1
|
Shinde O, Boyer JA, Cambier S, VanPortfliet JJ, Sui X, Yadav GP, Viverette EG, Borgnia MJ, West AP, Zhang Q, Stetson DB, Li P. Structures of ATP-binding cassette transporter ABCC1 reveal the molecular basis of cyclic dinucleotide cGAMP export. Immunity 2025; 58:59-73.e5. [PMID: 39765229 PMCID: PMC11735300 DOI: 10.1016/j.immuni.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response. However, the molecular basis of cGAMP export mediated by ABCC1 remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ABCC1 in a ligand-free state and a cGAMP-bound state. These structures reveal that ABCC1 forms a homodimer via its N-terminal transmembrane domain. The ligand-bound structure shows that cGAMP is recognized by a positively charged pocket. Mutagenesis and functional studies confirmed the roles of the ligand-binding pocket in cGAMP recognition and export. This study provides insights into the structure and function of ABCC1 as a cGAMP exporter and lays a foundation for future research targeting ABCC1 in infection and anti-cancer immunity.
Collapse
Affiliation(s)
- Omkar Shinde
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Joshua A Boyer
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie Cambier
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | - Xuewu Sui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Gaya P Yadav
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Elizabeth G Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
2
|
Whitlock BD, Ma Y, Conseil G, O'Brien AR, Banerjee M, Swanlund DP, Lin ZP, Wang Y, Le XC, Schuetz JD, Cole SPC, Leslie EM. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. Drug Metab Dispos 2024; 52:1417-1428. [PMID: 39313329 PMCID: PMC11585317 DOI: 10.1124/dmd.124.001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Millions of people globally are exposed to the proven human carcinogen arsenic at unacceptable levels in drinking water. In contrast, arsenic is a poor rodent carcinogen, requiring >100-fold higher doses for tumor induction, which may be explained by toxicokinetic differences between humans and mice. The human ATP-binding cassette subfamily C (ABCC) transporter hABCC4 mediates the cellular efflux of a diverse array of metabolites, including the glutathione (GSH) conjugate of the highly toxic monomethylarsonous acid (MMAIII), monomethylarsenic diglutathione [MMA(GS)2], and the major human urinary arsenic metabolite dimethylarsinic acid (DMAV). Our objective was to determine if mouse Abcc4 (mAbcc4) protected against and/or transported the same arsenic species as hABCC4. The anti-ABCC4 antibody M4I-10 epitope was first mapped to an octapeptide (411HVQDFTA418F) present in both hABCC4 and mAbcc4, enabling quantification of relative amounts of hABCC4/mAbcc4. mAbcc4 expressed in human embryonic kidney (HEK)293 cells did not protect against any of the six arsenic species tested [arsenite, arsenate, MMAIII, monomethylarsonic acid, dimethylarsinous acid, or DMAV], despite displaying remarkable resistance against the antimetabolite 6-mercaptopurine (>9-fold higher than hABCC4). Furthermore, mAbcc4-enriched membrane vesicles prepared from transfected HEK293 cells did not transport MMA(GS)2 or DMAV despite a >3-fold higher transport activity than hABCC4-enriched vesicles for the prototypic substrate 17β-estradiol-17-(β-D-glucuronide). Abcc4(+/+) mouse embryonic fibroblasts (MEFs) were ∼3-fold more resistant to arsenate than Abcc4(-/-) MEFs; however, further characterization indicated that this was not mAbcc4 mediated. Thus, under the conditions tested, arsenicals are not transported by mAbcc4, and differences between the substrate selectivity of hABCC4 and mAbcc4 seem likely to contribute to arsenic toxicokinetic differences between human and mouse. SIGNIFICANCE STATEMENT: Toxicokinetics of the carcinogen arsenic differ among animal species. Arsenic methylation is known to contribute to this, whereas arsenic transporters have not been considered. Human ATP-binding cassette subfamily C member 4 (hABCC4) is a high-affinity transporter of toxicologically important arsenic metabolites. Here we used multiple approaches to demonstrate that mouse Abcc4 does not protect cells against or transport any arsenic species tested. Thus, differences between hABCC4 and mAbcc4 substrate selectivity likely contribute to differences in human and mouse arsenic toxicokinetics.
Collapse
Affiliation(s)
- Brayden D Whitlock
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Yingze Ma
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Gwenaëlle Conseil
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Alicia R O'Brien
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Mayukh Banerjee
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Diane P Swanlund
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Z Ping Lin
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Yao Wang
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - X Chris Le
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - John D Schuetz
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Susan P C Cole
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Elaine M Leslie
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| |
Collapse
|
3
|
Bloch M, Raj I, Pape T, Taylor NMI. Structural and mechanistic basis of substrate transport by the multidrug transporter MRP4. Structure 2023; 31:1407-1418.e6. [PMID: 37683641 DOI: 10.1016/j.str.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Multidrug resistance-associated protein 4 (MRP4) is an ATP-binding cassette (ABC) transporter expressed at multiple tissue barriers where it actively extrudes a wide variety of drug compounds. Overexpression of MRP4 provides resistance to clinically used antineoplastic agents, making it a highly attractive therapeutic target for countering multidrug resistance. Here, we report cryo-EM structures of multiple physiologically relevant states of lipid bilayer-embedded human MRP4, including complexes between MRP4 and two widely used chemotherapeutic agents and a complex between MRP4 and its native substrate. The structures display clear similarities and distinct differences in the coordination of these chemically diverse substrates and, in combination with functional and mutational analysis, reveal molecular details of the transport mechanism. Our study provides key insights into the unusually broad substrate specificity of MRP4 and constitutes an important contribution toward a general understanding of multidrug transporters.
Collapse
Affiliation(s)
- Magnus Bloch
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isha Raj
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Bin Kanner Y, Teng QX, Ganoth A, Peer D, Wang JQ, Chen ZS, Tsfadia Y. Cytotoxicity and reversal effect of sertraline, fluoxetine, and citalopram on MRP1- and MRP7-mediated MDR. Front Pharmacol 2023; 14:1290255. [PMID: 38026953 PMCID: PMC10651738 DOI: 10.3389/fphar.2023.1290255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the development of resistance to chemotherapy drugs is a major challenge in treating malignancies. In recent years, researchers have focused on understanding the mechanisms of multidrug resistance (MDR) in cancer cells and have identified the overexpression of ATP-binding cassette (ABC) transporters, including ABCC1/MRP1 and ABCC10/MRP7, as a key factor in the development of MDR. In this study, we aimed to investigate whether three drugs (sertraline, fluoxetine, and citalopram) from the selective serotonin reuptake inhibitor (SSRI) family, commonly used as antidepressants, could be repurposed as inhibitors of MRP1 and MRP7 transporters and reverse MDR in cancer cells. Using a combination of in silico predictions and in vitro validations, we analyzed the interaction of MRP1 and MRP7 with the drugs and evaluated their ability to hinder cell resistance. We used computational tools to identify and analyze the binding site of these three molecules and determine their binding energy. Subsequently, we conducted experimental assays to assess cell viability when treated with various standard chemotherapies, both with and without the presence of SSRI inhibitors. Our results show that all three SSRI drugs exhibited inhibitory/reversal effects in the presence of chemotherapies on both MRP1-overexpressed cells and MRP7-overexpressed cells, suggesting that these medications have the potential to be repurposed to target MDR in cancer cells. These findings may open the door to using FDA-approved medications in combination therapy protocols to treat highly resistant malignancies and improve the efficacy of chemotherapy treatment. Our research highlights the importance of investigating and repurposing existing drugs to overcome MDR in cancer treatment.
Collapse
Affiliation(s)
- Yuval Bin Kanner
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Assaf Ganoth
- Department of Physical Therapy, Sackler Faculty of Medicine, School of Health Professions, Tel Aviv University, Tel Aviv, Israel
- Reichman University, Herzliya, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, George S. Wise Faculty of Life Sciences, Shmunis School for Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yossi Tsfadia
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Baril SA, Gose T, Schuetz JD. How Cryo-EM Has Expanded Our Understanding of Membrane Transporters. Drug Metab Dispos 2023; 51:904-922. [PMID: 37438132 PMCID: PMC10353158 DOI: 10.1124/dmd.122.001004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 07/14/2023] Open
Abstract
Over the past two decades, technological advances in membrane protein structural biology have provided insight into the molecular mechanisms that transporters use to move diverse substrates across the membrane. However, the plasticity of these proteins' ligand binding pockets, which allows them to bind a range of substrates, also poses a challenge for drug development. Here we highlight the structure, function, and transport mechanism of ATP-binding cassette/solute carrier transporters that are related to several diseases and multidrug resistance: ABCB1, ABCC1, ABCG2, SLC19A1, and SLC29A1. SIGNIFICANCE STATEMENT: ATP-binding cassette transporters and solute carriers play vital roles in clinical chemotherapeutic outcomes. This paper describes the current understanding of the structure of five pharmacologically relevant transporters and how they interact with their ligands.
Collapse
Affiliation(s)
- Stefanie A Baril
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
6
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
7
|
Pietz HL, Abbas A, Johnson ZL, Oldham ML, Suga H, Chen J. A macrocyclic peptide inhibitor traps MRP1 in a catalytically incompetent conformation. Proc Natl Acad Sci U S A 2023; 120:e2220012120. [PMID: 36893260 PMCID: PMC10089224 DOI: 10.1073/pnas.2220012120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Adenosine triphosphate-binding cassette (ABC) transporters, such as multidrug resistance protein 1 (MRP1), protect against cellular toxicity by exporting xenobiotic compounds across the plasma membrane. However, constitutive MRP1 function hinders drug delivery across the blood-brain barrier, and MRP1 overexpression in certain cancers leads to acquired multidrug resistance and chemotherapy failure. Small-molecule inhibitors have the potential to block substrate transport, but few show specificity for MRP1. Here we identify a macrocyclic peptide, named CPI1, which inhibits MRP1 with nanomolar potency but shows minimal inhibition of a related multidrug transporter P-glycoprotein. A cryoelectron microscopy (cryo-EM) structure at 3.27 Å resolution shows that CPI1 binds MRP1 at the same location as the physiological substrate leukotriene C4 (LTC4). Residues that interact with both ligands contain large, flexible sidechains that can form a variety of interactions, revealing how MRP1 recognizes multiple structurally unrelated molecules. CPI1 binding prevents the conformational changes necessary for adenosine triphosphate (ATP) hydrolysis and substrate transport, suggesting it may have potential as a therapeutic candidate.
