1
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Tran NNB, Bui ATA, Jaramillo-Martinez V, Weber J, Zhang Q, Urbatsch IL. Lipid environment determines the drug-stimulated ATPase activity of P-glycoprotein. Front Mol Biosci 2023; 10:1141081. [PMID: 36911528 PMCID: PMC9995911 DOI: 10.3389/fmolb.2023.1141081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
P-glycoprotein (Pgp) is a multidrug transporter that uses the energy from ATP binding and hydrolysis to export from cells a wide variety of hydrophobic compounds including anticancer drugs, and mediates the bioavailability and pharmacokinetics of many drugs. Lipids and cholesterol have been shown to modulate the substrate-stimulated ATPase activity of purified Pgp in detergent solution and the substrate transport activity after reconstitution into proteoliposomes. While lipid extracts from E. coli, liver or brain tissues generally support well Pgp's functionality, their ill-defined composition and high UV absorbance make them less suitable for optical biophysical assays. On the other hand, studies with defined synthetic lipids, usually the bilayer-forming phosphatidylcholine with or without cholesterol, are often plagued by low ATPase activity and low binding affinity of Pgp for drugs. Drawing from the lipid composition of mammalian plasma membranes, we here investigate how different head groups modulate the verapamil-stimulated ATPase activity of purified Pgp in detergent-lipid micelles and compare them with components of E. coli lipids. Our general approach was to assay modulation of verapamil-stimulation of ATPase activity by artificial lipid mixtures starting with the bilayer-forming palmitoyloyl-phosphatidylcholine (POPC) and -phosphatidylethanolamine (POPE). We show that POPC/POPE supplemented with sphingomyelin (SM), cardiolipin, or phosphatidic acid enhanced the verapamil-stimulated activity (Vmax) and decreased the concentration required for half-maximal activity (EC50). Cholesterol (Chol) and more so its soluble hemisuccinate derivative cholesteryl hemisuccinate substantially decreased EC50, perhaps by supporting the functional integrity of the drug binding sites. High concentrations of CHS (>15%) resulted in a significantly increased basal activity which could be due to binding of CHS to the drug binding site as transport substrate or as activator, maybe acting cooperatively with verapamil. Lastly, Pgp reconstituted into liposomes or nanodiscs displayed higher basal activity and sustained high levels of verapamil stimulated activity. The findings establish a stable source of artificial lipid mixtures containing either SM and cholesterol or CHS that restore Pgp functionality with activities and affinities similar to those in the natural plasma membrane environment and will pave the way for future functional and biophysical studies.
Collapse
Affiliation(s)
- Nghi N. B. Tran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - A. T. A. Bui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Valeria Jaramillo-Martinez
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joachim Weber
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
3
|
Li Y, Zhang X, Wang Z, Li B, Zhu H. Modulation of redox homeostasis: A strategy to overcome cancer drug resistance. Front Pharmacol 2023; 14:1156538. [PMID: 37033606 PMCID: PMC10073466 DOI: 10.3389/fphar.2023.1156538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer treatment is hampered by resistance to conventional therapeutic strategies, including chemotherapy, immunotherapy, and targeted therapy. Redox homeostasis manipulation is one of the most effective innovative treatment techniques for overcoming drug resistance. Reactive oxygen species (ROS), previously considered intracellular byproducts of aerobic metabolism, are now known to regulate multiple signaling pathways as second messengers. Cancer cells cope with elevated amounts of ROS during therapy by upregulating the antioxidant system, enabling tumor therapeutic resistance via a variety of mechanisms. In this review, we aim to shed light on redox modification and signaling pathways that may contribute to therapeutic resistance. We summarized the molecular mechanisms by which redox signaling-regulated drug resistance, including altered drug efflux, action targets and metabolism, enhanced DNA damage repair, maintained stemness, and reshaped tumor microenvironment. A comprehensive understanding of these interrelationships should improve treatment efficacy from a fundamental and clinical research point of view.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- *Correspondence: Huili Zhu,
| |
Collapse
|
4
|
Wang L, O'Mara ML. Effect of the Force Field on Molecular Dynamics Simulations of the Multidrug Efflux Protein P-Glycoprotein. J Chem Theory Comput 2021; 17:6491-6508. [PMID: 34506133 DOI: 10.1021/acs.jctc.1c00414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular dynamics (MD) simulations have been used extensively to study P-glycoprotein (P-gp), a flexible multidrug transporter that is a key player in the development of multidrug resistance to chemotherapeutics. A substantial body of literature has grown from simulation studies that have employed various simulation conditions and parameters, including AMBER, CHARMM, OPLS, GROMOS, and coarse-grained force fields, drawing conclusions from simulations spanning hundreds of nanoseconds. Each force field is typically parametrized and validated on different data and observables, usually of small molecules and peptides; there have been few comparisons of force field performance on large protein-membrane systems. Here we compare the conformational ensembles of P-gp embedded in a POPC/cholesterol bilayer generated over 500 ns of replicate simulation with five force fields from popular biomolecular families: AMBER 99SB-ILDN, CHARMM 36, OPLS-AA/L, GROMOS 54A7, and MARTINI. We find considerable differences among the ensembles with little conformational overlap, although they correspond to similar extents to structural data obtained from electron paramagnetic resonance and cross-linking studies. Moreover, each trajectory was still sampling new conformations at a high rate after 500 ns of simulation, suggesting the need for more sampling. This work highlights the need to consider known limitations of the force field used (e.g., biases toward certain secondary structures) and the simulation itself (e.g., whether sufficient sampling has been achieved) when interpreting accumulated results of simulation studies of P-gp and other transport proteins.
Collapse
Affiliation(s)
- Lily Wang
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Liang B, Lusvarghi S, Ambudkar SV, Huang HC. Mechanistic Insights into Photodynamic Regulation of Adenosine 5'-Triphosphate-Binding Cassette Drug Transporters. ACS Pharmacol Transl Sci 2021; 4:1578-1587. [PMID: 36118950 PMCID: PMC9476936 DOI: 10.1021/acsptsci.1c00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Efforts to overcome cancer multidrug resistance through inhibition of the adenosine triphosphate-binding cassette (ABC) drug transporters ABCB1 and ABCG2 have largely failed in the clinic. The challenges faced during the development of non-toxic modulators suggest a need for a conceptual shift to new strategies for the inhibition of ABC drug transporters. Here, we reveal the fundamental mechanisms by which photodynamic therapy (PDT) can be exploited to manipulate the function and integrity of ABC drug transporters. PDT is a clinically relevant, photochemistry-based tool that involves the light activation of photosensitizers to generate reactive oxygen species. ATPase activity and in silico molecular docking analyses show that the photosensitizer benzoporphyrin derivative (BPD) binds to ABCB1 and ABCG2 with micromolar half-maximal inhibitory concentrations in the absence of light. Light activation of BPD generates singlet oxygen to further reduce the ATPase activity of ABCB1 and ABCG2 by up to 12-fold in an optical dose-dependent manner. Gel electrophoresis and Western blotting revealed that light-activated BPD induces the aggregation of these transporters by covalent cross-linking. We provide a proof of principle that PDT affects the function of ABCB1 and ABCG2 by modulating the ATPase activity and protein integrity of these transporters. Insights gained from this study concerning the photodynamic manipulation of ABC drug transporters could aid in the development and application of new optical tools to overcome the multidrug resistance that often develops after cancer chemotherapy.
Collapse
Affiliation(s)
- Barry
J. Liang
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sabrina Lusvarghi
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Suresh V. Ambudkar
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Huang-Chiao Huang
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
- Marlene
and Stewart Greenebaum Cancer Center, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Replacing the eleven native tryptophans by directed evolution produces an active P-glycoprotein with site-specific, non-conservative substitutions. Sci Rep 2020; 10:3224. [PMID: 32081894 PMCID: PMC7035247 DOI: 10.1038/s41598-020-59802-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
P-glycoprotein (Pgp) pumps an array of hydrophobic compounds out of cells, and has major roles in drug pharmacokinetics and cancer multidrug resistance. Yet, polyspecific drug binding and ATP hydrolysis-driven drug export in Pgp are poorly understood. Fluorescence spectroscopy using tryptophans (Trp) inserted at strategic positions is an important tool to study ligand binding. In Pgp, this method will require removal of 11 endogenous Trps, including highly conserved Trps that may be important for function, protein-lipid interactions, and/or protein stability. Here, we developed a directed evolutionary approach to first replace all eight transmembrane Trps and select for transport-active mutants in Saccharomyces cerevisiae. Surprisingly, many Trp positions contained non-conservative substitutions that supported in vivo activity, and were preferred over aromatic amino acids. The most active construct, W(3Cyto), served for directed evolution of the three cytoplasmic Trps, where two positions revealed strong functional bias towards tyrosine. W(3Cyto) and Trp-less Pgp retained wild-type-like protein expression, localization and transport function, and purified proteins retained drug stimulation of ATP hydrolysis and drug binding affinities. The data indicate preferred Trp substitutions specific to the local context, often dictated by protein structural requirements and/or membrane lipid interactions, and these new insights will offer guidance for membrane protein engineering.
