hnRNPK for C-patches are conformationally restricted within the hairpin, these structural constraints are relieved in the absence of RNA secondary structure. Together, these results illustrate how this multi-domain protein's ability to accommodate and yet discriminate between diverse cellular RNAs allows for its broad cellular functions.
Collapse
Affiliation(s)
- Meagan Y Nakamoto
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Nickolaus C Lammer
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
8
|
Kutluay SB, Emery A, Penumutchu SR, Townsend D, Tenneti K, Madison MK, Stukenbroeker AM, Powell C, Jannain D, Tolbert BS, Swanstrom RI, Bieniasz PD. Genome-Wide Analysis of Heterogeneous Nuclear Ribonucleoprotein (hnRNP) Binding to HIV-1 RNA Reveals a Key Role for hnRNP H1 in Alternative Viral mRNA Splicing. J Virol 2019; 93:e01048-19. [PMID: 31413137 PMCID: PMC6803249 DOI: 10.1128/jvi.01048-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing of HIV-1 mRNAs increases viral coding potential and controls the levels and timing of gene expression. HIV-1 splicing is regulated in part by heterogeneous nuclear ribonucleoproteins (hnRNPs) and their viral target sequences, which typically repress splicing when studied outside their native viral context. Here, we determined the location and extent of hnRNP binding to HIV-1 mRNAs and their impact on splicing in a native viral context. Notably, hnRNP A1, hnRNP A2, and hnRNP B1 bound to many dispersed sites across viral mRNAs. Conversely, hnRNP H1 bound to a few discrete purine-rich sequences, a finding that was mirrored in vitro hnRNP H1 depletion and mutation of a prominent viral RNA hnRNP H1 binding site decreased the use of splice acceptor A1, causing a deficit in Vif expression and replicative fitness. This quantitative framework for determining the regulatory inputs governing alternative HIV-1 splicing revealed an unexpected splicing enhancer role for hnRNP H1 through binding to its target element.IMPORTANCE Alternative splicing of HIV-1 mRNAs is an essential yet quite poorly understood step of virus replication that enhances the coding potential of the viral genome and allows the temporal regulation of viral gene expression. Although HIV-1 constitutes an important model system for general studies of the regulation of alternative splicing, the inputs that determine the efficiency with which splice sites are utilized remain poorly defined. Our studies provide an experimental framework to study an essential step of HIV-1 replication more comprehensively and in much greater detail than was previously possible and reveal novel cis-acting elements regulating HIV-1 splicing.
Collapse
Affiliation(s)
- Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ann Emery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Dana Townsend
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michaela K Madison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Amanda M Stukenbroeker
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Chelsea Powell
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - David Jannain
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ronald I Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| |
Collapse
|
9
|
Hale MA, Johnson NE, Berglund JA. Repeat-associated RNA structure and aberrant splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194405. [PMID: 31323433 DOI: 10.1016/j.bbagrm.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Over 30 hereditary disorders attributed to the expansion of microsatellite repeats have been identified. Despite variant nucleotide content, number of consecutive repeats, and different locations in the genome, many of these diseases have pathogenic RNA gain-of-function mechanisms. The repeat-containing RNAs can form structures in vitro predicted to contribute to the disease through assembly of intracellular RNA aggregates termed foci. The expanded repeat RNAs within these foci sequester RNA binding proteins (RBPs) with important roles in the regulation of RNA metabolism, most notably alternative splicing (AS). These deleterious interactions lead to downstream alterations in transcriptome-wide AS directly linked with disease symptoms. This review summarizes existing knowledge about the association between the repeat RNA structures and RBPs as well as the resulting aberrant AS patterns, specifically in the context of myotonic dystrophy. The connection between toxic, structured RNAs and dysregulation of AS in other repeat expansion diseases is also discussed. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Andrew Berglund
- The RNA Institute, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
10
|
Liu XH, Ma J, Feng JX, Feng Y, Zhang YF, Liu LX. Regulation and related mechanism of GSN mRNA level by hnRNPK in lung adenocarcinoma cells. Biol Chem 2019; 400:951-963. [PMID: 30771276 DOI: 10.1515/hsz-2018-0417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/11/2019] [Indexed: 01/20/2023]
Abstract
Gelsolin (GSN) is an actin filament-capping protein that plays a key role in cell migration. Here we show that heterogeneous nuclear ribonucleoprotein K (hnRNPK) regulates GSN expression level by binding to the 3'-untranslated region (3'UTR) of GSN mRNA in non-small cell lung cancers (NSCLC) H1299 cells which are highly metastatic and express high level of GSN. We found that hnRNPK overexpression increased the mRNA and protein level of GSN, whereas hnRNPK knockdown by siRNA decreased the mRNA and protein level of GSN in both H1299 and A549 cells, indicating a positive role of hnRNPK in the regulation of GSN expression. Furthermore, hnRNPK knockdown affected the migration ability of H1299 and A549 cells which could be rescued by ectopic expression of GSN in those cells. Conversely, GSN knockdown in hnRNPK-overexpressing cells could abort the stimulatory effect of hnRNPK on the cell migration. These results suggest that hnRNPK function in the regulation of cell migration is GSN-dependent. Taken together, these data unveiled a new mechanism of regulation of the GSN expression by hnRNPK and provides new clues for the discovery of new anti-metastatic therapy.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jie Ma
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jun-Xia Feng
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Yuan Feng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yun-Fang Zhang
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Lang-Xia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
11
|
Bakhmet EI, Nazarov IB, Gazizova AR, Vorobyeva NE, Kuzmin AA, Gordeev MN, Sinenko SA, Aksenov ND, Artamonova TO, Khodorkovskii MA, Alenina N, Onichtchouk D, Wu G, Schöler HR, Tomilin AN. hnRNP-K Targets Open Chromatin in Mouse Embryonic Stem Cells in Concert with Multiple Regulators. Stem Cells 2019; 37:1018-1029. [PMID: 31021473 DOI: 10.1002/stem.3025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023]
Abstract
The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.
Collapse
Affiliation(s)
- Evgeny I Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Igor B Nazarov
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Adel R Gazizova
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nadezhda E Vorobyeva
- Group of transcriptional complexes dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Kuzmin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Mikhail N Gordeev
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey A Sinenko
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolai D Aksenov
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Tatyana O Artamonova
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail A Khodorkovskii
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Daria Onichtchouk
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alexey N Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Laboratory of Cellular and Molecular Biology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
12
|
Moreno M, Fernández-Algar M, Fernández-Chamorro J, Ramajo J, Martínez-Salas E, Briones C. A Combined ELONA-(RT)qPCR Approach for Characterizing DNA and RNA Aptamers Selected against PCBP-2. Molecules 2019; 24:molecules24071213. [PMID: 30925703 PMCID: PMC6480920 DOI: 10.3390/molecules24071213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Improvements in Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology and DNA sequencing methods have led to the identification of a large number of active nucleic acid molecules after any aptamer selection experiment. As a result, the search for the fittest aptamers has become a laborious and time-consuming task. Herein, we present an optimized approach for the label-free characterization of DNA and RNA aptamers in parallel. The developed method consists in an Enzyme-Linked OligoNucleotide Assay (ELONA) coupled to either real-time quantitative PCR (qPCR, for DNA aptamers) or reverse transcription qPCR (RTqPCR, for RNA aptamers), which allows the detection of aptamer-target interactions in the high femtomolar range. We have applied this methodology to the affinity analysis of DNA and RNA aptamers selected against the poly(C)-binding protein 2 (PCBP-2). In addition, we have used ELONA-(RT)qPCR to quantify the dissociation constant (Kd) and maximum binding capacity (Bmax) of 16 high affinity DNA and RNA aptamers. The Kd values of the high affinity DNA aptamers were compared to those derived from colorimetric ELONA performed in parallel. Additionally, Electrophoretic Mobility Shift Assays (EMSA) were used to confirm the binding of representative PCBP-2-specific RNA aptamers in solution. We propose this ELONA-(RT)qPCR approach as a general strategy for aptamer characterization, with a broad applicability in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Miguel Moreno
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| | - María Fernández-Algar
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| | | | - Jorge Ramajo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain.