Collapse
Affiliation(s)
- Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Ata Abbas
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Michael L Oldham
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, New York, NY 10065
| | - Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, New York, NY 10065
| |
Collapse
|
8
|
Hanssen KM, Wheatley MS, Yu DMT, Conseil G, Norris MD, Haber M, Cole SPC, Fletcher JI. GSH facilitates the binding and inhibitory activity of novel multidrug resistance protein 1 (MRP1) modulators. FEBS J 2022; 289:3854-3875. [PMID: 35080351 DOI: 10.1111/febs.16374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
MRP1 (ABCC1) is a membrane transporter that confers multidrug resistance in cancer cells by exporting chemotherapeutic agents, often in a reduced glutathione (GSH)-dependent manner. This transport activity can be altered by compounds (modulators) that block drug transport while simultaneously stimulating GSH efflux by MRP1. In MRP1-expressing cells, modulator-stimulated GSH efflux can be sufficient to deplete GSH and increase sensitivity to chemotherapy, enhancing cancer cell death. Further development of clinically useful MRP1 modulators requires a better mechanistic understanding of modulator binding and its relationship to GSH binding and transport. Here, we explore the mechanism of two MRP1 small molecule modulators, 5681014 and 7914321, in relation to a bipartite substrate-binding cavity of MRP1. Binding of these modulators to MRP1 was dependent on the presence of GSH but not its reducing capacity. Accordingly, the modulators poorly inhibited organic anion transport by K332L-mutant MRP1, where GSH binding and transport is limited. However, the inhibitory activity of the modulators was also diminished by mutations that limit E2 17βG but spare GSH-conjugate binding and transport (W553A, M1093A, W1246A), suggesting overlap between the E2 17βG and modulator binding sites. Immunoblots of limited trypsin digests of MRP1 suggest that binding of GSH, but not the modulators, induces a conformation change in MRP1. Together, these findings support the model, in which GSH binding induces a conformation change that facilitates binding of MRP1 modulators, possibly in a proposed hydrophobic binding pocket of MRP1. This study may facilitate the structure-guided design of more potent and selective MRP1 modulators.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Madeleine S Wheatley
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia
| | - Denise M T Yu
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, Canada
| | - Murray D Norris
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, Australia
| | - Michelle Haber
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, Canada
| | - Jamie I Fletcher
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| |
Collapse
|
9
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Nasri Z, Memari S, Wenske S, Clemen R, Martens U, Delcea M, Bekeschus S, Weltmann K, von Woedtke T, Wende K. Singlet-Oxygen-Induced Phospholipase A 2 Inhibition: A Major Role for Interfacial Tryptophan Dioxidation. Chemistry 2021; 27:14702-14710. [PMID: 34375468 PMCID: PMC8596696 DOI: 10.1002/chem.202102306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 11/16/2022]
Abstract
Several studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A2 (PLA2 ) activity. Therefore, the regulation of PLA2 catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA2 due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported. We found singlet oxygen to be the most relevant active agent in PLA2 inhibition. A more detailed analysis of the plasma-treated PLA2 identified tryptophan 128 as a hot spot, rich in double oxidation. The significant dioxidation of this interfacial tryptophan resulted in an N-formylkynurenine product via the oxidative opening of the tryptophan indole ring. Molecular dynamics simulation indicated that the efficient interactions between the tryptophan residue and phospholipids are eliminated following tryptophan dioxidation. As interfacial tryptophan residues are predominantly involved in the attaching of membrane enzymes to the bilayers, tryptophan dioxidation and indole ring opening leads to the loss of essential interactions for enzyme binding and, consequently, enzyme inactivation.
Collapse
Affiliation(s)
- Zahra Nasri
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Seyedali Memari
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
- Institute of Anatomy and Cell BiologyUniversity Medicine GreifswaldFriedrich-Loeffler-Straße 23cGreifswald17487Germany
| | - Sebastian Wenske
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Ramona Clemen
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Ulrike Martens
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Straße 4Greifswald17489Germany
- Center for Innovation Competence (ZIK) HIKE (Humoral Immune Reactions in Cardiovascular Diseases)University of GreifswaldGreifswaldFleischmannstraße 4217489Germany
| | - Mihaela Delcea
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Straße 4Greifswald17489Germany
- Center for Innovation Competence (ZIK) HIKE (Humoral Immune Reactions in Cardiovascular Diseases)University of GreifswaldGreifswaldFleischmannstraße 4217489Germany
| | - Sander Bekeschus
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Thomas von Woedtke
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
- Institute for Hygiene and Environmental MedicineUniversity Medicine GreifswaldGreifswaldWalther-Rathenau-Straße 49 A17489Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| |
Collapse
|
11
|
Szeri F, Corradi V, Niaziorimi F, Donnelly S, Conseil G, Cole SPC, Tieleman DP, van de Wetering K. Mutagenic Analysis of the Putative ABCC6 Substrate-Binding Cavity Using a New Homology Model. Int J Mol Sci 2021; 22:ijms22136910. [PMID: 34199119 PMCID: PMC8267652 DOI: 10.3390/ijms22136910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Inactivating mutations in ABCC6 underlie the rare hereditary mineralization disorder pseudoxanthoma elasticum. ABCC6 is an ATP-binding cassette (ABC) integral membrane protein that mediates the release of ATP from hepatocytes into the bloodstream. The released ATP is extracellularly converted into pyrophosphate, a key mineralization inhibitor. Although ABCC6 is firmly linked to cellular ATP release, the molecular details of ABCC6-mediated ATP release remain elusive. Most of the currently available data support the hypothesis that ABCC6 is an ATP-dependent ATP efflux pump, an un-precedented function for an ABC transporter. This hypothesis implies the presence of an ATP-binding site in the substrate-binding cavity of ABCC6. We performed an extensive mutagenesis study using a new homology model based on recently published structures of its close homolog, bovine Abcc1, to characterize the substrate-binding cavity of ABCC6. Leukotriene C4 (LTC4), is a high-affinity substrate of ABCC1. We mutagenized fourteen amino acid residues in the rat ortholog of ABCC6, rAbcc6, that corresponded to the residues in ABCC1 found in the LTC4 binding cavity. Our functional characterization revealed that most of the amino acids in rAbcc6 corresponding to those found in the LTC4 binding pocket in bovine Abcc1 are not critical for ATP efflux. We conclude that the putative ATP binding site in the substrate-binding cavity of ABCC6/rAbcc6 is distinct from the bovine Abcc1 LTC4-binding site.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology and PXE Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.S.); (F.N.); (S.D.)
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary
| | - Valentina Corradi
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada; (V.C.); (D.P.T.)
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology and PXE Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.S.); (F.N.); (S.D.)
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology and PXE Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.S.); (F.N.); (S.D.)
| | - Gwenaëlle Conseil
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.); (S.P.C.C.)
| | - Susan P. C. Cole
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.); (S.P.C.C.)
| | - D. Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada; (V.C.); (D.P.T.)
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology and PXE Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.S.); (F.N.); (S.D.)
- Correspondence: ; Tel.: +1-(215)-503-5701
| |
Collapse
|
12
|
Pleiotropic Roles of ABC Transporters in Breast Cancer. Int J Mol Sci 2021; 22:ijms22063199. [PMID: 33801148 PMCID: PMC8004140 DOI: 10.3390/ijms22063199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Chemotherapeutics are the mainstay treatment for metastatic breast cancers. However, the chemotherapeutic failure caused by multidrug resistance (MDR) remains a pivotal obstacle to effective chemotherapies of breast cancer. Although in vitro evidence suggests that the overexpression of ATP-Binding Cassette (ABC) transporters confers resistance to cytotoxic and molecularly targeted chemotherapies by reducing the intracellular accumulation of active moieties, the clinical trials that target ABCB1 to reverse drug resistance have been disappointing. Nevertheless, studies indicate that ABC transporters may contribute to breast cancer development and metastasis independent of their efflux function. A broader and more clarified understanding of the functions and roles of ABC transporters in breast cancer biology will potentially contribute to stratifying patients for precision regimens and promote the development of novel therapies. Herein, we summarise the current knowledge relating to the mechanisms, functions and regulations of ABC transporters, with a focus on the roles of ABC transporters in breast cancer chemoresistance, progression and metastasis.
Collapse
|
13
|
Conserved amino acids in the region connecting membrane spanning domain 1 to nucleotide binding domain 1 are essential for expression of the MRP1 (ABCC1) transporter. PLoS One 2021; 16:e0246727. [PMID: 33571281 PMCID: PMC7877750 DOI: 10.1371/journal.pone.0246727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) (gene symbol ABCC1) is an ATP-binding cassette (ABC) transporter which effluxes xeno- and endobiotic organic anions including estradiol glucuronide and the pro-inflammatory leukotriene C4. MRP1 also confers multidrug resistance by reducing intracellular drug accumulation through active efflux. MRP1 has three membrane spanning domains (MSD), and two nucleotide binding domains (NBD). MSD1 and MSD2 are linked to NBD1 and NBD2 by connecting regions (CR) 1 and CR2, respectively. Here we targeted four residues in CR1 (Ser612, Arg615, His622, Glu624) for alanine substitution and unexpectedly, found that cellular levels of three mutants (S612A, R615A, E624A) in transfected HEK cells were substantially lower than wild-type MRP1. Whereas CR1-H622A properly trafficked to the plasma membrane and exhibited organic anion transport activity comparable to wild-type MRP1, the poorly expressing R615A and E624A (and to a lesser extent S612A) mutant proteins were retained intracellularly. Analyses of cryogenic electron microscopic and atomic homology models of MRP1 indicated that Arg615 and Glu624 might participate in bonding interactions with nearby residues to stabilize expression of the transporter. However, this was not supported by double exchange mutations E624K/K406E, R615D/D430R and R615F/F619R which failed to improve MRP1 levels. Nevertheless, these experiments revealed that the highly conserved CR1-Phe619 and distal Lys406 in the first cytoplasmic loop of MSD1 are also essential for expression of MRP1 protein. This study is the first to demonstrate that CR1 contains several highly conserved residues critical for plasma membrane expression of MRP1 but thus far, currently available structures and models do not provide any insights into the underlying mechanism(s). Additional structures with rigorous biochemical validation data are needed to fully understand the bonding interactions critical to stable expression of this clinically important ABC transporter.