Collapse
|
7
|
Wise JG, Nanayakkara AK, Aljowni M, Chen G, De Oliveira MC, Ammerman L, Olengue K, Lippert AR, Vogel PD. Optimizing Targeted Inhibitors of P-Glycoprotein Using Computational and Structure-Guided Approaches. J Med Chem 2019; 62:10645-10663. [PMID: 31702922 PMCID: PMC7031812 DOI: 10.1021/acs.jmedchem.9b00966] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression of ABC transporters like P-glycoprotein (P-gp) has been correlated with resistances in cancer chemotherapy. Intensive efforts to identify P-gp inhibitors for use in combination therapy have not led to clinically approved inhibitors to date. Here, we describe computational approaches combined with structure-based design to improve the characteristics of a P-gp inhibitor previously identified by us. This hit compound represents a novel class of P-gp inhibitors that specifically targets and inhibits P-gp ATP hydrolysis while not being transported by the pump. We describe here a new program for virtual chemical synthesis and computational assessment, ChemGen, to produce hit compound variants with improved binding characteristics. The chemical syntheses of several variants, efficacy in reversing multidrug resistance in cell culture, and biochemical assessment of the inhibition mechanism are described. The usefulness of the computational predictions of binding characteristics of the inhibitor variants is discussed and compared to more traditional structure-based approaches.
Collapse
Affiliation(s)
- John G. Wise
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Amila K. Nanayakkara
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Maha Aljowni
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- Department of Chemistry, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Gang Chen
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Maisa C. De Oliveira
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Lauren Ammerman
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Ketetha Olengue
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Alexander R. Lippert
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- Department of Chemistry, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Pia D. Vogel
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| |
Collapse
|
8
|
Mollazadeh S, Sahebkar A, Hadizadeh F, Behravan J, Arabzadeh S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci 2018; 214:118-123. [PMID: 30449449 DOI: 10.1016/j.lfs.2018.10.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
P-glycoprotein (P-gp) is a member of ATP-binding cassette (ABC) superfamily which extrudes chemotherapeutic agents out of the cell. Suppression of this efflux activity has been the subject of numerous attempts to develop P-gp inhibitors. The aim of this review is to present up-to-date information on the structural and functional aspects of P-gp and its known inhibitors. The data presented also provide some information on drug discovery approaches for candidate P-gp inhibitors. Nucleotide-binding domains (NBDs) and drug-binding domains (DBDs) have been extensively studied to gain more information about P-gp inhibition and it looks that the ATPase activity of this pump has been the most attractive target for designing inhibitors. Hydrophobic and π-π (aromatic) interactions between P-gp binding domains and inhibitors are dominant intermolecular forces that have been reported in many studies using different methods. Many synthetic and natural products have been found to possess inhibitory or modulatory effects on drug transporter proteins. Log P value is an important factor in studying these inhibitors and has a crucial role on absorption, distribution, metabolism, and excretion (ADME) properties of candidate P-gp inhibitors.
Collapse
Affiliation(s)
- Shirin Mollazadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepideh Arabzadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Condic-Jurkic K, Subramanian N, Mark AE, O’Mara ML. The reliability of molecular dynamics simulations of the multidrug transporter P-glycoprotein in a membrane environment. PLoS One 2018; 13:e0191882. [PMID: 29370310 PMCID: PMC5785007 DOI: 10.1371/journal.pone.0191882] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/13/2018] [Indexed: 11/19/2022] Open
Abstract
Despite decades of research, the mechanism of action of the ABC multidrug transporter P-glycoprotein (P-gp) remains elusive. Due to experimental limitations, many researchers have turned to molecular dynamics simulation studies in order to investigate different aspects of P-gp function. However, such studies are challenging and caution is required when interpreting the results. P-gp is highly flexible and the time scale on which it can be simulated is limited. There is also uncertainty regarding the accuracy of the various crystal structures available, let alone the structure of the protein in a physiologically relevant environment. In this study, three alternative structural models of mouse P-gp (3G5U, 4KSB, 4M1M), all resolved to 3.8 Å, were used to initiate sets of simulations of P-gp in a membrane environment in order to determine: a) the sensitivity of the results to differences in the starting configuration; and b) the extent to which converged results could be expected on the times scales commonly simulated for this system. The simulations suggest that the arrangement of the nucleotide binding domains (NBDs) observed in the crystal structures is not stable in a membrane environment. In all simulations, the NBDs rapidly associated (within 10 ns) and changes within the transmembrane helices were observed. The secondary structure within the transmembrane domain was best preserved in the 4M1M model under the simulation conditions used. However, the extent to which replicate simulations diverged on a 100 to 200 ns timescale meant that it was not possible to draw definitive conclusions as to which structure overall was most stable, or to obtain converged and reliable results for any of the properties examined. The work brings into question the reliability of conclusions made in regard to the nature of specific interactions inferred from previous simulation studies on this system involving similar sampling times. It also highlights the need to demonstrate the statistical significance of any results obtained in simulations of large flexible proteins, especially where the initial structure is uncertain.
Collapse
Affiliation(s)
- Karmen Condic-Jurkic
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Nandhitha Subramanian
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
10
|
Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJ. About P-glycoprotein: a new drugable domain is emerging from structural data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Cátia A. Bonito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| | - Maria José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J.V.A. dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
11
|
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells. J Neurochem 2017; 141:247-262. [PMID: 28112407 DOI: 10.1111/jnc.13960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to identify regulatory molecule(s) involved in the inflammatory signaling-induced decrease in P-glycoprotein (P-gp) efflux function at the blood-brain barrier (BBB) that may occur in brain diseases. We confirmed that in vivo P-gp efflux activity at the BBB was decreased without any change in P-gp protein expression level in a mouse model of acute inflammation induced by 3 mg/kg lipopolysaccharide. In a human BBB model cell line (human brain capillary endothelial cells; hCMEC/D3), 1-h treatment with 10 ng/mL tumor necrosis factor-α (TNF-α; an inflammatory mediator) rapidly reduced P-gp efflux activity, but had no effect on P-gp protein expression level. To clarify the non-transcriptional mechanism that causes the decrease in intrinsic efflux activity of P-gp in acute inflammation, we applied comprehensive quantitative phosphoproteomics to compare hCMEC/D3 cells treated with TNF-α and vehicle (control). Actin filament-associated protein-1 (AFAP-1), MAPK1, and transcription factor AP-1 (AP-1) were significantly phosphorylated in TNF-α-treated cells, and were selected as candidate proteins. In validation experiments, knockdown of AFAP-1 expression blocked the reduction in P-gp efflux activity by TNF-α treatment, whereas inhibition of MAPK function or knockdown of AP-1 expression did not. Quantitative targeted absolute proteomics revealed that the reduction in P-gp activity by TNF-α did not require any change in P-gp protein expression levels in the plasma membrane. Our results demonstrate that AFAP-1 is a key mediator in the inflammatory signaling-induced, translocation-independent rapid attenuation of P-gp efflux activity in human brain capillary endothelial cells.
Collapse
Affiliation(s)
- Yutaro Hoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Fosso-Tande J, Black C, G. Aller S, Lu L, D. Hills Jr R. Simulation of lipid-protein interactions with the CgProt force field. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27:14-29. [DOI: 10.1016/j.drup.2016.05.001] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
|
14
|
A single active catalytic site is sufficient to promote transport in P-glycoprotein. Sci Rep 2016; 6:24810. [PMID: 27117502 PMCID: PMC4846820 DOI: 10.1038/srep24810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/05/2016] [Indexed: 11/23/2022] Open
Abstract
P-glycoprotein (Pgp) is an ABC transporter responsible for the ATP-dependent efflux of chemotherapeutic compounds from multidrug resistant cancer cells. Better understanding of the molecular mechanism of Pgp-mediated transport could promote rational drug design to circumvent multidrug resistance. By measuring drug binding affinity and reactivity to a conformation-sensitive antibody we show here that nucleotide binding drives Pgp from a high to a low substrate-affinity state and this switch coincides with the flip from the inward- to the outward-facing conformation. Furthermore, the outward-facing conformation survives ATP hydrolysis: the post-hydrolytic complex is stabilized by vanadate, and the slow recovery from this state requires two functional catalytic sites. The catalytically inactive double Walker A mutant is stabilized in a high substrate affinity inward-open conformation, but mutants with one intact catalytic center preserve their ability to hydrolyze ATP and to promote drug transport, suggesting that the two catalytic sites are randomly recruited for ATP hydrolysis.
