1
|
Yang Q, Liang Y, Inoue-Hatanaka T, Koh Z, Ilkenhans N, Suman E, Yu J, Zheng Y. PPARδ restrains the suppression function of intra-tumoral Tregs by limiting CIITA-MHC II expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628819. [PMID: 39763816 PMCID: PMC11702609 DOI: 10.1101/2024.12.16.628819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Regulatory T cells (Treg cells) play a critical role in suppressing anti-tumor immunity, often resulting in unfavorable clinical outcomes across numerous cancers. However, systemic Treg depletion, while augmenting anti-tumor responses, also triggers detrimental autoimmune disorders. Thus, dissecting the mechanisms by which Treg cells navigate and exert their functions within the tumor microenvironment (TME) is pivotal for devising innovative Treg-centric cancer therapies. Our study highlights the role of peroxisome proliferator-activated receptor β/δ (PPARδ), a nuclear hormone receptor involved in fatty acid metabolism. Remarkably, PPARδ ablation in Treg escalated tumor growth and augmented the immunosuppressive characteristics of the TME. This absence of PPARδ spurred an increased expression of genes central to antigen presentation, notably CIITA and MHC II. Our results showcase a novel association where the absence of CIITA in PPARδ-deficient Treg bolsters anti-tumor responses, casting CIITA as a pivotal downstream regulator of PPARδ within Treg. In vitro assays demonstrated that elevated CIITA levels enhance the suppressive capacity of Treg, facilitated by an antigen-independent interaction between Treg-MHC II and Tconv-TCR/CD4/Lag3. A significant revelation was the role of type 1 interferon as a TME signal that promotes the genesis of MHC II+ Treg; PPARδ deficiency intensifies this phenomenon by amplifying type 1 interferon signaling, mediated by a notable upsurge in JAK3 transcription and an increase of pSTAT1-Y701. In conclusion, the co-regulation between TME cues and PPARδ signaling shapes the adaptive and suppressive roles of Treg cells through the CIITA-MHC II pathway. Strategically targeting the potent MHC II+ Treg population could open a new avenue for cancer therapies by boosting anti-tumor defenses while curbing autoimmune threats.
Collapse
Affiliation(s)
- Qiyuan Yang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tomoko Inoue-Hatanaka
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhiqian Koh
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nadja Ilkenhans
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ethan Suman
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
2
|
Zhang J, Li W, Gong M, Gu Y, Zhang H, Dong B, Guo Q, Pang X, Xiang Q, He X, Cui Y. Risk of venous thromboembolism with janus kinase inhibitors in inflammatory immune diseases: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1189389. [PMID: 37351513 PMCID: PMC10282754 DOI: 10.3389/fphar.2023.1189389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Objectives: This study aimed to evaluate the risk of venous thrombosis (VTE) associated with Janus kinase (JAK) inhibitors in patients diagnosed with immune-mediated inflammatory diseases. Methods: We conducted a comprehensive search of PUBMED, Cochrane, and Embase databases for randomized controlled trials evaluating venous thromboembolic incidence after administering JAK inhibitors in patients with immune-mediated inflammatory diseases. The studies were screened according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and a meta-analysis was performed. Results: A total of 16 studies, enrolling 17,242 participants, were included in this review. Four approved doses of JAK inhibitors were administered in the included studies. The meta-analysis revealed no significant difference in the incidence of VTE between patients receiving JAK inhibitors, a placebo, or tumor necrosis factor (TNF) inhibitors (RR 0.72, 95% CI (0.33-1.55); RR 0.94, 95%CI (0.33-2.69)). Subgroup analysis showed a lower risk of VTE with lower doses of JAK inhibitors [RR 0.56, 95%CI (0.36-0.88)]. Compared with the higher dose of tofacitinib, the lower dose was associated with a lower risk of pulmonary embolism [RR 0.37, 95%CI (0.18-0.78)]. Conclusion: Our meta-analysis of randomized controlled trials observed a potential increase in the risk of VTE in patients with immune-mediated inflammatory diseases treated with JAK inhibitors compared to placebo or tumor necrosis factor inhibitors, though statistical significance was not attained. Notably, a higher risk of pulmonary embolism was observed with high doses of tofacitinib. Our findings provide valuable insights for physicians when evaluating the use of JAK inhibitors for patients with immune-mediated inflammatory diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023382544, identifier CRD42023382544.
Collapse
Affiliation(s)
- Juqi Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenhui Li
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mingli Gong
- Department of Pharmacy, Xu Zhou Medical University, Xuzhou, China
| | - Yanlun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospita, Beijing, China
| | - Qi Guo
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Janus Kinase Signaling Pathway and Its Role in COVID-19 Inflammatory, Vascular, and Thrombotic Manifestations. Cells 2022; 11:cells11020306. [PMID: 35053424 PMCID: PMC8773838 DOI: 10.3390/cells11020306] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection continues to be a worldwide public health crisis. Among the several severe manifestations of this disease, thrombotic processes drive the catastrophic organ failure and mortality in these patients. In addition to a well-established cytokine storm associated with the disease, perturbations in platelets, endothelial cells, and the coagulation system are key in triggering systemic coagulopathy, involving both the macro- and microvasculatures of different organs. Of the several mechanisms that might contribute to dysregulation of these cells following SARS-CoV-2 infection, the current review focuses on the role of activated Janus kinase (JAK) signaling in augmenting thrombotic processes and organ dysfunction. The review concludes with presenting the current understanding and emerging controversies concerning the potential therapeutic applications of JAK inhibitors for ameliorating the inflammation-thrombosis phenotype in COVID-19 patients.
Collapse
|
4
|
Pan Y, Pan H, Lian C, Wu B, Lin J, Huang G, Cui B. Case Report: Mutations in JAK3 causing severe combined immunodeficiency complicated by disseminated Bacille Calmette-Guérin disease and Pneumocystis pneumonia. Front Immunol 2022; 13:1055607. [PMID: 36466884 PMCID: PMC9712176 DOI: 10.3389/fimmu.2022.1055607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND As a form of severe combined immunodeficiency (SCID), Janus kinase 3 (JAK3) deficiency can be fatal during severe infections in children, especially after inoculation of live-attenuated vaccines. We report a unique case of JAK3 deficiency with two compound heterozygous JAK3 mutations complicated by disseminated Bacille Calmette-Guérin (BCG) disease and Pneumocystis pneumonia. CASE DESCRIPTION A 5-month-old Chinese girl presented with recurring fever and productive cough after BCG vaccination and ineffective antibiotic treatment. Chest CT demonstrated bilateral infiltrations, enlarged mediastinal and axillary lymph nodes, and hypoplasia of the thymus. Mycobacterium tuberculosis and Pneumocystis jirovecii were detected from blood samples by sequencing. Acid-fast bacilli were also found from the sputum aspirate and gastric aspirate. Lymphocyte subset analyses indicated T-B+NK- immunodeficiency, and gene sequencing identified two heterozygous missense mutations (one unreported globally) in the Janus homology 7 (JH7) domain of JAK3. The patient received rifampicin, isoniazid, ethambutol, and trimethoprim/sulfamethoxazole and was discharged after improvements but against advice. OUTCOME The patient died at 13 months of age due to severe infections and hepatic damage. DISCUSSION SCID should be recognized before inoculation of live-attenuated vaccines in children. Newborn screening for SCID is advocated. Further investigations are needed to better understand the pathogenicity of the variants and molecular mechanism of the JH7 domain of JAK3.