Collapse
|
14
|
Ceder S, Eriksson SE, Cheteh EH, Dawar S, Corrales Benitez M, Bykov VJN, Fujihara KM, Grandin M, Li X, Ramm S, Behrenbruch C, Simpson KJ, Hollande F, Abrahmsen L, Clemons NJ, Wiman KG. A thiol-bound drug reservoir enhances APR-246-induced mutant p53 tumor cell death. EMBO Mol Med 2021; 13:e10852. [PMID: 33314700 PMCID: PMC7863383 DOI: 10.15252/emmm.201910852] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor gene TP53 is the most frequently mutated gene in cancer. The compound APR-246 (PRIMA-1Met/Eprenetapopt) is converted to methylene quinuclidinone (MQ) that targets mutant p53 protein and perturbs cellular antioxidant balance. APR-246 is currently tested in a phase III clinical trial in myelodysplastic syndrome (MDS). By in vitro, ex vivo, and in vivo models, we show that combined treatment with APR-246 and inhibitors of efflux pump MRP1/ABCC1 results in synergistic tumor cell death, which is more pronounced in TP53 mutant cells. This is associated with altered cellular thiol status and increased intracellular glutathione-conjugated MQ (GS-MQ). Due to the reversibility of MQ conjugation, GS-MQ forms an intracellular drug reservoir that increases availability of MQ for targeting mutant p53. Our study shows that redox homeostasis is a critical determinant of the response to mutant p53-targeted cancer therapy.
Collapse
Affiliation(s)
- Sophia Ceder
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | - Sofi E Eriksson
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | | | - Swati Dawar
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | | | | | - Kenji M Fujihara
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVic.Australia
| | - Mélodie Grandin
- Department of Clinical PathologyThe University of MelbourneMelbourneVic.Australia
- Victorian Comprehensive Cancer CentreUniversity of Melbourne Centre for Cancer ResearchMelbourneVic.Australia
| | - Xiaodun Li
- MRC Cancer UnitUniversity of CambridgeCambridgeUK
| | - Susanne Ramm
- Peter MacCallum Cancer CentreVictorian Centre for Functional GenomicsMelbourneVic.Australia
| | - Corina Behrenbruch
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVic.Australia
- Department of Clinical PathologyThe University of MelbourneMelbourneVic.Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer CentreVictorian Centre for Functional GenomicsMelbourneVic.Australia
| | - Frédéric Hollande
- Department of Clinical PathologyThe University of MelbourneMelbourneVic.Australia
- Victorian Comprehensive Cancer CentreUniversity of Melbourne Centre for Cancer ResearchMelbourneVic.Australia
| | | | - Nicholas J Clemons
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVic.Australia
| | - Klas G Wiman
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
15
|
He J, Han Z, Farooq QUA, Li C. Study on functional sites in human multidrug resistance protein 1 (hMRP1). Proteins 2021; 89:659-670. [PMID: 33469960 DOI: 10.1002/prot.26049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/22/2020] [Accepted: 12/27/2020] [Indexed: 01/27/2023]
Abstract
Human multidrug resistance protein 1 (hMRP1) is an important member of the ATP-binding cassette (ABC) transporter superfamily. It can extrude a variety of anticancer drugs and physiological organic anions across the plasma membrane, which is activated by substrate binding, and is accompanied by large-scale cooperative movements between different domains. Currently, it remains unclear completely about how the specific interactions between hMRP1 and its substrate are and which critical residues are responsible for allosteric signal transduction. To the end, we first construct an inward-facing state of hMRP1 using homology modeling method, and then dock substrate proinflammatory agent leukotriene C4 (LTC4) to hMRP1 pocket. The result manifests LTC4 interacts with two parts of hMRP1 pocket, namely the positively charged pocket (P pocket) and hydrophobic pocket (H pocket), similar to its binding mode with bMRP1 (bovine MRP1). Additionally, we use the Gaussian network model (GNM)-based thermodynamic method proposed by us to identify the key residues whose perturbations markedly alter their binding free energy. Here the conventional GNM is improved with covalent/non-covalent interactions and secondary structure information considered (denoted as sscGNM). In the result, sscGNM improves the flexibility prediction, especially for the nucleotide binding domains with rich kinds of secondary structures. The 46 key residue clusters located in different subdomains are identified which are highly consistent with experimental observations. Furtherly, we explore the long-range cooperation within the transporter. This study is helpful for strengthening the understanding of the work mechanism in ABC exporters and can provide important information to scientists in drug design studies.
Collapse
Affiliation(s)
- Junmei He
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qurat Ul Ain Farooq
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| |
Collapse
|
16
|
Deng F, Ghemtio L, Grazhdankin E, Wipf P, Xhaard H, Kidron H. Binding Site Interactions of Modulators of Breast Cancer Resistance Protein, Multidrug Resistance-Associated Protein 2, and P-Glycoprotein Activity. Mol Pharm 2020; 17:2398-2410. [PMID: 32496785 PMCID: PMC7497665 DOI: 10.1021/acs.molpharmaceut.0c00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
ATP-binding cassette (ABC)-transporters
protect tissues by pumping
their substrates out of the cells in many physiological barriers,
such as the blood–brain barrier, intestine, liver, and kidney.
These substrates include various endogenous metabolites, but, in addition,
ABC transporters recognize a wide range of compounds, therefore affecting
the disposition and elimination of clinically used drugs and their
metabolites. Although numerous ABC-transporter inhibitors are known,
the underlying mechanism of inhibition is not well characterized.
The aim of this study is to deepen our understanding of transporter
inhibition by studying the molecular basis of ligand recognition.
In the current work, we compared the effect of 44 compounds on the
active transport mediated by three ABC transporters: breast cancer
resistance protein (BCRP and ABCG2), multidrug-resistance associated
protein (MRP2 and ABCC2), and P-glycoprotein (P-gp and ABCB1). Eight
compounds were strong inhibitors of all three transporters, while
the activity of 36 compounds was transporter-specific. Of the tested
compounds, 39, 25, and 11 were considered as strong inhibitors, while
1, 4, and 11 compounds were inactive against BCRP, MRP2, and P-gp,
respectively. In addition, six transport-enhancing stimulators were
observed for P-gp. In order to understand the observed selectivity,
we compared the surface properties of binding cavities in the transporters
and performed structure–activity analysis and computational
docking of the compounds to known binding sites in the transmembrane
domains and nucleotide-binding domains. Based on the results, the
studied compounds are more likely to interact with the transmembrane
domain than the nucleotide-binding domain. Additionally, the surface
properties of the substrate binding site in the transmembrane domains
of the three transporters were in line with the observed selectivity.
Because of the high activity toward BCRP, we lacked the dynamic range
needed to draw conclusions on favorable interactions; however, we
identified amino acids in both P-gp and MRP2 that appear to be important
for ligand recognition.
Collapse
Affiliation(s)
- Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Leo Ghemtio
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Evgeni Grazhdankin
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Peter Wipf
- Department of Chemistry, The Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| |
Collapse
|
17
|
Nasr R, Lorendeau D, Khonkarn R, Dury L, Pérès B, Boumendjel A, Cortay JC, Falson P, Chaptal V, Baubichon-Cortay H. Molecular analysis of the massive GSH transport mechanism mediated by the human Multidrug Resistant Protein 1/ABCC1. Sci Rep 2020; 10:7616. [PMID: 32377003 PMCID: PMC7203140 DOI: 10.1038/s41598-020-64400-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
The transporter Multidrug Resistance Protein 1 (MRP1, ABCC1) is implicated in multidrug resistant (MDR) phenotype of cancer cells. Glutathione (GSH) plays a key role in MRP1 transport activities. In addition, a ligand-stimulated GSH transport which triggers the death of cells overexpressing MRP1, by collateral sensitivity (CS), has been described. This CS could be a way to overcome the poor prognosis for patients suffering from a chemoresistant cancer. The molecular mechanism of such massive GSH transport and its connection to the other transport activities of MRP1 are unknown. In this context, we generated MRP1/MRP2 chimeras covering different regions, MRP2 being a close homolog that does not trigger CS. The one encompassing helices 16 and 17 led to the loss of CS and MDR phenotype without altering basal GSH transport. Within this region, the sole restoration of the original G1228 (D1236 in MRP2) close to the extracellular loop between the two helices fully rescued the CS (massive GSH efflux and cell death) but not the MDR phenotype. The flexibility of that loop and the binding of a CS agent like verapamil could favor a particular conformation for the massive transport of GSH, not related to other transport activities of MRP1.
Collapse
Affiliation(s)
- Rachad Nasr
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Doriane Lorendeau
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Ruttiros Khonkarn
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Lauriane Dury
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Basile Pérès
- Department of Molecular Pharmacochemistry (DPM), UMR 5063, Grenoble Alpes University, 38041, Grenoble, France
| | - Ahcène Boumendjel
- Department of Molecular Pharmacochemistry (DPM), UMR 5063, Grenoble Alpes University, 38041, Grenoble, France
| | - Jean-Claude Cortay
- INSERM U1052, CNRS-University of Lyon UMR-5286, Cancer Research Center of Lyon (CRCL), 69008, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France
| | - Hélène Baubichon-Cortay
- Drug Resistance and Membrane Proteins group, IBCP, UMR 5086, CNRS-University of Lyon, 69367, Lyon, France.
| |
Collapse
|
18
|
Conseil G, Arama-Chayoth M, Tsfadia Y, Cole SPC. Structure-guided probing of the leukotriene C 4 binding site in human multidrug resistance protein 1 (MRP1; ABCC1). FASEB J 2019; 33:10692-10704. [PMID: 31268744 DOI: 10.1096/fj.201900140r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human multidrug resistance protein 1 (hMRP1) transporter is implicated in cancer multidrug resistance as well as immune responses involving its physiologic substrate, glutathione (GSH)-conjugated leukotriene C4 (LTC4). LTC4 binds a bipartite site on hMRP1, which a recent cryoelectron microscopy structure of LTC4-bound bovine Mrp1 depicts as composed of a positively charged pocket and a hydrophobic (H) pocket that binds the GSH moiety and surrounds the fatty acid moiety, respectively, of LTC4. Here, we show that single Ala and Leu substitutions of H-pocket hMRP1-Met1093 have no effect on LTC4 binding or transport. Estrone 3-sulfate transport is also unaffected, but both hMRP1-Met1093 mutations eliminate estradiol glucuronide transport, demonstrating that these steroid conjugates have binding sites distinct from each other and from LTC4. To eliminate LTC4 transport by hMRP1, mutation of 3 H-pocket residues was required (W553/M1093/W1246A), indicating that H-pocket amino acids are key to the vastly different affinities of hMRP1 for LTC4 vs. GSH alone. Unlike organic anion transport, hMRP1-mediated drug resistance was more diminished by Ala than Leu substitution of Met1093. Although our findings generally support a structure in which H-pocket residues bind the lipid tail of LTC4, their critical and differential role in the transport of conjugated estrogens and anticancer drugs remains unexplained.-Conseil, G., Arama-Chayoth, M., Tsfadia, Y., Cole, S. P. C. Structure-guided probing of the leukotriene C4 binding site in human multidrug resistance protein 1 (MRP1; ABCC1).