| | | | - Carlos Briones
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| |
Collapse
|
13
|
A cytosine-rich splice regulatory determinant enforces functional processing of the human α-globin gene transcript. Blood 2019; 133:2338-2347. [PMID: 30833414 DOI: 10.1182/blood-2018-12-891408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 01/28/2023] Open
Abstract
The establishment of efficient and stable splicing patterns in terminally differentiated cells is critical to maintenance of specific functions throughout the lifespan of an organism. The human α-globin (hα-globin) gene contains 3 exons separated by 2 short introns. Naturally occurring α-thalassemia mutations that trigger aberrant splicing have revealed the presence of cryptic splice sites within the hα-globin gene transcript. How cognate (functional) splice sites are selectively used in lieu of these cryptic sites has remained unexplored. Here we demonstrate that the preferential selection of a cognate splice donor essential to functional splicing of the hα-globin transcript is dependent on the actions of an intronic cytosine (C)-rich splice regulatory determinant and its interacting polyC-binding proteins. Inactivation of this determinant by mutation of the C-rich element or by depletion of polyC-binding proteins triggers a dramatic shift in splice donor activity to an upstream, out-of-frame, cryptic donor. The essential role of the C-rich element in hα-globin gene expression is supported by its coevolution with the cryptic donor site in primate species. These data lead us to conclude that an intronic C-rich determinant enforces functional splicing of the hα-globin transcript, thus acting as an obligate determinant of hα-globin gene expression.
Collapse
|
14
|
Ostareck DH, Ostareck-Lederer A. RNA-Binding Proteins in the Control of LPS-Induced Macrophage Response. Front Genet 2019; 10:31. [PMID: 30778370 PMCID: PMC6369361 DOI: 10.3389/fgene.2019.00031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Innate immune response is triggered by pathogen components, like lipopolysaccharides (LPS) of gram-negative bacteria. LPS initiates Toll-like receptor 4 (TLR4) signaling, which involves mitogen activated protein kinases (MAPK) and nuclear factor kappa B (NFκB) in different pathway branches and ultimately induces inflammatory cytokine and chemokine expression, macrophage migration and phagocytosis. Timely gene transcription and post-transcriptional control of gene expression confer the adequate synthesis of signaling molecules. As trans-acting factors RNA binding proteins (RBPs) contribute significantly to the surveillance of gene expression. RBPs are involved in the regulation of mRNA processing, localization, stability and translation. Thereby they enable rapid cellular responses to inflammatory mediators and facilitate a coordinated systemic immune response. Specific RBP binding to conserved sequence motifs in their target mRNAs is mediated by RNA binding domains, like Zink-finger domains, RNA recognition motifs (RRM), and hnRNP K homology domains (KH), often arranged in modular arrays. In this review, we focus on RBPs Tristetraprolin (TTP), human antigen R (HUR), T-cell intracellular antigen 1 related protein (TIAR), and heterogeneous ribonuclear protein K (hnRNP K) in LPS induced macrophages as primary responding immune cells. We discuss recent experiments employing RNA immunoprecipitation and microarray analysis (RIP-Chip) and newly developed individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP), photoactivatable ribonucleoside-enhanced crosslinking (PAR-iCLIP) and RNA sequencing techniques (RNA-Seq). The global mRNA interaction profile analysis of TTP, HUR, TIAR, and hnRNP K exhibited valuable information about the post-transcriptional control of inflammation related gene expression with a broad impact on intracellular signaling and temporal cytokine expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
15
|
Thompson MG, Lynch KW. Functional and Mechanistic Interplay of Host and Viral Alternative Splicing Regulation during Influenza Infection. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 84:123-131. [PMID: 32703803 DOI: 10.1101/sqb.2019.84.039040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alternative splicing is a pervasive gene regulatory mechanism utilized by both mammalian cells and viruses to expand their genomic coding capacity. The process of splicing and the RNA sequences that guide this process are the same in mammalian and viral transcripts; however, viruses lack the splicing machinery and therefore must usurp both the host spliceosome and many of the associated regulatory proteins in order to correctly process their genes. Here, we use the example of the influenza A virus to both describe how viruses utilize host splicing factors to regulate their own splicing and provide examples of how viral infection can, in turn, alter host splicing. Importantly, we show that at least some of the viral-induced changes in host splicing occur in genes that alter the efficiency of influenza replication. We emphasize the importance of increased understanding of the mechanistic interplay between host and viral splicing, and its functional consequences, in uncovering potential antiviral vulnerabilities.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
17
|
Chen X, Xie R, Gu P, Huang M, Han J, Dong W, Xie W, Wang B, He W, Zhong G, Chen Z, Huang J, Lin T. Long Noncoding RNA LBCS Inhibits Self-Renewal and Chemoresistance of Bladder Cancer Stem Cells through Epigenetic Silencing of SOX2. Clin Cancer Res 2018; 25:1389-1403. [PMID: 30397178 DOI: 10.1158/1078-0432.ccr-18-1656] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemoresistance and tumor relapse are the leading cause of deaths in bladder cancer patients. Bladder cancer stem cells (BCSCs) have been reported to contribute to these pathologic properties. However, the molecular mechanisms underlying their self-renewal and chemoresistance remain largely unknown. In the current study, a novel lncRNA termed Low expressed in Bladder Cancer Stem cells (lnc-LBCS) has been identified and explored in BCSCs. EXPERIMENTAL DESIGN Firstly, we establish BCSCs model and explore the BCSCs-associated lncRNAs by transcriptome microarray. The expression and clinical features of lnc-LBCS are analyzed in three independent large-scale cohorts. The functional role and mechanism of lnc-LBCS are further investigated by gain- and loss-of-function assays in vitro and in vivo. RESULTS Lnc-LBCS is significantly downregulated in BCSCs and cancer tissues, and correlates with tumor grade, chemotherapy response, and prognosis. Moreover, lnc-LBCS markedly inhibits self-renewal, chemoresistance, and tumor initiation of BCSCs both in vitro and in vivo. Mechanistically, lnc-LBCS directly binds to heterogeneous nuclear ribonucleoprotein K (hnRNPK) and enhancer of zeste homolog 2 (EZH2), and serves as a scaffold to induce the formation of this complex to repress SRY-box 2 (SOX2) transcription via mediating histone H3 lysine 27 tri-methylation. SOX2 is essential for self-renewal and chemoresistance of BCSCs, and correlates with the clinical severity and prognosis of bladder cancer patients. CONCLUSIONS As a novel regulator, lnc-LBCS plays an important tumor-suppressor role in BCSCs' self-renewal and chemoresistance, contributing to weak tumorigenesis and enhanced chemosensitivity. The lnc-LBCS-hnRNPK-EZH2-SOX2 regulatory axis may represent a therapeutic target for clinical intervention in chemoresistant bladder cancer.
