1
|
Wan W, Wang N. Polarized benzene rings can promote the interaction between CaM and the CaMBD region of nNOS. Front Mol Neurosci 2024; 17:1461272. [PMID: 39290828 PMCID: PMC11405375 DOI: 10.3389/fnmol.2024.1461272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The neuronal nitric oxide synthase (nNOS) subtype of nitric oxide synthase (NOS) is an enzyme required for learning and memory. Overactivation of nNOS can lead to oxidative/nitrite stress, which is complicit in the pathophysiology of various neurological and psychiatric disorders. Previous studies have shown that calmodulin (CaM) forms complexes with Ca2+ and binds to the calmodulin-binding domain (CaMBD) of nNOS, thereby upregulating its catalytic activity in hippocampal neurons. To date, there has been no explanation for the non-covalent interactions in the CaMBD-CaM binding structure model of nNOS. Methods In this study, we aimed to investigate the intrinsic factors involved in the binding of CaM to NOS-CaMBD and designed interfering peptides based on the N0 peptide structure of the original nNOS-CaMBD sequence: N1 (obtained from the L734F mutation), N2 (obtained from the F731Y and F740Y mutations), and N3 (obtained from the F731L, V738L, and F740L mutations). We employed homology modeling to construct six CaM-peptide complex models, aiming to elucidate the roles of key amino acid residues within the N0 peptide in its interaction with CaM by means of molecular dynamics simulations. The effect of the peptides on the activation and release of NO by nNOS in neurons was assessed using murine primary neuronal cells. Results When measuring neuronal NO content, it was found that adding N2 and N3 to cultivated neurons significantly increased nNOS activity, leading to the increased NO production. We found that interfering peptides could stably bind to CaM. Among them, N2 and CaM exhibited the strongest binding ability, indicating that the polarized benzene ring significantly enhanced the binding between nNOS-CaMBD and CaM. Conversely, the binding ability between N0 and CaM was the weakest, as they exhibited the worst polar contact, weakest hydrogen bonding, and the lowest binding free energy. The simulation results also highlighted several important amino acid residues: The K76 of CaM plays an important role in polar contact and hydrogen bonding formation, the L734 residue suppressed model flexibility to a certain extent and had an adverse effect on the overall binding free energy of the model. These results, compared with the results of cellular NO content, a preliminary verification of the antagonistic competitive mechanism between CaM allosteric activation of nNOS and SUMOylation hyperactivation was performed. Discussion In summary, this study explored the ability and mode of action of key residues in nNOS-CaMBD on the binding of interfering peptides to CaM, thereby providing new structural perspectives for the activation of nNOS by CaM and recommendations for drug design targeting the specific inhibition of nNOS.
Collapse
Affiliation(s)
- Wei Wan
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center of Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center of Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Jiang T, Wan G, Zhang H, Gyawali YP, Underbakke ES, Feng C. Mapping the Intersubunit Interdomain FMN-Heme Interactions in Neuronal Nitric Oxide Synthase by Targeted Quantitative Cross-Linking Mass Spectrometry. Biochemistry 2024; 63:1395-1411. [PMID: 38747545 DOI: 10.1021/acs.biochem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain-domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., Biochemistry, 2023, 62, 2232-2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yadav Prasad Gyawali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
3
|
Felker D, Lee K, Pospiech TH, Morishima Y, Zhang H, Lau M, Southworth DR, Osawa Y. Mapping interactions of calmodulin and neuronal NO synthase by crosslinking and mass spectrometry. J Biol Chem 2024; 300:105464. [PMID: 37979917 PMCID: PMC10716779 DOI: 10.1016/j.jbc.2023.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
Neuronal nitric oxide synthase (nNOS) is a homodimeric cytochrome P450-like enzyme that catalyzes the conversion of L-arginine to nitric oxide in the presence of NADPH and molecular oxygen. The binding of calmodulin (CaM) to a linker region between the FAD/FMN-containing reductase domain, and the heme-containing oxygenase domain is needed for electron transfer reactions, reduction of the heme, and NO synthesis. Due to the dynamic nature of the reductase domain and low resolution of available full-length structures, the exact conformation of the CaM-bound active complex during heme reduction is still unresolved. Interestingly, hydrogen-deuterium exchange and mass spectrometry studies revealed interactions of the FMN domain and CaM with the oxygenase domain for iNOS, but not nNOS. This finding prompted us to utilize covalent crosslinking and mass spectrometry to clarify interactions of CaM with nNOS. Specifically, MS-cleavable bifunctional crosslinker disuccinimidyl dibutyric urea was used to identify thirteen unique crosslinks between CaM and nNOS as well as 61 crosslinks within the nNOS. The crosslinks provided evidence for CaM interaction with the oxygenase and reductase domain residues as well as interactions of the FMN domain with the oxygenase dimer. Cryo-EM studies, which gave a high-resolution model of the oxygenase domain, along with crosslink-guided docking provided a model of nNOS that brings the FMN within 15 Å of the heme in support for a more compact conformation than previously observed. These studies also point to the utility of covalent crosslinking and mass spectrometry in capturing transient dynamic conformations that may not be captured by hydrogen-deuterium exchange and mass spectrometry experiments.
