1
|
Guillermin O, Angelis N, Sidor CM, Ridgway R, Baulies A, Kucharska A, Antas P, Rose MR, Cordero J, Sansom O, Li VSW, Thompson BJ. Wnt and Src signals converge on YAP-TEAD to drive intestinal regeneration. EMBO J 2021; 40:e105770. [PMID: 33950519 PMCID: PMC8246259 DOI: 10.15252/embj.2020105770] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Wnt signalling induces a gradient of stem/progenitor cell proliferation along the crypt-villus axis of the intestine, which becomes expanded during intestinal regeneration or tumour formation. The YAP transcriptional co-activator is known to be required for intestinal regeneration, but its mode of regulation remains controversial. Here we show that the YAP-TEAD transcription factor is a key downstream effector of Wnt signalling in the intestine. Loss of YAP activity by Yap/Taz conditional knockout results in sensitivity of crypt stem cells to apoptosis and reduced cell proliferation during regeneration. Gain of YAP activity by Lats1/2 conditional knockout is sufficient to drive a crypt hyperproliferation response. In particular, Wnt signalling acts transcriptionally to induce YAP and TEAD1/2/4 expression. YAP normally localises to the nucleus only in crypt base stem cells, but becomes nuclear in most intestinal epithelial cells during intestinal regeneration after irradiation, or during organoid growth, in a Src family kinase-dependent manner. YAP-driven crypt expansion during regeneration involves an elongation and flattening of the Wnt signalling gradient. Thus, Wnt and Src-YAP signals cooperate to drive intestinal regeneration.
Collapse
Affiliation(s)
- Oriane Guillermin
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Clara M Sidor
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Rachel Ridgway
- Colorectal Cancer and Wnt signalling LaboratoryCancer Research UK Beatson InstituteGlasgowUK
| | - Anna Baulies
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Anna Kucharska
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Pedro Antas
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Melissa R Rose
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Julia Cordero
- Institute of Cancer SciencesWolfson Wohl Cancer Research CentreBearsdenUK
| | - Owen Sansom
- Colorectal Cancer and Wnt signalling LaboratoryCancer Research UK Beatson InstituteGlasgowUK
| | - Vivian S W Li
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- EMBL Australia ACRF Department of Cancer Biology & TherapeuticsJohn Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| |
Collapse
|
2
|
The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 2018; 11:64. [PMID: 29747682 PMCID: PMC5946470 DOI: 10.1186/s13045-018-0605-5] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
CD44, a non-kinase transmembrane glycoprotein, is overexpressed in several cell types including cancer stem cells and frequently shows alternative spliced variants that are thought to play a role in cancer development and progression. Hyaluronan, the main ligand for CD44, binds to and activates CD44 resulting in activation of cell signaling pathways that induces cell proliferation, increases cell survival, modulates cytoskeletal changes, and enhances cellular motility. The different functional roles of CD44 standard (CD44s) and specific CD44 variant (CD44v) isoforms are not fully understood. CD44v contain additional peptide motifs that can interact with and sequester growth factors and cytokines at the cell surface thereby functioning as coreceptors to facilitate cell signaling. Moreover, CD44v were expressed in metastasized tumors, whereas switching between CD44v and CD44s may play a role in regulating epithelial to mesenchymal transition (EMT) and in the adaptive plasticity of cancer cells. Here, we review current data on the structural and functional properties of CD44, the known roles for CD44 in tumorigencity, the regulation of CD44 expression, and the potential for targeting CD44 for cancer therapy.
Collapse
|
3
|
CD45 in human physiology and clinical medicine. Immunol Lett 2018; 196:22-32. [PMID: 29366662 DOI: 10.1016/j.imlet.2018.01.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
CD45 is an evolutionary highly conserved receptor protein tyrosine phosphatase exclusively expressed on all nucleated cells of the hematopoietic system. It is characterized by the expression of several isoforms, specific to a certain cell type and the developmental or activation status of the cell. CD45 is one of the key players in the initiation of T cell receptor signaling by controlling the activation of the Src family protein-tyrosine kinases Lck and Fyn. CD45 deficiency results in T- and B-lymphocyte dysfunction in the form of severe combined immune deficiency. It also plays a significant role in autoimmune diseases and cancer as well as in infectious diseases including fungal infections. The knowledge collected on CD45 biology is rather vast, but it remains unclear whether all findings in rodent immune cells also apply to human CD45. This review focuses on human CD45 expression and function and provides an overview on its ligands and role in human pathology.
Collapse
|
4
|
Schumann J, Stanko K, Schliesser U, Appelt C, Sawitzki B. Differences in CD44 Surface Expression Levels and Function Discriminates IL-17 and IFN-γ Producing Helper T Cells. PLoS One 2015; 10:e0132479. [PMID: 26172046 PMCID: PMC4501817 DOI: 10.1371/journal.pone.0132479] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/15/2015] [Indexed: 11/24/2022] Open
Abstract
CD44 is a prominent activation marker which distinguishes memory and effector T cells from their naïve counterparts. It also plays a role in early T cell signaling events as it is bound to the lymphocyte-specific protein kinase and thereby enhances T cell receptor signalling. Here, we investigated whether IFN-γ and IL-17 producing T helper cells differ in their CD44 expression and their dependence of CD44 for differentiation. Stimulation of CD4+ T cells with allogeneic dendritic cells resulted in the formation of three distinguishable populations: CD44+, CD44++ and CD44+++. In vitro and in vivo generated allo-reactive IL-17 producing T helper cells were mainly CD44+++ as compared to IFN-γ+ T helper cells, which were CD44++. This effect was enhanced under polarizing conditions. T helper 17 polarization led to a shift towards the CD44+++ population, whereas T helper 1 polarization diminished this population. Furthermore, blocking CD44 decreased IL-17 secretion, while IFN-γ was barely affected. Titration experiments revealed that low T cell receptor and CD28 stimulation supported T helper 17 rather than T helper 1 development. Under these conditions CD44 could act as a co-stimulatory molecule and replace CD28. Indeed, rested CD44+++CD4+ T cells contained already more total and especially phosphorylated zeta-chain-associated protein kinase 70 as compared to CD44++ cells. Our results support the notion, that CD44 enhances T cell receptor signaling strength by delivering lymphocyte-specific protein kinase, which is required for induction of IL-17 producing T helper cells.
Collapse
Affiliation(s)
- Julia Schumann
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Katarina Stanko
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Ulrike Schliesser
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Christine Appelt
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
- Berlin Brandenburg Center for Regenerative Therapies, Charité University Medicine, Berlin, Germany
| |
Collapse
|
5
|
Chapman NM, Houtman JCD. Functions of the FAK family kinases in T cells: beyond actin cytoskeletal rearrangement. Immunol Res 2015; 59:23-34. [PMID: 24816556 DOI: 10.1007/s12026-014-8527-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
T cells control the focus and extent of adaptive immunity in infectious and pathological diseases. The activation of T cells occurs when the T cell antigen receptor (TCR) and costimulatory and/or adhesion receptors are engaged by their ligands. This process drives signaling that promotes cytoskeletal rearrangement and transcription factor activation, both of which regulate the quality and magnitude of the T cell response. However, it is not fully understood how different receptor-induced signals combine to alter T cell activation. The related non-receptor tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are phosphorylated downstream of the TCR and several costimulatory and adhesion receptors. FAK family proteins integrate receptor-mediated signals that influence actin cytoskeletal rearrangement and effector T cell responses. In this review, we summarize the receptor-specific roles that FAK and Pyk2 control to influence T cell development and activation.