Collapse
Affiliation(s)
- Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyue Chen
- Department of Pediatric Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Ghanem LR, Kromer A, Silverman IM, Ji X, Gazzara M, Nguyen N, Aguilar G, Martinelli M, Barash Y, Liebhaber SA. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol 2018; 38:e00175-18. [PMID: 29866654 PMCID: PMC6066754 DOI: 10.1128/mcb.00175-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/10/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022] Open
Abstract
Formation of the mammalian hematopoietic system is under a complex set of developmental controls. Here, we report that mouse embryos lacking the KH domain poly(C) binding protein, Pcbp2, are selectively deficient in the definitive erythroid lineage. Compared to wild-type controls, transcript splicing analysis of the Pcbp2-/- embryonic liver reveals accentuated exclusion of an exon (exon 6) that encodes a highly conserved transcriptional control segment of the hematopoietic master regulator, Runx1. Embryos rendered homozygous for a Runx1 locus lacking this cassette exon (Runx1ΔE6) effectively phenocopy the loss of the definitive erythroid lineage in Pcbp2-/- embryos. These data support a model in which enhancement of Runx1 cassette exon 6 inclusion by Pcbp2 serves a critical role in development of hematopoietic progenitors and constitutes a critical step in the developmental pathway of the definitive erythropoietic lineage.
Collapse
Affiliation(s)
- Louis R Ghanem
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Kromer
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian M Silverman
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Gazzara
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nhu Nguyen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabrielle Aguilar
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Massimo Martinelli
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Thompson MG, Muñoz-Moreno R, Bhat P, Roytenberg R, Lindberg J, Gazzara MR, Mallory MJ, Zhang K, García-Sastre A, Fontoura BMA, Lynch KW. Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nat Commun 2018; 9:2407. [PMID: 29921878 PMCID: PMC6008300 DOI: 10.1038/s41467-018-04779-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Three of the eight RNA segments encoded by the influenza A virus (IAV) undergo alternative splicing to generate distinct proteins. Previously, we found that host proteins hnRNP K and NS1-BP regulate IAV M segment splicing, but the mechanistic details were unknown. Here we show NS1-BP and hnRNP K bind M mRNA downstream of the M2 5′ splice site (5′ss). NS1-BP binds most proximal to the 5′ss, partially overlapping the U1 snRNP binding site, while hnRNP K binds further downstream and promotes U1 snRNP recruitment. Mutation of either or both the hnRNP K and NS1-BP-binding sites results in M segment mis-splicing and attenuated IAV replication. Additionally, we show that hnRNP K and NS1-BP regulate host splicing events and that viral infection causes mis-splicing of some of these transcripts. Therefore, our proposed mechanism of hnRNP K/NS1-BP mediated IAV M splicing provides potential targets of antiviral intervention and reveals novel host functions for these proteins. Alternative splicing of influenza A virus (IAV) M transcript is regulated by hnRNP K and NS1-BP, but mechanistic details are unknown. Here, Thompson et al. show how hnRNP K and NS1-BP bind M mRNA and that these proteins regulate splicing of host transcripts in both the absence and presence of IAV infection.
Collapse
Affiliation(s)
- Matthew G Thompson
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA
| | - Prasanna Bhat
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Renat Roytenberg
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - John Lindberg
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Matthew R Gazzara
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Michael J Mallory
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Ke Zhang
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kristen W Lynch
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ, Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Burge CB. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins. Mol Cell 2018; 70:854-867.e9. [PMID: 29883606 PMCID: PMC6062212 DOI: 10.1016/j.molcel.2018.05.001] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023]
Abstract
RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif.
Collapse
Affiliation(s)
| | - Peter Freese
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Maria S Alexis
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Amanda Su
- Department of Biology, MIT, Cambridge, MA, USA
| | | | | | | | | | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Molecular Engineering Laboratory, A(∗)STAR, Singapore, Singapore
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health, Farmington, CT, USA
| | - Christopher B Burge
- Department of Biology, MIT, Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
21
|
Maticzka D, Ilik IA, Aktas T, Backofen R, Akhtar A. uvCLAP is a fast and non-radioactive method to identify in vivo targets of RNA-binding proteins. Nat Commun 2018; 9:1142. [PMID: 29559621 PMCID: PMC5861125 DOI: 10.1038/s41467-018-03575-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
RNA-binding proteins (RBPs) play important and essential roles in eukaryotic gene expression regulating splicing, localization, translation, and stability of mRNAs. We describe ultraviolet crosslinking and affinity purification (uvCLAP), an easy-to-use, robust, reproducible, and high-throughput method to determine in vivo targets of RBPs. uvCLAP is fast and does not rely on radioactive labeling of RNA. We investigate binding of 15 RBPs from fly, mouse, and human cells to test the method's performance and applicability. Multiplexing of signal and control libraries enables straightforward comparison of samples. Experiments for most proteins achieve high enrichment of signal over background. A point mutation and a natural splice isoform that change the RBP subcellular localization dramatically alter target selection without changing the targeted RNA motif, showing that compartmentalization of RBPs can be used as an elegant means to generate RNA target specificity.
Collapse
Affiliation(s)
- Daniel Maticzka
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110, Freiburg, Germany
| | - Ibrahim Avsar Ilik
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - Tugce Aktas
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110, Freiburg, Germany.
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany.
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| |
Collapse
|
22
|
Ji X, Humenik J, Yang D, Liebhaber SA. PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Res 2018; 46:2030-2044. [PMID: 29253178 PMCID: PMC5829739 DOI: 10.1093/nar/gkx1255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
The PolyC binding proteins (PCBPs) impact alternative splicing of a subset of mammalian genes that are enriched in basic cellular functions. Here, we focus our analysis on PCBP-controlled cassette exon-splicing within the cell cycle control regulator cyclin-dependent kinase-2 (CDK2) transcript. We demonstrate that PCBP binding to a C-rich polypyrimidine tract (PPT) preceding exon 5 of the CDK2 transcript enhances cassette exon inclusion. This splice enhancement is U2AF65-independent and predominantly reflects actions of the PCBP1 isoform. Remarkably, PCBPs' control of CDK2 ex5 splicing has evolved subsequent to mammalian divergence via conversion of constitutive exon 5 inclusion in the mouse CDK2 transcript to PCBP-responsive exon 5 alternative splicing in humans. Importantly, exclusion of exon 5 from the hCDK2 transcript dramatically represses the expression of CDK2 protein with a corresponding perturbation in cell cycle kinetics. These data highlight a recently evolved post-transcriptional pathway in primate species with the potential to modulate cell cycle control.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Humenik
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daphne Yang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
The Neuroprotective Marine Compound Psammaplysene A Binds the RNA-Binding Protein HNRNPK. Mar Drugs 2017; 15:md15080246. [PMID: 28783126 PMCID: PMC5577601 DOI: 10.3390/md15080246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 11/17/2022] Open
Abstract
In previous work, we characterized the strong neuroprotective properties of the marine compound Psammaplysene A (PA) in in vitro and in vivo models of neurodegeneration. Based on its strong neuroprotective activity, the current work attempts to identify the physical target of PA to gain mechanistic insight into its molecular action. Two distinct methods, used in parallel, to purify protein-binding partners of PA led to the identification of HNRNPK as a direct target of PA. Based on surface plasmon resonance, we find that the binding of PA to HNRNPK is RNA-dependent. These findings suggest a role for HNRNPK-dependent processes in neurodegeneration/neuroprotection, and warrant further study of HNRNPK in this context.