Collapse
Affiliation(s)
- Ying Pan
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Pan
- The Outpatient Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
- The Clinical Research Unit, Shantou University Medical College, Shantou, Guangdong, China
| | - Chunan Lian
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Beiyan Wu
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jieying Lin
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guang Huang
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Binglin Cui
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- *Correspondence: Binglin Cui,
| |
Collapse
|
5
|
Parra-Izquierdo I, Melrose AR, Pang J, Lakshmanan HHS, Reitsma SE, Vavilapalli SH, Larson MK, Shatzel JJ, McCarty OJT, Aslan JE. Janus kinase inhibitors ruxolitinib and baricitinib impair glycoprotein-VI mediated platelet function. Platelets 2021; 33:404-415. [PMID: 34097573 PMCID: PMC8648864 DOI: 10.1080/09537104.2021.1934665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Several Janus kinase (JAK) inhibitors (jakinibs) have recently been approved to treat inflammatory, autoimmune and hematological conditions. Despite emerging roles for JAKs and downstream signal transducer and activator of transcription (STAT) proteins in platelets, it remains unknown whether jakinibs affect platelet function. Here, we profile platelet biochemical and physiological responses in vitro in the presence of five different clinically relevant jakinibs, including ruxolitinib, upadacitinib, oclacitinib, baricitinib and tofacitinib. Flow cytometry, microscopy and other assays found that potent JAK1/2 inhibitors baricitinib and ruxolitinib reduced platelet adhesion to collagen, as well as platelet aggregation, secretion and integrin αIIbβ3 activation in response to the glycoprotein VI (GPVI) agonist collagen-related peptide (CRP-XL). Western blot analysis demonstrated that jakinibs reduced Akt phosphorylation and activation following GPVI activation, where ruxolitinib and baricitinib prevented DAPP1 phosphorylation. In contrast, jakinibs had no effects on platelet responses to thrombin. Inhibitors of GPVI and JAK signaling also abrogated platelet STAT5 phosphorylation following CRP-XL stimulation. Additional pharmacologic experiments supported roles for STAT5 in platelet secretion, integrin activation and cytoskeletal responses. Together, our results demonstrate that ruxolitinib and baricitinib have inhibitory effects on platelet function in vitro and support roles for JAK/STAT5 pathways in GPVI/ITAM mediated platelet function.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute and Division of Cardiology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Alexander R Melrose
- Knight Cardiovascular Institute and Division of Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | - Stéphanie E Reitsma
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Sai Hitesh Vavilapalli
- Knight Cardiovascular Institute and Division of Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Mark K Larson
- Biology Department, Augustana University, Sioux Falls, SD, USA
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Joseph E Aslan
- Knight Cardiovascular Institute and Division of Cardiology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, Petrey AC, Tolley ND, Guo L, Cody M, Weyrich AS, Yost CC, Rondina MT, Campbell RA. Platelet gene expression and function in patients with COVID-19. Blood 2020; 136:1317-1329. [PMID: 32573711 PMCID: PMC7483430 DOI: 10.1182/blood.2020007214] [Citation(s) in RCA: 674] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to understand the pathogenesis of coronavirus disease 2019 (COVID-19). In particular, thrombotic complications in patients with COVID-19 are common and contribute to organ failure and mortality. Patients with severe COVID-19 present with hemostatic abnormalities that mimic disseminated intravascular coagulopathy associated with sepsis, with the major difference being increased risk of thrombosis rather than bleeding. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters platelet function to contribute to the pathophysiology of COVID-19 remains unknown. In this study, we report altered platelet gene expression and functional responses in patients infected with SARS-CoV-2. RNA sequencing demonstrated distinct changes in the gene-expression profile of circulating platelets of COVID-19 patients. Pathway analysis revealed differential gene-expression changes in pathways associated with protein ubiquitination, antigen presentation, and mitochondrial dysfunction. The receptor for SARS-CoV-2 binding, angiotensin-converting enzyme 2 (ACE2), was not detected by messenger RNA (mRNA) or protein in platelets. Surprisingly, mRNA from the SARS-CoV-2 N1 gene was detected in platelets from 2 of 25 COVID-19 patients, suggesting that platelets may take-up SARS-COV-2 mRNA independent of ACE2. Resting platelets from COVID-19 patients had increased P-selectin expression basally and upon activation. Circulating platelet-neutrophil, -monocyte, and -T-cell aggregates were all significantly elevated in COVID-19 patients compared with healthy donors. Furthermore, platelets from COVID-19 patients aggregated faster and showed increased spreading on both fibrinogen and collagen. The increase in platelet activation and aggregation could partially be attributed to increased MAPK pathway activation and thromboxane generation. These findings demonstrate that SARS-CoV-2 infection is associated with platelet hyperreactivity, which may contribute to COVID-19 pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | - Jesse W Rowley
- Molecular Medicine Program
- Department of Internal Medicine
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute
| | | | | | - Li Guo
- Molecular Medicine Program
| | - Mark Cody
- Molecular Medicine Program
- Department of Pediatrics, University of Utah, Salt Lake City, UT; and
| | - Andrew S Weyrich
- Molecular Medicine Program
- Department of Internal Medicine
- Department of Pathology, and
| | - Christian C Yost
- Molecular Medicine Program
- Department of Pediatrics, University of Utah, Salt Lake City, UT; and
| | - Matthew T Rondina
- Molecular Medicine Program
- Department of Internal Medicine
- Department of Pathology, and
- Department of Internal Medicine, George E. Wahlen Department of Veterans Affairs (VA) Medical Center, and
- Geriatric Research, Education, and Clinical Center (GRECC), VA Salt Lake City Healthcare System, Salt Lake City, UT
| | | |
Collapse
|
7
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Lu WJ, Lin KC, Huang SY, Thomas PA, Wu YH, Wu HC, Lin KH, Sheu JR. Role of a Janus kinase 2-dependent signaling pathway in platelet activation. Thromb Res 2014; 133:1088-96. [PMID: 24731555 DOI: 10.1016/j.thromres.2014.03.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/12/2014] [Accepted: 03/26/2014] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Janus kinases (JAKs) are intracellular non-receptor tyrosine kinases that transduce cytokine-mediated signals through a pathway mediated by JAK and the signal transducer and activator of transcription (STAT) proteins. The JAK-STAT pathway is involved in immune response, inflammation, and tumorigenesis. Platelets are anuclear blood cells that play a central role in hemostasis. METHODS The aggregometry, immunoblotting, and platelet functional analysis used in this study. RESULTS We found that the JAK2 inhibitor AG490 (25 and 50μM) attenuated collagen-induced platelet aggregation and calcium mobilization in a concentration-dependent manner. In the presence of AG490, the phosphorylation of PLCγ2, protein kinase C (PKC), Akt or JNK in collagen-activated aggregation of human platelets was also inhibited. In addition, we found that various inhibitors, such as the PLCγ2 inhibitor U73122, the PKC inhibitor Ro318220, the phospoinositide 3-kinase inhibitor LY294002, the p38 mitogen-activated protein kinase inhibitor SB203580, the ERK inhibitor PD98059, and the JNK inhibitor SP600125, had no effects on collagen-induced JAK2 activity. However, U73122, Ro318220 and SP600125 significantly diminished collagen-induced STAT3 phosphorylation. These findings suggest that PLCγ2-PKC and JNK are involved in JAK2-STAT3 signaling in collagen-activated platelets. CONCLUSION Our results demonstrate that the JAK2-STAT3 pathway is involved in collagen-induced platelet activation through the activation of JAK2-JNK/PKC-STAT3 signaling. The inhibition of JAK2 may represent a potential therapeutic strategy for the preventing or treating thromboembolic disorders.
Collapse
Affiliation(s)
- Wan-Jung Lu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Kao-Chang Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Philip Aloysius Thomas
- Department of Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli, Tamil Nadu, India
| | - Yu-Hua Wu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Chu Wu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
|
10
|
Zhou Z, Gushiken FC, Bolgiano D, Salsbery BJ, Aghakasiri N, Jing N, Wu X, Vijayan KV, Rumbaut RE, Adachi R, Lopez JA, Dong JF. Signal transducer and activator of transcription 3 (STAT3) regulates collagen-induced platelet aggregation independently of its transcription factor activity. Circulation 2012; 127:476-485. [PMID: 23266857 DOI: 10.1161/circulationaha.112.132126] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Platelet hyperactivity induced by inflammation is a known risk factor for atherosclerosis and thrombosis, but its underlying mechanisms remain poorly understood. METHODS AND RESULTS The signal transducer and activator of transcription 3 (STAT3) was activated in collagen-stimulated platelets. Activated STAT3 served as a protein scaffold to facilitate the catalytic interaction between the kinase Syk (spleen tyrosine kinase) and the substrate PLCγ2 to enhance collagen-induced calcium mobilization and platelet activation. The same interaction of STAT3 with Syk and PLCγ2 was detected in HEK293 cells transfected with cDNAs for Syk and PLCγ2 and stimulated with interleukin-6. Pharmacological inhibition of STAT3 blocked ≈50% of collagen- and a collagen-related peptide-induced but not thrombin receptor-activating peptide- or ADP-induced aggregation and ≈80% of thrombus formation of human platelets on a collagen matrix. This in vitro phenotype was reproduced in mice infused with STAT3 inhibitors and mice with platelet-specific STAT3 deficiency. By forming a complex with its soluble receptor, the proinflammatory cytokine interleukin-6 enhanced the collagen-induced STAT3 activation in human platelets. CONCLUSIONS These data demonstrate a nontranscriptional activity of STAT3 that facilitates a crosstalk between proinflammatory cytokine and hemostasis/thrombosis signals in platelets. This crosstalk may be responsible for the platelet hyperactivity found in conditions of inflammation.