Collapse
Affiliation(s)
- Dana Felker
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kanghyun Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Thomas H Pospiech
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Yoshihiro Morishima
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miranda Lau
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Saini R, Azam Z, Sapra L, Srivastava RK. Neuronal Nitric Oxide Synthase (nNOS) in Neutrophils: An Insight. Rev Physiol Biochem Pharmacol 2021; 180:49-83. [PMID: 34115206 DOI: 10.1007/112_2021_61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NO (nitric oxide) is an important regulator of neutrophil functions and has a key role in diverse pathophysiological conditions. NO production by nitric oxide synthases (NOS) is under tight control at transcriptional, translational, and post-translational levels including interactions with heterologous proteins owing to its potent chemical reactivity and high diffusibility; this limits toxicity to other cellular components and promotes signaling specificity. The protein-protein interactions govern the activity and spatial distribution of NOS isoform to regulatory proteins and to their intended targets. In comparison with the vast literature available for endothelial, macrophages, and neuronal cells, demonstrating neuronal NOS (nNOS) interaction with other proteins through the PDZ domain, neutrophil nNOS, however, remains unexplored. Neutrophil's key role in both physiological and pathological conditions necessitates the need for further studies in delineating the NOS mediated NO modulations in signaling pathways operational in them. nNOS has been linked to depression, schizophrenia, and Parkinson's disease, suggesting the importance of exploring nNOS/NO-mediated neutrophil physiology in relation to such neuronal disorders. The review thus presents the scenario of neutrophil nNOS from the genetics to the functional level, including protein-protein interactions governing its intracellular sequestration in diverse cell types, besides speculating possible regulation in neutrophils and also addressing their clinical implications.
Collapse
Affiliation(s)
- Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India.
| | - Zaffar Azam
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, MP, India
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
5
|
Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020; 177:5437-5458. [PMID: 31347144 PMCID: PMC7707094 DOI: 10.1111/bph.14800] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a versatile molecule that plays key roles in the development and survival of mammalian species by endowing brain neuronal networks with the ability to make continual adjustments to function in response to moment-to-moment changes in physiological input. Here, we summarize the progress in the field and argue that NO-synthetizing neurons and NO signalling in the brain provide a core hub for integrating sensory- and homeostatic-related cues, control key bodily functions, and provide a potential target for new therapeutic opportunities against several neuroendocrine and behavioural abnormalities.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| |
Collapse
|
6
|
Kariyawasam K, Di Meo T, Hammerer F, Valerio-Lepiniec M, Sciortino G, Maréchal JD, Minard P, Mahy JP, Urvoas A, Ricoux R. An Artificial Hemoprotein with Inducible Peroxidase- and Monooxygenase-Like Activities. Chemistry 2020; 26:14929-14937. [PMID: 32588931 DOI: 10.1002/chem.202002434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/25/2020] [Indexed: 12/24/2022]
Abstract
A novel inducible artificial metalloenzyme obtained by covalent attachment of a manganese(III)-tetraphenylporphyrin (MnTPP) to the artificial bidomain repeat protein, (A3A3')Y26C, is reported. The protein is part of the αRep family. The biohybrid was fully characterized by MALDI-ToF mass spectrometry, circular dichroism and UV/Vis spectroscopies. The peroxidase and monooxygenase activities were evaluated on the original and modified scaffolds including those that have a) an additional imidazole, b) a specific αRep bA3-2 that is known to induce the opening of the (A3A3') interdomain region and c) a derivative of the αRep bA3-2 inducer extended with a His6 -Tag (His6 -bA3-2). Catalytic profiles are highly dependent on the presence of co-catalysts with the best activity obtained with His6 -bA3-2. The entire mechanism was rationalized by an integrative molecular modeling study that includes protein-ligand docking and large-scale molecular dynamics. This constitutes the first example of an entirely artificial metalloenzyme with inducible peroxidase and monooxygenase activities, reminiscent of allosteric regulation of natural enzymatic pathways.