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, , Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | - May Arama-Chayoth
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Tsfadia
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, , Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Gana CC, Hanssen KM, Yu DMT, Flemming CL, Wheatley MS, Conseil G, Cole SPC, Norris MD, Haber M, Fletcher JI. MRP1 modulators synergize with buthionine sulfoximine to exploit collateral sensitivity and selectively kill MRP1-expressing cancer cells. Biochem Pharmacol 2019; 168:237-248. [PMID: 31302132 DOI: 10.1016/j.bcp.2019.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/09/2019] [Indexed: 11/25/2022]
Abstract
Members of the ABC transporter family, particularly P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance protein 1 (MRP1, ABCC1) are well characterized mediators of multidrug resistance, however their pharmacological inhibition has so far failed as a clinical strategy. Harnessing collateral sensitivity, a form of synthetic lethality where cells with acquired multidrug resistance exhibit hypersensitivity to unrelated agents, may be an alternative approach to targeting multidrug resistant tumour cells. We characterized a novel small molecule modulator that selectively enhanced MRP1-dependent efflux of reduced glutathione (GSH), an endogenous MRP1 substrate. Using cell lines expressing high levels of endogenous MRP1 from three difficult to treat cancer types-lung cancer, ovarian cancer and high-risk neuroblastoma-we showed that the MRP1 modulator substantially lowered intracellular GSH levels as a single agent. The effect was on-target, as MRP1 knockdown abolished GSH depletion. The MRP1 modulator was synergistic with the GSH synthesis inhibitor buthionine sulfoximine (BSO), with the combination exhausting intracellular GSH, increasing intracellular reactive oxygen species (ROS) and abolishing clonogenic capacity. Clonogenicity was rescued by the ROS scavenger N-acetylcysteine, implicating GSH depletion in the effect. The MRP1 modulator in combination with BSO also strongly sensitized cancer cells to MRP1-substrate chemotherapeutic agents, particularly arsenic trioxide, and was more effective than either the MRP1 modulator or BSO alone. GSH-depleting MRP1 modulators may therefore provide an enhanced therapeutic window to treat chemo-resistant MRP1-overexpressing pediatric and adult cancers.
Collapse
Affiliation(s)
- Christine C Gana
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Denise M T Yu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Claudia L Flemming
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Madeleine S Wheatley
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Gwenaëlle Conseil
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - Susan P C Cole
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
20
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
22
|
Banerjee M, Kaur G, Whitlock BD, Carew MW, Le XC, Leslie EM. Multidrug Resistance Protein 1 (MRP1/ ABCC1)-Mediated Cellular Protection and Transport of Methylated Arsenic Metabolites Differs between Human Cell Lines. Drug Metab Dispos 2018; 46:1096-1105. [PMID: 29752257 DOI: 10.1124/dmd.117.079640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/09/2018] [Indexed: 02/13/2025] Open
Abstract
The ATP-binding cassette (ABC) transporter multidrug resistance protein 1 (MRP1/ABCC1) protects cells from arsenic (a proven human carcinogen) through the cellular efflux of arsenic triglutathione [As(GS)3] and the diglutathione conjugate of monomethylarsonous acid [MMA(GS)2]. Previously, differences in MRP1 phosphorylation (at Y920/S921) and N-glycosylation (at N19/N23) were associated with marked differences in As(GS)3 transport kinetics between HEK293 and HeLa cell lines. In the current study, cell line differences in MRP1-mediated cellular protection and transport of other arsenic metabolites were explored. MRP1 expressed in HEK293 cells reduced the toxicity of the major urinary arsenic metabolite dimethylarsinic acid (DMAV), and HEK-WT-MRP1-enriched vesicles transported DMAV with high apparent affinity and capacity (Km 0.19 µM, Vmax 342 pmol⋅mg-1protein⋅min-1). This is the first report that MRP1 is capable of exporting DMAV, critical for preventing highly toxic dimethylarsinous acid formation. In contrast, DMAV transport was not detected using HeLa-WT-MRP1 membrane vesicles. MMA(GS)2 transport by HeLa-WT-MRP1 vesicles had a greater than threefold higher Vmax compared with HEK-WT-MRP1 vesicles. Cell line differences in DMAV and MMA(GS)2 transport were not explained by differences in phosphorylation at Y920/S921. DMAV did not inhibit, whereas MMA(GS)2 was an uncompetitive inhibitor of As(GS)3 transport, suggesting that DMAV and MMA(GS)2 have nonidentical binding sites to As(GS)3 on MRP1. Efflux of different arsenic metabolites by MRP1 is likely influenced by multiple factors, including cell and tissue type. This could have implications for the impact of MRP1 on both tissue-specific susceptibility to arsenic-induced disease and tumor sensitivity to arsenic-based therapeutics.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - Gurnit Kaur
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - Brayden D Whitlock
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - Michael W Carew
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - X Chris Le
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - Elaine M Leslie
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Hong M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family. Adv Drug Deliv Rev 2017; 116:3-20. [PMID: 27317853 DOI: 10.1016/j.addr.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Human drug transporters often play key roles in determining drug accumulation within cells. Their activities are often directly related to therapeutic efficacy, drug toxicity as well as drug-drug interactions. However, the progress for interpretation of their crystal structures is relatively slow. Hence, conventional biochemical studies together with computer modeling became useful manners to reveal essential structures of these membrane proteins. Over the years, quite a few structure-function relationship information had been obtained for members of the two major transporter families: the ATP-binding cassette family and the solute carrier family. Critical structural features of drug transporters include transmembrane domains, post-translational modification sites and domains for cell surface assembly and protein-protein interactions. Alterations at these important sites may affect protein stability, trafficking to the plasma membrane and/or ability of transporters to interact with substrates.
Collapse
|
24
|
Johnson ZL, Chen J. Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1. Cell 2017; 168:1075-1085.e9. [PMID: 28238471 DOI: 10.1016/j.cell.2017.01.041] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
The multidrug resistance protein MRP1 is an ATP-binding cassette (ABC) transporter that confers resistance to many anticancer drugs and plays a role in the disposition and efficacy of several opiates, antidepressants, statins, and antibiotics. In addition, MRP1 regulates redox homeostasis, inflammation, and hormone secretion. Using electron cryomicroscopy, we determined the molecular structures of bovine MRP1 in two conformations: an apo form at 3.5 Å without any added substrate and a complex form at 3.3 Å with one of its physiological substrates, leukotriene C4. These structures show that by forming a single bipartite binding site, MRP1 can recognize a spectrum of substrates with different chemical structures. We also observed large conformational changes induced by leukotriene C4, explaining how substrate binding primes the transporter for ATP hydrolysis. Structural comparison of MRP1 and P-glycoprotein advances our understanding of the common and unique properties of these two important molecules in multidrug resistance to chemotherapy.
Collapse
Affiliation(s)
- Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and the Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and the Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
25
|
The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability. Mol Divers 2017; 21:355-365. [PMID: 28050687 DOI: 10.1007/s11030-016-9715-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/16/2016] [Indexed: 01/30/2023]
Abstract
Drugs acting on central nervous system (CNS) may take longer duration to reach the market as these compounds have a higher attrition rate in clinical trials due to the complexity of the brain, side effects, and poor blood-brain barrier (BBB) permeability compared to non-CNS-acting compounds. The roles of active efflux transporters with BBB are still unclear. The aim of the present work was to develop a predictive model for BBB permeability that includes the MRP-1 transporter, which is considered as an active efflux transporter. A support vector machine model was developed for the classification of MRP-1 substrates and non-substrates, which was validated with an external data set and Y-randomization method. An artificial neural network model has been developed to evaluate the role of MRP-1 on BBB permeation. A total of nine descriptors were selected, which included molecular weight, topological polar surface area, ClogP, number of hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, P-gp, BCRP, and MRP-1 substrate probabilities for model development. We identified 5 molecules that fulfilled all criteria required for passive permeation of BBB, but they all have a low logBB value, which suggested that the molecules were effluxed by the MRP-1 transporter.
Collapse
|
26
|
Pyrrolopyrimidine derivatives and purine analogs as novel activators of Multidrug Resistance-associated Protein 1 (MRP1, ABCC1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:69-79. [PMID: 27810353 DOI: 10.1016/j.bbamem.2016.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
Multidrug resistance (MDR) is the main cause of diminished success in cancer chemotherapy. ABC transport proteins are considered to be one important factor of MDR. Besides P-glycoprotein (P-gp, ABCB1) and Breast Cancer Resistance Protein (BCRP, ABCG2), Multidrug Resistance-associated Protein 1 (MRP1, ABCC1) is associated with non-response to chemotherapy in different cancers. While considerable effort was spent in overcoming MDR during the last two decades, almost nothing is known with respect to activators of transport proteins. In this work we present certain pyrrolo[3,2-d]pyrimidine derivatives with variations at positions 4 and 5 and purine analogs with variations at position 6 as novel activators of MRP1-mediated transport of the MRP1 substrate calcein AM and the anticancer drug daunorubicin in low nanomolar concentration range. Two different MRP1 overexpressing cell lines were used, the doxorubicin-selected human lung cancer cell line H69 AR and the transfected Madin-Darby Canine Kidney cell line MDCK II MRP1. No effect was observed in the sensitive counterparts H69 and MDCK II wild type (wt). Derivatives with higher molecular weight possessed also inhibitory properties at low micromolar concentrations, although most compounds were rather poor MRP1 inhibitors. Purine analogs derived from potent MRP1 inhibitors of the pyrrolopyrimidine class showed equal activating, but no inhibiting effects at all. All tested compounds were non-toxic and had only minor impact on P-gp or BCRP, showing no inhibition or activation.