Collapse
Affiliation(s)
- Zhou Zhou
- Puget Sound Blood Research Institute, Seattle, WA
| | - Francisca C Gushiken
- Department of Leukemia, the University of Texas M. D. Anderson Cancer Center, Houston, TX
| | | | | | | | - Naijie Jing
- Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Xiaoping Wu
- Puget Sound Blood Research Institute, Seattle, WA
| | - K Vinod Vijayan
- Section of Cardiovascular Sciences, Baylor College of Medicine, Houston, TX
| | - Rolando E Rumbaut
- Section of Critical Care and Pulmonary Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX.,Michael E. DeBakey VA Medical Center, Houston, TX
| | - Roberto Adachi
- Pulmonary Medicine, the University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jose A Lopez
- Puget Sound Blood Research Institute, Seattle, WA.,Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA
| | - Jing-Fei Dong
- Puget Sound Blood Research Institute, Seattle, WA.,General Hospital, Tianjin Medical University, Tianjin, China.,Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA
| |
Collapse
|
11
|
An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development. Nat Immunol 2012; 14:127-35. [DOI: 10.1038/ni.2507] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/26/2012] [Indexed: 01/20/2023]
|
12
|
Chiba Y, Goto K, Misawa M. Interleukin-13-induced activation of signal transducer and activator of transcription 6 is mediated by an activation of Janus kinase 1 in cultured human bronchial smooth muscle cells. Pharmacol Rep 2012; 64:454-8. [PMID: 22661199 DOI: 10.1016/s1734-1140(12)70788-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/05/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND The current study was carried out to identify the JAK molecule(s) that is involved in the IL-13-induced activation of STAT6 in cultured human bronchial smooth muscle cells (hBSMCs). METHODS Cultured hBSMCs were stimulated with IL-13 in the absence and presence of JAK inhibitor-I (a nonspecific JAKs inhibitor), tyrphostin-AG490 (a specific JAK2 inhibitor), WHI-P131 (a specific JAK3 inhibitor), or tyrphostin-AG9 (a specific Tyk2 inhibitor), and levels of phosphorylated STAT6 were measured by immunoblot analyses. RESULTS The IL-13-induced phosphorylation of STAT6 was abolished by JAK inhibitor-I, whereas the other inhibitors had no significant effect. CONCLUSION These findings indicate that the STAT6 phosphorylation/activation induced by IL-13 is mediated by an activation of JAK1 in cultured hBSMCs.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Biology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | |
Collapse
|
13
|
CP-690550, a Janus kinase inhibitor, suppresses CD4+ T-cell-mediated acute graft-versus-host disease by inhibiting the interferon-γ pathway. Transplantation 2010; 90:825-35. [PMID: 20697326 DOI: 10.1097/tp.0b013e3181f24e59] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acute graft-versus-host disease (GVHD) is a critical obstacle to bone marrow transplantation. Although numerous studies have described immunosuppression protocols to mitigate acute GVHD, the need still exists for a more efficient immunosuppressant with fewer side effects. Here, we evaluated the protective effect of CP-690550, a newly developed Janus kinase inhibitor, in an acute GVHD model. METHODS CP-690550 was chemically synthesized. Acute GVHD was induced through the transfer of parent B6 (H-2) bone marrow and CD4 T cells into lethally irradiated (B6×bm12)F1 (H-2) mice. RESULTS.: CP-690550 treatments confined to days -3 to 11 of GVHD induction provided full protection against allogeneic, acute GVHD-related lethality and histopathology. An analysis of the initial donor-derived CD4 T-cell responses revealed that the inhibitory effects of CP-690550 were largely related to the suppression of donor CD4 T-cell-mediated interferon (IFN)-γ production. Enhanced inhibition of T helper 1 cell differentiation, rather than the inhibition of allogeneic CD4 T-cell proliferation or T helper 17 cell differentiation, was also confirmed in allogeneic mixed lymphocyte reactions. Because lethality was considerably delayed by the systemic blockade of IFN-γ, the principal protective effect of CP-690550 occurred through the modulation of IFN-γ production. CONCLUSION The targeting of Janus kinase with a sensitive and specific inhibitor, CP-690550, conferred effective protection from acute GVHD induced by a semiallogeneic major histocompatibility complex class II-disparate combination. Protection from acute GVHD was largely mediated by the inhibition of IFN-γ production.
Collapse
|
14
|
Malaviya R, Laskin DL, Malaviya R. Janus kinase-3 dependent inflammatory responses in allergic asthma. Int Immunopharmacol 2010; 10:829-36. [PMID: 20430118 DOI: 10.1016/j.intimp.2010.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/25/2010] [Accepted: 04/20/2010] [Indexed: 12/14/2022]
Abstract
Allergic asthma is a chronic inflammatory condition of the lung characterized by reversible airway obstruction, high serum immunoglobulin (Ig) E levels, and chronic airway inflammation. A number of cells including mast cells, T cells, macrophages and dendritic cells play a role in the pathogenesis of the disease. Janus kinase (JAK)-3, a non-receptor protein tyrosine kinase, traditionally known to mediate cytokine signaling, also regulates functional responses of these cells. In this review the role of JAK-3 in regulating various pathogenic processes in allergic asthma is discussed. We propose that targeting JAK-3 is a rationale approach to control the inflammatory responses of multiple cell types responsible for the pathogenesis of allergic asthma.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
15
|
Abstract
Recent advances in our understanding of the mechanisms of T-cell activation, migration to inflammatory sites, and pathologic disease processes triggered the development of a wide variety of T-cell-targeted signaling inhibitors, which have different targets and modes of action. Depending on the distribution and the role of targets in disease processes, T-cell inhibitors exhibit different levels of efficacy and potential side effects. This review outlines target molecules to which T-cell inhibitors have been developed, their efficacy, and potential safety concerns of T-cell inhibitors.
Collapse
Affiliation(s)
- Jonghwa Won
- Molecular Immunology Division, Mogam Biotechnology Research Institute, Gyounggi-Do, South Korea.
| | | |
Collapse
|
16
|
|
17
|
Ben Amor N, Bouaziz A, Romera-Castillo C, Salido S, Linares-Palomino PJ, Bartegi A, Salido GM, Rosado JA. Characterization of the Intracellular Mechanisms Involved in the Antiaggregant Properties of Cinnamtannin B-1 from Bay Wood in Human Platelets. J Med Chem 2007; 50:3937-44. [PMID: 17602466 DOI: 10.1021/jm070508d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cinnamtannin B-1, a natural A-type proanthocyanidin recently identified as a radical scavenger component of Laurus nobilis L., exerts antiaggregant and antiapoptotic effects in human platelets. Here, we have investigated the intracellular mechanisms involved in the antiaggregant effects of cinnamtannin B-1. Cinnamtannin B-1 showed a greater free radical scavenging activity than vitamin C, vitamin E, or Trolox, among other antioxidants and reduced thrombin-evoked tubulin reorganization and platelet aggregation. Thrombin-evoked activation of Btk and pp60(src) was also inhibited by cinnamtannin B-1. In conclusion, we show that cinnamtannin B-1 is a powerful oxygen radical scavenger that reduces thrombin-evoked microtubular remodeling and activation of the tyrosine kinases Btk and pp60(src), which leads to inhibition of platelet aggregation. These observations suggest that cinnamtannin B-1 may prevent thrombotic complications associated to platelet hyperaggregability and hyperactivity, although further studies are necessary to establish appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Nidhal Ben Amor
- Unité de Recherche de Biochimie, Institut Supérieur de Biotechnologie, 5019-Monastir, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Jirouskova M, Shet AS, Johnson GJ. A guide to murine platelet structure, function, assays, and genetic alterations. J Thromb Haemost 2007; 5:661-9. [PMID: 17403200 DOI: 10.1111/j.1538-7836.2007.02407.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelets play an important role in hemostasis, thrombosis and several other biological processes. The adaptability of mice to genetic manipulation and their genetic similarity to humans has resulted in a plethora of murine models to study platelet function. Although murine platelets differ from human platelets with regard to size, number and structure, functionally they are very similar. Thus, studies which employed these model systems have greatly improved our current understanding of the contribution of platelets to hemostasis and thrombosis. This review presents general recommendations with respect to collection, isolation and processing of murine platelets. It also describes the assays currently available to study platelet function and critically assesses their utility. The extensive literature on the effects of genetic alterations on murine platelet function is considered in detail. This review is intended to provide a convenient source of reference for platelet investigators.