Collapse
|
15
|
Chaves LAP, Gadsby DC. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels. ACTA ACUST UNITED AC 2015; 145:261-83. [PMID: 25825169 PMCID: PMC4380215 DOI: 10.1085/jgp.201411347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) channel opening and closing are driven by cycles of adenosine triphosphate (ATP) binding-induced formation and hydrolysis-triggered disruption of a heterodimer of its cytoplasmic nucleotide-binding domains (NBDs). Although both composite sites enclosed within the heterodimer interface contain ATP in an open CFTR channel, ATP hydrolysis in the sole catalytically competent site causes channel closure. Opening of the NBD interface at that site then allows ADP-ATP exchange. But how frequently, and how far, the NBD surfaces separate at the other, inactive composite site remains unclear. We assessed separation at each composite site by monitoring access of nucleotide-sized hydrophilic, thiol-specific methanothiosulfonate (MTS) reagents to interfacial target cysteines introduced into either LSGGQ-like ATP-binding cassette signature sequence (replacing equivalent conserved serines: S549 and S1347). Covalent MTS-dependent modification of either cysteine while channels were kept closed by the absence of ATP impaired subsequent opening upon ATP readdition. Modification while channels were opening and closing in the presence of ATP caused macroscopic CFTR current to decline at the same speed as when the unmodified channels shut upon sudden ATP withdrawal. These results suggest that the target cysteines can be modified only in closed channels; that after modification the attached MTS adduct interferes with ATP-mediated opening; and that modification in the presence of ATP occurs rapidly once channels close, before they can reopen. This interpretation was corroborated by the finding that, for either cysteine target, the addition of the hydrolysis-impairing mutation K1250R (catalytic site Walker A Lys) similarly slowed, by an order of magnitude, channel closing on ATP removal and the speed of modification by MTS reagent in ATP. We conclude that, in every CFTR channel gating cycle, the NBD dimer interface separates simultaneously at both composite sites sufficiently to allow MTS reagents to access both signature-sequence serines. Relatively rapid modification of S1347C channels by larger reagents-MTS-glucose, MTS-biotin, and MTS-rhodamine-demonstrates that, at the noncatalytic composite site, this separation must exceed 8 Å.
Collapse
Affiliation(s)
- Luiz A Poletto Chaves
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| | - David C Gadsby
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
16
|
Arslan S, Khafizov R, Thomas CD, Chemla YR, Ha T. Protein structure. Engineering of a superhelicase through conformational control. Science 2015; 348:344-7. [PMID: 25883358 DOI: 10.1126/science.aaa0445] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Conformational control of biomolecular activities can reveal functional insights and enable the engineering of novel activities. Here we show that conformational control through intramolecular cross-linking of a helicase monomer with undetectable unwinding activity converts it into a superhelicase that can unwind thousands of base pairs processively, even against a large opposing force. A natural partner that enhances the helicase activity is shown to achieve its stimulating role also by selectively stabilizing the active conformation. Our work provides insight into the regulation of nucleic acid unwinding activity and introduces a monomeric superhelicase without nuclease activities, which may be useful for biotechnological applications.
Collapse
Affiliation(s)
- Sinan Arslan
- Physics Department and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rustem Khafizov
- Physics Department and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher D Thomas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Yann R Chemla
- Physics Department and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taekjip Ha
- Physics Department and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Howard Hughes Medical Institute, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Tome ME, Schaefer CP, Jacobs LM, Zhang Y, Herndon JM, Matty FO, Davis TP. Identification of P-glycoprotein co-fractionating proteins and specific binding partners in rat brain microvessels. J Neurochem 2015; 134:200-10. [PMID: 25832806 DOI: 10.1111/jnc.13106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022]
Abstract
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P-glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood-brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP-containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post-translationally regulated at the BBB. The goal of the current study was to identify proteins that co-localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co-localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co-fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post-translational regulation of PgP activity at the BBB.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Charles P Schaefer
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Leigh M Jacobs
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Yifeng Zhang
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Joseph M Herndon
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Fabian O Matty
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Thomas P Davis
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Kluth M, Stindt J, Dröge C, Linnemann D, Kubitz R, Schmitt L. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3. J Biol Chem 2014; 290:4896-4907. [PMID: 25533467 DOI: 10.1074/jbc.m114.588566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain.
Collapse
Affiliation(s)
- Marianne Kluth
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, 40225 Düsseldorf
| | - Carola Dröge
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, 40225 Düsseldorf
| | - Doris Linnemann
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, 40225 Düsseldorf
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, 40225 Düsseldorf
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf; Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Ferreira RJ, Ferreira MJU, dos Santos DJVA. Reversing cancer multidrug resistance: insights into the efflux by ABC transports fromin silicostudies. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
| | - Maria-José U. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J. V. A. dos Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
- REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
20
|
Swartz D, Mok L, Botta S, Singh A, Altenberg G, Urbatsch I. Directed evolution of P-glycoprotein cysteines reveals site-specific, non-conservative substitutions that preserve multidrug resistance. Biosci Rep 2014; 34:e00116. [PMID: 24825346 PMCID: PMC4069687 DOI: 10.1042/bsr20140062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/21/2022] Open
Abstract
Pgp (P-glycoprotein) is a prototype ABC (ATP-binding-cassette) transporter involved in multidrug resistance of cancer. We used directed evolution to replace six cytoplasmic Cys (cysteine) residues in Pgp with all 20 standard amino acids and selected for active mutants. From a pool of 75000 transformants for each block of three Cys, we identified multiple mutants that preserved drug resistance and yeast mating activity. The most frequent substitutions were glycine and serine for Cys427 (24 and 20%, respectively) and Cys1070 (37 and 25%) of the Walker A motifs in the NBDs (nucleotide-binding domains), Cys1223 in NBD2 (25 and 8%) and Cys638 in the linker region (24 and 16%), whereas close-by Cys669 tolerated glycine (16%) and alanine (14%), but not serine (absent). Cys1121 in NBD2 showed a clear preference for positively charged arginine (38%) suggesting a salt bridge with Glu269 in the ICL2 (intracellular loop 2) may stabilize domain interactions. In contrast, three Cys residues in transmembrane α-helices could be successfully replaced by alanine. The resulting CL (Cys-less) Pgp was fully active in yeast cells, and purified proteins displayed drug-stimulated ATPase activities indistinguishable from WT (wild-type) Pgp. Overall, directed evolution identified site-specific, non-conservative Cys substitutions that allowed building of a robust CL Pgp, an invaluable new tool for future functional and structural studies, and that may guide the construction of other CL proteins where alanine and serine have proven unsuccessful.
Collapse
Key Words
- abc transporter
- multidrug transporter
- non-conservative cysteine substitutions
- protein evolution site-saturation mutagenesis
- yeast drug resistance
- abc, atp-binding-cassette
- cftr, cystic fibrosis transmembrane conductance regulator
- cl, cys-less
- cp-mts, 7-diethylamino-3-(4′-maleimidylphenyl)-4-methylcoumarin
- ddm, n-dodecyl-β-d-maltopyranoside
- icl, intracellular loop
- nbd, nucleotide-binding domain
- pgp, p-glycoprotein
- sec, size exclusion chromatography
- tmd, transmembrane domain
- wt, wild-type
Collapse
Affiliation(s)
- Douglas J. Swartz
- *Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
- †Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
| | - Leo Mok
- *Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
- †Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
| | - Sri K. Botta
- *Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
- †Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
| | - Anukriti Singh
- *Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
- †Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
| | - Guillermo A. Altenberg
- †Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
- ‡Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
| | - Ina L. Urbatsch
- *Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
- †Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
| |
Collapse
|
21
|
Mechanistic picture for conformational transition of a membrane transporter at atomic resolution. Proc Natl Acad Sci U S A 2013; 110:18916-21. [PMID: 24191018 DOI: 10.1073/pnas.1313202110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During their transport cycle, ATP-binding cassette (ABC) transporters undergo large-scale conformational changes between inward- and outward-facing states. Using an approach based on designing system-specific reaction coordinates and using nonequilibrium work relations, we have performed extensive all-atom molecular dynamics simulations in the presence of explicit membrane/solvent to sample a large number of mechanistically distinct pathways for the conformational transition of MsbA, a bacterial ABC exporter whose structure has been solved in multiple functional states. The computational approach developed here is based on (i) extensive exploration of system-specific biasing protocols (e.g., using collective variables designed based on available low-resolution crystal structures) and (ii) using nonequilibrium work relations for comparing the relevance of the transition pathways. The most relevant transition pathway identified using this approach involves several distinct stages reflecting the complex nature of the structural changes associated with the function of the protein. The opening of the cytoplasmic gate during the outward- to inward-facing transition of apo MsbA is found to be disfavored when the periplasmic gate is open and facilitated by a twisting motion of the nucleotide-binding domains that involves a dramatic change in their relative orientation. These results highlight the cooperativity between the transmembrane and the nucleotide-binding domains in the conformational transition of ABC exporters. The approach introduced here provides a framework to study large-scale conformational changes of other membrane transporters whose computational investigation at an atomic resolution may not be currently feasible using conventional methods.