Collapse
|
27
|
Shukalek CB, Swanlund DP, Rousseau RK, Weigl KE, Marensi V, Cole SPC, Leslie EM. Arsenic Triglutathione [As(GS)3] Transport by Multidrug Resistance Protein 1 (MRP1/ABCC1) Is Selectively Modified by Phosphorylation of Tyr920/Ser921 and Glycosylation of Asn19/Asn23. Mol Pharmacol 2016; 90:127-39. [PMID: 27297967 DOI: 10.1124/mol.116.103648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter multidrug resistance protein 1 (MRP1/ABCC1) is responsible for the cellular export of a chemically diverse array of xenobiotics and endogenous compounds. Arsenic, a human carcinogen, is a high-affinity MRP1 substrate as arsenic triglutathione [As(GS)3]. In this study, marked differences in As(GS)3 transport kinetics were observed between MRP1-enriched membrane vesicles prepared from human embryonic kidney 293 (HEK) (Km 3.8 µM and Vmax 307 pmol/mg per minute) and HeLa (Km 0.32 µM and Vmax 42 pmol/mg per minute) cells. Mutant MRP1 lacking N-linked glycosylation [Asn19/23/1006Gln; sugar-free (SF)-MRP1] expressed in either HEK293 or HeLa cells had low Km and Vmax values for As(GS)3, similar to HeLa wild-type (WT) MRP1. When prepared in the presence of phosphatase inhibitors, both WT- and SF-MRP1-enriched membrane vesicles had a high Km value for As(GS)3 (3-6 µM), regardless of the cell line. Kinetic parameters of As(GS)3 for HEK-Asn19/23Gln-MRP1 were similar to those of HeLa/HEK-SF-MRP1 and HeLa-WT-MRP1, whereas those of single glycosylation mutants were like those of HEK-WT-MRP1. Mutation of 19 potential MRP1 phosphorylation sites revealed that HEK-Tyr920Phe/Ser921Ala-MRP1 transported As(GS)3 like HeLa-WT-MRP1, whereas individual HEK-Tyr920Phe- and -Ser921Ala-MRP1 mutants were similar to HEK-WT-MRP1. Together, these results suggest that Asn19/Asn23 glycosylation and Tyr920/Ser921 phosphorylation are responsible for altering the kinetics of MRP1-mediated As(GS)3 transport. The kinetics of As(GS)3 transport by HEK-Asn19/23Gln/Tyr920Glu/Ser921Glu were similar to HEK-WT-MRP1, indicating that the phosphorylation-mimicking substitutions abrogated the influence of Asn19/23Gln glycosylation. Overall, these data suggest that cross-talk between MRP1 glycosylation and phosphorylation occurs and that phosphorylation of Tyr920 and Ser921 can switch MRP1 to a lower-affinity, higher-capacity As(GS)3 transporter, allowing arsenic detoxification over a broad concentration range.
Collapse
Affiliation(s)
- Caley B Shukalek
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Diane P Swanlund
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Rodney K Rousseau
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Kevin E Weigl
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Vanessa Marensi
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Susan P C Cole
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Elaine M Leslie
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
28
|
Cai BL, Li Y, Shen LL, Zhao JL, Liu Y, Wu JZ, Liu YP, Yu B. Nuclear Multidrug Resistance-Related Protein 1 Is Highly Associated with Better Prognosis of Human Mucoepidermoid Carcinoma through the Suppression of Cell Proliferation, Migration and Invasion. PLoS One 2016; 11:e0148223. [PMID: 26829120 PMCID: PMC4734599 DOI: 10.1371/journal.pone.0148223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 01/14/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives Multidrug resistance-related protein 1 (MRP1) overexpression is a well acknowledged predictor of poor response to chemotherapy, but MRP1 also correlated to better prognosis in some reports, especially for patients not pretreated with chemotherapy. In our previous study, we found nuclear translocation of MRP1 in mucoepidermoid carcinoma (MEC) for the first time. The purpose of this study was to further investigate the function of nuclear MRP1 in MEC. Materials and Methods Human MEC tissue samples of 125 patients were selected and stained using immunohistochemistry. The expression level of total MRP1/nuclear MRP1 of each sample was evaluated by expression index (EI) which was scored using both qualitative and quantitative analysis. The correlations between the clinicopathologic parameters and the EI of nuclear MRP1 were analyzed using Spearman’s rank correlation analysis, respectively. The effects of RNAi-mediated downregulation of nuclear MRP1 on MEC cells were assessed using flow cytometric analysis, MTT assay, plate colony formation assay, transwell invasion assay and monolayer wound healing assay. Results In this study, we found the EI of nuclear MRP1 was negatively correlated to the pathologic grading (r = -0.498, P<0.01) / clinical staging (r = -0.41, P<0.01) / tumor stage (r = -0.28, P = 0.02) / nodal stage (r = -0.29, P<0.01) of MEC patients. The RNAi-mediated downregulation of nuclear MRP1 further proved that the downregulation of nuclear MRP1 could increase the cell replication, growth speed, colony formation efficiency, migration and invasion ability of MEC cells. Conclusion Our results suggested that nuclear MRP1 is highly associated with better prognosis of human mucoepidermoid carcinoma and further study of its function mechanism would provide clues in developing new treatment modalities of MEC.
Collapse
Affiliation(s)
- Bo-Lei Cai
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an 710032, People's Republic of China
| | - Yan Li
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Liang-Liang Shen
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi’an 710032, People's Republic of China
| | - Jin-Long Zhao
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an 710032, People's Republic of China
| | - Yuan Liu
- State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, the Fourth Military Medical University, Xi’an 710032, People's Republic of China
| | - Jun-Zheng Wu
- State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, 145 Chang Le Xi Road, Xi’an 710032, People's Republic of China
| | - Yan-Pu Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an 710032, People's Republic of China
- * E-mail: (BY); (YPL)
| | - Bo Yu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an 710032, People's Republic of China
- * E-mail: (BY); (YPL)
| |
Collapse
|
29
|
Edavana VK, Penney RB, Yao-Borengasser A, Starlard-Davenport A, Dhakal IB, Kadlubar S. Effect of MRP2 and MRP3 Polymorphisms on Anastrozole Glucuronidation and MRP2 and MRP3 Gene Expression in Normal Liver Samples. ACTA ACUST UNITED AC 2015; 1. [PMID: 26985457 DOI: 10.16966/2381-3318.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Anastrozole is an aromatase inhibitor (AI) used as adjuvant therapy for breast cancer. Anastrozole is subject to direct glucuronidation catalyzed by UDP-glucuronosyltransferase1A4 (UGT1A4). Interindividual variability in anastrozole glucuronidation may be affected by UGT1A4 SNPs. Interplay between drug metabolizing genes such as UGT1A4 and transporter genes may also be affected by genetic variability. Thus, we hypothesize that genetic variability in MRPs could influence anastrozole glucuronidation. The correlation between UGT1A4 and MRP2 or MRP3 transporter gene expressions and the correlation between MRP2 or MRP3 mRNA and anastrozole glucuronidation were analyzed in normal human liver samples. MRP2 and MRP3 mRNA levels were significantly correlated with UGT1A4 mRNA, with anastrozole glucuronidation and with each other (p<0.05). The data also demonstrated that MRP2 SNPs are positively correlated with MRP2 mRNA expression, while there was no association between MRP3 SNPs from this study and MRP3 expression. Significant correlations (p<0.05) between certain MRP2 SNPs (3972C>T, 2366C>T and -24C>T) and anastrozole glucuronidation were observed. There were no observed correlations between MRP3 SNPs and anastrozole glucuronidation. MRP2 polymorphisms have been identified as playing a role in the disposition of other drugs, and the data presented here indicate for the first time that MRP2 SNPs could influence anastrozole metabolism and contribute to interindividual variation in treatment responses.
Collapse
Affiliation(s)
- Vineetha Koroth Edavana
- Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Rosalind B Penney
- Department of Environmental and Occupational Health, College of Public Health, Little Rock, USA
| | - Aiwei Yao-Borengasser
- Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Athena Starlard-Davenport
- Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Ishwori B Dhakal
- Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Susan Kadlubar
- Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
30
|
Cole SPC. Multidrug resistance protein 1 (MRP1, ABCC1), a "multitasking" ATP-binding cassette (ABC) transporter. J Biol Chem 2014; 289:30880-8. [PMID: 25281745 DOI: 10.1074/jbc.r114.609248] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases.
Collapse
Affiliation(s)
- Susan P C Cole
- From the Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
31
|
Abstract
ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.
Collapse
|
32
|
Influence of ATP-binding cassette polymorphisms on neurological outcome after traumatic brain injury. Neurocrit Care 2014; 19:192-8. [PMID: 23896815 DOI: 10.1007/s12028-013-9881-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND As important mediators of solute transport at the blood-brain and blood-cerebrospinal fluid barriers, ATP-binding cassette (ABC) transporters (including ABCB1, ABCC1, and ABCC2), impact the bioavailability of drugs and endogenous substrates in the brain. While several ABCB1, ABCC1, and ABCC2 single nucleotide polymorphisms (SNPs) have been identified, their impact on outcome after traumatic brain injury (TBI) is unknown. HYPOTHESIS ABCB1, ABCC1, and ABCC2 SNPs are associated with Glasgow Outcome Scale (GOS) score after TBI. METHODS DNA samples from 305 adult patients with severe TBI (Glasgow Coma Scale, GCS score ≤ 8) were genotyped for tagging SNPs of ABCB1 (rs1045642; rs1128503), ABCC1 (rs212093; rs35621; rs4148382), and ABCC2 (rs2273697). For each SNP, patients were dichotomized based on presence of variant allele for multivariate analysis to determine associations with GOS assigned at 6 months adjusting for GCS, Injury Severity score, age, and patient sex. RESULTS For ABCB1 rs1045642, patients homozygous for the T allele were less likely to be assigned poor outcome versus those possessing the C allele [CT/CC; odds of unfavorable GOS = 0.71(0.55-0.92)]. For ABCC1 rs4148382, patients homozygous for the G allele were less likely to be assigned poor outcome versus those possessing the A allele [AG/AA; odds of unfavorable GOS = 0.73(0.55-0.98)]. CONCLUSIONS In this single-center study, patients homozygous for the T allele of ABCB1 rs1045642 or the G allele of ABCC1 rs4148382 were found to have better outcome after severe TBI. Further study is necessary to replicate these very preliminary findings and to determine whether these associations are due to central nervous system bioavailability of ABC transporter drug substrates commonly used in the management of TBI, brain efflux of endogenous solutes, or both.