Collapse
Affiliation(s)
- M Jirouskova
- Laboratory of Blood and Vascular Biology, Rockefeller University, NY, USA
| | | | | |
Collapse
|
19
|
Sareila O, Korhonen R, Kärpänniemi O, Nieminen R, Kankaanranta H, Moilanen E. JAK inhibitors AG-490 and WHI-P154 decrease IFN-gamma-induced iNOS expression and NO production in macrophages. Mediators Inflamm 2007; 2006:16161. [PMID: 16883061 PMCID: PMC1592588 DOI: 10.1155/mi/2006/16161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In inflammation, inducible nitric oxide synthase (iNOS) produces
nitric oxide (NO), which modulates inflammatory processes.
We investigated the effects of Janus kinase (JAK) inhibitors,
AG-490 and WHI-P154, on iNOS expression and NO production in J774
murine macrophages stimulated with interferon-γ
(IFN-γ). JAK inhibitors AG-490 and WHI-P154 decreased
IFN-γ-induced nuclear levels of signal transducer and
activator of transcription 1α
(STAT1α). JAK
inhibitors AG-490 and WHI-P154 decreased also iNOS protein and
mRNA expression and NO production in a concentration-dependent
manner. Neither of the JAK inhibitors affected the decay of iNOS
mRNA when determined by actinomycin D assay. Our results suggest
that the inhibition of JAK-STAT1-pathway by AG-490 or WHI-P154
leads to the attenuation of iNOS expression and NO
production in IFN-γ-stimulated macrophages.
Collapse
Affiliation(s)
- Outi Sareila
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
- *Outi Sareila:
| | - Riku Korhonen
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| | - Outi Kärpänniemi
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| |
Collapse
|
20
|
Damera G, Xia B, Ancha HR, Sachdev GP. IL-9 modulated MUC4 gene and glycoprotein expression in airway epithelial cells. Biosci Rep 2006; 26:55-67. [PMID: 16779668 DOI: 10.1007/s10540-006-9000-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Compromised epithelial cell integrity is a common feature associated with chronic lung inflammatory states such as asthma. While epithelial cell damage is largely due to sustained effects of inflammatory mediators localized to airways, the subsequent process of epithelial cell differentiation is attributed to members of the transmembrane receptor tyrosine kinase family called the ErbB's. MUC4, a large molecular weight membrane-bound glycoprotein, has recently been identified as a potential ligand for the ErbB-2 receptor. In this study, we investigated the possible role of interleukin-9 (IL-9), a Th2 cytokine, on MUC4 expression using a lung cancer cell line, NCI-H650. We determined that IL-9 up-regulates MUC4 expression in a time and concentration-dependent fashion. Nuclear run-on assays indicated transcriptional regulation of MUC4 while no post-transcriptional mRNA stabilization was observed by actinomycin D chase experiments. IL-9 also increased MUC4 glycoprotein expression as determined by Western blots using a monoclonal antibody specific for a non-tandem repeat region on ASGP-2 region of MUC4. Furthermore, a JAK3-selective inhibitor 4-(4'-hydroxyphenyl) amino-6, 7-dimethoxyquinazoline (WHI-P131), substantially reduced IL-9-induced MUC4 mRNA expression in a dose-dependent fashion. These results implicate a potential role for IL-9 upon MUC4 expression in human airway epithelial cells.
Collapse
Affiliation(s)
- Gautam Damera
- College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73190, USA
| | | | | | | |
Collapse
|
21
|
Amin HM, Lin Q, Lai R. Jak3 contributes to the activation of ALK and Stat3 in ALK(+) anaplastic large cell lymphoma. J Transl Med 2006; 86:417-9; author reply 420-1. [PMID: 16554750 DOI: 10.1038/labinvest.3700393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
22
|
Damera G, Xia B, Sachdev GP. IL-4 induced MUC4 enhancement in respiratory epithelial cells in vitro is mediated through JAK-3 selective signaling. Respir Res 2006; 7:39. [PMID: 16551361 PMCID: PMC1435893 DOI: 10.1186/1465-9921-7-39] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Accepted: 03/21/2006] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recent studies have identified MUC4 mucin as a ligand for activation of ErbB2, a receptor tyrosine kinase that modulates epithelial cell proliferation following epithelial damage in airways of asthmatics. In this study, we investigated the potential role of IL-4, one of the Th2 inflammatory cytokines persistent in asthmatic airways, in regulating MUC4 expression using a cell line NCI-H650. METHODS Real time PCR analysis was performed to determine concentration and time dependent effects of IL-4 upon MUC4 expression. Nuclear run on experiments were carried out to explore potential transcriptional modulation. Western blotting experiments using a monoclonal antibody specific to ASGP-2 domain of MUC4 were performed to analyze MUC4 glycoprotein levels in plasma membrane fractions. To analyze potential signal transduction cascades, IL-4 treated confluent cultures were co-incubated, separately with a pan-JAK inhibitor, a JAK-3 selective inhibitor or a MEK-1, 2 (MAPK) inhibitor at various concentrations before MUC4 transcript analysis. Corresponding transcription factor activation was tested by western blotting using a monoclonal p-STAT-6 antibody. RESULTS MUC4 levels increased in a concentration and time specific fashion reaching peak expression at 2.5 ng/ml and 8 h. Nuclear run on experiments revealed transcriptional enhancement. Corresponding increases in MUC4 glycoprotein levels were observed in plasma membrane fractions. Pan-JAK inhibitor revealed marked reduction in IL-4 stimulated MUC4 levels and JAK3 selective inhibitor down-regulated MUC4 mRNA expression in a concentration-dependent fashion. In accordance with the above observations, STAT-6 activation was detected within 5 minutes of IL-4 stimulus. No effect in MUC4 levels was observed on using a MAPK inhibitor. CONCLUSION These observations signify a potential role for IL-4 in MUC4 up-regulation in airway epithelia.
Collapse
Affiliation(s)
- Gautam Damera
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK – 73190, USA
| | - Baoyun Xia
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK – 73190, USA
| | - Goverdhan P Sachdev
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK – 73190, USA
- The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK – 73104, USA
| |
Collapse
|
23
|
Marzec M, Kasprzycka M, Ptasznik A, Wlodarski P, Zhang Q, Odum N, Wasik MA. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. J Transl Med 2005; 85:1544-54. [PMID: 16170336 DOI: 10.1038/labinvest.3700348] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aberrant expression of the ALK tyrosine kinase as a chimeric protein with nucleophosmin (NPM) and other partners plays a key role in malignant cell transformation of T-lymphocytes and other cells. Here we report that two small-molecule, structurally related, quinazoline-type compounds, WHI-131 and WHI-154, directly inhibit enzymatic activity of NPM/ALK as demonstrated by in vitro kinase assays using a synthetic tyrosine-rich oligopeptide and the kinase itself as the substrates. The inhibition of NPM/ALK activity resulted in malignant T cells in suppression of their growth, induction of apoptosis and inhibition of tyrosine phosphorylation of STAT3, the key effector of the NPM/ALK-induced oncogenesis. We also show that the STAT3 tyrosine phosphorylation is mediated in the malignant T cells by NPM/ALK independently of Jak3 kinase as evidenced by the presence of STAT3 phosphorylation in the NPM/ALK-transfected BaF3 cells that do not express detectable Jak3 and in the NPM/ALK-positive malignant T cells with either Jak3 activity impaired by a pan-Jak or Jak3-selective inhibitor or Jak3 expression abrogated by Jak3 siRNA. The above results represent the 'proof-of-principle' experiments with regard to the ALK enzymatic activity as an attractive therapeutic target in T-cell lymphomas and other malignancies that express the kinase in an active form.