Collapse
|
24
|
Yamamoto K, Furukawa MT, Fukumura K, Kawamura A, Yamada T, Suzuki H, Hirose T, Sakamoto H, Inoue K. Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes Cells 2016; 21:1006-14. [DOI: 10.1111/gtc.12400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Koichi Yamamoto
- Bio Process Research and Development Laboratories; Kyowa Hakko Kirin Co. Ltd; 100-1 Hagiwara-machi Takasaki Gunma 370-0013 Japan
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Mari T. Furukawa
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Kazuhiro Fukumura
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
- Institute for Comprehensive Medical Science (ICMS); Fujita Health University; Toyoake Aichi 470-1192 Japan
| | - Arisa Kawamura
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Tomoko Yamada
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Hitoshi Suzuki
- Japan Advanced Institute of Science and Technology; Nomi Ishikawa 923-1292 Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine; Hokkaido University; Sapporo 060-0815 Japan
| | - Hiroshi Sakamoto
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Kunio Inoue
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| |
Collapse
|
25
|
Napthine S, Treffers EE, Bell S, Goodfellow I, Fang Y, Firth AE, Snijder EJ, Brierley I. A novel role for poly(C) binding proteins in programmed ribosomal frameshifting. Nucleic Acids Res 2016; 44:5491-503. [PMID: 27257056 PMCID: PMC4937337 DOI: 10.1093/nar/gkw480] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/18/2016] [Indexed: 01/16/2023] Open
Abstract
Translational control through programmed ribosomal frameshifting (PRF) is exploited widely by viruses and increasingly documented in cellular genes. Frameshifting is induced by mRNA secondary structures that compromise ribosome fidelity during decoding of a heptanucleotide 'slippery' sequence. The nsp2 PRF signal of porcine reproductive and respiratory syndrome virus is distinctive in directing both -2 and -1 PRF and in its requirement for a trans-acting protein factor, the viral replicase subunit nsp1β. Here we show that the the trans-activation of frameshifting is carried out by a protein complex composed of nsp1β and a cellular poly(C) binding protein (PCBP). From the results of in vitro translation and electrophoretic mobility shift assays, we demonstrate that a PCBP/nsp1β complex binds to a C-rich sequence downstream of the slippery sequence and here mimics the activity of a structured mRNA stimulator of PRF. This is the first description of a role for a trans-acting cellular protein in PRF. The discovery broadens the repertoire of activities associated with poly(C) binding proteins and prototypes a new class of virus-host interactions.
Collapse
Affiliation(s)
- Sawsan Napthine
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Emmely E Treffers
- Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Susanne Bell
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Ying Fang
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5705, USA
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
26
|
Wang C, Szaro BG. Post-transcriptional regulation mediated by specific neurofilament introns in vivo. J Cell Sci 2016; 129:1500-11. [PMID: 26906423 DOI: 10.1242/jcs.185199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
Neurons regulate genes post-transcriptionally to coordinate the supply of cytoskeletal proteins, such as the medium neurofilament (NEFM), with demand for structural materials in response to extracellular cues encountered by developing axons. By using a method for evaluating functionality of cis-regulatory gene elements in vivo through plasmid injection into Xenopus embryos, we discovered that splicing of a specific nefm intron was required for robust transgene expression, regardless of promoter or cell type. Transgenes utilizing the nefm 3'-UTR but substituting other nefm introns expressed little or no protein owing to defects in handling of the messenger (m)RNA as opposed to transcription or splicing. Post-transcriptional events at multiple steps, but mainly during nucleocytoplasmic export, contributed to these varied levels of protein expression. An intron of the β-globin gene was also able to promote expression in a manner identical to that of the nefm intron, implying a more general preference for certain introns in controlling nefm expression. These results expand our knowledge of intron-mediated gene expression to encompass neurofilaments, indicating an additional layer of complexity in the control of a cytoskeletal gene needed for developing and maintaining healthy axons.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Ben G Szaro
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
27
|
Ji X, Park JW, Bahrami-Samani E, Lin L, Duncan-Lewis C, Pherribo G, Xing Y, Liebhaber SA. αCP binding to a cytosine-rich subset of polypyrimidine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome. Nucleic Acids Res 2016; 44:2283-97. [PMID: 26896798 PMCID: PMC4797308 DOI: 10.1093/nar/gkw088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a robust generator of mammalian transcriptome complexity. Splice site specification is controlled by interactions of cis-acting determinants on a transcript with specific RNA binding proteins. These interactions are frequently localized to the intronic U-rich polypyrimidine tracts (PPT) located 5′ to the majority of splice acceptor junctions. αCPs (also referred to as polyC-binding proteins (PCBPs) and hnRNPEs) comprise a subset of KH-domain proteins with high affinity and specificity for C-rich polypyrimidine motifs. Here, we demonstrate that αCPs promote the splicing of a defined subset of cassette exons via binding to a C-rich subset of polypyrimidine tracts located 5′ to the αCP-enhanced exonic segments. This enhancement of splice acceptor activity is linked to interactions of αCPs with the U2 snRNP complex and may be mediated by cooperative interactions with the canonical polypyrimidine tract binding protein, U2AF65. Analysis of αCP-targeted exons predicts a substantial impact on fundamental cell functions. These findings lead us to conclude that the αCPs play a direct and global role in modulating the splicing activity and inclusion of an array of cassette exons, thus driving a novel pathway of splice site regulation within the mammalian transcriptome.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lan Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Duncan-Lewis
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon Pherribo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
The Poly(C) Binding Protein Pcbp2 and Its Retrotransposed Derivative Pcbp1 Are Independently Essential to Mouse Development. Mol Cell Biol 2015; 36:304-19. [PMID: 26527618 DOI: 10.1128/mcb.00936-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins participate in a complex array of posttranscriptional controls essential to cell type specification and somatic development. Despite their detailed biochemical characterizations, the degree to which each RNA-binding protein impacts mammalian embryonic development remains incompletely defined, and the level of functional redundancy among subsets of these proteins remains open to question. The poly(C) binding proteins, PCBPs (αCPs and hnRNP E proteins), are encoded by a highly conserved and broadly expressed gene family. The two major Pcbp isoforms, Pcbp2 and Pcbp1, are robustly expressed in a wide range of tissues and exert both nuclear and cytoplasmic controls over gene expression. Here, we report that Pcbp1-null embryos are rendered nonviable in the peri-implantation stage. In contrast, Pcbp2-null embryos undergo normal development until midgestation (12.5 to 13.5 days postcoitum), at which time they undergo a dramatic loss in viability associated with combined cardiovascular and hematopoietic abnormalities. Mice heterozygous for either Pcbp1 or Pcbp2 null alleles display a mild and nondisruptive defect in initial postpartum weight gain. These data reveal that Pcbp1 and Pcbp2 are individually essential for mouse embryonic development and have distinct impacts on embryonic viability and that Pcpb2 has a nonredundant in vivo role in hematopoiesis. These data further provide direct evidence that Pcbp1, a retrotransposed derivative of Pcpb2, has evolved an essential function(s) in the mammalian genome.