Collapse
Affiliation(s)
- Kalani Kariyawasam
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405, Orsay cedex, France
| | - Thibault Di Meo
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405, Orsay cedex, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette cedex, France
| | - Fabien Hammerer
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405, Orsay cedex, France
| | - Marie Valerio-Lepiniec
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette cedex, France
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Philippe Minard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette cedex, France
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405, Orsay cedex, France
| | - Agathe Urvoas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette cedex, France
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405, Orsay cedex, France
| |
Collapse
|
7
|
Astashkin AV, Li J, Zheng H, Feng C. Positional Distributions of the Tethered Modules in Nitric Oxide Synthase: Monte Carlo Calculations and Pulsed EPR Measurements. J Phys Chem A 2019; 123:7075-7086. [PMID: 31310526 DOI: 10.1021/acs.jpca.9b05388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitric oxide synthase (NOS) enzyme consists of multiple domains connected by flexible random coil tethers. In a catalytic cycle, the NOS domains move within the limits determined by the length and flexibility of the interdomain tethers and form docking complexes with each other. This process represents a key component of the electron transport from the flavin adenine dinucleotide/reduced nicotinamide adenine dinucleotide phosphate binding domain to the catalytic heme centers located in the oxygenase domain. Studying the conformational behavior of NOS is therefore imperative for a full understanding of the overall catalytic mechanism. In this work, we have investigated the equilibrium positional distributions of the NOS domains and the bound calmodulin (CaM) by using Monte Carlo calculations of the NOS conformations. As a main experimental reference, we have used the magnetic dipole interaction between a bifunctional spin label attached to T34C/S38C mutant CaM and the NOS heme centers, which was measured by pulsed electron paramagnetic resonance. In general, the calculations of the conformational distributions allow one to determine the range and statistics of positions occupied by the tethered protein domains, assess the crowding effect of the multiple domains on each other, evaluate the accessibility of various potential domain docking sites, and estimate the interaction energies required to achieve target populations of the docked states. In the particular application described here, we have established the specific mechanisms by which the bound CaM facilitates the flavin mononucleotide (FMN)/heme interdomain docking in NOS. We have also shown that the intersubunit FMN/heme domain docking and electron transfer in the homodimeric NOS protein are dictated by the existing structural makeup of the protein. Finally, from comparison of the calculated and experimental docking probabilities, the characteristic stabilization energies for the CaM/heme domain and the FMN domain/heme domain docking complexes have been estimated as -4.5kT and -10.5kT, respectively.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | | | | | | |
Collapse
|
8
|
Li J, Zheng H, Feng C. Effect of Macromolecular Crowding on the FMN-Heme Intraprotein Electron Transfer in Inducible NO Synthase. Biochemistry 2019; 58:3087-3096. [PMID: 31251033 DOI: 10.1021/acs.biochem.9b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous biochemical studies of nitric oxide synthase enzymes (NOSs) were conducted in diluted solutions. However, the intracellular milieu where the proteins perform their biological functions is crowded with macromolecules. The effect of crowding on the electron transfer kinetics of multidomain proteins is much less understood. Herein, we investigated the effect of macromolecular crowding on the FMN-heme intraprotein interdomain electron transfer (IET), an obligatory step in NOS catalysis. A noticeable increase in the IET rate in the bidomain oxygenase/FMN (oxyFMN) and the holoprotein of human inducible NOS (iNOS) was observed upon addition of Ficoll 70 in a nonsaturable manner. Additionally, the magnitude of IET enhancement for the holoenzyme is much higher than that that of the oxyFMN construct. The crowding effect is also evident at different ionic strengths. Importantly, the enhancing extent is similar for the iNOS oxyFMN protein with added Ficoll 70 and Dextran 70 that give the same solution viscosity, showing that specific interactions do not exist between the NOS protein and the crowder. Moreover, the population of the docked FMN-heme state is significantly increased upon addition of Ficoll 70 and the fluorescence lifetime values do not correspond to those in the absence of Ficoll 70. The steady-state cytochrome c reduction by the holoenzyme is noticeably enhanced by the crowder, while the ferricyanide reduction is unchanged. The NO production activity of the iNOS holoenzyme is stimulated by Ficoll 70. The effect of macromolecular crowding on the kinetics can be rationalized on the basis of the excluded volume effect, with an entropic origin. The intraprotein electron transfer kinetics, fluorescence lifetime, and steady-state enzymatic activity results indicate that macromolecular crowding modulates the NOS electron transfer through multiple pathways. Such a mechanism should be applicable to electron transfer in other multidomain redox proteins.