Collapse
Affiliation(s)
- Michal Marzec
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Podder H, Kahan BD. Janus kinase 3: a novel target for selective transplant immunosupression. Expert Opin Ther Targets 2005; 8:613-29. [PMID: 15584866 DOI: 10.1517/14728222.8.6.613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Existing immunosuppressants inhibit lymphocyte activation and T cell cytokine signal transduction pathways, reducing the rate of acute rejection episodes to < 10%. However, the widespread tissue distribution of their molecular targets engenders pleiotropic toxicities. One strategy to address this problem seeks to identify compounds that selectively inhibit a target restricted in distribution to the lymphoid system. Janus kinase (Jak) 3 is such a molecule; it mediates signal transduction via the gamma common chain of lymphokine surface receptors. Disruption of this lymphoid-restricted enzyme would not be predicted to produce collateral damage in other organ systems. Development of selective Jak3 inhibitors has been difficult due to crossreactivity with its homologue, Jak2. In contrast to all other putative antagonists, which are discussed in detail herein, one Jak3 inhibitor, NC1153, shows at least 40-fold greater selective inhibition for Jak3 than for Jak2, is robustly synergistic with calcineurin antagonists, and, either alone or in combination with cyclosporin, produces no adverse effects in rodents preconditioned to be at heightened risk for nephrotoxicity, bone marrow suppression, or altered lipid metabolism.
Collapse
Affiliation(s)
- Hemangshu Podder
- The University of Texas Medical School at Houston, Division of Immunology and Organ Transplantation, 6431 Fannin Street, Suite 6.240, Houston, TX 77030, USA
| | | |
Collapse
|
25
|
Fang J, Hodivala-Dilke K, Johnson BD, Du LM, Hynes RO, White GC, Wilcox DA. Therapeutic expression of the platelet-specific integrin, alphaIIbbeta3, in a murine model for Glanzmann thrombasthenia. Blood 2005; 106:2671-9. [PMID: 15972454 PMCID: PMC1895311 DOI: 10.1182/blood-2004-12-4619] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Integrins mediate the adhesion of cells to each other and to the extracellular matrix during development, immunity, metastasis, thrombosis, and wound healing. Molecular defects in either the alpha- or beta-subunit can disrupt integrin synthesis, assembly, and/or binding to adhesive ligands. This is exemplified by the bleeding disorder, Glanzmann thrombasthenia (GT), where abnormalities of the platelet-specific integrin, alphaIIbbeta3, prevent platelet aggregation following vascular injury. We previously used a retrovirus vector containing a cDNA cassette encoding human integrin beta3 to restore integrin alphaIIbbeta3 on the surface of megakaryocytes derived from peripheral blood stem cells of GT patients. In the present study, bone marrow from beta3-deficient (beta3-/-) mice was transduced with the ITGbeta3-cassette to investigate whether the platelet progeny could establish hemostasis in vivo. A lentivirus transfer vector equipped with the human ITGA2B gene promoter confined transgene expression to the platelet lineage. Human beta3 formed a stable complex with murine alphaIIb, effectively restoring platelet function. Mice expressing significant levels of alphaIIbbeta3 on circulating platelets exhibited improved bleeding times. Intravenous immunoglobulin effectively diminished platelet clearance in animals that developed an antibody response to alphaIIbbeta3. These results indicate the feasibility of targeting platelets with genetic therapies for better management of patients with inherited bleeding disorders.
Collapse
Affiliation(s)
- Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Martinez-Lostao L, Briones J, Forné I, Martinez-Gallo M, Ferrer B, Sierra J, Rodriguez-Sanchez JL, Juarez C. Role of the STAT1 pathway in apoptosis induced by fludarabine and JAK kinase inhibitors in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2005; 46:435-42. [PMID: 15621835 DOI: 10.1080/10428190400018398] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Signal transducers and activators of transcription (STAT) proteins comprise a family of transcription factors that have been implicated in tumoral transformation, especially in hematological malignancies. Because of this, the JAK/STAT pathway is attractive as a therapeutic target in these tumors. In the present study, we analyzed the ability of fludarabine and two JAK kinase inhibitors, AG490 and WHI-P131, to block STAT1 activation and induce apoptosis on B-cell chronic lymphocytic leukemia (B-CLL) cells. All drugs were able to induce a high percentage of apoptosis on B-CLL cells from all patients studied. However, only AG490 and WHI-P131 were able to strongly suppress the STAT1 activation of B-CLL cells. In conclusion, our data show that JAK kinase inhibitors, such as AG490 and WHI-P131 are able to inhibit the STAT1 pathway on B-CLL cells and are strong inductors of apoptosis on these cells.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- Cell Survival/drug effects
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/physiology
- Electrophoretic Mobility Shift Assay
- Female
- Flow Cytometry
- Humans
- Interferon-gamma/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Quinazolines/pharmacology
- STAT1 Transcription Factor
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Time Factors
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/physiology
- Tumor Cells, Cultured
- Tyrphostins/pharmacology
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
Collapse
Affiliation(s)
- Luis Martinez-Lostao
- Immunology Department, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ahmed-Choudhury J, Williams KT, Young LS, Adams DH, Afford SC. CD40 mediated human cholangiocyte apoptosis requires JAK2 dependent activation of STAT3 in addition to activation of JNK1/2 and ERK1/2. Cell Signal 2005; 18:456-68. [PMID: 15970430 DOI: 10.1016/j.cellsig.2005.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 05/10/2005] [Accepted: 05/17/2005] [Indexed: 12/13/2022]
Abstract
CD40 is critically involved in Fas-mediated cholangiocyte apoptosis during liver inflammation, but the underlying signalling events are poorly understood. Our recent work implicated AP-1 in CD40-induced cholangiocyte apoptosis, but suggested involvement of other signalling pathways. Because STAT3 has been implicated in liver regeneration we investigated this signalling pathway during CD40 mediated cholangiocyte apoptosis. Western immunoblotting, electrophoretic mobility gel shift assays, In situ DNA end labelling and caspase-3 activity were used to investigate intracellular signalling and apoptosis in primary human cholangiocytes following CD40 activation. CD40-activation induced caspase-3 dependent cholangiocyte apoptosis and 3-fold increases in JNK/ERK phosphorylation (concomitant with increased AP-1 binding activity) and 4-fold increases in pSTAT3, which were sustained for up to 24 h. Protein levels of c-Jun, c-Fos and pSTAT3 confirmed the upregulation. Phosphorylation of p38 remained unchanged suggesting that this MAP kinase was not involved in CD40 mediated apoptosis. Increased JAK2 phosphorylation accompanied increased STAT3 phosphorylation after CD40 ligation. Cholangiocytes were also shown to express JAK1 and 3 which was phosphorylated following control stimulation with TNFalpha or IL2 respectively but not after CD40 ligation. JNK, ERK and JAK2 inhibitors partially abrogated apoptosis and when used in combination reduced it to basal levels. In conclusion, induction of CD40-mediated cholangiocyte apoptosis requires JAK2-mediated phosphorylation of STAT3 as well as sustained JNK1/2, ERK1/2 activation. This study demonstrates that STAT3 can function as a proapoptotic factor in primary human liver epithelial cells.
Collapse
Affiliation(s)
- Jalal Ahmed-Choudhury
- Liver Research Group, MRC Centre for Immune Regulation, Institute of Biomedical Research, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Li Y, Zhi W, Wareski P, Weng NP. IL-15 Activates Telomerase and Minimizes Telomere Loss and May Preserve the Replicative Life Span of Memory CD8+T Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2005; 174:4019-24. [PMID: 15778359 DOI: 10.4049/jimmunol.174.7.4019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The preservation of the replicative life span of memory CD8(+) T cells is vital for long-term immune protection. Although IL-15 plays a key role in the homeostasis of memory CD8(+) T cells, it is unknown whether IL-15 regulates the replicative life span of memory CD8(+) T cells. In this study, we report an analysis of telomerase expression and telomere length in human memory phenotype CD8(+) T cells maintained by IL-15 in vitro. We demonstrate that IL-15 is capable of activating telomerase in memory CD8(+) T cells via Jak3 and PI3K signaling pathways. Furthermore, IL-15 induces a sustained level of telomerase activity over long periods of time, and in turn minimizes telomere loss in memory CD8(+) T cells after substantial cell divisions. These findings suggest that IL-15 activates stable telomerase expression and compensates telomere loss in memory phenotype CD8(+) T cells, and that telomerase may play an important role in memory CD8(+) T cell homeostasis.