Collapse
|
22
|
Sim HM, Bhatnagar J, Chufan EE, Kapoor K, Ambudkar SV. Conserved Walker A cysteines 431 and 1074 in human P-glycoprotein are accessible to thiol-specific agents in the apo and ADP-vanadate trapped conformations. Biochemistry 2013; 52:7327-38. [PMID: 24053441 PMCID: PMC3850068 DOI: 10.1021/bi4007786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
P-Glycoprotein (P-gp) is an ATP-binding cassette efflux transporter involved in the development of multidrug resistance in cancer cells. Although the mechanism of P-gp efflux has been extensively studied, aspects of its catalytic and transport cycle are still unclear. In this study, we used conserved C431 and C1074 in the Walker A motif of nucleotide-binding domains (NBDs) as reporter sites to interrogate the interaction between the two NBDs during the catalytic cycle. Disulfide cross-linking of the C431 and C1074 residues in a Cys-less background can be observed in the presence of M14M and M17M cross-linkers, which have spacer arm lengths of 20 and 25 Å, respectively. However, cross-linking with both cross-linkers was prevented in the ADP-vanadate trapped (closed) conformation. Both C431 and C1074 alone or together (double mutant) in the apo and closed conformations were found to be accessible to fluorescein 5-maleimide (FM) and methanethiosulfonate derivatives of rhodamine and verapamil. In addition, C1074 showed 1.4- and 2-fold higher degrees of FM labeling than C431 in the apo and closed conformations, respectively, demonstrating that C1074 is more accessible than C431 in both conformations. In the presence of P-gp substrates, cross-linking with M17M is still observed, suggesting that binding of substrate in the transmembrane domains does not change the accessibility of the cysteines in the NBDs. In summary, the cysteines in the Walker A motifs of NBDs of human P-gp are differentially accessible to thiol-specific agents in the apo and closed conformations.
Collapse
Affiliation(s)
- Hong-May Sim
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2085, USA
| | - Jaya Bhatnagar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2085, USA
| | - Eduardo E. Chufan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2085, USA
| | - Khyati Kapoor
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2085, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2085, USA
| |
Collapse
|
23
|
McCaffrey G, Staatz WD, Sanchez-Covarrubias L, Finch JD, Demarco K, Laracuente ML, Ronaldson PT, Davis TP. P-glycoprotein trafficking at the blood-brain barrier altered by peripheral inflammatory hyperalgesia. J Neurochem 2012; 122:962-75. [PMID: 22716933 DOI: 10.1111/j.1471-4159.2012.07831.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
P-glycoprotein (ABCB1/MDR1, EC 3.6.3.44), the major efflux transporter at the blood-brain barrier (BBB), is a formidable obstacle to CNS pharmacotherapy. Understanding the mechanism(s) for increased P-glycoprotein activity at the BBB during peripheral inflammatory pain is critical in the development of novel strategies to overcome the significant decreases in CNS analgesic drug delivery. In this study, we employed the λ-carrageenan pain model (using female Sprague-Dawley rats), combined with confocal microscopy and subcellular fractionation of cerebral microvessels, to determine if increased P-glycoprotein function, following the onset of peripheral inflammatory pain, is associated with a change in P-glycoprotein trafficking which leads to pain-induced effects on analgesic drug delivery. Injection of λ-carrageenan into the rat hind paw induced a localized, inflammatory pain (hyperalgesia) and simultaneously, at the BBB, a rapid change in colocalization of P-glycoprotein with caveolin-1, a key scaffolding/trafficking protein. Subcellular fractionation of isolated cerebral microvessels revealed that the bulk of P-glycoprotein constitutively traffics to membrane domains containing high molecular weight, disulfide-bonded P-glycoprotein-containing structures that cofractionate with membrane domains enriched with monomeric and high molecular weight, disulfide-bonded, caveolin-1-containing structures. Peripheral inflammatory pain promoted a dynamic redistribution between membrane domains of P-glycoprotein and caveolin-1. Disassembly of high molecular weight P-glycoprotein-containing structures within microvascular endothelial luminal membrane domains was accompanied by an increase in ATPase activity, suggesting a potential for functionally active P-glycoprotein. These results are the first observation that peripheral inflammatory pain leads to specific structural changes in P-glycoprotein responsible for controlling analgesic drug delivery to the CNS.
Collapse
Affiliation(s)
- Gwen McCaffrey
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85745, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Loo TW, Bartlett MC, Detty MR, Clarke DM. The ATPase activity of the P-glycoprotein drug pump is highly activated when the N-terminal and central regions of the nucleotide-binding domains are linked closely together. J Biol Chem 2012; 287:26806-16. [PMID: 22700974 DOI: 10.1074/jbc.m112.376202] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the homologous halves of P-gp is composed of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The predicted drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures and EM projection images suggest that the two halves of P-gp are separated by a central cavity that closes upon binding of nucleotide. Binding of drug substrates may induce further structural rearrangements because they stimulate ATPase activity. Here, we used disulfide cross-linking with short (8 Å) or long (22 Å) cross-linkers to identify domain-domain interactions that activate ATPase activity. It was found that cross-linking of cysteines that lie close to the LSGGQ (P517C) and Walker A (I1050C) sites of NBD1 and NBD2, respectively, as well as the cytoplasmic extensions of TM segments 3 (D177C or L175C) and 9 (N820C) with a short cross-linker activated ATPase activity over 10-fold. A pyrylium compound that inhibits ATPase activity blocked cross-linking at these sites. Cross-linking between the NBDs was not inhibited by tariquidar, a drug transport inhibitor that stimulates P-gp ATPase activity but is not transported. Cross-linking between extracellular cysteines (T333C/L975C) predicted to lock P-gp into a conformation that prevents close NBD association inhibited ATPase activity. The results suggest that trapping P-gp in a conformation in which the NBDs are closely associated likely mimics the structural rearrangements caused by binding of drug substrates that stimulate ATPase activity.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
25
|
Verhalen B, Ernst S, Börsch M, Wilkens S. Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J Biol Chem 2011; 287:1112-27. [PMID: 22086917 DOI: 10.1074/jbc.m111.301192] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anticancer chemotherapy. Here, we used fluorescence resonance energy transfer (FRET) spectroscopy to delineate the structural rearrangements the two nucleotide binding domains (NBDs) are undergoing during the catalytic cycle. Pairs of cysteines were introduced into equivalent regions in the N- and C-terminal NBDs for labeling with fluorescent dyes for ensemble and single-molecule FRET spectroscopy. In the ensemble FRET, a decrease of the donor to acceptor (D/A) ratio was observed upon addition of drug and ATP. Vanadate trapping further decreased the D/A ratio, indicating close association of the two NBDs. One of the cysteine mutants was further analyzed using confocal single-molecule FRET spectroscopy. Single Pgp molecules showed fast fluctuations of the FRET efficiencies, indicating movements of the NBDs on a time scale of 10-100 ms. Populations of low, medium, and high FRET efficiencies were observed during drug-stimulated MgATP hydrolysis, suggesting the presence of at least three major conformations of the NBDs during catalysis. Under conditions of vanadate trapping, most molecules displayed high FRET efficiency states, whereas with cyclosporin, more molecules showed low FRET efficiency. Different dwell times of the FRET states were found for the distinct biochemical conditions, with the fastest movements during active turnover. The FRET spectroscopy observations are discussed in context of a model of the catalytic mechanism of Pgp.
Collapse
Affiliation(s)
- Brandy Verhalen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
26
|
A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PLoS One 2011; 6:e22577. [PMID: 21826197 PMCID: PMC3149604 DOI: 10.1371/journal.pone.0022577] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/24/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. METHODOLOGY/PRINCIPAL FINDINGS Codon-optimized "Opti-Pgp" and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from T(m) ∼40 °C to 49 °C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. CONCLUSION The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins.
Collapse
|
27
|
Verhalen B, Wilkens S. P-glycoprotein retains drug-stimulated ATPase activity upon covalent linkage of the two nucleotide binding domains at their C-terminal ends. J Biol Chem 2011; 286:10476-82. [PMID: 21278250 DOI: 10.1074/jbc.m110.193151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein (Pgp), a member of the ABC transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anti-cancer chemotherapy. We have recently obtained EM projection images of lipid-bound Pgp without nucleotide and transport substrate that showed the two halves of the transporter separated by a central cavity (Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2002) J. Biol. Chem. 277, 40125-40131). Addition of nucleotide and/or substrate lead to a close association of the two halves of the transporter, thereby closing the central cavity (Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2008) J. Biol. Chem. 283, 5769-5779). Here, we used cysteine-mediated disulfide cross-linking to further delineate the structural rearrangements of the two nucleotide binding domains (NBD1 and NBD2) that take place during catalysis. Cysteines introduced at or near the C-terminal ends of NBD1 and NBD2 allowed for spontaneous disulfide cross-linking under nonreducing conditions. For mutant A627C/S1276C, disulfide formation was with high efficiency and cross-linked Pgp retained 30-68% drug-stimulated ATPase activity compared with reduced or cysteine-less Pgp. Two other cysteine pairs (K615C/S1276C and A627C/K1260C) also formed a disulfide but to a lesser extent, and the cross-linked form of these two mutants had lower drug-stimulated ATPase activity. The data suggest that the C-terminal ends of the two NBDs of Pgp are not required to undergo significant motion with respect to one another during the catalytic cycle.