Collapse
|
29
|
Wagener R, Aukema SM, Schlesner M, Haake A, Burkhardt B, Claviez A, Drexler HG, Hummel M, Kreuz M, Loeffler M, Rosolowski M, López C, Möller P, Richter J, Rohde M, Betts MJ, Russell RB, Bernhart SH, Hoffmann S, Rosenstiel P, Schilhabel M, Szczepanowski M, Trümper L, Klapper W, Siebert R. ThePCBP1gene encoding poly(rc) binding protein i is recurrently mutated in Burkitt lymphoma. Genes Chromosomes Cancer 2015; 54:555-64. [DOI: 10.1002/gcc.22268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rabea Wagener
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Sietse M. Aukema
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Matthias Schlesner
- Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Division Theoretical Bioinformatics; Heidelberg Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Birgit Burkhardt
- Non-Hodgkin Lymphoma Berlin-Frankfurt-Münster Group Study Center, Department of Pediatric Hematology and Oncology, University Children's Hospital; Münster Germany
| | - Alexander Claviez
- Department of Pediatrics; University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University; Kiel Germany
| | - Hans G. Drexler
- Leibniz-Institute DSMZ- German Collection of Microorganisms and Cell Cultures GmbH; Braunschweig Germany
| | - Michael Hummel
- Institute of Pathology, Campus Benjamin Franklin, Charité-Universitätsmedizin; Berlin Germany
| | - Markus Kreuz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Cristina López
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Peter Möller
- Institute of Pathology, Universitätsklinikum Ulm; Ulm Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Marius Rohde
- Department of Pediatric Hematology and Oncology; Justus Liebig University; Giessen Germany
| | - Matthew J. Betts
- Cell Networks, Bioquant, University of Heidelberg; Heidelberg Germany
| | - Robert B. Russell
- Cell Networks, Bioquant, University of Heidelberg; Heidelberg Germany
| | - Stephan H. Bernhart
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig; Leipzig Germany
| | - Steve Hoffmann
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig; Leipzig Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Kiel Germany
| | - Markus Schilhabel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Kiel Germany
| | - Monika Szczepanowski
- Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology; Georg-August University of Göttingen; Germany
| | - Wolfram Klapper
- Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | | |
Collapse
|
30
|
Identification of DNA cleavage- and recombination-specific hnRNP cofactors for activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2015; 112:5791-6. [PMID: 25902538 DOI: 10.1073/pnas.1506167112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for antibody class switch recombination (CSR) and somatic hypermutation (SHM). AID originally was postulated to function as an RNA-editing enzyme, based on its strong homology with apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC1), the enzyme that edits apolipoprotein B-100 mRNA in the presence of the APOBEC cofactor APOBEC1 complementation factor/APOBEC complementation factor (A1CF/ACF). Because A1CF is structurally similar to heterogeneous nuclear ribonucleoproteins (hnRNPs), we investigated the involvement of several well-known hnRNPs in AID function by using siRNA knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated disruption. We found that hnRNP K deficiency inhibited DNA cleavage and thereby induced both CSR and SHM, whereas hnRNP L deficiency inhibited only CSR and somewhat enhanced SHM. Interestingly, both hnRNPs exhibited RNA-dependent interactions with AID, and mutant forms of these proteins containing deletions in the RNA-recognition motif failed to rescue CSR. Thus, our study suggests that hnRNP K and hnRNP L may serve as A1CF-like cofactors in AID-mediated CSR and SHM.
Collapse
|
31
|
Xie J. Differential evolution of signal-responsive RNA elements and upstream factors that control alternative splicing. Cell Mol Life Sci 2014; 71:4347-60. [PMID: 25064062 PMCID: PMC11113106 DOI: 10.1007/s00018-014-1688-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/13/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Cell signal-regulated alternative splicing occurs for many genes but the evolutionary origin of the regulatory components and their relationship remain unclear. This review focuses on the alternative splicing components of several systems based on the available bioinformatics data. Eight mammalian RNA elements for signal-regulated splicing were aligned among corresponding sequences from dozens of representative vertebrate species to allow for assessment of the trends in evolutionary changes. Four distinct trends were observed. Four of the elements are highly conserved in bird, reptile and fish species examined (i); two elements can be found in fish but the sequences have been changing till in marsupials or higher mammals (ii); one element is almost exclusively found in mammals with mostly the same sequence (iii); and one element can be found in birds or lower vertebrates but expanded abruptly to have variable numbers of copies in mammals (iv). All examined prototype trans-acting factors and protein kinases emerged earlier than the RNA elements but additional (paralog) factors emerged in the same or later species. Thus, after their emergence mainly in fish or mammals with pre-existing prototype trans-acting factors/kinases, half of the elements have been highly conserved from fish to humans but the other half have evolved differentially with additional trans-acting factors. Their differential evolution likely contributes to the exon- and species/class-specific control of alternative splicing and its regulation by cell signals. The evolvement of a group of mammal-specific components would help relay signals from extracellular stimuli to the splicing machinery and thus contribute to higher proteomic diversity.
Collapse
Affiliation(s)
- Jiuyong Xie
- Departments of Physiology, Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada,
| |
Collapse
|
32
|
Kralovicova J, Lages A, Patel A, Dhir A, Buratti E, Searle M, Vorechovsky I. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex. Nucleic Acids Res 2014; 42:8161-73. [PMID: 24944197 PMCID: PMC4081105 DOI: 10.1093/nar/gku507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage
but antisense strategies that promote removal of entire introns to increase
splicing-mediated gene expression have not been developed. Here we show reduction of
INS intron 1 retention by SSOs that bind transcripts derived from
a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a
polypyrimidine tract variant rs689 that decreases the efficiency of
intron 1 splicing and increases the relative abundance of mRNAs with extended 5'
untranslated region (5' UTR), which curtails translation. Co-expression of
haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs
and decoy splice sites in primary transcripts revealed a motif that significantly
reduced intron 1-containing mRNAs. Using an antisense microwalk at a single
nucleotide resolution, the optimal target was mapped to a splicing silencer
containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G)
quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance
of synthetic G-rich oligoribonucleotide tracts derived from this region showed
formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense
retention target and an equilibrium between quadruplexes and stable hairpin-loop
structures bound by optimal SSOs. This region interacts with heterogeneous nuclear
ribonucleoproteins F and H that may interfere with conformational transitions
involving the antisense target. The SSO-assisted promotion of weak intron removal
from the 5' UTR through competing noncanonical and canonical RNA structures may
facilitate development of novel strategies to enhance gene expression.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ana Lages
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Alpa Patel
- University of Nottingham, School of Chemistry, Centre for Biomolecular Sciences, Nottingham NG7 2RD, UK
| | | | | | - Mark Searle
- University of Nottingham, School of Chemistry, Centre for Biomolecular Sciences, Nottingham NG7 2RD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
33
|
Liepelt A, Mossanen JC, Denecke B, Heymann F, De Santis R, Tacke F, Marx G, Ostareck DH, Ostareck-Lederer A. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation. RNA (NEW YORK, N.Y.) 2014; 20:899-911. [PMID: 24751651 PMCID: PMC4024643 DOI: 10.1261/rna.042788.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/14/2014] [Indexed: 05/22/2023]
Abstract
Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous nuclear ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating hematopoietic cells, was studied in noninduced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed several mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor-β-activated kinase 1 (TAK1) a central player in TLR4 signaling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3' UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis or stability but enhances TAK1 mRNA translation, resulting in elevated TNF-α, IL-1β, and IL-10 mRNA expression. Our data suggest that the hnRNP K-3' UTR complex inhibits TAK1 mRNA translation in noninduced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesized TAK1 boosts macrophage inflammatory response.