Collapse
Affiliation(s)
- Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
6
|
Viral interference with functions of the cellular receptor tyrosine phosphatase CD45. Viruses 2015; 7:1540-57. [PMID: 25807057 PMCID: PMC4379584 DOI: 10.3390/v7031540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/24/2022] Open
Abstract
The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal role of CD45 in the immune system, it is probably not surprising that viruses interfere with the activity of CD45 in lymphocytes to dampen the immune response and that they also utilize this molecule to accomplish their replication cycle. Here we report what is known about the interaction of viral proteins with CD45. Moreover, we debate putative interactions of viruses with CD45 in myeloid cells and the resulting consequences-subjects that remain to be investigated. Finally, we summarize the evidence that pathogens were the driving force for the evolution of CD45.
Collapse
|
7
|
Gong J, Luk F, Jaiswal R, Bebawy M. Microparticles Mediate the Intercellular Regulation of microRNA-503 and Proline-Rich Tyrosine Kinase 2 to Alter the Migration and Invasion Capacity of Breast Cancer Cells. Front Oncol 2014; 4:220. [PMID: 25177548 PMCID: PMC4133752 DOI: 10.3389/fonc.2014.00220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/01/2014] [Indexed: 11/13/2022] Open
Abstract
The successful treatment of cancer is hampered by drug resistance and metastasis. While these two obstacles were once considered separately, recent evidence associates resistance with an enhanced metastatic capacity. However, the underlying mechanisms remain undefined. We previously described the intercellular transfer of drug resistance via submicron vesicles called microparticles (MPs). We now propose that MPs derived from drug-resistant cells are also involved in the intercellular transfer of components to enhance the migration and invasion capacity of cells. Thus, MPs may be a conduit between resistance and metastasis. We used microarray analysis to identify regulatory microRNAs (miRNAs), which contribute to the dissemination of metastatic traits. miR-503 was downregulated in recipient cells following co-culture with MPs isolated from drug-resistant cells. miR-503 was inversely associated with metastasis, as demonstrated using wound healing/scratch migration assays and Matrigel®-coated transwell invasion assays. Proline-rich tyrosine kinase 2 (PYK2) was upregulated in recipient cells and associated with increased migration and invasion, with these phenotypes being reversed using a pharmacological inhibitor of PYK2 phosphorylation, tyrphostin A9. However, the MP-mediated promotion of metastatic traits was not due to the presence of these effectors in the MP cargo but rather due to down stream effector molecules in these pathways. This is the first demonstration that the role of MPs in trait acquisition extends beyond the direct transfer of vesicle components and also includes transfer of intermediary regulators that induce down stream mediators following transfer to recipient cells. This implicates an expanding role of MPs in cancer pathogenesis.
Collapse
Affiliation(s)
- Joyce Gong
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Sydney, NSW , Australia ; Sydney Medical School and Bosch Institute, The University of Sydney , Sydney, NSW , Australia
| | - Frederick Luk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Sydney, NSW , Australia
| | - Ritu Jaiswal
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Sydney, NSW , Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Sydney, NSW , Australia
| |
Collapse
|
8
|
Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer's disease. Oncoscience 2014; 1:486-503. [PMID: 25594051 PMCID: PMC4278314 DOI: 10.18632/oncoscience.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
No treatment strategies effectively limit the progression of Alzheimer's disease (AD), a common and debilitating neurodegenerative disorder. The absence of viable treatment options reflects the fact that the pathophysiology and genotypic causes of the disease are not well understood. The advent of genome-wide association studies (GWAS) has made it possible to broadly investigate genotypic alterations driving phenotypic occurrences. Recent studies have associated single nucleotide polymorphisms (SNPs) in two paralogous scaffolding proteins, NEDD9 and CASS4, and the kinase PTK2B, with susceptibility to late-onset AD (LOAD). Intriguingly, NEDD9, CASS4, and PTK2B have been much studied as interacting partners regulating oncogenesis and metastasis, and all three are known to be active in the brain during development and in cancer. However, to date, the majority of studies of these proteins have emphasized their roles in the directly cancer relevant processes of migration and survival signaling. We here discuss evidence for roles of NEDD9, CASS4 and PTK2B in additional processes, including hypoxia, vascular changes, inflammation, microtubule stabilization and calcium signaling, as potentially relevant to the pathogenesis of LOAD. Reciprocally, these functions can better inform our understanding of the action of NEDD9, CASS4 and PTK2B in cancer.
Collapse
|
9
|
Gebhard AW, Jain P, Nair RR, Emmons MF, Argilagos RF, Koomen JM, McLaughlin ML, Hazlehurst LA. MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma. Mol Cancer Ther 2013; 12:2446-58. [PMID: 24048737 DOI: 10.1158/1535-7163.mct-13-0310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma cell lines. Because of the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as a single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels, and failed to activate caspase-3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and liquid chromatography/tandem mass spectrometry analysis to identify binding partners of MTI-101. Using this approach, CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in multiple myeloma cell lines, indicating that multiple myeloma cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However, ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101-induced cell death. Mechanistically, we show that MTI-101-induced cell death occurs via a Rip1-, Rip3-, or Drp1-dependent and -independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma.
Collapse
Affiliation(s)
- Anthony W Gebhard
- Corresponding Author: Lori A. Hazlehurst, Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
St-Pierre J, Ostergaard HL. A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of paxillin degradation. PLoS One 2013; 8:e71531. [PMID: 23936270 PMCID: PMC3729947 DOI: 10.1371/journal.pone.0071531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Hanne L. Ostergaard
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
Shivtiel S, Lapid K, Kalchenko V, Avigdor A, Goichberg P, Kalinkovich A, Nagler A, Kollet O, Lapidot T. CD45 regulates homing and engraftment of immature normal and leukemic human cells in transplanted immunodeficient mice. Exp Hematol 2011; 39:1161-1170.e1. [PMID: 21911094 DOI: 10.1016/j.exphem.2011.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/21/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Bone marrow homing and engraftment by clinically transplanted hematopoietic stem and progenitor cells is a complex process that is not fully understood. We report that the pan-leukocyte CD45 phosphatase plays an essential role in trafficking and repopulation of the bone marrow by immature human CD34(+) cells and leukemic cells in transplanted nonobese diabetic severe combined immunodeficient mice. Inhibiting CD45 function by blocking antibodies or a CD45 inhibitor impaired the motility of both normal and leukemic human cells. Blocking CD45 inhibited homing and repopulation by immature human CD34(+) cells as well as homing of primary patient leukemic cells. In addition, CD45 inhibition negatively affected development of hematopoietic progenitors in vitro and their recovery in transplanted recipients in vivo, revealing the central role of CD45 in the regulation of hematopoiesis. Moreover, CD45 blockage induced a hyperadhesive phenotype in immature human progenitor cells as well as in murine leukocytes, leading to their defective adhesion interactions with endothelial cells. This phenotype was further manifested by the ability of CD45 blockage to prevent breakdown of adhesion interactions in the BM, which inhibited murine progenitor mobilization. The substantial effects of a direct CD45 inhibition point at its essential roles in cell trafficking, including murine progenitor cell mobilization and both normal immature and leukemic human hematopoietic cells as well as regulation of hematopoiesis and engraftment potential.