Collapse
Affiliation(s)
- Brandy Verhalen
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
28
|
Crouthamel MH, Wu D, Yang Z, Ho RJY. A novel MDR1 GT1292-3TG (Cys431Leu) genetic variation and its effect on P-glycoprotein biologic functions. AAPS JOURNAL 2010; 12:548-55. [PMID: 20623213 DOI: 10.1208/s12248-010-9216-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/18/2010] [Indexed: 01/08/2023]
Abstract
P-glycoprotein (P-gp) is a membrane-bound transporter protein that is encoded by the human multidrug resistance gene MDR1 (ABCB1). P-gp recognizes a wide range of xenobiotics, is pivotal in mediating cancer drug resistance, and plays an important role in limiting drug penetration across the blood-brain barrier. MDR1 genetic variation can lead to changes in P-gp function and may have implications on drug pharmacokinetics. We have identified a novel MDR1 (GT1292-3TG) (Cys431Leu) genetic variation through systematic profiling of subjects with leukemia. The cellular and transport function of this variation was investigated with recombinant human embryonic kidney cells expressing MDR1. Compared with the wild type, MDR1 (GT1292-3TG) recombinant cells exhibited a lower drug resistance phenotype for a panel of chemotherapeutic agents. When compared with wild type, MDR1 (GT1292-3TG) recombinant cells exposed exhibited a 75% decrease in IC₅₀ for doxorubicin (162.6 ± 17.4 to 37.9 ± 2.6 nM) and a 50% decrease in IC(50) for paclitaxel (155.7 ± 27.5 to 87.7 ± 9.2 nM), vinblastine (128.0 ± 15.9 to 65.9 ± 5.1 nM), and vincristine (593.7 ± 61.8 to 307.3 ± 17.0 nM). The effects of the Cys431Leu variation, due to MDR1 (GT1292-3TG) nucleotide transition, on P-gp-dependent intracellular substrate accumulation appeared to be substrate dependent where doxorubicin, vinblastine, and paclitaxel exhibit an increased accumulation (p < 0.05), while verapamil and Hoechst33342 exhibit a decreased intracellular concentration compared with wild type (p < 0.05). Collectively, these data suggest MDR1 (GT1292-3TG) variation of P-gp may reduce drug resistance and that subjects with this genotype undergoing chemotherapy with drugs that are transported by P-gp could potentially be more responsive to therapy than those with MDR1 wild-type genotype.
Collapse
|
29
|
Becker JP, Depret G, Van Bambeke F, Tulkens PM, Prévost M. Molecular models of human P-glycoprotein in two different catalytic states. BMC STRUCTURAL BIOLOGY 2009; 9:3. [PMID: 19159494 PMCID: PMC2661087 DOI: 10.1186/1472-6807-9-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 01/22/2009] [Indexed: 12/20/2022]
Abstract
Background P-glycoprotein belongs to the family of ATP-binding cassette proteins which hydrolyze ATP to catalyse the translocation of their substrates through membranes. This protein extrudes a large range of components out of cells, especially therapeutic agents causing a phenomenon known as multidrug resistance. Because of its clinical interest, its activity and transport function have been largely characterized by various biochemical studies. In the absence of a high-resolution structure of P-glycoprotein, homology modeling is a useful tool to help interpretation of experimental data and potentially guide experimental studies. Results We present here three-dimensional models of two different catalytic states of P-glycoprotein that were developed based on the crystal structures of two bacterial multidrug transporters. Our models are supported by a large body of biochemical data. Measured inter-residue distances correlate well with distances derived from cross-linking data. The nucleotide-free model features a large cavity detected in the protein core into which ligands of different size were successfully docked. The locations of docked ligands compare favorably with those suggested by drug binding site mutants. Conclusion Our models can interpret the effects of several mutants in the nucleotide-binding domains (NBDs), within the transmembrane domains (TMDs) or at the NBD:TMD interface. The docking results suggest that the protein has multiple binding sites in agreement with experimental evidence. The nucleotide-bound models are exploited to propose different pathways of signal transmission upon ATP binding/hydrolysis which could lead to the elaboration of conformational changes needed for substrate translocation. We identified a cluster of aromatic residues located at the interface between the NBD and the TMD in opposite halves of the molecule which may contribute to this signal transmission. Our models may characterize different steps in the catalytic cycle and may be important tools to understand the structure-function relationship of P-glycoprotein.
Collapse
Affiliation(s)
- Jean-Paul Becker
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Liu Y, Yang Y, Qi J, Peng H, Zhang JT. Effect of cysteine mutagenesis on the function and disulfide bond formation of human ABCG2. J Pharmacol Exp Ther 2008; 326:33-40. [PMID: 18430864 DOI: 10.1124/jpet.108.138115] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABCG2 is a member of the ATP-binding cassette (ABC) transporter superfamily. Its overexpression causes multidrug resistance in cancer chemotherapy. Based on its apparent half size in sequence when compared with other traditional ABC transporters, ABCG2 has been thought to exist and function as a homodimer linked by intermolecular disulfide bonds. However, recent evidence suggests that ABCG2 may exist as a higher form of oligomers due to noncovalent interactions. In this study, we attempted to create a cysless mutant ABCG2 as a tool for further characterization of this molecule. However, we found that the cysless mutant ABCG2 is well expressed but not functional. Mapping of the cysteine residues showed that three cysteine residues (Cys284, Cys374, and Cys438) are required concurrently for the function of ABCG2 and potentially for intramolecular disulfide bond formation. We also found that the cysteine residues (Cys592, Cys603, and Cys608) in the third extracellular loop are involved in forming intermolecular disulfide bonds and that mutation of these residues does not affect the expression or drug transport activity of human ABCG2. Thus, we conclude that Cys284, Cys374, and Cys438, which may be involved in intramolecular disulfide bond formation, are concurrently required for ABCG2 function, whereas Cys592, Cys603, and Cys608, potentially involved in intermolecular disulfide bond formation, are not required.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology and Toxicology, IU Simon Cancer Center, Walther Oncology Center/Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
31
|
Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008; 9:105-27. [PMID: 18154452 DOI: 10.2217/14622416.9.1.105] [Citation(s) in RCA: 704] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Three ATP-binding cassette (ABC)-superfamily multidrug efflux pumps are known to be responsible for chemoresistance; P-glycoprotein (ABCB1), MRP1 (ABCC1) and ABCG2 (BCRP). These transporters play an important role in normal physiology by protecting tissues from toxic xenobiotics and endogenous metabolites. Hydrophobic amphipathic compounds, including many clinically used drugs, interact with the substrate-binding pocket of these proteins via flexible hydrophobic and H-bonding interactions. These efflux pumps are expressed in many human tumors, where they likely contribute to resistance to chemotherapy treatment. However, the use of efflux-pump modulators in clinical cancer treatment has proved disappointing. Single nucleotide polymorphisms in ABC drug-efflux pumps may play a role in responses to drug therapy and disease susceptibility. The effect of various genotypes and haplotypes on the expression and function of these proteins is not yet clear, and their true impact remains controversial.
Collapse
Affiliation(s)
- Frances J Sharom
- University of Guelph, Department of Molecular & Cellular Biology, Guelph Ontario, N1G 2W1, Canada.
| |
Collapse
|
32
|
Lee JY, Urbatsch IL, Senior AE, Wilkens S. Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy. J Biol Chem 2007; 283:5769-79. [PMID: 18093977 DOI: 10.1074/jbc.m707028200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is an ATP hydrolysis driven multidrug efflux pump, which, when overexpressed in the plasma membrane of certain cancers, can lead to the failure of chemotherapy. Previously, we have presented a projection structure of nucleotide-free mouse Pgp from electron microscopic images of lipid monolayer-generated two-dimensional crystals ( Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2002) J. Biol. Chem. 277, 40125-40131 ). Here we have analyzed the structure of cysteine-free human Pgp from two-dimensional crystals that were generated with the same lipid-monolayer technique in the absence and presence of various nucleotides. The images show that human Pgp has a similar structure to the mouse protein. Furthermore, the analysis of projection structures obtained under different nucleotide conditions suggests that Pgp can exist in at least two major conformations, one of which shows a central cavity between the N- and C-terminal halves of the molecule and another in which the two halves have moved sideways, thereby closing the central cavity. Intermediate conformations were observed for some nucleotide/vanadate combinations. A low-resolution, three-dimensional model of human Pgp was calculated from tilted specimen crystallized in the presence of the non-hydrolyzable nucleotide analog, adenosine 5'-O-(thiotriphosphate). The structural analysis presented here adds to the emerging picture that multidrug ABC transporters function by switching between two major conformations in a nucleotide-dependent manner.