Collapse
Affiliation(s)
- Anke Liepelt
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Jana C. Mossanen
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Bernd Denecke
- Chip Facility, IZKF Aachen, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix Heymann
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Rebecca De Santis
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Dirk H. Ostareck
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Corresponding authorsE-mail E-mail
| | - Antje Ostareck-Lederer
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Corresponding authorsE-mail E-mail
| |
Collapse
|
34
|
Refinement of the spectra of exon usage by combined effects of extracellular stimulus and intracellular factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:537-45. [PMID: 24844182 DOI: 10.1016/j.bbagrm.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022]
Abstract
Finely tuned differential expression of alternative splice variants contributes to important physiological processes such as the fine-tuning of electrical firing or hearing frequencies; yet the underlying molecular basis for the expression control is not clear. The inclusion levels of four depolarization-regulated alternative exons were measured by RT-PCR in GH3 pituitary cells under different conditions of stimulation and/or RNA interference of splicing factors. The usage of the exons was reduced by membrane depolarization to various extents and was differentially modulated by the knock-down of splicing factors hnRNP L, L-like, I (PTBP1) or K or their combinations. A spectrum of each exon's level was produced under six knock-down conditions and was significantly shifted by depolarization. When all these conditions were considered together, a more refined or expanded spectrum of exon usage was obtained for each of the four exons. As a proof of principle for the molecular basis of the fine-tuning of exon usage, we show in the cases of hnRNP L and LL that their differential effects through the same element or different combinations of RNA sequences by the same factor hnRNP L are critical. The results thus demonstrate that the combined effect of varying extracellular stimuli and intracellular factors/RNA sequences refines or expands the spectra of endogenous exon usage, likely contributing to the fine-tuning of cellular properties.
Collapse
|
35
|
Doh JH, Jung Y, Reinke V, Lee MH. C. elegans RNA-binding protein GLD-1 recognizes its multiple targets using sequence, context, and structural information to repress translation. WORM 2014; 2:e26548. [PMID: 24744981 DOI: 10.4161/worm.26548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Caenorhabditis elegans GLD-1, a maxi-KH motif containing RNA-binding protein, has various functions mainly during female germ cell development, suggesting that it likely controls the expression of a selective group of maternal mRNAs. To gain an insight into how GLD-1 specifically recognizes these mRNA targets, we identified 38 biochemically proven GLD-1 binding regions from multiple mRNA targets that are among over 100 putative targets co-immunoprecipitated with GLD-1. The sequence information of these regions revealed three over-represented and phylogenetically conserved sequence motifs. We found that two of the motifs, one of which is novel, are important for GLD-1 binding in several GLD-1 binding regions but not in other regions. Further analyses indicate that the importance of one of the sequence motifs is dependent on two aspects: (1) surrounding sequence information, likely acting as an accessory feature for GLD-1 to efficiently select the sequence motif and (2) RNA secondary structural environment where the sequence motif resides, which likely provides "binding-site accessibility" for GLD-1 to effectively recognize its targets. Our data suggest some mRNAs recruit GLD-1 by a distinct mechanism, which involves more than one sequence motif that needs to be embedded in the correct context and structural environment.
Collapse
Affiliation(s)
- Jung H Doh
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Yuchae Jung
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Valerie Reinke
- Department of Genetics; Yale University School of Medicine; New Haven, CT USA
| | - Min-Ho Lee
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| |
Collapse
|
36
|
Furusawa H, Fukusho S, Okahata Y. Arginine arrangement of bacteriophage λ N-peptide plays a role as a core motif in GNRA tetraloop RNA binding. Chembiochem 2014; 15:865-71. [PMID: 24623705 DOI: 10.1002/cbic.201300809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Indexed: 11/11/2022]
Abstract
A simple α-helical N-model-peptide was designed to investigate the role of the arginine-rich motif of bacteriophage λ N-peptide in selective binding with boxB RNA. The five-arginine arrangement of native N-peptide was retained; all other residues were replaced with alanine. In vitro selection of RNA (30 random-nucleotide region) was carried out with N-model-peptide immobilized on a 27 MHz quartz-crystal microbalance (QCM). Selected RNAs were evaluated on the same QCM plate to obtain binding constants (Ka =10(7) -10(8) M(-1) ). Many selected RNAs contained GNR(N)A-type loops (similar to the boxB RNA motif recognized by the native N-peptide). Fragments and minimal RNAs containing the GNRA-type loop also bound to N-model-peptide (Ka =10(6) -10(7) M(-1) ). The RNA recognition specificity of the peptide was studied by changing the "closing" U-A base pair and one base in the tetraloop of the RNA aptamers, and by peptide mutations (18th residue of N-model-peptide). It was concluded that the five-arginine arrangement of the peptide performs selective recognition of the GNRA tetraloop and GNR(N)A pentaloop RNA structures, and that substitution of another functional amino acid residue at the 18th position in N-peptide adds the recognition ability for a loop-RNA sequence.
Collapse
Affiliation(s)
- Hiroyuki Furusawa
- Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259, Nagatsuda, Midori-ku, Yokohama, 226-8501 (Japan)
| | | | | |
Collapse
|
37
|
Porro A, Feuerhahn S, Lingner J. TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep 2014; 6:765-76. [PMID: 24529708 DOI: 10.1016/j.celrep.2014.01.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/18/2013] [Accepted: 01/15/2014] [Indexed: 12/15/2022] Open
Abstract
Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2), telomeres elicit a DNA-damage response leading to cellular senescence. Here, we show that following TRF2 depletion, the levels of the long noncoding RNA TERRA increase and LSD1, which binds TERRA, is recruited to telomeres. At uncapped telomeres, LSD1 associates with MRE11, one of the nucleases implicated in the processing of 3' telomeric G overhangs, and we show that LSD1 is required for efficient removal of these structures. The LSD1-MRE11 interaction is reinforced in vivo following TERRA upregulation in TRF2-deficient cells and in vitro by TERRA-mimicking RNA oligonucleotides. Furthermore, LSD1 enhances the nuclease activity of MRE11 in vitro. Our data indicate that recruitment of LSD1 to deprotected telomeres requires MRE11 and is promoted by TERRA. LSD1 stimulates MRE11 catalytic activity and nucleolytic processing of uncapped telomeres.
Collapse
Affiliation(s)
- Antonio Porro
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, EPFL-Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sascha Feuerhahn
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, EPFL-Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Joachim Lingner
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, EPFL-Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
38
|
Torvund-Jensen J, Steengaard J, Reimer L, Fihl LB, Laursen LS. Transport and translation of MBP mRNA is regulated differently by distinct hnRNP proteins. J Cell Sci 2014; 127:1550-64. [PMID: 24522184 DOI: 10.1242/jcs.140855] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the developing nervous system, abundant synthesis of myelin basic protein (MBP) in oligodendrocytes is required for the formation of compact myelin sheaths around axons. The MBP mRNA is known to be transported into the processes of oligodendrocytes. However, knowledge of the regulatory mechanisms that ensure the tight temporal and spatial control of MBP translation within these processes is limited. Here, we have identified novel regions within the 3'-UTR of the MBP mRNA that are responsible for the regulation of its translation, and we have demonstrated that each of the mRNA-binding proteins heterogeneous nuclear ribonucleoprotein (hnRNP)-A2, hnRNP-K and hnRNP-E1 serve distinct functions to regulate controlled and localized protein synthesis. hnRNP-A2 is responsible for mRNA transport, not for translational inhibition. By contrast, hnRNP-K and hnRNP-E1 play opposing roles in the translational regulation of MBP mRNA. We have identified shared binding sites within the 3'-UTR, and show that translation is promoted by the exchange of inhibitory hnRNP-E1 for stimulatory hnRNP-K. We further show that this molecular switch in the MBP messenger RNA-ribonucleoprotein (mRNP) complex, which regulates the synthesis of MBP, is important for the normal growth and extension of myelin sheets.