Collapse
Affiliation(s)
- Shoham Shivtiel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ruffell B, Poon GFT, Lee SSM, Brown KL, Tjew SL, Cooper J, Johnson P. Differential use of chondroitin sulfate to regulate hyaluronan binding by receptor CD44 in Inflammatory and Interleukin 4-activated Macrophages. J Biol Chem 2011; 286:19179-90. [PMID: 21471214 PMCID: PMC3103297 DOI: 10.1074/jbc.m110.200790] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/23/2011] [Indexed: 11/06/2022] Open
Abstract
CD44 is a cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan and is involved in processes ranging from leukocyte recruitment to wound healing. In the immune system, the binding of hyaluronan to CD44 is tightly regulated, and exposure of human peripheral blood monocytes to inflammatory stimuli increases CD44 expression and induces hyaluronan binding. Here we sought to understand how mouse macrophages regulate hyaluronan binding upon inflammatory and anti-inflammatory stimuli. Mouse bone marrow-derived macrophages stimulated with tumor necrosis factor α or lipopolysaccharide and interferon-γ (LPS/IFNγ) induced hyaluronan binding by up-regulating CD44 and down-regulating chondroitin sulfation on CD44. Hyaluronan binding was induced to a lesser extent in interleukin-4 (IL-4)-activated macrophages despite increased CD44 expression, and this was attributable to increased chondroitin sulfation on CD44, as treatment with β-d-xyloside to prevent chondroitin sulfate addition significantly enhanced hyaluronan binding. These changes in the chondroitin sulfation of CD44 were associated with changes in mRNA expression of two chondroitin sulfotransferases, CHST3 and CHST7, which were decreased in LPS/IFNγ-stimulated macrophages and increased in IL-4-stimulated macrophages. Thus, inflammatory and anti-inflammatory stimuli differentially regulate the chondroitin sulfation of CD44, which is a dynamic physiological regulator of hyaluronan binding by CD44 in mouse macrophages.
Collapse
Affiliation(s)
- Brian Ruffell
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Grace F. T. Poon
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sally S. M. Lee
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kelly L. Brown
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sie-Lung Tjew
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jessie Cooper
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pauline Johnson
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
13
|
Wong NK, Lai JC, Maeshima N, Johnson P. CD44-mediated elongated T cell spreading requires Pyk2 activation by Src family kinases, extracellular calcium, phospholipase C and phosphatidylinositol-3 kinase. Cell Signal 2011; 23:812-9. [DOI: 10.1016/j.cellsig.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/16/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
14
|
Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons. J Neurosci 2011; 31:2361-70. [PMID: 21325503 DOI: 10.1523/jneurosci.5764-10.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.
Collapse
|
15
|
Lefebvre DC, Lai JC, Maeshima N, Ford JL, Wong AS, Cross JL, Johnson P. CD44 interacts directly with Lck in a zinc-dependent manner. Mol Immunol 2010; 47:1882-9. [DOI: 10.1016/j.molimm.2010.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/20/2010] [Accepted: 03/23/2010] [Indexed: 01/13/2023]
|
16
|
Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010; 22:339-48. [PMID: 19861160 DOI: 10.1016/j.cellsig.2009.10.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.
Collapse
Affiliation(s)
- A E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
17
|
Schmitz I, Ariyoshi W, Takahashi N, Knudson CB, Knudson W. Hyaluronan oligosaccharide treatment of chondrocytes stimulates expression of both HAS-2 and MMP-3, but by different signaling pathways. Osteoarthritis Cartilage 2010; 18:447-54. [PMID: 19874928 PMCID: PMC2826598 DOI: 10.1016/j.joca.2009.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 10/06/2009] [Accepted: 10/10/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Small hyaluronan (HA) oligosaccharides displace HA from the cell surface and induce cell signaling events. In articular chondrocytes this cell signaling is mediated by the HA receptor CD44 and includes stimulation of genes involved in matrix degradation such as matrix metalloproteinases (MMPs) as well as matrix repair genes including collagen type II, aggrecan and HA synthase-2 (HAS-2). The objective of this study was to determine whether stimulation of HAS-2 and MMP-3 by HA oligosaccharides is due to the activation of a single, cascading pathway or multiple signaling pathways. METHOD Bovine articular chondrocytes were pre-treated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in HA were monitored by real time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of HAS-2 mRNA, HA ELISA and HA accumulation at the cell surface. A 1900 base pair sequence containing the proximal promoter of HAS-2 was inserted into a luciferase reporter construct, transfected into human immortalized chondrocytes and assayed in a similar fashion. RESULTS While our previous studies demonstrated that HA oligosaccharides stimulate MMP-13 activity via activation of p38 MAP kinase and NF-kappaB, inhibitors of these pathways did not affect the stimulation of HAS-2 mRNA expression. However, inhibiting the phosphatidylinositol-3-kinase pathway blocked HA oligosaccharide-mediated stimulation of HAS-2 yet had no effect on MMP-3. Wortmannin and LY294002 also blocked HA oligosaccharide-induced serine and threonine Akt phosphorylation. Treatment of transfected immortalized chondrocytes with HA oligosaccharides resulted in stimulation of HAS-2 mRNA, activation of Akt and enhanced luciferase activity-activity that was blocked by inhibitors of Akt phosphorylation. CONCLUSIONS Changes in chondrocyte-matrix interactions by HA oligosaccharides induce altered matrix metabolism by the activation of least two distinct signaling pathways.
Collapse
Affiliation(s)
- Ian Schmitz
- Department of Biochemistry, Rush Medical College, Rush University Medical Center, 1735 West Harrison Avenue, Chicago, Illinois 60612
| | - Wataru Ariyoshi
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354
| | - Nobunori Takahashi
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354
| | - Cheryl B. Knudson
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354
| | - Warren Knudson
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354,Address all correspondence and reprint requests to: Warren Knudson, Ph.D., Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354, 252-744-3483 office, 252-744-2850 fax,
| |
Collapse
|
18
|
Wong NKY, Lai JCY, Birkenhead D, Shaw AS, Johnson P. CD45 down-regulates Lck-mediated CD44 signaling and modulates actin rearrangement in T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7033-43. [PMID: 18981123 DOI: 10.4049/jimmunol.181.10.7033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tyrosine phosphatase CD45 dephosphorylates the negative regulatory tyrosine of the Src family kinase Lck and plays a positive role in TCR signaling. In this study we demonstrate a negative regulatory role for CD45 in CD44 signaling leading to actin rearrangement and cell spreading in activated thymocytes and T cells. In BW5147 T cells, CD44 ligation led to CD44 and Lck clustering, which generated a reduced tyrosine phosphorylation signal in CD45(+) T cells and a more sustained, robust tyrosine phosphorylation signal in CD45(-) T cells. This signal resulted in F-actin ring formation and round spreading in the CD45(+) cells and polarized, elongated cell spreading in CD45(-) cells. The enhanced signal in the CD45(-) cells was consistent with enhanced Lck Y394 phosphorylation compared with the CD45(+) cells where CD45 was recruited to the CD44 clusters. This enhanced Src family kinase-dependent activity in the CD45(-) cells led to PI3K and phospholipase C activation, both of which were required for elongated cell spreading. We conclude that CD45 induces the dephosphorylation of Lck at Y394, thereby preventing sustained Lck activation and propose that the amplitude of the Src family kinase-dependent signal regulates the outcome of CD44-mediated signaling to the actin cytoskeleton and T cell spreading.