Collapse
Affiliation(s)
- Jyh-Yeuan Lee
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
33
|
Ward A, Reyes CL, Yu J, Roth CB, Chang G. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl Acad Sci U S A 2007; 104:19005-10. [PMID: 18024585 PMCID: PMC2141898 DOI: 10.1073/pnas.0709388104] [Citation(s) in RCA: 613] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are integral membrane proteins that translocate a wide variety of substrates across cellular membranes and are conserved from bacteria to humans. Here we compare four x-ray structures of the bacterial ABC lipid flippase, MsbA, trapped in different conformations, two nucleotide-bound structures and two in the absence of nucleotide. Comparison of the nucleotide-free conformations of MsbA reveals a flexible hinge formed by extracellular loops 2 and 3. This hinge allows the nucleotide-binding domains to disassociate while the ATP-binding half sites remain facing each other. The binding of the nucleotide causes a packing rearrangement of the transmembrane helices and changes the accessibility of the transporter from cytoplasmic (inward) facing to extracellular (outward) facing. The inward and outward openings are mediated by two different sets of transmembrane helix interactions. Altogether, the conformational changes between these structures suggest that large ranges of motion may be required for substrate transport.
Collapse
Affiliation(s)
| | - Christopher L. Reyes
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| | - Jodie Yu
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| | - Christopher B. Roth
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| | - Geoffrey Chang
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| |
Collapse
|
34
|
Lawson J, O'Mara ML, Kerr ID. Structure-based interpretation of the mutagenesis database for the nucleotide binding domains of P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:376-91. [PMID: 18035039 DOI: 10.1016/j.bbamem.2007.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/12/2007] [Accepted: 10/25/2007] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp) is the most intensively studied eukaryotic ATP binding cassette (ABC) transporter, due to its involvement in the multidrug resistance phenotype of a number of cancers. In common with most ABC transporters, P-gp is comprised of two transmembrane domains (TMDs) and two nucleotide binding domains (NBD), the latter coupling ATP hydrolysis with substrate transport (efflux in the case of P-gp). Biochemical investigations over the past twenty years have attempted to unlock mechanistic aspects of P-glycoprotein through scanning and site-directed mutagenesis of both the TMDs and the NBDs. Contemporaneously, crystallographers have elucidated the atomic structure of numerous ABC transporter NBDs, as well as the intact structure (i.e. NBDs and TMDs) of a distantly related ABC-exporter Sav1866. Significantly, the structure of P-gp remains unknown, and only low resolution electron microscopy data exists. Within the current manuscript we employ crystallographic data for homologous proteins, and a molecular model for P-gp, to perform a structural interpretation of the existing "mutagenesis database" for P-gp NBDs. Consequently, this will enable testable predictions to be made that will result in further in-roads into our understanding of this clinically important drug pump.
Collapse
Affiliation(s)
- J Lawson
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
35
|
Winschel CA, Kaushik V, Abdrakhmanova G, Aris SM, Sidorov V. New noninvasive methodology for real-time monitoring of lipid flip. Bioconjug Chem 2007; 18:1507-15. [PMID: 17822302 DOI: 10.1021/bc700189n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new methodology for the detection of lipid flip was developed. This methodology relies on the quenching of the fluorescence of the cascade-blue-labeled lipid through complex formation with a membrane-impermeable cyclen-tetranaphthalenethiourea synthetic receptor for this dye. The high affinity of the receptor to cascade-blue label allows the use of micromolar concentrations of this receptor during the experiment. At these low concentrations, the receptor does not interfere with the membrane integrity and, therefore, renders this new methodology less invasive to the model and cell membranes than commonly utilized 7-nitro-1,2,3-benzoxadiazol-4-yl (NBD)-dithionite methodology. Unlike with the NBD-dithionite assay, where the fluorescence quenching of the NBD group is achieved through its chemical modification, this new assay relies on the noncovalent interactions between cascade-blue label and the receptor. Therefore, the quenching can be reverted by either competitive displacement of the lipid-attached label with a water-soluble substrate or by enzymatic degradation of the receptor leading to the label release and fluorescence dequenching. We demonstrate that this new methodology is suitable for the study of lipid flip in both model spherical bilayer membranes and in-vitro experiments.
Collapse
Affiliation(s)
- Christine A Winschel
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | | | | | | | | |
Collapse
|
36
|
Chloupková M, Pickert A, Lee JY, Souza S, Trinh YT, Connelly SM, Dumont ME, Dean M, Urbatsch IL. Expression of 25 human ABC transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 2007; 46:7992-8003. [PMID: 17569508 DOI: 10.1021/bi700020m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human ATP-binding cassette (ABC) transporters comprise a family of 48 membrane-spanning transport proteins, many of which are associated with genetic diseases or multidrug resistance of cancers. In this study, we present a comprehensive approach for the cloning, expression, and purification of human ABC transporters in the yeast Pichia pastoris. We analyzed the expression of 25 proteins and demonstrate that 11 transporters, including ABCC3, ABCB6, ABCD1, ABCG1, ABCG4, ABCG5, ABCG8, ABCE1, ABCF1, ABCF2, and ABCF3, were expressed at high levels comparable to that of ABCB1 (P-glycoprotein). As an example of the purification strategy via tandem affinity chromatography, we purified ABCC3 (MRP3) whose role in the transport of anticancer drugs, bile acids, and glucuronides has been controversial. The yield of ABCC3 was 3.5 mg/100 g of cells in six independent purifications. Purified ABCC3, activated with PC lipids, exhibited significant ATPase activity with a Vmax of 82 +/- 32 nmol min-1 mg-1. The ATPase activity was stimulated by bile acids and glucuronide conjugates, reaching 170 +/- 28 nmol min-1 mg-1, but was not stimulated by a variety of anticancer drugs. The glucuronide conjugates ethinylestradiol-3-glucuronide and 17beta-estradiol-17-glucuronide stimulated the ATPase with relatively high affinities (apparent Km values of 2 and 3 microM, respectively) in contrast to bile acids (apparent Km values of >130 microM), suggesting that glucuronides are the preferred substrates for this transporter. Overall, the availability of a purification system for the production of large quantities of active transporters presents a major step not only toward understanding the role of ABCC3 but also toward future structure-function analysis of other human ABC transporters.
Collapse
Affiliation(s)
- Maja Chloupková
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6540, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schwerdt G, Kirchhoff A, Freudinger R, Wollny B, Benesic A, Gekle M. Mesna or cysteine prevents chloroacetaldehyde-induced cell death of human proximal tubule cells. Pediatr Nephrol 2007; 22:798-803. [PMID: 17273862 DOI: 10.1007/s00467-006-0414-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/08/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
Chloroacetaldehyde (CAA) is formed in the body from the chemotherapeutically used drug ifosfamide (IFO). CAA leads to cell death in proximal tubule cells mainly through the mechanism of necrosis rather than apoptosis. During chemotherapy, 2-mercaptosulfonic acid (mesna) is used with IFO to protect the urothel from cell damage. Little is known of the effect of mesna on renal proximal tubule cells, the primary site of damage after IFO treatment. Mesna contains a sulfhydryl (SH) group. To clarify whether SH-group-containing molecules can prevent CAA-induced cell death, we studied the effect of mesna and cysteine on necrosis, apoptosis, and protein content in a human proximal tubule-derived cell line (IHKE cells) treated with CAA. Both substances prevented CAA-induced necrotic cell death and protein loss and restored CAA-inhibited caspase-3 activity. CAA also prevented cisplatin-induced apoptosis. This inhibition was reversible in the presence of glutathione (GSH). We conclude that SH-containing molecules can protect proximal tubule cells from cell death because they interact with CAA before CAA can disturb other important cellular SH groups. A sufficient supply of intra- and extracellular SH groups during IFO chemotherapy may therefore have the ability to protect renal tubule cells from cell death.
Collapse
Affiliation(s)
- Gerald Schwerdt
- Department of Physiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
We review recent work on E552A/E1197A P-glycoprotein. This ATPase-defective mutant occludes MgATP tightly with maximal 1/1 stoichiometry in drug-sensitive fashion. The occluded nucleotide conformation appears to represent a transient, asymmetric, catalytic intermediate. We present a model for catalysis incorporating nucleotide binding domain (NBD) dimerization and the occluded nucleotide conformation, and we speculate as to how catalysis seen in P-glycoprotein might be harmonized with symmetrical dimer structures of isolated NBDs.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712, Rochester, New York 14642, USA
| | | |
Collapse
|
39
|
Vandevuer S, Van Bambeke F, Tulkens PM, Prévost M. Predicting the three-dimensional structure of human P-glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites. Proteins 2006; 63:466-78. [PMID: 16463278 DOI: 10.1002/prot.20892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
P-glycoprotein is a membrane protein involved in the phenomenon of multidrug resistance. Its activity and transport function have been largely characterized by various biochemical studies and a low-resolution image has been obtained by electron microscopy. Obtaining a high-resolution structure is, however, still remote due to the inherent difficulties in the experimental determination of membrane protein structures. We present here a three-dimensional (3D) atomic model of P-glycoprotein in absence of ATP. This model was obtained using a combination of computational techniques including comparative modeling and rigid body dynamics simulations that embody all available cysteine disulfide crosslinking data characterizing the whole protein in absence of ATP. The model features rather well most of the experimental interresidue distances derived both in the transmembrane domains and in the nucleotide binding domains. The model is also in good agreement with electron microscopy data, particularly in terms of size and topology. It features a large cavity detected in the protein core into which seven ligands were successfully docked. Their predicted affinity correlates well with experimental values. Locations of docked ligands compare favorably with those suggested by cysteine-scanning data. The finding of different positions both for a single ligand and for different ligands corroborates the experimental evidence indicating the existence of multiple drug binding sites. The interactions identified between P-glycoprotein and the docked ligands reveal that different types of interactions such as H-bonds, pi-pi and cation-pi interactions occur in agreement with a recently proposed pharmacophore model of P-glycoprotein ligands. Furthermore, the model also displays a lateral opening located in the transmembrane domains connecting the lipid bilayer to the central cavity. This feature supports rather well the commonly admitted mechanism of substrate uptake from the lipid bilayer. We propose that this 3D model may be an important tool to understand the structure-function relationship of P-glycoprotein.