Collapse
Affiliation(s)
- Julie Torvund-Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
39
|
Anxiety-associated alternative polyadenylation of the serotonin transporter mRNA confers translational regulation by hnRNPK. Proc Natl Acad Sci U S A 2013; 110:11624-9. [PMID: 23798440 DOI: 10.1073/pnas.1301485110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The serotonin transporter (SERT) is a major regulator of serotonergic neurotransmission and anxiety-related behaviors. SERT is expressed in two alternative polyadenylation forms that differ by an evolutionarily conserved element in the 3' untranslated region of its mRNA. Expression of SERT mRNA containing the distal polyadenylation element is associated with decreased anxiety-related behaviors in mice and humans, suggesting that this element has behaviorally relevant modulatory effects on SERT expression. We have identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a protein known to integrate multiple signal transduction pathways with gene expression, as a SERT distal polyadenylation element binding protein. This interaction is functionally meaningful because genetic manipulation of hnRNPK alters expression of the SERT protein. Furthermore, the trophic factor S100β induces Src-family kinase-mediated tyrosine phosphorylation of hnRNPK and increased SERT expression. These results identify a previously unknown mechanism of regulated SERT expression and provide a putative mechanism by which the SERT distal polyadenylation element modulates anxiety-related behaviors.
Collapse
|
40
|
αCP Poly(C) binding proteins act as global regulators of alternative polyadenylation. Mol Cell Biol 2013; 33:2560-73. [PMID: 23629627 DOI: 10.1128/mcb.01380-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously demonstrated that the KH-domain protein αCP binds to a 3' untranslated region (3'UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3' processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3' processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5' to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3' processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome.
Collapse
|
41
|
Cyphert TJ, Suchanek AL, Griffith BN, Salati LM. Starvation actively inhibits splicing of glucose-6-phosphate dehydrogenase mRNA via a bifunctional ESE/ESS element bound by hnRNP K. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:905-15. [PMID: 23631859 DOI: 10.1016/j.bbagrm.2013.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 12/26/2022]
Abstract
Regulated expression of glucose-6-phosphate dehydrogenase (G6PD) is due to changes in the rate of pre-mRNA splicing and not changes in its transcription. Starvation alters pre-mRNA splicing by decreasing the rate of intron removal, leading to intron retention and a decrease in the accumulation of mature mRNA. A regulatory element within exon 12 of G6PD pre-mRNA controls splicing efficiency. Starvation caused an increase in the expression of heterogeneous nuclear ribonucleoprotein (hnRNP) K protein and this increase coincided with the increase in the binding of hnRNP K to the regulatory element and a decrease in the expression of G6PD mRNA. HnRNP K bound to two C-rich motifs forming an ESS within exon 12. Overexpression of hnRNP K decreased the splicing and expression of G6PD mRNA, while siRNA-mediated depletion of hnRNP K caused an increase in the splicing and expression of G6PD mRNA. Binding of hnRNP K to the regulatory element was enhanced in vivo by starvation coinciding with a decrease in G6PD mRNA. HnRNP K binding to the C-rich motifs blocked binding of serine-arginine rich, splicing factor 3 (SRSF3), a splicing enhancer. Thus hnRNP K is a nutrient regulated splicing factor responsible for the inhibition of the splicing of G6PD during starvation.
Collapse
Affiliation(s)
- T J Cyphert
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
42
|
Wen J, Chen Z, Cai X. A biophysical model for identifying splicing regulatory elements and their interactions. PLoS One 2013; 8:e54885. [PMID: 23382993 PMCID: PMC3559881 DOI: 10.1371/journal.pone.0054885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a crucial step in the expression of most eukaryotic genes. Splicing factors (SFs) play an important role in AS regulation by binding to the cis-regulatory elements on the pre-mRNA. Although many splicing factors (SFs) and their binding sites have been identified, their combinatorial regulatory effects remain to be elucidated. In this paper, we derive a biophysical model for AS regulation that integrates combinatorial signals of cis-acting splicing regulatory elements (SREs) and their interactions. We also develop a systematic framework for model inference. Applying the biophysical model to a human RNA-Seq data set, we demonstrate that our model can explain 49.1%–66.5% variance of the data, which is comparable to the best result achieved by biophysical models for transcription. In total, we identified 119 SRE pairs between different regions of cassette exons that may regulate exon or intron definition in splicing, and 77 SRE pairs from the same region that may arise from a long motif or two different SREs bound by different SFs. Particularly, putative binding sites of polypyrimidine tract-binding protein (PTB), heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and E/K are identified as interacting SRE pairs, and have been shown to be consistent with the interaction models proposed in previous experimental results. These results show that our biophysical model and inference method provide a means of quantitative modeling of splicing regulation and is a useful tool for identifying SREs and their interactions. The software package for model inference is available under an open source license.
Collapse
Affiliation(s)
- Ji Wen
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami, Miami, Florida, United States of America
| | - Xiaodong Cai
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
The neurexin genes (NRXN1, NRXN2, and NRXN3) encode polymorphic presynaptic proteins that are implicated in synaptic plasticity and memory processing. In rat brain neurons grown in culture, depolarization induces reversible, calcium-dependent, repression of NRXN2α exon 11 (E11) splicing. Using Neuro2a cells as a model, we explored E11 cis elements and trans-acting factors involved in alternative splicing of NRXN2α E11 pre-mRNA under basal and depolarization conditions. E11 mutation studies revealed two motifs, CTGCCTG (enhancer) and GCACCCA (suppressor) regulating NRXN2α E11 alternative splicing. Subsequent E11 RNA affinity pull-down experiments demonstrated heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP L binding to this exon. Under depolarization, the amount of E11-bound hnRNP L (but not of hnRNP K) increased, in parallel to NRXN2α E11 splicing repression. Depletion of hnRNP K or hnRNP L in the Neuro2a cells by specific siRNAs enhanced NRXN2α E11 splicing and ablated the depolarization-induced repression of this exon. In addition, depolarization suppressed whereas hnRNP K depletion enhanced NRXN2α expression. These results indicate a role for hnRNP K in regulation of NRXN2α expression and of hnRNP L in the activity-dependent alternative splicing of neurexins which may potentially govern trans-synaptic signaling required for memory processing.
Collapse
|
44
|
Löscher M, Schosserer M, Dausse E, Lee K, Ajuh P, Grillari-Voglauer R, Lamond AI, Toulmé JJ, Grillari J. Inhibition of pre-mRNA splicing by a synthetic Blom7α-interacting small RNA. PLoS One 2012; 7:e47497. [PMID: 23144703 PMCID: PMC3483155 DOI: 10.1371/journal.pone.0047497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/17/2012] [Indexed: 12/02/2022] Open
Abstract
Originally the novel protein Blom7α was identified as novel pre-mRNA splicing factor that interacts with SNEVPrp19/Pso4, an essential protein involved in extension of human endothelial cell life span, DNA damage repair, the ubiquitin-proteasome system, and pre-mRNA splicing. Blom7α belongs to the heteronuclear ribonucleoprotein K homology (KH) protein family, displaying 2 KH domains, a well conserved and widespread RNA-binding motif. In order to identify specific sequence binding motifs, we here used Systematic Evolution of Ligands by Exponential Enrichment (SELEX) with a synthetic RNA library. Besides sequence motifs like (U/A)1–4 C2–6 (U/A)1–5, we identified an AC-rich RNA-aptamer that we termed AK48 (Aptamer KH-binding 48), binding to Blom7α with high affinity. Addition of AK48 to pre-mRNA splicing reactions in vitro inhibited the formation of mature spliced mRNA and led to a slight accumulation of the H complex of the spliceosome. These results suggest that the RNA binding activity of Blom7α might be required for pre-mRNA splicing catalysis. The inhibition of in-vitro splicing by the small RNA AK48 indicates the potential use of small RNA molecules in targeting the spliceosome complex as a novel target for drug development.