Collapse
Affiliation(s)
- Yu Li
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
29
|
Borie DC, O'Shea JJ, Changelian PS. JAK3 inhibition, a viable new modality of immunosuppression for solid organ transplants. Trends Mol Med 2004; 10:532-41. [PMID: 15519279 DOI: 10.1016/j.molmed.2004.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The field of organ transplantation has had tremendous success because of the availability of immunosuppressive drugs that efficiently prevent acute organ rejection. Numerous and severe side effects are, however, associated with all current immunosuppressive therapies and justify a search for drugs with better efficacy and safety profiles. Janus kinase (JAK) 3, a tyrosine kinase that is crucial for mediating signals from the common gamma-chain of cytokine receptors, is peculiar in that its expression, contrarily to the targets of most current immunosuppressive drugs, is limited to cells that actively participate to the immune response to allografts. The recent demonstration in stringent preclinical models that JAK3 inhibition results in efficacy for the prevention of allograft rejection with a narrow side-effect profile might lead to a new era in the field of immunosuppression.
Collapse
Affiliation(s)
- Dominic C Borie
- Transplantation Immunology Laboratory, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305-5407, USA.
| | | | | |
Collapse
|
30
|
Opdam FJM, Kamp M, de Bruijn R, Roos E. Jak kinase activity is required for lymphoma invasion and metastasis. Oncogene 2004; 23:6647-53. [PMID: 15235585 DOI: 10.1038/sj.onc.1207887] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Jak tyrosine kinases are activated by interleukins and other growth factors, and promote survival and proliferation of cells in multiple tissues. These kinases are constitutively active in many hematopoietic malignancies and certain carcinomas. We have investigated whether Jak kinases play a role in lymphoma invasion and metastasis. Proliferation and survival of a highly metastatic T-lymphoma was made independent of its constitutively active Jak by expression of active forms of both STAT3 and PI3-kinase. Jak activity was then blocked by the isolated JH2 'pseudokinase' domain of Jak2. In vitro invasion was blocked by the JH2 domain, and the metastatic capacity of the JH2-expressing cells was much reduced. The Jak inhibitor AG490 inhibited invasion as well. Invasion and metastasis of these cells requires activation of the integrin LFA-1 by the CXCR4 chemokine receptor. We show that Jak kinases act downstream of LFA-1. We conclude that Jak kinase activity is essential for lymphoma invasion and metastasis, independent of its role in survival and proliferation, and independent of STAT and PI3K signaling. This indicates that Jak kinases contribute in multiple ways to the induction of malignant behavior.
Collapse
Affiliation(s)
- Frank J M Opdam
- Division of Cell Biology, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Bhat GJ, Samikkannu T, Thomas JJ, Thekkumkara TJ. alpha-thrombin rapidly induces tyrosine phosphorylation of a novel, 74-78-kDa stress response protein(s) in lung fibroblast cells. J Biol Chem 2004; 279:48915-22. [PMID: 15364938 DOI: 10.1074/jbc.m409043200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrated previously that exposure of CCL39 lung fibroblasts to alpha-thrombin rapidly inhibits interleukin 6-induced tyrosine phosphorylation of signal transducers and activators of transcription 3 (Stat3). While studying the cross-talk between alpha-thrombin and interleukin 6, we observed that the phospho-specific (tyrosine) anti-Stat3 antibody specifically cross-reacted with a 74-78-kDa protein(s) in alpha-thrombin-treated cells. In this study, we demonstrate that in alpha-thrombin-treated CCL39 cells, the 74-78-kDa protein(s) rapidly undergoes tyrosine phosphorylation. The phosphorylation by alpha-thrombin was detected as early as 5 min and reached a maximum at 15 min; however, low levels were present at 2 h. alpha-Thrombin receptor agonist peptide (SFLLRN) induced its tyrosine phosphorylation, suggesting that alpha-thrombin mediates the effects via protease-activated receptor type 1. Anti-Stat3 antibodies specific to different regions of Stat3 failed to recognize the 74-78-kDa protein(s), suggesting that it is unrelated to Stat3. Cell fractionation experiments showed that it is localized to the cytoplasm. Mass spectrometric analysis of the immunoprecipitated protein showed that the 74-78-kDa protein(s) is related to glucose-regulated protein 75 (GRP-75), a member of the heat shock/stress-response protein family. Consistent with these data, we observed tyrosine phosphorylation of GRP-75 in alpha-thrombin-treated cells. Exposure of cells to pervanadate, a stress-inducing agent, stimulated its tyrosine phosphorylation; however, cytokines and growth factors were ineffective. This is the first report of tyrosine phosphorylation of GRP-75-related stress protein(s) by alpha-thrombin and suggests that this pathway may contribute to the ability of alpha-thrombin to prevent apoptosis in cells exposed to stress or in the injured tissue.
Collapse
Affiliation(s)
- G Jayarama Bhat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA.
| | | | | | | |
Collapse
|
32
|
Wiedmer T, Zhao J, Li L, Zhou Q, Hevener A, Olefsky JM, Curtiss LK, Sims PJ. Adiposity, dyslipidemia, and insulin resistance in mice with targeted deletion of phospholipid scramblase 3 (PLSCR3). Proc Natl Acad Sci U S A 2004; 101:13296-301. [PMID: 15328404 PMCID: PMC516563 DOI: 10.1073/pnas.0405354101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Indexed: 12/22/2022] Open
Abstract
The phospholipid scramblases (PLSCR1 to PLSCR4) are a structurally and functionally unique class of proteins, which are products of a tetrad of genes conserved from Caenorhabditis elegans to humans. The best characterized member of this family, PLSCR1, is implicated in the remodeling of the transbilayer distribution of plasma membrane phospholipids but is also required for normal signaling through select growth factor receptors. Mice with targeted deletion of PLSCR1 display perinatal granulocytopenia due to defective response of hematopoietic precursors to granulocyte colony-stimulating factor and stem cell factor. To gain insight into the biologic function of another member of the PLSCR family, we investigated mice with targeted deletion of PLSCR3, a protein that like PLSCR1 is expressed in many blood cells but which, by contrast to PLSCR1, is also highly expressed in fat and muscle. PLSCR3(-/-) mice at 2 months of age displayed aberrant accumulation of abdominal fat when maintained on standard rodent chow, which was accompanied by insulin resistance, glucose intolerance, and dyslipidemia. Primary adipocytes and cultured bone-marrow-derived macrophages from PLSCR3(-/-) mice were engorged with neutral lipid, and adipocytes displayed defective responses to exogenous insulin. Plasma of PLSCR3(-/-) mice was elevated in non-high-density lipoproteins, cholesterol, triglycerides, nonesterified fatty acids, and leptin, whereas adiponectin was low. These data suggest that the expression of PLSCR3 may be required for normal adipocyte and/or macrophage maturation or function and raise the possibility that deletions or mutations affecting the PLSCR3(-/-) gene locus may contribute to the risk for lipid-related disorders in humans.
Collapse
Affiliation(s)
- Therese Wiedmer
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Shea JJ, Pesu M, Borie DC, Changelian PS. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 2004; 3:555-64. [PMID: 15232577 DOI: 10.1038/nrd1441] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
34
|
Uckun FM, Vassilev A, Bartell S, Zheng Y, Mahajan S, Tibbles HE. The anti-leukemic Bruton's tyrosine kinase inhibitor alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl) propenamide (LFM-A13) prevents fatal thromboembolism. Leuk Lymphoma 2004; 44:1569-77. [PMID: 14565661 DOI: 10.3109/10428190309178781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The leflunomide metabolite analog alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl)-propenamide (LFM-A13) is a rationally-designed specific inhibitor of the TEC family protein tyrosine kinase, Bruton's tyrosine kinase (BTK) which plays an important role in platelet physiology by regulating the glycoprotein GPVI-FcRgamma-coupled collagen receptor signaling pathway. At low micromolar concentrations, LFM-A13 inhibited collagen-induced ultrastructural changes indicative of activation. LFM-A13 inhibited collagen (but not thrombin, TRAP-6, or ADP)-induced platelet aggregation in a concentration-dependent fashion with an IC50 value of 2.8 microM. LFM-A13 was not toxic to mice when administered systemically at dose levels ranging from 1 to 100 mg/kg. At nontoxic dose levels, LFM-A13 prolonged the tail bleeding times of mice and improved event-free survival in two mouse models of agonist-induced invariably fatal pulmonary thromboembolism. To our knowledge, LFM-A13 is the first anti-thrombotic agent which prevents platelet aggregation by inhibiting BTK.