Collapse
Affiliation(s)
- Stéphane Vandevuer
- Bioinformatique Génomique et Structurale, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | | | |
Collapse
|
40
|
Lima SAC, Cordeiro-da-Silva A, de Castro B, Gameiro P. Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction. Biophys Chem 2006; 125:143-50. [PMID: 16919386 DOI: 10.1016/j.bpc.2006.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
Plasma membrane P-glycoprotein is a member of the ATP-binding cassette family of membrane transporters. In the present study tryptophan intrinsic fluorescence was used to understand the P-glycoprotein response to three benzodiazepines (bromazepam, chlordiazepoxide and flurazepam) in the presence and absence of ATP. Fluorescence emission spectra showed a red shift on the maximal emission wavelength upon interaction of P-glycoprotein with all benzodiazepines. Benzodiazepine association with nucleotide-bound P-glycoprotein also showed this trend and the quenching profile was attributed to a sphere-of-action model, for static fluorescence. Furthermore, quenching data of benzodiazepine-bound P-glycoprotein with ATP were concentration dependent and saturable, indicating that nucleotide binds to P-glycoprotein whether drug is present or not. These results seems in agreement with the proposal of the ATP-switch model by Higgins and Linton, where substrate binding to the transporters initiates the transport cycle by increasing the ATP binding affinity.
Collapse
Affiliation(s)
- Sofia A C Lima
- REQUIMTE, Departamento de Química da Faculdade Ciências da Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
41
|
Delannoy S, Urbatsch IL, Tombline G, Senior AE, Vogel PD. Nucleotide binding to the multidrug resistance P-glycoprotein as studied by ESR spectroscopy. Biochemistry 2006; 44:14010-9. [PMID: 16229490 DOI: 10.1021/bi0512445] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron spin resonance (ESR) spectroscopy using spin-labeled ATP was used to study nucleotide binding to and structural transitions within the multidrug resistance P-glycoprotein, P-gp. Spin-labeled ATP (SL-ATP) with the spin label attached to the ribose, was observed to be an excellent substrate analogue for P-gp. SL-ATP was hydrolyzed in a drug-stimulated fashion at about 14% of the rate for normal ATP and allowed reversible trapping of the enzyme in transition and ground states. Equilibrium binding of a total of two nucleotides per P-gp was observed with a binding affinity of 366 microM in the presence of Mg2+ but in the absence of transport substrates such as verapamil. Binding of SL-ATP to wild-type P-gp in the presence of verapamil resulted in reduction of the protein-bound spin-label moiety, most likely due to a conformational transition within P-gp that positioned cysteines in close proximity to the spin label to allow chemical reduction of the radical. We circumvented this problem by using a mutant of P-gp in which all naturally occurring cysteines were substituted for alanines. Equilibrium binding of SL-ATP to this mutant P-gp resulted in maximum binding of two nucleotides; the binding affinity was 223 microM in the absence and 180 microM in the presence of verapamil. The corresponding ESR spectra of wild-type and Cys-less P-gp in the presence of SL-ATP indicate that a cysteine side chain of P-gp is located close to the ribose of the bound nucleotide. Trapping SL-ATP as an AlF(x)-adduct resulted in ESR spectra that showed strong immobilization of the radical, supporting the formation of a closed conformation of P-gp in its transition state. This study is the first to employ ESR spectroscopy with the use of spin-labeled nucleotide analogues to study P-glycoprotein. The study shows that SL-ATP is an excellent substrate analogue that will allow further exploration of structure and dynamics within the nucleotide binding domains of this important enzyme.
Collapse
Affiliation(s)
- Sabine Delannoy
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
| | | | | | | | | |
Collapse
|
42
|
Loo TW, Clarke DM. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 2006; 206:173-85. [PMID: 16456713 DOI: 10.1007/s00232-005-0792-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/08/2005] [Indexed: 10/25/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent drug pump that can transport a broad range of hydrophobic compounds out of the cell. The protein is clinically important because of its contribution to the phenomenon of multidrug resistance during AIDS/HIV and cancer chemotherapy. P-gp is a member of the ATP-binding cassette (ABC) family of proteins. It is a single polypeptide that contains two repeats joined by a linker region. Each repeat has a transmembrane domain consisting of six transmembrane segments followed by a hydrophilic domain containing the nucleotide-binding domain. In this mini-review, we discuss recent progress in determining the structure and mechanism of human P-glycoprotein.
Collapse
Affiliation(s)
- T W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Frelet A, Klein M. Insight in eukaryotic ABC transporter function by mutation analysis. FEBS Lett 2006; 580:1064-84. [PMID: 16442101 DOI: 10.1016/j.febslet.2006.01.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/21/2022]
Abstract
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Collapse
Affiliation(s)
- Annie Frelet
- Zurich Basel Plant Science Center, University of Zurich, Plant Biology, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
44
|
Ambudkar SV, Kim IW, Sauna ZE. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Eur J Pharm Sci 2005; 27:392-400. [PMID: 16352426 DOI: 10.1016/j.ejps.2005.10.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/28/2005] [Indexed: 12/27/2022]
Abstract
Members of the superfamily of ATP-binding cassette (ABC) transporters mediate the movement of a variety of substrates including simple ions, complex lipids and xenobiotics. At least 18 ABC transport proteins are associated with disease conditions. P-glycoprotein (Pgp, ABCB1) is the archetypical mammalian ABC transport protein and its mechanism of action has received considerable attention. There is strong biochemical evidence that Pgp moves molecular cargo against a concentration gradient using the energy of ATP hydrolysis. However, the molecular details of how the energy of ATP hydrolysis is coupled to transport remain in dispute and it has not been possible to reconcile the data from various laboratories into a single model. The functional unit of Pgp consists of two nucleotide binding domains (NBDs) and two trans-membrane domains which are involved in the transport of drug substrates. Considerable progress has been made in recent years in characterizing these functionally and spatially distinct domains of Pgp. In addition, our understanding of the domains has been augmented by the resolution of structures of several non-mammalian ABC proteins. This review considers: (i) the role of specific conserved amino acids in ATP hydrolysis mediated by Pgp; (ii) emerging insights into the dimensions of the drug binding pocket and the interactions between Pgp and the transport substrates and (iii) our current understanding of the mechanisms of coupling between energy derived from ATP binding and/or hydrolysis and efflux of drug substrates.