Collapse
Affiliation(s)
- Marlies Löscher
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eric Dausse
- INSERM U869, European Institute of Chemistry and Biology, Pessac, France
- University of Bordeaux, Bordeaux, France
| | - Kiseok Lee
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Ajuh
- School of Life Sciences, Welcome Trust Biocentre, University of Dundee, Dundee, United Kingdom
| | - Regina Grillari-Voglauer
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
- ACIB, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | - Angus I. Lamond
- School of Life Sciences, Welcome Trust Biocentre, University of Dundee, Dundee, United Kingdom
| | - Jean-Jacques Toulmé
- INSERM U869, European Institute of Chemistry and Biology, Pessac, France
- University of Bordeaux, Bordeaux, France
| | - Johannes Grillari
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
- * E-mail:
| |
Collapse
|
45
|
Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 2012; 31:4020-34. [PMID: 22960638 DOI: 10.1038/emboj.2012.251] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 08/14/2012] [Indexed: 11/09/2022] Open
Abstract
Paraspeckles are unique subnuclear structures built around a specific long noncoding RNA, NEAT1, which is comprised of two isoforms produced by alternative 3'-end processing (NEAT1_1 and NEAT1_2). To address the precise molecular processes that lead to paraspeckle formation, we identified 35 paraspeckle proteins (PSPs), mainly by colocalization screening with a fluorescent protein-tagged full-length cDNA library. Most of the newly identified PSPs possessed various putative RNA-binding domains. Subsequent RNAi analyses identified seven essential PSPs for paraspeckle formation. One of the essential PSPs, HNRNPK, appeared to affect the production of the essential NEAT1_2 isoform by negatively regulating the 3'-end polyadenylation of the NEAT1_1 isoform. An in vitro 3'-end processing assay revealed that HNRNPK arrested binding of the CPSF6-NUDT21 (CFIm) complex in the vicinity of the alternative polyadenylation site of NEAT1_1. In vitro binding assays showed that HNRNPK competed with CPSF6 for binding to NUDT21, which was the underlying mechanism to arrest CFIm binding by HNRNPK. This HNRNPK function led to the preferential accumulation of NEAT1_2 and initiated paraspeckle construction with multiple PSPs.
Collapse
|
46
|
Cao W, Razanau A, Feng D, Lobo VG, Xie J. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation. Nucleic Acids Res 2012; 40:8059-71. [PMID: 22684629 PMCID: PMC3439897 DOI: 10.1093/nar/gks504] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage.
Collapse
Affiliation(s)
- Wenguang Cao
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | |
Collapse
|
47
|
Wang J, Sun S, Cao X, Deng X, Zhang Y, Zhu Q. Retracted: Overexpression of αCP2, a translational repressor of GAP-43, inhibited axon outgrowth during development in Xenopus laevis. Biochem Biophys Res Commun 2012; 419:262-7. [PMID: 22342981 DOI: 10.1016/j.bbrc.2012.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
Abstract
The 3'-untranslated regions (3'-UTRs) of growth-associated protein 43 (GAP-43), which is crucial for neural development and axonal regeneration, are highly conserved among vertebrates. Previous studies in mammals have identified one U-rich cis element within GAP-43 3'-UTR and several trans factors that regulate its mRNA stability. However, much less is known in lower vertebrates. The Xenopus GAP-43 3'-UTR, despite its high similarity with those in higher vertebrates, contains unique CU-rich sequences, suggesting the existence of novel cis elements and trans factors. In current study, we isolated four proteins bound to GAP-43 3'-UTR from juvenile frog brain using affinity purification. Mass spectrometry identified Hu antigen D (HuD) and poly(C) binding protein 2 (αCP2) as the proteins forming 48- and 44-kDa ribonucleoprotein complexes, respectively. We validated the association between αCP2 and GAP-43 3'-UTR in vivo. After confirming the post-transcriptional effects of αCP2 on GAP-43 expression, we demonstrated that αCP2 directly inhibited the translation of GAP-43 gene, without affecting its mRNA stability. αCP2 overexpression led to decreased level of GAP-43 protein and significantly inhibited axonal outgrowth in primarily cultured neurons. Our study therefore provided insights on novel functions of αCP2 in vertebrate nervous system during development and new mechanisms of post-transcriptional regulation for GAP-43 gene.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | | | | | | | | | | |
Collapse
|
48
|
Yoga YMK, Traore DAK, Sidiqi M, Szeto C, Pendini NR, Barker A, Leedman PJ, Wilce JA, Wilce MCJ. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides. Nucleic Acids Res 2012; 40:5101-14. [PMID: 22344691 PMCID: PMC3367169 DOI: 10.1093/nar/gks058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5′-CCCTCCCT-3′ DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5′-ACCCCA-3′ DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.
Collapse
Affiliation(s)
- Yano M K Yoga
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu Y, Szaro BG. hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development 2011; 138:3079-90. [PMID: 21693523 DOI: 10.1242/dev.066993] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The RNA-binding protein, hnRNP K, is essential for axonogenesis. Suppressing its expression in Xenopus embryos yields terminally specified neurons with severely disorganized microtubules, microfilaments and neurofilaments, raising the hypothesis that hnRNP K post-transcriptionally regulates multiple transcripts of proteins that organize the axonal cytoskeleton. To identify downstream candidates for this regulation, RNAs that co-immunoprecipitated from juvenile brain with hnRNP K were identified on microarrays. A substantial number of these transcripts were linked to the cytoskeleton and to intracellular localization, trafficking and transport. Injection into embryos of a non-coding RNA bearing multiple copies of an hnRNP K RNA-binding consensus sequence found within these transcripts largely phenocopied hnRNP K knockdown, further supporting the idea that it regulates axonogenesis through its binding to downstream target RNAs. For further study of regulation by hnRNP K of the cytoskeleton during axon outgrowth, we focused on three validated RNAs representing elements associated with all three polymers - Arp2, tau and an α-internexin-like neurofilament. All three were co-regulated post-transcriptionally by hnRNP K, as hnRNP K knockdown yielded comparable defects in their nuclear export and translation but not transcription. Directly knocking down expression of all three together, but not each one individually, substantially reproduced the axonless phenotype, providing further evidence that regulation of axonogenesis by hnRNP K occurs largely through pleiotropic effects on cytoskeletal-associated targets. These experiments provide evidence that hnRNP K is the nexus of a novel post-transcriptional regulatory module controlling the synthesis of proteins that integrate all three cytoskeletal polymers to form the axon.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | | |
Collapse
|
50
|
Ji X, Kong J, Liebhaber SA. An RNA-protein complex links enhanced nuclear 3' processing with cytoplasmic mRNA stabilization. EMBO J 2011; 30:2622-33. [PMID: 21623344 DOI: 10.1038/emboj.2011.171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/19/2011] [Indexed: 01/09/2023] Open
Abstract
Post-transcriptional controls are critical to gene regulation. These controls are frequently based on sequence-specific binding of trans-acting proteins to cis-acting motifs on target RNAs. Prior studies have revealed that the KH-domain protein, αCP, binds to a 3' UTR C-rich motif of hα-globin mRNA and contributes to its cytoplasmic stability. Here, we report that this 3' UTR αCP complex regulates the production of mature α-globin mRNA by enhancing 3' processing of the hα-globin transcript. We go on to demonstrate that this nuclear activity reflects enhancement of both the cleavage and the polyadenylation reactions and that αCP interacts in vivo with core components of the 3' processing complex. Consistent with its nuclear processing activity, our studies reveal that αCP assembles co-transcriptionally at the hα-globin chromatin locus and that this loading is selectively enriched at the 3' terminus of the gene. The demonstrated linkage of nuclear processing with cytoplasmic stabilization via a common RNA-protein complex establishes a basis for integration of sequential controls critical to robust and sustained expression of a target mRNA.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|