Collapse
|
33
|
Abstract
Organic anions and cations (OAs and OCs, respectively) comprise an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. The kidney, primarily the renal proximal tubule, plays a critical role in regulating the plasma concentrations of these organic electrolytes and in clearing the body of potentially toxic xenobiotics agents, a process that involves active, transepithelial secretion. This transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. Basolateral and luminal OA and OC transport reflects the concerted activity of a suite of separate proteins arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney, now allows the development of models describing the molecular basis of the renal secretion of OAs and OCs. New information on naturally occurring genetic variation of many of these processes provides insight into the basis of observed variability of drug efficacy and unwanted drug-drug interactions in human populations. The present review examines recent work on these issues.
Collapse
Affiliation(s)
- Ryan M Pelis
- Novartis Pharmaceuticals Corp., Translational Sciences, East Hanover, New Jersey, USA
| | | |
Collapse
|
34
|
Conseil G, Cole SPC. Two polymorphic variants of ABCC1 selectively alter drug resistance and inhibitor sensitivity of the multidrug and organic anion transporter multidrug resistance protein 1. Drug Metab Dispos 2013; 41:2187-96. [PMID: 24080162 DOI: 10.1124/dmd.113.054213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
In this study we compared the in silico predictions of the effect of ABCC1 nonsynonymous single nucleotide polymorphisms (nsSNPs) with experimental data on MRP1 transport function and response to chemotherapeutics and multidrug resistance protein 1 (MRP1) inhibitors. Vectors encoding seven ABCC1 nsSNPs were stably expressed in human embryonic kidney (HEK) cells, and levels and localization of the mutant MRP1 proteins were determined by confocal microscopy and immunoblotting. The function of five of the mutant proteins was determined using cell-based drug and inhibitor sensitivity and efflux assays, and membrane-based organic anion transport assays. Predicted consequences of the mutations were determined by multiple bioinformatic methods. Mutants C43S and S92F were correctly routed to the HEK cell plasma membrane, but the levels were too low to permit functional characterization. In contrast, levels and membrane trafficking of R633Q, G671V, R723Q, A989T, and C1047S were similar to wild-type MRP1. In cell-based assays, all five mutants were equally effective at effluxing calcein, but only two exhibited reduced resistance to etoposide (C1047S) and vincristine (A989T; C1047S). The GSH-dependent inhibitor LY465803 (LY465803 [N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide)] was less effective at blocking calcein efflux by A989T, but in a membrane-based assay, organic anion transport by A989T and C1047S was inhibited by MRP1 modulators as well as wild-type MRP1. GSH accumulation assays suggest cellular GSH efflux by A989T and C1047S may be impaired. In conclusion, although six in silico analyses consistently predict deleterious consequences of ABCC1 nsSNPs G671V, changes in drug resistance and inhibitor sensitivity were only observed for A989T and C1047S, which may relate to GSH transport differences.
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | |
Collapse
|
35
|
Iram SH, Cole SPC. Differential functional rescue of Lys(513) and Lys(516) processing mutants of MRP1 (ABCC1) by chemical chaperones reveals different domain-domain interactions of the transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:756-65. [PMID: 24231430 DOI: 10.1016/j.bbamem.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 12/15/2022]
Abstract
Multidrug resistance protein 1 (MRP1) extrudes drugs as well as pharmacologically and physiologically important organic anions across the plasma membrane in an ATP-dependent manner. We previously showed that Ala substitutions of Lys(513) and Lys(516) in the cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 cause misfolding of MRP1, abrogating its expression at the plasma membrane in transfected human embryonic kidney (HEK) cells. Exposure of HEK cells to the chemical chaperones glycerol, DMSO, polyethylene glycol (PEG) and 4-aminobutyric acid (4-PBA) improved levels of K513A to wild-type MRP1 levels but transport activity was only fully restored by 4-PBA or DMSO treatments. Tryptic fragmentation patterns and conformation-dependent antibody immunoreactivity of the transport-deficient PEG- and glycerol-rescued K513A proteins indicated that the second nucleotide binding domain (NBD2) had adopted a more open conformation than in wild-type MRP1. This structural change was accompanied by differences in ATP binding and hydrolysis but no changes in substrate Km. In contrast to K513A, K516A levels in HEK cells were not significantly enhanced by chemical chaperones. In more permissive insect cells, however, K516A levels were comparable to wild-type MRP1. Nevertheless, organic anion transport by K516A in insect cell membranes was reduced by >80% due to reduced substrate Km. Tryptic fragmentation patterns indicated a more open conformation of the third membrane spanning domain of MRP1. Thus, despite their close proximity to one another in CL5, Lys(513) and Lys(516) participate in different interdomain interactions crucial for the proper folding and assembly of MRP1.
Collapse
Affiliation(s)
- Surtaj H Iram
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
36
|
Myette RL, Conseil G, Ebert SP, Wetzel B, Detty MR, Cole SPC. Chalcogenopyrylium dyes as differential modulators of organic anion transport by multidrug resistance protein 1 (MRP1), MRP2, and MRP4. Drug Metab Dispos 2013; 41:1231-9. [PMID: 23530018 PMCID: PMC3657094 DOI: 10.1124/dmd.112.050831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/25/2013] [Indexed: 01/16/2023] Open
Abstract
Multidrug resistance proteins (MRPs) mediate the ATP-dependent efflux of structurally diverse compounds, including anticancer drugs and physiologic organic anions. Five classes of chalcogenopyrylium dyes (CGPs) were examined for their ability to modulate transport of [(3)H]estradiol glucuronide (E(2)17βG; a prototypical MRP substrate) into MRP-enriched inside-out membrane vesicles. Additionally, some CGPs were tested in intact transfected cells using a calcein efflux assay. Sixteen of 34 CGPs inhibited MRP1-mediated E(2)17βG uptake by >50% (IC50 values: 0.7-7.6 µM). Of 9 CGPs with IC50 values ≤2 µM, two belonged to class I, two to class III, and five to class V. When tested in the intact cells, only 4 of 16 CGPs (at 10 µM) inhibited MRP1-mediated calcein efflux by >50% (III-1, V-3, V-4, V-6), whereas a fifth (I-5) inhibited efflux by just 23%. These five CGPs also inhibited [(3)H]E(2)17βG uptake by MRP4. In contrast, their effects on MRP2 varied, with two (V-4, V-6) inhibiting E(2)17βG transport (IC(50) values: 2.0 and 9.2 µM) and two (V-3, III-1) stimulating transport (>2-fold), whereas CGP I-5 had no effect. Strikingly, although V-3 and V-4 had opposite effects on MRP2 activity, they are structurally identical except for their chalcogen atom (Se versus Te). This study is the first to identify class V CGPs, with their distinctive methine or trimethine linkage between two disubstituted pyrylium moieties, as a particularly potent class of MRP modulators, and to show that, within this core structure, differences in the electronegativity associated with a chalcogen atom can be the sole determinant of whether a compound will stimulate or inhibit MRP2.
Collapse
Affiliation(s)
- Robert L Myette
- Department of Pathology & Molecular Medicine, Queen’s University Cancer Research Institute, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 2013; 587:1693-702. [PMID: 23669356 DOI: 10.1016/j.febslet.2013.04.031] [Citation(s) in RCA: 652] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 01/01/2023]
Abstract
Twenty years ago, the discovery of peptides able to cross cellular membranes launched a novel field in molecular delivery based on these non-invasive vectors, most commonly called cell-penetrating peptides (CPPs) or protein transduction domains (PTDs). These peptides were shown to efficiently transport various biologically active molecules inside living cells, and thus are considered promising devices for medical and biotechnological developments. Moreover, CPPs emerged as potential tools to study the prime mechanisms of cellular entry across the plasma membrane. This review is dedicated to CPP fundamentals, with an emphasis on the molecular requirements and mechanism of their entry into eukaryotic cells.
Collapse
Affiliation(s)
- Chérine Bechara
- UPMC-Univ Paris 6, Laboratoire des BioMolecules, cc 182, UMR 7203 CNRS, ENS, Paris, France.
| | | |
Collapse
|
38
|
Swartz DJ, Weber J, Urbatsch IL. P-glycoprotein is fully active after multiple tryptophan substitutions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1159-68. [PMID: 23261390 DOI: 10.1016/j.bbamem.2012.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 01/24/2023]
Abstract
P-glycoprotein (Pgp) is an important contributor to multidrug resistance of cancer. Pgp contains eleven native tryptophans (Trps) that are highly conserved among orthologs. We replaced each Trp by a conservative substitution to determine which Trps are important for function. Individual Trp mutants W44R, W208Y, W132Y, W704Y and W851Y, situated at the membrane surface, revealed significantly reduced Pgp induced drug resistance against one or more fungicides and/or reduced mating efficiencies in Saccharomyces cerevisiae. W158F and W799F, located in the intracellular coupling helices, abolished mating but retained resistance against most drugs. In contrast, W228F and W311Y, located within the membrane, W694L, at the cytoplasmic membrane interface, and W1104Y in NBD2 retained high levels of drug resistance and mating efficiencies similar to wild-type Pgp. Those were combined into pair (W228F/W311Y and W694L/W1104Y) and quadruple (W228F/W311Y/W694L/W1104Y) mutants that were fully active in yeast, and could be purified to homogeneity. Purified pair and quad mutants exhibited drug-stimulated ATPase activity with binding affinities very similar to wild-type Pgp. The combined mutations reduced Trp fluorescence by 35%, but drug induced fluorescence quenching was unchanged from wild-type Pgp suggesting that several membrane-bound Trps are sensitive to drug binding. Overall, we conclude that Trps at the membrane surface are critical for maintaining the integrity of the drug binding sites, while Trps in the coupling helices are important for proper interdomain communication. We also demonstrate that functional single Trp mutants can be combined to form a fully active Pgp that maintains drug polyspecificity, while significantly reducing intrinsic fluorescence.