Collapse
Affiliation(s)
- Fatih M Uckun
- Parker Hughes Cancer Center, Parker Hughes Institute, St. Paul, MN 55113, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Goodman PA, Burkhardt N, Juran B, Tibbles HE, Uckun FM. Hypermethylation of the spleen tyrosine kinase promoter in T-lineage acute lymphoblastic leukemia. Oncogene 2003; 22:2504-14. [PMID: 12717427 DOI: 10.1038/sj.onc.1206313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sequence analysis of the noncoding first exon (exon 1) of the Syk gene demonstrated the presence of a previously cloned CpG island (GenBank #Z 65706). Transient transfection analysis in Daudi cells demonstrated promoter activity (18-fold increase over parental luciferase plasmid) for a 348 bp BstXI-BsrBI fragment containing this island. This region exhibits a high GC content (approximately 75%), contains several SP1 binding sites and a potential initiator sequence, but lacks a strong TATA consensus. Bisulfite sequencing and methylation-specific PCR (MSP) of this region demonstrated that the Syk promoter CpG island was largely unmethylated in B-lineage leukemia cell lines, control peripheral blood cells, human thymocytes and CD3(+) T lymphocytes. However, dense methylation was seen in four T-lineage leukemia cell lines, Jurkat, H9, Molt 3 and HUT 78. MSP screening of leukemia cells from six T-lineage acute lymphoblastic leukemia (ALL) patients demonstrated methylation of the Syk promoter CpG island in one T-lineage ALL patient. Promoter methylation was correlated with reduced to absent expression of Syk mRNA and SYK protein in the T-lineage leukemia cell lines. Treatment of the leukemia lines Ha and Molt 3, with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR) resulted in increased Syk mRNA expression. The presence of a methylated promoter sequence in these T-lineage leukemia cell lines and in one T-lineage patient suggests a potential role for SYK as a tumor suppressor in T-ALL.
Collapse
Affiliation(s)
- Patricia A Goodman
- Department of Molecular Genetics, Parker Hughes Institute and Parker Hughes Cancer Center, 2699 Patton Road, St Paul, MN 55113, USA
| | | | | | | | | |
Collapse
|
36
|
Venkatachalam TK, Qazi S, Samuel P, Uckun FM. Substituted heterocyclic thiourea compounds as a new class of anti-allergic agents inhibiting IgE/Fc epsilon RI receptor mediated mast cell leukotriene release. Bioorg Med Chem 2003; 11:1095-105. [PMID: 12614897 DOI: 10.1016/s0968-0896(02)00531-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mast cell derived leukotrienes (LT's) play a vital role in pathophysiology of allergy and asthma. We synthesized various analogues of indolyl, naphthyl and phenylethyl substituted halopyridyl, thiazolyl and benzothiazolyl thioureas and examined their in vitro effects on the high affinity IgE receptor/Fc epsilon RI-mediated mast cell leukotriene release. Of the 22 naphthylethyl thiourea compounds tested, there were 7 active compounds and N-[1-(1-naphthyl)ethyl]-N'-[2-(ethyl-4-acetylthiazolyl)]thiourea (17 and 16) (IC(50)=0.002 microM) and N-[1-(1R)-naphthylethyl]-N'-[2-(5-methylpyridyl)]thiourea (compound 5) (IC(50)=0.005 microM) were identified as the lead compounds. Among the 11 indolylethyl thiourea compounds tested, there were seven active compounds and the halopyridyl compounds N-[2-(3-indolylethyl)]-N'-[2-(5-chloropyridyl)]thiourea (24) and N-[2-(3-indolylethyl)]-N'-[2-(5-bromopyridyl)]thiourea (25) were the most active agents and inhibited the LTC(4) release with low micromolar IC(50) values of 4.9 and 6.1 microM, respectively. The hydroxylphenyl substituted compounds N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-chloropyridyl)]thiourea (37; IC(50)=12.6 microM), N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-bromopyridyl)]thiourea (50; IC(50)=16.8 microM) and N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(pyridyl)]thiourea (35; IC(50)=8.5 microM) were the most active pyridyl thiourea agents. Notably, the introduction of electron withdrawing or donating groups had a marked impact on the biological activity of these thiourea derivatives and the Hammett sigma values of their substituents were identified as predictors of their potency. In contrast, experimentally determined partition coefficient values did not correlate with the biological activity of the thiourea compounds which demonstrates that their liphophilicity is not an important factor controlling their mast cell inhibitory effects. These results establish the substituted halopyridyl, indolyl and naphthyl thiourea compounds as a new chemical class of anti-allergic agents inhibiting IgE receptor/Fc epsilon RI-mediated mast cell LTC(4) release. Further lead optimization efforts may provide the basis for new and effective treatment as well as prevention programs for allergic asthma in clinical settings.
Collapse
Affiliation(s)
- T K Venkatachalam
- Department of Chemistry, Parker Hughes Institute, 2699 Patton Road, Roseville, MN 55113, USA
| | | | | | | |
Collapse
|
37
|
Venkatachalam TK, Qazi S, Samuel P, Uckun FM. Inhibition of mast cell leukotriene release by thiourea derivatives. Bioorg Med Chem Lett 2003; 13:485-8. [PMID: 12565956 DOI: 10.1016/s0960-894x(02)00992-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mast cell derived leukotrienes (LT's) play a vital role in pathophysiology of allergy and asthma. We synthesized various analogues of indolyl, naphthyl and phenylethyl substituted halopyridyl, thiazolyl and benzothiazolyl thioureas and examined their in vitro effects on the high affinity IgE receptor/FcERI-mediated mast cell leukotriene release. Of the 22 naphthylethyl thiourea compounds tested, there were seven active compounds and N-[1-(1-naphthyl)ethyl]-N'-[2-(ethyl-4-acetylthiazolyl)]thiourea (17 and 16) (IC(50)=0.002 microM) and N-[1-(1R)-naphthylethyl]-N'-[2-(5-methylpyridyl)]thiourea (5) (IC(50)=0.005 microM) were identified as the lead compounds. Among the 11 indolylethyl thiourea compounds tested, there were seven active compounds and the halopyridyl compounds N-[2-(3-indolylethyl)]-N'-[2-(5-chloropyridyl)]thiourea and N-[2-(3-indolylethyl)]-N'-[2-(5-bromopyridyl)]thiourea were the most active agents and inhibited the LTC(4) release with low micromolar IC(50) values of 4.9 microM and 6.1 microM, respectively. The hydroxylphenyl substituted compounds N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-chloropyridyl)]thiourea (IC(50)=12.6 microM), N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-bromopyridyl)]thiourea (IC(50)=16.8 microM) and N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(pyridyl)]thiourea (IC(50)=8.5 microM) were the most active pyridyl thiourea agents. Notably, the introduction of electron withdrawing or donating groups had a marked impact on the biological activity of these thiourea derivatives and the Hammett sigma values of their substituents were identified as predictors of their potency. In contrast, experimentally determined partition coefficient values did not correlate with the biological activity of the thiourea compounds which demonstrates that their liphophilicity is not an important factor controlling their mast cell inhibitory effects.
Collapse
Affiliation(s)
- Taracad K Venkatachalam
- Department of Chemistry, Parker Hughes Institute, 2699 Patton Road, Roseville, MN 55113, USA
| | | | | | | |
Collapse
|
38
|
Goleva E, Kisich KO, Leung DYM. A role for STAT5 in the pathogenesis of IL-2-induced glucocorticoid resistance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5934-40. [PMID: 12421978 DOI: 10.4049/jimmunol.169.10.5934] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GC) are highly effective in the control of diseases associated with T cell activation. However, a subset of individuals is GC insensitive. Previous studies have demonstrated that IL-2 can induce steroid resistance in mouse T cells. However, the mechanism for this phenomenon is unknown. In the current study we found that the murine cell line (HT-2) is steroid resistant when incubated with IL-2, but steroid sensitive when grown in IL-4. Furthermore, when HT-2 cells are treated with IL-2, the glucocorticoid receptor (GCR) does not translocate to the cell nucleus after dexamethasone treatment. In contrast, the GCR in IL-4-stimulated HT-2 cells does translocate into the cell nucleus after dexamethasone treatment. IL-2-induced steroid insensitivity in HT-2 cells appears to be a signaling event as the effects of IL-2 on nuclear translocation of the GCR occurred within 30 min even in the presence of cycloheximide. Indeed, preincubation of HT-2 cells with a Janus-associated kinase 3 inhibitor restored nuclear translocation of the GCR even in the presence of IL-2. Immunoprecipitation experiments revealed that phosphorylated STAT5 and GCR formed immune complexes. This association may lead to retardation of GCR nuclear translocation because IL-2 was not able to induce steroid insensitivity in splenocytes from STAT5 knockout mice. This study demonstrates a novel role for STAT5 in IL-2-induced steroid insensitivity.