Collapse
Affiliation(s)
- Nelson K Y Wong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
19
|
CD44-specific antibody treatment and CD44 deficiency exert distinct effects on leukocyte recruitment in experimental arthritis. Blood 2008; 112:4999-5006. [PMID: 18815286 DOI: 10.1182/blood-2008-04-150383] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CD44, the leukocyte adhesion receptor for hyaluronan, has been considered a therapeutic target on the basis of the robust anti-inflammatory effect of CD44-specific antibodies in animal models of immune-mediated diseases. However, CD44 deficiency does not provide substantial protection against inflammation. Using intravital video microscopy in a murine model of rheumatoid arthritis, we show that CD44 deficiency and anti-CD44 antibody treatment exert disparate effects on leukocyte recruitment in inflamed joints. Leukocyte rolling, which is increased in CD44-deficient mice, is promptly abrogated in anti-CD44-treated wild-type mice. CD44-specific antibodies also trigger platelet deposition on granulocytes and subsequent depletion of this leukocyte subset in the circulation. These in vivo effects require CD44 cross-linking and are reproducible with an antibody against Gr-1, a molecule that, like CD44, is highly expressed on granulocytes. Anticoagulant pretreatment, which prevents platelet deposition, mitigates both granulocyte depletion and the suppressive effect of CD44-specific antibody on joint swelling. Our observations suggest that cross-linking of prominent cell surface molecules, such as CD44 or Gr-1, can initiate a rapid self-elimination program in granulocytes through engagement of the coagulation system. We conclude that the robust anti-inflammatory effect of CD44-specific antibodies in arthritis is primarily the result of their ability to trigger granulocyte depletion.
Collapse
|
20
|
Vachon E, Martin R, Kwok V, Cherepanov V, Chow CW, Doerschuk CM, Plumb J, Grinstein S, Downey GP. CD44-mediated phagocytosis induces inside-out activation of complement receptor-3 in murine macrophages. Blood 2007; 110:4492-502. [PMID: 17827392 PMCID: PMC2234794 DOI: 10.1182/blood-2007-02-076539] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diverse receptors, including Fcgamma receptors and beta(2) integrins (complement receptor-3 [CR3], CD11b/CD18), have been implicated in phagocytosis, but their distinct roles and interactions with other receptors in particle engulfment are not well defined. CD44, a transmembrane adhesion molecule involved in binding and metabolism of hyaluronan, may have additional functions in regulation of inflammation and phagocytosis. We have recently reported that CD44 is a fully competent phagocytic receptor that is able to trigger ingestion of large particles by macrophages. Here, we investigated the role of coreceptors and intracellular signaling pathways in modulation of CD44-mediated phagocytosis. Using biotinylated erythrocytes coated with specific antibodies (anti-CD44-coated erythrocytes [Ebabs]) as the phagocytic prey, we determined that CD44-mediated phagocytosis is reduced by 45% by a blocking CD11b antibody. Further, CD44-mediated phagocytosis was substantially (42%) reduced in CD18-null mice. Immunofluorescence microscopy revealed that CD11b is recruited to the phagocytic cup. The mechanism of integrin activation and mobilization involved activation of the GTPase Rap1. CD44-mediated phagocytosis was also sensitive to the extracellular concentration of the divalent cation Mg(2+) but not Ca(2+). In addition, buffering of intracellular Ca(2+) did not affect CD44-mediated phagocytosis. Taken together, these data suggest that CD44 stimulation induces inside-out activation of CR3 through the GTPase Rap1.
Collapse
Affiliation(s)
- Eric Vachon
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Falconi D, Aubin JE. LIF inhibits osteoblast differentiation at least in part by regulation of HAS2 and its product hyaluronan. J Bone Miner Res 2007; 22:1289-300. [PMID: 17451373 DOI: 10.1359/jbmr.070417] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED LIF arrests osteogenesis in fetal rat calvaria cells in a differentiation stage-specific manner. Differential display identified HAS2 as a LIF-induced gene and its product, HA, modulated osteoblast differentiation similarly to LIF. Our data suggest that LIF arrests osteoblast differentiation by altering HA content of the extracellular matrix. INTRODUCTION Leukemia inhibitory factor (LIF) elicits both anabolic and catabolic effects on bone. We previously showed in the fetal rat calvaria (RC) cell system that LIF inhibits osteoblast differentiation at the late osteoprogenitor/early osteoblast stage. MATERIALS AND METHODS To uncover potential molecular mediators of this inhibitory activity, we used a positive-negative genome-wide differential display screen to identify LIF-induced changes in the developing osteoblast transcriptome. RESULTS Although LIF signaling is active throughout the RC cell proliferation-differentiation sequence, only a relatively small number of genes, in several different functional clusters, are modulated by LIF specifically during the LIF-sensitive inhibitory time window. Based on their known and predicted functions, most of the LIF-regulated genes identified are plausible candidates to be involved in the LIF-induced arrest of osteoprogenitor differentiation. To test this hypothesis, we further analyzed the function of one of the genes identified, hyaluronan synthase 2 (HAS2), in the LIF-induced inhibition. Synthesis of hyaluronan (HA), the product of HAS enzymatic activity, was stimulated by LIF and mimicked the HAS2 expression profile, with highest expression in early/proliferative and late/maturing cultures and lowest levels in intermediate/late osteoprogenitor-early osteoblast cultures. Exogenously added high molecular weight HA, the product of HAS2, dose-dependently inhibited osteoblast differentiation, with pulse-treatment effective in the same differentiation stage-specific inhibitory window as seen with LIF. In addition, however, pulse treatment with HA in early cultures slightly increased bone nodule formation. Treatment with hyaluronidase, on the other hand, stimulated bone nodule formation in early cultures but caused a small dose-dependent inhibition of osteoblast differentiation in the LIF- and HA-sensitive late time window. CONCLUSIONS Together the data suggest that osteoblast differentiation is acutely sensitive to HA levels and that LIF inhibits osteoblast development at least in part by stimulating high molecular weight HA synthesis through HAS2.
Collapse
Affiliation(s)
- Dominic Falconi
- Department of Medical Biophysics, University of Toronto. Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Maksumova L, Wang Y, Wong NKY, Le HT, Pallen CJ, Johnson P. Differential function of PTPalpha and PTPalpha Y789F in T cells and regulation of PTPalpha phosphorylation at Tyr-789 by CD45. J Biol Chem 2007; 282:20925-32. [PMID: 17507376 DOI: 10.1074/jbc.m703157200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD45 is a major membrane protein tyrosine phosphatase (PTP) expressed in T cells where it regulates the activity of Lck, a Src family kinase important for T cell receptor-mediated activation. PTPalpha is a more widely expressed transmembrane PTP that has been shown to regulate the Src family kinases, Src and Fyn, and is also present in T cells. Here, PTPalpha was phosphorylated at Tyr-789 in CD45(-) T cells but not in CD45(+) T cells suggesting that CD45 could regulate the phosphorylation of PTPalpha at this site. Furthermore, CD45 could directly dephosphorylate PTPalpha in vitro. Expression of PTPalpha and PTPalpha-Y789F in T cells revealed that the mutant had a reduced ability to decrease Fyn and Cbp phosphorylation, to regulate the kinase activity of Fyn, and to restore T cell receptor-induced signaling events when compared with PTPalpha. Conversely, this mutant had an increased ability to prevent Pyk2 phosphorylation and CD44-mediated cell spreading when compared with PTPalpha. These data demonstrate distinct activities of PTPalpha and PTPalpha-Y789F in T cells and identify CD45 as a regulator of PTPalpha phosphorylation at tyrosine 789 in T cells.