Collapse
Affiliation(s)
- Douglas J Swartz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | |
Collapse
|
39
|
Bechara C, Pallerla M, Zaltsman Y, Burlina F, Alves ID, Lequin O, Sagan S. Tryptophan within basic peptide sequences triggers glycosaminoglycan‐dependent endocytosis. FASEB J 2012; 27:738-49. [DOI: 10.1096/fj.12-216176] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chérine Bechara
- Université Pierre et Marie Curie (UPMC), Université Paris 6Unité Mixte de Recherche (UMR) 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Centre National de la Recherche Scientifique (CNRS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Ecole Normale Supérieure (ENS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
| | - Manjula Pallerla
- Université Pierre et Marie Curie (UPMC), Université Paris 6Unité Mixte de Recherche (UMR) 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Centre National de la Recherche Scientifique (CNRS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Ecole Normale Supérieure (ENS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
| | - Yefim Zaltsman
- Université Pierre et Marie Curie (UPMC), Université Paris 6Unité Mixte de Recherche (UMR) 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Centre National de la Recherche Scientifique (CNRS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Ecole Normale Supérieure (ENS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
| | - Fabienne Burlina
- Université Pierre et Marie Curie (UPMC), Université Paris 6Unité Mixte de Recherche (UMR) 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Centre National de la Recherche Scientifique (CNRS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Ecole Normale Supérieure (ENS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
| | - Isabel D. Alves
- Chimie et Biologie Des Membranes et Des Nanoobjets (CBMN)UMR 5248, CNRSPessacFrance
| | - Olivier Lequin
- Université Pierre et Marie Curie (UPMC), Université Paris 6Unité Mixte de Recherche (UMR) 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Centre National de la Recherche Scientifique (CNRS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Ecole Normale Supérieure (ENS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
| | - Sandrine Sagan
- Université Pierre et Marie Curie (UPMC), Université Paris 6Unité Mixte de Recherche (UMR) 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Centre National de la Recherche Scientifique (CNRS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
- Ecole Normale Supérieure (ENS)UMR 7203, Laboratoire des BioMolécules (LBM)ParisFrance
| |
Collapse
|
40
|
The G671V variant of MRP1/ABCC1 links doxorubicin-induced acute cardiac toxicity to disposition of the glutathione conjugate of 4-hydroxy-2-trans-nonenal. Pharmacogenet Genomics 2012; 22:273-84. [PMID: 22293538 DOI: 10.1097/fpc.0b013e328350e270] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Doxorubicin-induced acute cardiotoxicity is associated with the Gly671Val (G671V; rs45511401) variant of multidrug resistance-associated protein 1 (MRP1). Doxorubicin redox cycling causes lipid peroxidation and generation of the reactive electrophile, 4-hydroxy-2-trans-nonenal (HNE). Glutathione forms conjugates with HNE, yielding an MRP1 substrate, GS-HNE, whose intracellular accumulation can cause toxicity. METHODS We established stable HEK293 cell lines overexpressing wild-type MRP1 (HEKMRP1), G671V (HEKG671V), and R433S (HEKR433S), a variant not associated with doxorubicin-induced cardiotoxicity and investigated the sensitivity of HEKG671V cells to doxorubicin and transport capacity of G671V toward GS-HNE. RESULTS In ATP-dependent transport studies using plasma membrane-derived vesicles, the Vmax (pmol/min/mg) for GS-HNE transport was the lowest for G671V (69±4) and the highest for R433S (972±213) compared with wild-type MRP1 (416±22), whereas the Km values were 2.8±0.4, 6.0 or more, and 1.7±0.2 µmol/l, respectively. In cells, the doxorubicin IC50 (48 h) was not different in HEKMRP1 (463 nmol/l) versus HEKR433S (645 nmol/l), but this parameter was significantly lower in HEKG671V (181 nmol/l). HEKG671V retained significantly (approximately 20%) more, whereas HEKR433S retained significantly less intracellular doxorubicin than HEKMRP1. Similarly, HEKG671V cells treated with 1.5 µmol/l of doxorubicin for 24 h retained significantly more GS-HNE. In cells treated with 0.5 µmol/l of doxorubicin for 48 , glutathione and glutathione disulfide levels and the glutathione/glutathione disulfide ratio were significantly decreased in HEKG671V versus HEKMRP1; these values were similar in HEKR433S versus HEKMRP1. CONCLUSION These data suggest that decreased MRP1-dependent GS-HNE efflux contributes to increased doxorubicin toxicity in HEKG671V and potentially in individuals carrying the G671V variant.
Collapse
|
41
|
Yang SY, Juang SH, Tsai SY, Chao PDL, Hou YC. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats. Toxicol Appl Pharmacol 2012; 263:39-43. [DOI: 10.1016/j.taap.2012.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/09/2012] [Accepted: 05/29/2012] [Indexed: 12/01/2022]
|
42
|
Ebert SP, Wetzel B, Myette RL, Conseil G, Cole SPC, Sawada GA, Loo TW, Bartlett MC, Clarke DM, Detty MR. Chalcogenopyrylium Compounds as Modulators of the ATP-Binding Cassette Transporters P-Glycoprotein (P-gp/ABCB1) and Multidrug Resistance Protein 1 (MRP1/ABCC1). J Med Chem 2012; 55:4683-99. [DOI: 10.1021/jm3004398] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean P. Ebert
- Department
of Chemistry, University at Buffalo, The State University of New York,
Buffalo, New York 14260-3000, United States
| | - Bryan Wetzel
- Department
of Chemistry, University at Buffalo, The State University of New York,
Buffalo, New York 14260-3000, United States
| | - Robert L. Myette
- Department of Pathology & Molecular Medicine, Division of Cancer Biology & Genetics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Gwenaëlle Conseil
- Department of Pathology & Molecular Medicine, Division of Cancer Biology & Genetics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Susan P. C. Cole
- Department of Pathology & Molecular Medicine, Division of Cancer Biology & Genetics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Geri A. Sawada
- Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Tip W. Loo
- Department
of Medicine and Department of Biochemistry, University of Toronto,
Toronto, Ontario M5S 1A8, Canada
| | - M. Claire Bartlett
- Department
of Medicine and Department of Biochemistry, University of Toronto,
Toronto, Ontario M5S 1A8, Canada
| | - David M. Clarke
- Department
of Medicine and Department of Biochemistry, University of Toronto,
Toronto, Ontario M5S 1A8, Canada
| | - Michael R. Detty
- Department
of Chemistry, University at Buffalo, The State University of New York,
Buffalo, New York 14260-3000, United States
| |
Collapse
|
43
|
Wittgen HGM, van den Heuvel JJMW, Krieger E, Schaftenaar G, Russel FGM, Koenderink JB. Phenylalanine 368 of multidrug resistance-associated protein 4 (MRP4/ABCC4) plays a crucial role in substrate-specific transport activity. Biochem Pharmacol 2012; 84:366-73. [PMID: 22542979 DOI: 10.1016/j.bcp.2012.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
Multidrug resistance-associated protein 4 (MRP4) is a membrane transporter that mediates the cellular efflux of a wide range of anionic drugs and endogenous molecules. MRP4 transport can influence the pharmacokinetics of drugs and their metabolites, therefore more knowledge about the molecular determinants important for its transport function would be of relevance. Here, we substituted amino acids Phe(368), Trp(995), and Arg(998) with conservative or non-conservative residues, and determined the effect on transport of the model substrates estradiol 17-β-d-glucuronide (E(2)17βG), cyclic guanosine monophosphate (cGMP), methotrexate (MTX), and folic acid into membrane vesicles isolated from baculovirus transduced HEK293 cells overexpressing the mutant MRP4 proteins. This revealed that all Arg(998) mutations appeared to be deleterious, whereas the effect of a Phe(368) or Trp(995) replacement was dependent on the amino acid introduced and the substrate studied. Substitution of Phe(368) with Trp (F368W) induced a gain-of-function of E(2)17βG transport and a loss-of-function of MTX transport, which could not be attributed to an altered substrate binding. Moreover, we did not observe any modification in ATP or ADP handling for F368W. These results, in combination with docking of substrates in a homology model of MRP4 in the inward- and outward-facing conformation, suggest that Phe(368) and Trp(995) do not play an important role in the initial binding of substrates. They, however, might interact with the substrates during rearrangement of helixes for substrate translocation, funneling the substrates to the exit site in the outward-facing conformation.
Collapse
Affiliation(s)
- Hanneke G M Wittgen
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Sreekumar PG, Spee C, Ryan SJ, Cole SPC, Kannan R, Hinton DR. Mechanism of RPE cell death in α-crystallin deficient mice: a novel and critical role for MRP1-mediated GSH efflux. PLoS One 2012; 7:e33420. [PMID: 22442691 PMCID: PMC3307734 DOI: 10.1371/journal.pone.0033420] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 02/14/2012] [Indexed: 11/26/2022] Open
Abstract
Absence of α-crystallins (αA and αB) in retinal pigment epithelial (RPE) cells renders them susceptible to oxidant-induced cell death. We tested the hypothesis that the protective effect of α-crystallin is mediated by changes in cellular glutathione (GSH) and elucidated the mechanism of GSH efflux. In α-crystallin overexpressing cells resistant to cell death, cellular GSH was >2 fold higher than vector control cells and this increase was seen particularly in mitochondria. The high GSH levels associated with α-crystallin overexpression were due to increased GSH biosynthesis. On the other hand, cellular GSH was decreased by 50% in murine retina lacking αA or αB crystallin. Multiple multidrug resistance protein (MRP) family isoforms were expressed in RPE, among which MRP1 was the most abundant. MRP1 was localized to the plasma membrane and inhibition of MRP1 markedly decreased GSH efflux. MRP1-suppressed cells were resistant to cell death and contained elevated intracellular GSH and GSSG. Increased GSH in MRP1-supressed cells resulted from a higher conversion of GSSG to GSH by glutathione reductase. In contrast, GSH efflux was significantly higher in MRP1 overexpressing RPE cells which also contained lower levels of cellular GSH and GSSG. Oxidative stress further increased GSH efflux with a decrease in cellular GSH and rendered cells apoptosis-prone. In conclusion, our data reveal for the first time that 1) MRP1 mediates GSH and GSSG efflux in RPE cells; 2) MRP1 inhibition renders RPE cells resistant to oxidative stress-induced cell death while MRP1 overexpression makes them susceptible and 3) the antiapoptotic function of α-crystallin in oxidatively stressed cells is mediated in part by GSH and MRP1. Our findings suggest that MRP1 and α crystallin are potential therapeutic targets in pathological retinal degenerative disorders linked to oxidative stress.