Collapse
Affiliation(s)
- Elena Goleva
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | |
Collapse
|
39
|
Vassilev AO, Lorenz DR, Tibbles HE, Uckun FM. Role of the leukemia-associated transcription factor STAT3 in platelet physiology. Leuk Lymphoma 2002; 43:1461-7. [PMID: 12389630 DOI: 10.1080/1042819022386716] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Actinomycin D, a transcriptional inhibitor, was found to inhibit platelet potentiation by thrombopoietin (TPO), suggesting that TPO stimulation of platelets involves mitochondrial transcription. We sought to determine a possible role for leukemia-associated signal transducers and activators of transcription (STAT) proteins as mitochondrial transcription factors, focusing specifically on STAT3 in human platelets. We found TPO stimulation of platelets activated STAT3 in vitro, that STAT3 was present in platelet mitochondrial-rich fractions as determined by Western Blot analysis and was capable of binding to the regulatory D-loop region of human mitochondrial DNA upon activation. These results suggest that platelet signaling pathways activated by TPO may affect mitochondrial transcription via activation of STAT3.
Collapse
Affiliation(s)
- Alexei O Vassilev
- Department of Biochemistry, Parker Hughes Cancer Center, Parker Hughes Institute, St. Paul, MN 55113, USA
| | | | | | | |
Collapse
|
40
|
Zhou Q, Zhao J, Wiedmer T, Sims PJ. Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 2002; 99:4030-8. [PMID: 12010804 DOI: 10.1182/blood-2001-12-0271] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) is an endofacial plasma membrane protein proposed to participate in transbilayer movement of phosphatidylserine and other phospholipids. In addition to its putative role in the reorganization of plasma membrane phospholipids, PLSCR1 is a substrate of intracellular kinases that imply its possible participation in diverse signaling pathways underlying proliferation, differentiation, or apoptosis. Because PLSCR1 is prominently expressed in a variety of blood cells, we evaluated PLSCR activity in platelets and erythrocytes, and cytokine-dependent growth of hematopoietic precursor cells, of PLSCR1 knock-out mice. Adult PLSCR1(-/-) mice showed no obvious hematologic or hemostatic abnormality, and blood cells from these animals normally mobilized phosphatidylserine to the cell surface upon stimulation. Whereas blood cell counts in adult PLSCR1(-/-) mice were normal, in both fetus and newborn animals neutrophil counts were significantly depressed relative to age-matched wild type (WT). Furthermore, when compared with WT, hematopoietic precursor cells from PLSCR1(-/-) mice showed defective colony formation and impaired differentiation to mature granulocytes as stimulated by stem cell factor and granulocyte colony-stimulating factor (G-CSF). By contrast, PLSCR1(-/-) cells showed normal colony formation stimulated by interleukin-3 or granulocyte-macrophage CSF, and expansion of megakaryocytic and erythroid progenitors by thrombopoietin or erythropoietin was unaffected. Stem cell factor and G-CSF were also found to induce marked increases in PLSCR1 levels in WT cells. Consistent with in vitro assays, PLSCR1(-/-) mice treated with G-CSF showed less than 50% of the granulocytosis observed in identically treated WT mice. These data provide direct evidence that PLSCR1 functionally contributes to cytokine-regulated cell proliferation and differentiation and suggest it is required for normal myelopoiesis.
Collapse
Affiliation(s)
- Quansheng Zhou
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
41
|
Tibbles HE, Navara CS, Hupke MA, Vassilev AO, Uckun FM. Thrombopoietin induces p-selectin expression on platelets and subsequent platelet/leukocyte interactions. Biochem Biophys Res Commun 2002; 292:987-91. [PMID: 11944912 DOI: 10.1006/bbrc.2002.6759] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ligation of thrombopoietin (TPO) to the platelet c-Mpl receptor induces numerous biochemical pathways in the absence of aggregation. Two forms of recombinant TPO are currently in clinical trials for the treatment of thrombocytopenia. This study focuses on the effects of the full-length recombinant human TPO (rhTPO) on platelets in a whole blood system. Platelet-leukocyte associations (PLAs) were visualized following rhTPO stimulation as CD42b/CD 45 double positive clusters by FACS analysis. Treatment of washed platelets with rhTPO induced granule release and expression of the leukocyte adhesion receptor P-selectin (CD 62P) in the absence of aggregation and calcium mobilization. RhTPO also induced platelet-leukocyte interactions in whole blood. Following stimulation, leukocytes were recruited by platelets through P-selectin in a calcium-dependent manner. rhTPO stimulates platelet-leukocyte associations in whole blood through expression of platelet P-selectin. To our knowledge, this is the first report that identifies TPO as a promoter of platelet-leukocyte interactions.
Collapse
Affiliation(s)
- Heather E Tibbles
- Department of Hematology, Parker Hughes Cancer Center, St. Paul, Minnesota 55113, USA
| | | | | | | | | |
Collapse
|
42
|
Uckun FM, Thoen J, Chen H, Sudbeck E, Mao C, Malaviya R, Liu XP, Chen CL. CYP1A-mediated metabolism of the Janus kinase-3 inhibitor 4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline: structural basis for inactivation by regioselective O-demethylation. Drug Metab Dispos 2002; 30:74-85. [PMID: 11744615 DOI: 10.1124/dmd.30.1.74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here we report the phase I metabolism of the rationally designed Janus kinase-3 (JAK) inhibitor 4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131; JANEX-1). JANEX-1 was metabolized by the cytochrome P450 enzymes CYP1A1 and CYP1A2 in a regioselective fashion to form the biologically inactive 7-O-demethylation product 4-(4'-hydroxyphenyl)-amino-6-methoxy-7-hydroxyquinazoline (JANEX-1-M). Our molecular modeling studies indicated that the CYP1A family enzymes bind and demethylate JANEX-1 at the C-7 position of the quinazoline ring since the alternative binding conformation with demethylation at the C-6 position would result in a severe steric clash with the binding site residues. The metabolism of JANEX-1 to JANEX-1-M in pooled human liver microsomes followed Michaelis-Menten kinetics with V(max) and K(m) values (mean +/- S.D.) of 34.6 +/- 9.8 pmol/min/mg and 107.3 +/- 66.3 microM, respectively. alpha-Naphthoflavone and furafylline, which both inhibit CYP1A2, significantly inhibited the formation of JANEX-1-M in human liver microsomes. There was a direct correlation between CYP1A activities and the magnitude of JANEX-1-M formation in the liver microsomes from different animal species. A significantly increased metabolic rate for JANEX-1 was observed in Aroclor 1254-, beta-naphthoflavone-, and 3-methylcholanthrene-induced microsomes but not in clofibrate-, dexamethasone-, isoniazid-, and phenobarbital-induced microsomes. The formation of JANEX-1-M in the presence of baculovirus-expressed CYP1A1 and 1A2 was consistent with Michaelis-Menten kinetics. The systemic clearance of JANEX-1-M was much faster than that of JANEX-1 (5525.1 +/- 1926.2 ml/h/kg versus 1458.0 +/- 258.6 ml/h/kg). Consequently, the area under the curve value for JANEX-1-M was much smaller than that for JANEX-1 (27.5 +/- 8.0 versus 94.8 +/- 18.4 microM. h; P < 0.001).
Collapse
Affiliation(s)
- Fatih M Uckun
- Department of Pharmaceutical Sciences, Parker Hughes Cancer Center, 2665 Long Lake Road, Suite 330, St. Paul, MN 55113, USA.
| | | | | | | | | | | | | | | |
Collapse
|