Collapse
Affiliation(s)
- Lola Maksumova
- Departments of Pediatrics, Microbiology and Immunology, and Pathology and Laboratory Medicine, University of British Columbia and Child & Family Research Institute, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Marhaba R, Freyschmidt-Paul P, Zöller M. In vivo CD44-CD49d complex formation in autoimmune disease has consequences on T cell activation and apoptosis resistance. Eur J Immunol 2007; 36:3017-32. [PMID: 17039568 DOI: 10.1002/eji.200636158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD44 is involved in leukocyte migration and activation and has recently been reported to contribute to leukocyte extravasation by associating with CD49d. We explored whether similar changes in CD44 activity are seen in vivo using murine alopecia areata (AA) as a chronic, organ-related autoimmune disease model system. Expression of the activated, hyaluronan-binding form of CD44, and of CD49d, was elevated in draining lymph node cells (LNC) of AA-affected mice as compared to control mice. LNC of AA mice displayed increased motility, proliferative activity and apoptosis resistance, which were equally well inhibited by anti-CD44 and anti-CD49d. The latter is the sequelae of the association between CD44 and CD49d that is seen in activated lymphocytes. Significantly, due to CD44-CD49d complex formation, CD44 gains access to focal adhesion kinase and CD49d gains access to CD44-associated lck and ezrin, such that downstream kinases become activated via CD44 or CD49d engagement. Thus, by their association, CD44 and CD49d mutually avail themselves of the partner's signaling pathways and the ligand binding of each one triggers signaling pathways of both. This strongly influences the lymphocytes' activation state and function.
Collapse
Affiliation(s)
- Rachid Marhaba
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, Heidelberg, Germany.
| | | | | |
Collapse
|
24
|
Li L, Heldin CH, Heldin P. Inhibition of platelet-derived growth factor-BB-induced receptor activation and fibroblast migration by hyaluronan activation of CD44. J Biol Chem 2006; 281:26512-9. [PMID: 16809345 DOI: 10.1074/jbc.m605607200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The extracellular matrix molecule hyaluronan was found to suppress platelet-derived growth factor (PDGF) beta-receptor activation and PDGF-BB-induced migration of primary human dermal fibroblasts. The suppressive effect of hyaluronan was neutralized by a monoclonal antibody that specifically inhibits hyaluronan binding to its receptor CD44. Moreover, co-immunoprecipitation experiments showed that the PDGF beta-receptor and CD44 can form a complex. Interestingly, the inhibitory effect of hyaluronan on PDGF beta-receptor activation was not seen in the presence of the tyrosine phosphatase inhibitor pervanadate. Our observations suggest that hyaluronan suppresses PDGF beta-receptor activation by recruiting a CD44-associated tyrosine phosphatase to the receptor.
Collapse
Affiliation(s)
- Lingli Li
- Ludwig Institute for Cancer Research, Uppsala University, Biomedical Center, Box 595, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
25
|
Mason LH, Willette-Brown J, Taylor LS, McVicar DW. Regulation of Ly49D/DAP12 Signal Transduction by Src-Family Kinases and CD45. THE JOURNAL OF IMMUNOLOGY 2006; 176:6615-23. [PMID: 16709819 DOI: 10.4049/jimmunol.176.11.6615] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activating, DAP12-coupled members of the Ly-49 family of NK cell receptors help control viral infections in mice. However, the kinases and/or phosphatases mediating tyrosine phosphorylation of Ly-49D-associated DAP12 have not been elucidated. In this study, we show for the first time that Src family tyrosine kinases are physically and functionally associated with Ly-49D/DAP12 signaling in murine NK cells. Specifically, we demonstrate the following: 1) inhibition of Src family kinases suppresses DAP12 phosphorylation and downstream DAP12 signals; 2) both Fyn and Lck are capable of phosphorylating DAP12; and 3) both kinases coimmunoprecipitate with the Ly-49D/DAP12 complex in NK cells. Although we detect enhanced phosphorylation of Fyn upon Ly-49D cross-linking in NK cells, Ly-49D-mediated events in both Fyn-/- and Fyn/Lck-/- mice appear normal, reinforcing the theme of redundancy in the ability of Src family kinases to initiate activation events. In contrast to disruption of specific Src family enzymes, Ly-49D/DAP12-mediated calcium mobilization and cytokine production by CD45 null NK cells are defective. Although others have ascribed the effects of CD45 mutation solely on the suppression of Src family activity, we demonstrate in this study that DAP12 is hyperphosphorylated in CD45 null NK cells, resulting in uncoordinated tyrosine-mediated signaling upon Ly-49D ligation. Therefore, although our data are consistent with a Src kinase activity proximally within DAP12 signaling, DAP12 also appears to be a substrate of CD45, suggesting a more complex role for this phosphatase than has been reported previously.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antibodies, Monoclonal/metabolism
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Antigens, Ly/physiology
- Cell Line
- Cells, Cultured
- Cross-Linking Reagents/metabolism
- Cytotoxicity Tests, Immunologic
- Down-Regulation/immunology
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/physiology
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/physiology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily A
- Phosphorylation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins c-fyn/deficiency
- Proto-Oncogene Proteins c-fyn/genetics
- Proto-Oncogene Proteins c-fyn/physiology
- Pyrimidines/pharmacology
- Receptors, NK Cell Lectin-Like
- Signal Transduction/immunology
- Syk Kinase
- Tyrosine/metabolism
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Llewellyn H Mason
- Laboratory of Experimental Immunology, National Cancer Institute, Center for Cancer Research, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
26
|
Ostergaard HL, Lysechko TL. Focal adhesion kinase-related protein tyrosine kinase Pyk2 in T-cell activation and function. Immunol Res 2006; 31:267-82. [PMID: 15888917 DOI: 10.1385/ir:31:3:267] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pyk2 is a protein tyrosine kinase expressed primarily in brain and hematopoietic cells. It becomes activated in response to stimulation through numerous receptors, including integrins, chemokine receptors, and antigen receptors, and is found in association with src-family kinases. Although this enzyme associates with many proteins known to be important for activation and has many characteristics of a scaffolding protein, its function remains elusive. A number of studies in non-T-cells suggest that Pyk2 is important for cell spreading, cell migration, and integrin function; however, a defined role in T-cells has not been established. Here, we discuss evidence that implicates Pyk2 in directionality of signaling, which is essential to establishment of the directional killing mediated by cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Hanne L Ostergaard
- Department of Medical Microbiology & Immunology, University of Alberta, 670 Heritage Medicval Centre, Edmonton, Alberta T6G 2S2, Canada.