Collapse
Affiliation(s)
- Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
45
|
Tombline G, Muharemagić A, White LB, Senior AE. Involvement of the "occluded nucleotide conformation" of P-glycoprotein in the catalytic pathway. Biochemistry 2005; 44:12879-86. [PMID: 16171403 DOI: 10.1021/bi0509797] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We found recently that the combined mutation of both "catalytic carboxylate" residues (E552A/E1197A) in mouse P-glycoprotein (Pgp) arrested the protein in an "occluded nucleotide conformation", possibly a stabilized dimer of nucleotide-binding domains (NBDs), that binds MgATP tightly at stoichiometry of 1 mol/mol Pgp [Tombline, G., Bartholomew, L., Urbatsch, I. L., and Senior, A. E. (2004) J. Biol. Chem. 279, 31212-31220]. Here, we further examine this conformation in respect to its potential involvement in the catalytic pathway. The occluded nucleotide conformation is promoted by drugs. Verapamil markedly accelerated the rate of tight binding of MgATP, whereas it did not effect the rate of dissociation. Mutations in "Q-loop" residues that are thought to interfere with communication between drug and catalytic sites prevented the occluded nucleotide conformation, as did covalent reagents N-ethylmaleimide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, which are known to inhibit ATP hydrolysis by reacting in catalytic sites. Mutations of Walker A Ser and Lys residues in combination with E552A/E1197A had the same effect, showing that interaction of these conserved residues with MgATP is required to stabilize the occluded nucleotide conformation. We present an enzymatic scheme that incorporates this conformation. We propose that upon initial loose binding of MgATP at two nucleotide-binding domains (NBDs), together with drug binding, the NBDs dimerize to form the occluded conformation, with one tightly bound MgATP committed to hydrolysis. The pathway progresses such that the tightly bound MgATP enters the transition state and is hydrolyzed. This work suggests that small molecules or peptides that interact at the NBD dimer interface might effectively disable Pgp catalysis.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712 Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
46
|
Tombline G, Urbatsch IL, Virk N, Muharemagic A, White LB, Senior AE. Expression, purification, and characterization of cysteine-free mouse P-glycoprotein. Arch Biochem Biophys 2005; 445:124-8. [PMID: 16343415 DOI: 10.1016/j.abb.2005.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/03/2005] [Accepted: 11/05/2005] [Indexed: 11/21/2022]
Abstract
Cysteine-free mouse MDR3 P-glycoprotein (Pgp) was constructed by mutagenesis of the nine natural Cys to Ala. The Cys-free protein was expressed in Pichia pastoris and purified. Yield, purity, ATPase activity, K(m)(MgATP), and stimulation of ATPase by verapamil, were similar to wild-type mouse Ppg. Mouse Cys-free Pgp was superior in yield and stability to Cys-free human MDR1 Pgp. Mutants Y1040A and Y1040C were constructed in mouse Cys-free Pgp background. Both showed extremely low ATPase activity, strongly-impaired vanadate-trapping of ADP, and reduced photolabeling by 8-azido-ATP. The results are consistent with the conclusion that Tyr-1040 is located in the MgATP-binding site in NBD2 and is required for correct binding and/or orientation of bound MgATP substrate in Pgp as previously suggested by X-ray structures of other ABC transporters and by sequencing of photolabeled Pgp. The results also support our previous conclusion that both catalytic sites must be intact for normal function in Pgp.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
47
|
Loo TW, Bartlett MC, Clarke DM. Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein. Mol Pharm 2005; 1:426-33. [PMID: 16028354 DOI: 10.1021/mp049917l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human multidrug resistance P-glycoprotein (P-gp) uses ATP to transport a wide variety of structurally unrelated cytotoxic compounds out of the cell. The relatively high expression of P-gp in organs such as the intestine, kidney, blood-brain/testes barrier and in some tumor cells can compromise chemotherapy treatments for patients with cancer or AIDS/HIV. It has been difficult to inhibit P-gp during chemotherapy with noncovalent inhibitors because the relatively high levels of inhibitors have severe side effects. An alternative approach to inhibit P-gp would be to covalently modify cysteine residues within the NBDs. In this study, we tested whether metabolites of disulfiram, a drug currently used to treat chronic alcoholism, could inhibit P-gp. We show that the disulfiram metabolites, S-methyl N,N-diethylthiocarbamate sulfoxide and S-methyl N,N-diethylthiocarbamate sulfone inhibited the verapamil-stimulated ATPase activity of P-gp with IC50 values (concentrations that result in 50% inhibition of activity) of 9 and 4.8 microM, respectively. Similarly, S-methyl N,N-diethylthiocarbamate sulfoxide and S-methyl N,N-diethylthiocarbamate sulfone inhibited the activity of aldehyde dehydrogenase with IC50 values of 3.2 and 1.7 microM, respectively. Inhibition of P-gp by the metabolites was not reversed by addition of the reducing compound, dithiothreitol. We then determined which endogenous cysteine residue was responsible for inhibiting P-gp activity after exposure to the disulfiram metabolites. Treatment of P-gp mutants containing a single cysteine residue showed that inactivation was primarily due to modification of Cys1074 in NBD2. These results indicate that metabolites of disulfiram can covalently inactivate P-gp. Covalent modification of drug transporters could be a useful approach for inhibiting their activities during chemotherapy.
Collapse
Affiliation(s)
- Tip W Loo
- CIHR Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | |
Collapse
|
48
|
Kaur P, Rao DK, Gandlur SM. Biochemical Characterization of Domains in the Membrane Subunit DrrB That Interact with the ABC Subunit DrrA: Identification of a Conserved Motif†. Biochemistry 2005; 44:2661-70. [PMID: 15709779 DOI: 10.1021/bi048959c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DrrA and DrrB proteins confer resistance to the commonly used anticancer agents daunorubicin and doxorubicin in the producer organism Streptomyces peucetius. The drrAB locus has previously been cloned in Escherichia coli, and the proteins have been found to be functional in this host. DrrA, a soluble protein, belongs to the ABC family of proteins. It forms a complex with the integral membrane protein DrrB. Previous studies suggest that the function and stability of DrrA and DrrB are biochemically coupled. Thus, DrrA binds ATP only when it is in a complex with DrrB in the membrane. Further, DrrB is completely degraded if DrrA is absent. In the present study, we have characterized domains in DrrB that may be directly involved in interaction with DrrA. Several single-cysteine substitutions in DrrB were made. Interaction between DrrA and DrrB was studied by using a cysteine to amine chemical cross-linker that specifically cross-links a free sulfhydryl group in one protein (DrrB) to an amine in another (DrrA). We show here that DrrA cross-links with both the N- and the C-terminal ends of the DrrB protein, implying that they may be involved in interaction. Furthermore, this study identifies a motif within the N-terminal cytoplasmic tail of DrrB, which is similar to a motif recently shown by crystal structure analysis in BtuC and previously shown by sequence analysis to be also present in exporters, including MDR1. We propose that the motif present in DrrB and other exporters is actually a modified version of the EAA motif, which was originally believed to be present only in the importers of the ABC family. The present work is the first report where domains of interaction in the membrane component of an ABC drug exporter have been biochemically characterized.
Collapse
Affiliation(s)
- Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
49
|
Loo TW, Bartlett MC, Clarke DM. The drug-binding pocket of the human multidrug resistance P-glycoprotein is accessible to the aqueous medium. Biochemistry 2004; 43:12081-9. [PMID: 15379547 DOI: 10.1021/bi049045t] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
P-Glycoprotein (P-gp) is an ATP-dependent drug pump that transports a broad range of compounds out of the cell. Cross-linking studies have shown that the drug-binding pocket is at the interface between the transmembrane (TM) domains and can simultaneously bind two different drug substrates. Here, we determined whether cysteine residues within the drug-binding pocket were accessible to the aqueous medium. Cysteine mutants were tested for their reactivity with the charged thiol-reactive compounds sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) and [2-(trimethylammonium)ethyl)]methanethiosulfonate (MTSET). Residue Ile-306(TM5) is close to the verapamil-binding site. It was changed to cysteine, reacted with MTSES or MTSET, and assayed for verapamil-stimulated ATPase activity. Reaction of mutant I306C(TM5) with either compound reduced its affinity for verapamil. We confirmed that the reduced affinity for verapamil was indeed due to introduction of a charge at position 306 by demonstrating that similar effects were observed when Ile-306 was replaced with arginine or glutamic acid. Mutant I306R showed a 50-fold reduction in affinity for verapamil and very little change in the affinity for rhodamine B or colchicine. MTSES or MTSET modification also affected the cross-linking pattern between pairs of cysteines in the drug-binding pocket. For example, both MTSES and MTSET inhibited cross-linking between I306C(TM5) and I868C(TM10). Inhibition was enhanced by ATP hydrolysis. By contrast, cross-linking of cysteine residues located outside the drug-binding pocket (such as G300C(TM5)/F770C(TM8)) was not affected by MTSES or MTSET. These results indicate that the drug-binding pocket is accessible to water.
Collapse
Affiliation(s)
- Tip W Loo
- CIHR Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
50
|
Chen EY, Bartlett MC, Loo TW, Clarke DM. The ΔF508 Mutation Disrupts Packing of the Transmembrane Segments of the Cystic Fibrosis Transmembrane Conductance Regulator. J Biol Chem 2004; 279:39620-7. [PMID: 15272010 DOI: 10.1074/jbc.m407887200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common mutation in cystic fibrosis (deletion of Phe-508 in the first nucleotide binding domain (DeltaF508)) in the cystic fibrosis transmembrane conductance regulator (CFTR) causes retention of the mutant protein in the endoplasmic reticulum. We previously showed that the DeltaF508 mutation causes the CFTR protein to be retained in the endoplasmic reticulum in an inactive and structurally altered state. Proper packing of the transmembrane (TM) segments is critical for function because the TM segments form the chloride channel. Here we tested whether the DeltaF508 mutation altered packing of the TM segments by disulfide cross-linking analysis between TM6 and TM12 in wild-type and DeltaF508 CFTRs. These TM segments were selected because TM6 appears to line the chloride channel, and cross-linking between these TM segments has been observed in the CFTR sister protein, the multidrug resistance P-glycoprotein. We first mapped potential contact points in wild-type CFTR by cysteine mutagenesis and thiol cross-linking analysis. Disulfide cross-linking was detected in CFTR mutants M348C(TM6)/T1142C(TM12), T351C(TM6)/T1142C(TM12), and W356C(TM6)/W1145C(TM12) in a wild-type background. The disulfide cross-linking occurs intramolecularly and was reducible by dithiothreitol. Introduction of the DeltaF508 mutation into these cysteine mutants, however, abolished cross-linking. The results suggest that the DeltaF508 mutation alters interactions between the TM domains. Therefore, a potential target to correct folding defects in the DeltaF508 mutant of CFTR is to identify compounds that promote correct folding of the TM domains.
Collapse
Affiliation(s)
- Eva Y Chen
- Canadian Institutes of Health Research Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|