Collapse
Affiliation(s)
- Parameswaran G. Sreekumar
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States of America
| | - Christine Spee
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States of America
| | - Stephen J. Ryan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Susan P. C. Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Canada
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - David R. Hinton
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The 'short' MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The 'long' MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus. The proteins encoded by the ABCC6 and ABCC12 genes are not known to transport drugs and are therefore referred to as ABCC6 and ABCC12 (rather than MRP6 and MRP9) respectively. A large number of molecules are transported across the plasma membrane by the MRPs. Many are organic anions derived from exogenous sources such as conjugated drug metabolites. Others are endogenous metabolites such as the cysteinyl leukotrienes and prostaglandins which have important signalling functions in the cell. Some MRPs share a degree of overlap in substrate specificity (at least in vitro), but differences in transport kinetics are often substantial. In some cases, the in vivo substrates for some MRPs have been discovered aided by studies in gene-knockout mice. However, the molecules that are transported in vivo by others, including MRP5, MRP7, ABCC6 and ABCC12, still remain unknown. Important differences in the tissue distribution of the MRPs and their membrane localization (apical in contrast with basolateral) in polarized cells also exist. Together, these differences are responsible for the unique pharmacological and physiological functions of each of the nine ABCC transporters known as the MRPs.
Collapse
|
46
|
Iram SH, Cole SPC. Mutation of Glu521 or Glu535 in cytoplasmic loop 5 causes differential misfolding in multiple domains of multidrug and organic anion transporter MRP1 (ABCC1). J Biol Chem 2012; 287:7543-55. [PMID: 22232552 DOI: 10.1074/jbc.m111.310409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polytopic 5-domain multidrug resistance protein 1 (MRP1/ABCC1) extrudes a variety of drugs and organic anions across the plasma membrane. Four charged residues in the fifth cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 are critical for stable expression of MRP1 at the plasma membrane. Thus Ala substitution of Lys(513), Lys(516), Glu(521), and Glu(535) all cause misfolding of MRP1 and target the protein for proteasome-mediated degradation. Of four chemical chaperones tested, 4-phenylbutyric acid (4-PBA) was the most effective at restoring expression of MRP1 mutants K513A, K516A, E521A, and E535A. However, although 4-PBA treatment of K513A resulted in wild-type protein levels (and activity), the same treatment had little or no effect on the expression of K516A. On the other hand, 4-PBA treatment allowed both E521A and E535A to exit the endoplasmic reticulum and be stably expressed at the plasma membrane. However, the 4-PBA-rescued E535A mutant exhibited decreased transport activity associated with reduced substrate affinity and conformational changes in both halves of the transporter. By contrast, E521A exhibited reduced transport activity associated with alterations in the mutant interactions with ATP as well as a distinct conformational change in the COOH-proximal half of MRP1. These findings illustrate the critical and complex role of CL5 for stable expression of MRP1 at the plasma membrane and more specifically show the differential importance of Glu(521) and Glu(535) in interdomain interactions required for proper folding and assembly of MRP1 into a fully transport competent native structure.
Collapse
Affiliation(s)
- Surtaj H Iram
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
47
|
Carew MW, Naranmandura H, Shukalek CB, Le XC, Leslie EM. Monomethylarsenic diglutathione transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Drug Metab Dispos 2011; 39:2298-304. [PMID: 21918036 DOI: 10.1124/dmd.111.041673] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ATP-binding cassette (ABC) transporter protein multidrug resistance protein 1 (MRP1; ABCC1) plays an important role in the cellular efflux of the high-priority environmental carcinogen arsenic as a triglutathione conjugate [As(GS)(3)]. Most mammalian cells can methylate arsenic to monomethylarsonous acid (MMA(III)), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III)), and dimethylarsinic acid (DMA(V)). The trivalent forms MMA(III) and DMA(III) are more reactive and toxic than their inorganic precursors, arsenite (As(III)) and arsenate (As(V)). The ability of MRP1 to transport methylated arsenicals is unknown and was the focus of the current study. HeLa cells expressing MRP1 (HeLa-MRP1) were found to confer a 2.6-fold higher level of resistance to MMA(III) than empty vector control (HeLa-vector) cells, and this resistance was dependent on GSH. In contrast, MRP1 did not confer resistance to DMA(III), MMA(V), or DMA(V). HeLa-MRP1 cells accumulated 4.5-fold less MMA(III) than HeLa-vector cells. Experiments using MRP1-enriched membrane vesicles showed that transport of MMA(III) was GSH-dependent but not supported by the nonreducing GSH analog, ophthalmic acid, suggesting that MMA(III)(GS)(2) was the transported form. MMA(III)(GS)(2) was a high-affinity, high-capacity substrate for MRP1 with apparent K(m) and V(max) values of 11 μM and 11 nmol mg(-1)min(-1), respectively. MMA(III)(GS)(2) transport was osmotically sensitive and inhibited by several MRP1 substrates, including 17β-estradiol 17-(β-D-glucuronide) (E(2)17βG). MMA(III)(GS)(2) competitively inhibited the transport of E(2)17βG with a K(i) value of 16 μM, indicating that these two substrates have overlapping binding sites. These results suggest that MRP1 is an important cellular protective pathway for the highly toxic MMA(III) and have implications for environmental and clinical exposure to arsenic.
Collapse
Affiliation(s)
- Michael W Carew
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
48
|
Functional analysis of nonsynonymous single nucleotide polymorphisms of multidrug resistance-associated protein 2 (ABCC2). Pharmacogenet Genomics 2011; 21:506-15. [PMID: 21691255 DOI: 10.1097/fpc.0b013e328348c786] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Multidrug resistance-associated protein 2 (MRP2; ABCC2) mediates the biliary excretion of glutathione, glucuronide, and sulfate conjugates of endobiotics and xenobiotics. Single nucleotide polymorphisms (SNPs) of MRP2 contribute to interindividual variability in drug disposition and ultimately in drug response. OBJECTIVES To characterize the transport function of human wild-type (WT) MRP2 and four SNP variants, S789F, A1450T, V417I, and T1477M. METHODS The four SNP variants were expressed in Sf9 cells using recombinant baculovirus infection. The kinetic parameters [Km, (μmol/l); V(max), (pmol/mg/min); the Hill coefficient] of ATP-dependent transport of leukotriene C(4) (LTC(4)), estradiol-3-glucuronide (E(2)3G), estradiol-17β-glucuronide (E(2)17G), and tauroursodeoxycholic acid (TUDC) were determined in Sf9-derived plasma membrane vesicles. Transport activity was normalized for expression level. RESULTS The V(max) for transport activity was decreased for all substrates for S789F, and for all substrates except E(2)17G for A1450T. V417I showed decreased apparent affinity for LTC(4), E(2)3G, and E(2)17G, whereas transport was similar between wild-type (WT) and T1477M, except for a modest increase in TUDC transport. Examination of substrate-stimulated MRP2-dependent ATPase activity of S789F and A1450T, SNPs located in MRP2 nucleotide-binding domains (NBDs), demonstrated significantly decreased ATPase activity and only modestly decreased affinity for ATP compared with WT. CONCLUSION SNPs in the NBDs (S789F in the D-loop of NBD1, or A1450T near the ABC signature motif of NBD2) variably decreased the transport of all substrates. V417I in membrane spanning domain 1 selectively decreased the apparent affinity for the glutathione and glucuronide conjugated substrates, whereas the T1477M SNP in the carboxyl terminus altered only TUDC transport.
Collapse
|
49
|
Bao GS, Wang WA, Wang TZ, Huang JK, He H, Liu Z, Huang FD. Overexpression of Human MRP1 in Neurons causes resistance to Antiepileptic Drugs inDrosophilaSeizure Mutants. J Neurogenet 2011; 25:201-6. [DOI: 10.3109/01677063.2011.620662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
Qazi SS, Osoria Pérez A, Sam M, Leslie EM. Glutathione transferase P1 interacts strongly with the inner leaflet of the plasma membrane. Drug Metab Dispos 2011; 39:1122-6. [PMID: 21460233 DOI: 10.1124/dmd.111.039362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GSH transferases (GSTs) are a superfamily of proteins best known for detoxifying harmful electrophilic compounds by catalyzing their conjugation with GSH. GSTP1 is the most prevalent and widely distributed GST in human tissues, helping to detoxify a diverse array of carcinogens and drugs. In contrast with its protective role, overexpression of GSTP1 in a variety of malignancies is associated with a poor prognosis due to failure of chemotherapy. Although GSTP1 is classified as a cytosolic GST, we discovered previously that it is associated with the plasma membrane of the small cell lung cancer cell lines, H69 and H69AR. In the current study, endogenous and overexpressed GSTP1 in human embryonic kidney (HEK) 293 and MCF-7 cell lines, respectively, were found also to associate with the plasma membrane, indicating that this interaction is not unique to H69 and H69AR cells. GSTP1 immunostaining in HEK293 and MCF7-GSTP1 cells only occurred under permeabilized conditions, suggesting that GSTP1 is associated with the intracellular surface of the plasma membrane. Cell surface biotinylation studies confirmed this finding. Immunogold electron microscopy revealed the presence of GSTP1 in close proximity to the plasma membrane. GSTP1 was not dissociated from plasma membrane sheets by high salt [potassium iodide (KI; 1 M) or KI/EDTA (1 M/2 mM)] or alkaline Na(2)CO(3) (100 mM, pH 11.4), conditions known to strip peripherally associated membrane proteins. Thus, we report for the first time that GSTP1 is associated with the inner leaflet of the plasma membrane through a remarkably strong interaction.
Collapse
Affiliation(s)
- Sohail S Qazi
- Department of Physiology, 7-10A Medical Sciences Building, University of Alberta, Edmonton, AB, Canada, T6G 2H7
| | | | | | | |
Collapse
|