| | | |
Collapse
|
27
|
Du P, Loulakis P, Luo C, Mistry A, Simons SP, LeMotte PK, Rajamohan F, Rafidi K, Coleman KG, Geoghegan KF, Xie Z. Phosphorylation of serine residues in histidine-tag sequences attached to recombinant protein kinases: A cause of heterogeneity in mass and complications in function. Protein Expr Purif 2005; 44:121-9. [PMID: 15946859 DOI: 10.1016/j.pep.2005.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/18/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
High-level recombinant expression of protein kinases in eukaryotic cells or Escherichia coli commonly gives products that are phosphorylated by autocatalysis or by the action of endogenous kinases. Here, we report that phosphorylation occurred on serine residues adjacent to hexahistidine affinity tags (His-tags) derived from several commercial expression vectors and fused to overexpressed kinases. The result was observed with a variety of recombinant kinases expressed in either insect cells or E. coli. Multiple phosphorylations of His-tagged full-length Aurora A, a protein serine/threonine kinase, were detected by mass spectrometry when it was expressed in insect cells in the presence of okadaic acid, a protein phosphatase inhibitor. Peptide mapping by liquid chromatography-mass spectrometry detected phosphorylations on all three serine residues in an N-terminal tag, alpha-N-acetyl-MHHHHHHSSGLPRGS. The same sequence was also phosphorylated, but only at a low level, when a His-tagged protein tyrosine kinase, Pyk2 was expressed in insect cells and activated in vitro. When catalytic domains of Aurora A and several other protein serine/threonine kinases were expressed in E. coli, serines in the affinity tag sequence GSSHHHHHHSSGLVPRGS were also variably phosphorylated. His-Aurora A with hyperphosphorylation of the serine residues in the tag aggregated and resisted thrombin-catalyzed removal of the tag. Treatment with alkaline phosphatase partly restored sensitivity to thrombin. The same His-tag sequence was also detected bearing alpha-N-d-gluconoylation in addition to multiple phosphorylations. The results show that histidine-tag sequences can receive complicated posttranslational modification, and that the hyperphosphorylation and resulting heterogeneity of the recombinant fusion proteins can interfere with downstream applications.
Collapse
Affiliation(s)
- Ping Du
- Pfizer Global Research and Development, Groton Laboratories, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Johnson P. Expression of CD45 Lacking the Catalytic Protein Tyrosine Phosphatase Domain Modulates Lck Phosphorylation and T Cell Activation. J Biol Chem 2005; 280:14318-24. [PMID: 15687496 DOI: 10.1074/jbc.m413265200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the second protein tyrosine phosphatase domain (D2) in two-domain protein tyrosine phosphatases (PTP) is not well understood. In CD45, D2 can interact with the catalytic domain (D1) and stabilize its activity. Although D2 itself has no detectable catalytic activity, it can bind substrate and may influence the substrate specificity of CD45. To further explore the function of D2 in T cells, a full-length construct of CD45 lacking the D1 catalytic domain (CD45RABC-D2) was expressed in CD45+ and CD45- Jurkat T cells. In CD45- Jurkat T cells, CD45RABC-D2 associated with Lck but, unlike its active counterpart CD45RABC, did not restore the induction of tyrosine phosphorylation or CD69 expression upon T cell receptor (TCR) stimulation. Expression of CD45RABC-D2 in CD45+ Jurkat T cells resulted in its association with Lck, increased the phosphorylation state of Lck, and reduced T cell activation. TCR-induced tyrosine phosphorylation was delayed, and although MAPK phosphorylation and CD69 expression were not significantly affected, the calcium signal and IL2 production were severely reduced. This indicates that the non-catalytic domains of CD45 can interact with Lck in T cells. CD45RABC-D2 acts as a dominant negative resulting in an increase in Lck phosphorylation and a preferential loss of the calcium signaling pathway, but not the MAPK pathway, upon TCR signaling. This finding suggests that, in addition to their established roles in the initiation of TCR signaling, CD45 and Lck may also influence the type of TCR signal generated.
Collapse
Affiliation(s)
- Yanni Wang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
29
|
Abstract
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Collapse
Affiliation(s)
- R Marhaba
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | |
Collapse
|
30
|
Wei L, Yang Y, Zhang X, Yu Q. Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis. Oncogene 2004; 23:9052-61. [PMID: 15489898 DOI: 10.1038/sj.onc.1208091] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Src plays an important role in cell proliferation, differentiation, adhesion, and migration. Altered Src activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers. We have analysed the change and regulation of Src upon cell detachment in anoikis-resistant human lung adenocarcinoma cells and compared with that of relatively normal and anoikis-sensitive epithelial cells. We found that Src activity was increased in the anoikis-resistant lung tumor cells when they were detached and cultured in suspension. The detachment-induced Src activation in the tumor cells compensates for the loss of cell survival signals caused by disruption of cell--matrix interactions and contributes to anoikis resistance of the tumor cells. Pyk2, rather than PI 3K/Akt or Erk, appears to be the key downstream effecter of Src in mediating the cell survival signals. The increased Src activity is mainly due to the phosphorylation of Tyr-419, rather than the dephosphorylation of Tyr-530 of Src protein. PDGFR, not FAK or EGFR, appears to be the upstream protein tyrosine kinase responsible for the detachment-induced Src activation in the lung tumor cells. The increased Src activity upon cell detachment may contribute to the metastasis potential of malignant tumors.
Collapse
Affiliation(s)
- Lin Wei
- Department of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
31
|
Szántó S, Gál I, Gonda A, Glant TT, Mikecz K. Expression of L-selectin, but not CD44, is required for early neutrophil extravasation in antigen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2004; 172:6723-34. [PMID: 15153489 DOI: 10.4049/jimmunol.172.11.6723] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
L (leukocyte)-selectin (CD62L) and CD44 are major adhesion receptors that support the rolling of leukocytes on endothelium, the first step of leukocyte entry into inflamed tissue. The specific contribution of L-selectin or CD44 to the regulation of cell traffic to joints in arthritis has not been investigated. We used CD44-deficient, L-selectin-deficient, and CD44/L-selectin double knockout mice to determine the requirement for these receptors for inflammatory cell recruitment during Ag-induced arthritis. Intraperitoneal immunization resulted in similar activation status and Ag-specific responses in wild-type and gene-targeted mice. However, extravasation of neutrophil granulocytes, but not the emigration of T cells, into the knee joints after intra-articular Ag injection was significantly delayed in L-selectin-deficient and double knockout mice. Intravital videomicroscopy on the synovial microcirculation revealed enhanced leukocyte rolling and diminished adherence in mice lacking either CD44 or L-selectin, but CD44 deficiency had no significant effect on the recruitment of L-selectin-null cells. Compared with wild-type leukocytes, expression of L-selectin was down-regulated in CD44-deficient cells in the spleen, peripheral blood, and inflamed joints, suggesting that reduced expression of L-selectin, rather than the lack of CD44, could be responsible for the delayed influx of granulocytes into the joints of CD44-deficient mice. In conclusion, there is a greater requirement for L-selectin than for CD44 for neutrophil extravasation during the early phase of Ag-induced arthritis.
Collapse
Affiliation(s)
- Sándor Szántó
- Section of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
32
|
Duxbury MS, Ito H, Ashley SW, Whang EE. CEACAM6 cross-linking induces caveolin-1-dependent, Src-mediated focal adhesion kinase phosphorylation in BxPC3 pancreatic adenocarcinoma cells. J Biol Chem 2004; 279:23176-82. [PMID: 15047698 DOI: 10.1074/jbc.m402051200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite lacking transmembrane or intracellular domains, glycosylphosphatidylinositol-anchored proteins can modulate intracellular signaling events, in many cases through aggregation within membrane "lipid raft" microdomains. CEACAM6 is a glycosylphosphatidylinositol-linked cell surface protein of importance in the anchorage-independent survival and metastasis of pancreatic adenocarcinoma cells. We examined the effects of antibody-mediated cross-linking of CEACAM6 on intracellular signaling events and anchorage-independent survival of the CEACAM6-overexpressing pancreatic ductal adenocarcinoma cell line, BxPC3. CEACAM6 cross-linking increased c-Src activation and induced tyrosine phosphorylation of p125(FAK) focal adhesion kinase. Focal adhesion kinase phosphorylation was dependent on c-Src kinase activation, for which caveolin-1 was required. CEACAM6 cross-linking induced a significant increase in cellular resistance to anoikis. These observations represent the first characterization of the mechanism through which this important cell surface oncoprotein influences intracellular signaling events and hence malignant cellular behavior.
Collapse
Affiliation(s)
- Mark S Duxbury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
33
|
Tanaka Y, Kobayashi H, Suzuki M, Kanayama N, Terao T. Transforming growth factor-beta1-dependent urokinase up-regulation and promotion of invasion are involved in Src-MAPK-dependent signaling in human ovarian cancer cells. J Biol Chem 2003; 279:8567-76. [PMID: 14676209 DOI: 10.1074/jbc.m309131200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) has been implicated in tumor cell invasion and metastasis. We reported previously that transforming growth factor (TGF)-beta1 induces a dose- and time-dependent up-regulation of uPA mRNA and protein in highly invasive human ovarian cancer cell line HRA, leading to invasion. To further elucidate the mechanism of the invasive effect of TGF-beta1, we investigated which signaling pathway transduced by TGF-beta1 is responsible for this effect. Here, we show that 1) nontoxic concentrations of TGF-beta1 activated Src kinase; 2) TGF-beta1 rapidly phosphorylates ERK1/2 and Akt, but not p38; 3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment reduced TGF-beta1-induced phosphorylation of ERK1/2 and Akt by 85-90% compared with controls; 4) pharmacological inhibition of MAPK by PD98059 abrogated TGF-beta1-mediated Akt stimulation, whereas TGF-beta1-induced ERK1/2 stimulation was not inhibited by PI3K inhibitor LY294002 or AS-PI3K ODN transfection; 5) up-regulation of uPA mRNA in response to TGF-beta1 was almost totally blocked by PP2 and PD98059 and partially ( approximately 55%) by LY294002; 6) TGF-beta1-induced uPA mRNA up-regulation was inhibited by treatment with AS ODNs to c-Src or PI3K by 90 or 60%, respectively, compared with control ODN treatment; and 7) blockade of the release of the transcription factor NF-kappaB by pyrrolidinedithiocarbamate reduced the TGF-beta1-induced activation of the uPA gene by approximately 65%. In addition, curcumin, a blocker of the transcriptional factor AP-1, partially (35%) canceled this effect. Taken together, these data support a role for TGF-beta1 activation of two distinct pathways (Src-MAPK-PI3K-NF-kappaB-dependent and Src-MAPK-AP-1-dependent) for TGF-beta1-dependent uPA up-regulation and promotion of invasion.
Collapse
Affiliation(s)
- Yoshiko Tanaka
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | |
Collapse
|
34
|
Roscic-Mrkic B, Fischer M, Leemann C, Manrique A, Gordon CJ, Moore JP, Proudfoot AEI, Trkola A. RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 2003; 102:1169-77. [PMID: 12714503 DOI: 10.1182/blood-2003-02-0488] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CC-chemokine RANTES (regulated on activation normal T-cell expressed and secreted; CCL5) transduces multiple intracellular signals. Like all chemokines, it stimulates G protein-coupled receptor (GPCR) activity through interaction with its cognate chemokine receptor(s), but in addition also activates a GPCR-independent signaling pathway. Here, we show that the latter pathway is mediated by an interaction between RANTES and glycosaminoglycan chains of CD44. We provide evidence that this association, at both low, physiologically relevant, and higher, probably supraphysiologic concentrations of RANTES, induces the formation of a signaling complex composed of CD44, src kinases, and adapter molecules. This triggers the activation of the p44/42 mitogen-activated protein kinase (MAPK) pathway. By specifically reducing CD44 expression using RNA interference we were able to demonstrate that the p44/p42 MAPK activation by RANTES requires a high level of CD44 expression. As well as potently inhibiting the entry of CCR5 using HIV-1 strains, RANTES can enhance HIV-1 infectivity under certain experimental conditions. This enhancement process depends in part on the activation of p44/p42 MAPK. Here we show that silencing of CD44 in HeLa-CD4 cells prevents the activation of p44/p42 MAPK and leads to a substantial reduction in HIV-1 infectivity enhancement by RANTES.
Collapse
Affiliation(s)
- Branka Roscic-Mrkic
- Division of Infectious Diseases, Department of Medicine, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fernandis AZ, Cherla RP, Ganju RK. Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem 2003; 278:9536-43. [PMID: 12519755 DOI: 10.1074/jbc.m211803200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells. We observed a significant reduction in CXCL12-induced chemotaxis in the CD45-negative Jurkat cell line (J45.01) as compared with the CD45-positive control (JE6.1) cells. Expression of a chimeric protein containing the intracellular phosphatase domain of CD45 was able to partially restore CXCL12-induced chemotaxis in the J45.01 cells. However, reconstitution of CD45 into the J45.01 cells restored the CXCL12-induced chemotaxis to about 90%. CD45 had no significant effect on CXCL12 or human immunodeficiency virus gp120-induced internalization of the CXCR4 receptor. Furthermore, J45.01 cells showed a slight enhancement in CXCL12-induced MAP kinase activity as compared with the JE6.1 cells. We also observed that CXCL12 treatment enhanced the tyrosine phosphorylation of CD45 and induced its association with the CXCR4 receptor. Pretreatment of T-cells with the lipid raft inhibitor, methyl-beta-cyclodextrin, blocked the association between CXCR4 and CD45 and markedly abolished CXCL12-induced chemotaxis. Comparisons of signaling pathways induced by CXCL12 in JE6.1 and J45.01 cells revealed that CD45 might moderately regulate the tyrosine phosphorylation of the focal adhesion components the related adhesion focal tyrosine kinase/Pyk2, focal adhesion kinase, p130Cas, and paxillin. CD45 has also been shown to regulate CXCR4-mediated activation and phosphorylation of T-cell receptor downstream effectors Lck, ZAP-70, and SLP-76. Our results show that CD45 differentially regulates CXCR4-mediated chemotactic activity and MAPK activation by modulating the activities of focal adhesion components and the downstream effectors of the T-cell receptor.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cell Line
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis
- Dose-Response Relationship, Drug
- Enzyme Activation
- Flow Cytometry
- Gene Expression Regulation
- Humans
- Jurkat Cells
- Leukocyte Common Antigens/metabolism
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocytes/metabolism
- MAP Kinase Signaling System
- Microscopy, Confocal
- Microscopy, Fluorescence
- Phosphoproteins/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/metabolism
- Signal Transduction
- T-Lymphocytes/metabolism
- Time Factors
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Aaron Z Fernandis
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
36
|
Goel HL, Dey CS. Insulin stimulates spreading of skeletal muscle cells involving the activation of focal adhesion kinase, phosphatidylinositol 3-kinase and extracellular signal regulated kinases. J Cell Physiol 2002; 193:187-98. [PMID: 12384996 DOI: 10.1002/jcp.10161] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Insulin plays an important role in muscle cell survival and proliferation. However, there is no report showing the role of insulin in spreading of muscle cells. In the present report, we showed that insulin enhances muscle cell spreading concomitant with enhanced tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin. Moreover, insulin can stimulate the cell spreading even in presence of integrin alpha5 blockers although to a lesser extent as compared to control. Cell adhesion was not dependent on insulin and serum, and decreased in presence of integrin blockers. We found direct association of FAK with affinity purified insulin receptors using in vitro kinase assay. The increase in FAK tyrosine phosphorylation was associated with increase in its kinase activity and further supported by increased phosphotyrosine accumulation on focal adhesions and increased membrane localization of FAK after stimulation by insulin. Moreover, insulin-mediated muscle cell spreading was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase) activity. PI 3-kinase activity was found to be associated with FAK and the FAK associated PI 3-kinase activity enhanced when cells were plated in presence of insulin. We also observed activation of MAP kinases, i.e., ERK-1/-2 during insulin mediated muscle cell spreading. In conclusion, FAK, PI 3-kinase, and MAP kinase are important components of pathway(s) that regulate insulin stimulated muscle cell spreading.
Collapse
Affiliation(s)
- Hira Lal Goel
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
37
|
Edmonds SD, Ostergaard HL. Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5036-42. [PMID: 12391219 DOI: 10.4049/jimmunol.169.9.5036] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The receptor-like protein tyrosine phosphatase CD45 is essential for TCR signal transduction. Substrates of CD45 include the protein tyrosine kinases p56(lck) and p59(fyn), both of which have been shown to be enriched in detergent-insoluble microdomains. Here we find that there is a cholesterol-dependent association between CD45 and the raft-associated protein linker for activation of T cells, suggesting that CD45 and linker for activation of T cells may colocalize in lipid rafts. Consistent with this observation, we find that approximately 5% of total CD45 can be detected in Triton X-100-insoluble buoyant fractions of sucrose gradients, demonstrating that CD45 is not excluded from lipid rafts. Upon stimulation of T cells with anti-CD3, there is a reduction in the amount of CD45 found associating with lipid rafts. Our data suggest that CD45 is present in lipid rafts in T cells before activation, perhaps to activate raft-associated p56(lck), allowing membrane-proximal signaling events to proceed. Furthermore, the reduction in CD45 content of lipid rafts after CD3 stimulation may serve to limit the amounts of activated p56(lck) in rafts and thus possibly the duration of T cell responses.
Collapse
Affiliation(s)
- Stuart D Edmonds
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
38
|
Rilla K, Lammi MJ, Sironen R, Törrönen K, Luukkonen M, Hascall VC, Midura RJ, Hyttinen M, Pelkonen J, Tammi M, Tammi R. Changed lamellipodial extension, adhesion plaques and migration in epidermal keratinocytes containing constitutively expressed sense and antisense hyaluronan synthase 2 (Has2) genes. J Cell Sci 2002; 115:3633-43. [PMID: 12186949 DOI: 10.1242/jcs.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyaluronan is a major component of the epidermal extracellular matrix, is actively synthesized by keratinocytes and shows fast matrix turnover in the stratified epithelium. We probed the importance of hyaluronan synthesis in keratinocytes by establishing cell lines carrying the exogenous hyaluronan synthase 2 (Has2) gene in sense and antisense orientations to increase and decrease their hyaluronan synthesis, respectively. Compared with cell lines transfected with the vector only, most clones containing the Has2 sense gene migrated faster in an in vitro wounding assay, whereas Has2 antisense cells migrated more slowly. Has2 antisense clones showed delayed entry into the S phase of cell cycle following plating, smaller lamellipodia and less spreading on the substratum. The decrease of hyaluronan on the undersurface of Has2 antisense cells was associated with an increased area of adhesion plaques containing vinculin. Exogenous hyaluronan added to the keratinocyte cultures had a minor stimulatory effect on migration after wounding but did not restore the reduced migratory ability of Has2 antisense cells. Hyaluronan decasaccharides that displace receptor bound hyaluronan in keratinocytes, and Streptomyces hyaluronidase sufficient to remove most cell surface hyaluronan had little effect on cell migration. The results suggest that the dynamic synthesis of hyaluronan directed by Has2, rather than the abundance of pericellular hyaluronan, controls keratinocyte migration, a cell function vital for the repair of squamous epithelia following wounding.
Collapse
Affiliation(s)
- Kirsi Rilla
- Department of Anatomy, University of Kuopio, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamada T, Zhu D, Saxon A, Zhang K. CD45 controls interleukin-4-mediated IgE class switch recombination in human B cells through its function as a Janus kinase phosphatase. J Biol Chem 2002; 277:28830-5. [PMID: 11994288 DOI: 10.1074/jbc.m201781200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD45 plays a critical regulatory role in receptor signaling through its protein tyrosine phosphatase and Janus kinase (JAK) phosphatase activities. To investigate whether CD45 also plays a regulatory role in Ig class switching in human B cells, we examined the effects of CD45 triggering on Ig class switching to IgE and its relationship with CD45 JAK phosphatase activity. Anti-CD45 triggering of CD45 significantly inhibited interleukin-4 + anti-CD40-induced switch recombination in a switch recombination vector assay in stably transfected Ramos 2G6 human B cells, as well as Ig epsilon germ-line transcription and Smu-Sepsilon switch recombination in primary human B cells. These negative regulatory effects on Ig class switching were concomitant with the ability of CD45 to dephosphorylate the induced phosphorylation of JAK1, JAK3, and signal transducer and activator of transcription 6, but not on stress-activated/mitogen-activated protein kinases. We also showed that phosphorylated JAK1 and JAK3 were directly dephosphorylated by recombinant CD45 in vitro. These results indicate that CD45 is able to function as JAK phosphatase in human B cells and that this activity is directly associated with the negative regulation of the class switch recombination to IgE. CD45 may be an appropriate target drug for modulating IgE in allergic diseases.
Collapse
Affiliation(s)
- Takechiyo Yamada
- Hart and Louis Laboratory, Division of Clinical Immunology, Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1680, USA
| | | | | | | |
Collapse
|
40
|
Huang J, Lo PF, Zal T, Gascoigne NRJ, Smith BA, Levin SD, Grey HM. CD28 plays a critical role in the segregation of PKC theta within the immunologic synapse. Proc Natl Acad Sci U S A 2002; 99:9369-73. [PMID: 12077322 PMCID: PMC123147 DOI: 10.1073/pnas.142298399] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2002] [Indexed: 11/18/2022] Open
Abstract
The signaling pathways that lead to the localization of cellular protein to the area of interaction between T cell and antigen-presenting cell and the mechanism by which these molecules are further sorted to the peripheral supramolecular activation cluster or central supramolecular activation cluster regions of the immunologic synapse are poorly understood. In this study, we investigated the functional involvement of CD28 costimulation in the T cell receptor (TCR)-mediated immunologic synapse formation with respect to protein kinase C (PKC)theta; localization. We showed that CD3 crosslinking alone was sufficient to induce PKC theta; capping in naive CD4(+) T cells. Studies with pharmacologic inhibitors and knockout mice showed that the TCR-derived signaling that drives PKC theta; membrane translocation requires the Src family kinase, Lck, but not Fyn. In addition, a time course study of the persistence of T cell molecules to the immunologic synapse indicated that PKC theta;, unlike TCR, persisted in the synapse for at least 4 h, a time that is sufficient for commitment of a T cell to cell division. Finally, by using TCR-transgenic T cells from either wild-type or CD28-deficient mice, we showed that CD28 expression was required for the formation of the mature immunologic synapse, because antigen stimulation of CD28(-) T cells led to a diffuse pattern of localization of PKC theta; and lymphocyte function-associated antigen-1 in the immunologic synapse, in contrast to the central supramolecular activation cluster localization of PKC theta; in CD28(+) T cells.
Collapse
Affiliation(s)
- Jianyong Huang
- Division of Immunochemistry, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|