Collapse
Affiliation(s)
- Jinghui Li
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Huayu Zheng
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Changjian Feng
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
9
|
Tavolieri AM, Murray DT, Askenasy I, Pennington JM, McGarry L, Stanley CB, Stroupe ME. NADPH-dependent sulfite reductase flavoprotein adopts an extended conformation unique to this diflavin reductase. J Struct Biol 2019; 205:170-179. [DOI: 10.1016/j.jsb.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
|
10
|
A gentle introduction to gasotransmitters with special reference to nitric oxide: biological and chemical implications. REV INORG CHEM 2018. [DOI: 10.1515/revic-2018-0011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractNitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are gaseous molecules of major impact in biology. Despite their toxicity, these molecules have profound effects on mammalian physiology and major implications in therapeutics. At tiny concentrations in human biology, they play key signaling and regulatory functions and hence are now labeled as “gasotransmitters.” In this literature survey, an introduction to gasotransmitters in relevance with NO, CO and H2S has been primarily focused. A special attention has been given to the conjoint physiological, pathophysiological and therapeutic aspects of NO in this work. In addition to the aforementioned elements of the investigation being reported, this report gives a detailed account of some of the recent advancements covering the NO release from both the nitro as well as nitroso compounds. The importance of the metallic center on the eve of producing the reduction center on NO and to develop photolabile properties have been elaborated within the effect of a few examples of metallic centers. Also, theoretical investigations that have been reported in the recent past and some other current theories pertaining to NO chemistry have been enlightened in this review. From the overall study, it is eminent that a number of facts are yet to be explored in context with NO for deeper mechanistic insights, model design for these molecules, other key roles and the search to find the best fit formalism in theoretical chemistry.
Collapse
|
11
|
Pharris MC, Patel NM, Kinzer-Ursem TL. Competitive Tuning Among Ca 2+/Calmodulin-Dependent Proteins: Analysis of in silico Model Robustness and Parameter Variability. Cell Mol Bioeng 2018; 11:353-365. [PMID: 31105797 DOI: 10.1007/s12195-018-0549-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction Calcium/Calmodulin-dependent (Ca2+/CaM-dependent) regulation of protein signaling has long been recognized for its importance in a number of physiological contexts. Found in almost all eukaryotic cells, Ca2+/CaM-dependent signaling participates in muscle development, immune responses, cardiac myocyte function and regulation of neuronal connectivity. In excitatory neurons, dynamic changes in the strength of synaptic connections, known as synaptic plasticity, occur when calcium ions (Ca2+) flux through NMDA receptors and bind the Ca2+-sensor calmodulin (CaM). Ca2+/CaM, in turn, regulates downstream protein signaling in actin polymerization, receptor trafficking, and transcription factor activation.The activation of downstream Ca2+/CaM-dependent binding proteins (CBPs) is a function of the frequency of Ca2+ flux, such that each CBP is preferentially "tuned" to different Ca2+ input signals. We have recently reported that competition among CBPs for CaM binding is alone sufficient to recreate in silico the observed in vivo frequency-dependence of several CBPs. However, CBP activation may strongly depend on the identity and concentration of proteins that constitute the competitive pool; with important implications in the regulation of CBPs in both normal and disease states. Methods Here, we extend our previous deterministic model of competition among CBPs to include phosphodiesterases, AMPAR receptors that are important in synaptic plasticity, and enzymatic function of CBPs: cAMP regulation, kinase activity, and phosphatase activity. After rigorous parameterization and validation by global sensitivity analysis using Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC), we explore how perturbing the competitive pool of CBPs influences downstream signaling events. In particular, we hypothesize that although perturbations may decrease activation of one CBP, increased activation of a separate, but enzymatically-related CBP could compensate for this loss, providing a homeostatic effect. Results and Conclusions First we compare dynamic model output of two models: a two-state model of Ca2+/CaM binding and a four-state model of Ca2+/CaM binding. We find that a four-state model of Ca2+/CaM binding best captures the dynamic nature of the rapid response of CaM and CBPs to Ca2+ flux in the system. Using global sensitivity analysis, we find that model output is robust to parameter variability. Indeed, although variations in the expression of the CaM buffer neurogranin (Ng) may cause a decrease in Ca2+/CaM-dependent kinase II (CaMKII) activation, overall AMPA receptor phosphorylation is preserved; ostensibly by a concomitant increase in adenylyl cyclase 8 (AC8)-mediated activation of protein kinase A (PKA). Indeed phosphorylation of AMPAR receptors by CaMKII and PKA is robust across a wide range of Ng concentrations, though increases in AMPAR phosphorylation is seen at low Ng levels approaching zero. Our results may explain recent counter-intuitive results in neurogranin knockout mice and provide further evidence that competitive tuning is an important mechanism in synaptic plasticity. These results may be readily translated to other Ca2+/CaM-dependent signaling systems in other cell types and can be used to suggest targeted experimental investigation to explain counter-intuitive or unexpected downstream signaling outcomes.Tamara Kinzer-Ursem is an Assistant Professor in the Weldon School of Biomedical Engineering. She received her B.S. in Bioengineering from the University of Toledo and her M.S. and Ph.D. degrees in Chemical Engineering from the University of Michigan, and her post-doctoral training in Molecular Neuroscience at the California Institute of Technology. Prior to joining Purdue she was the Head of R&D in Biochemistry at Maven Biotechnologies and Visiting Associate in Chemical Engineering at the California Institute of Technology.Research in the Kinzer-Ursem lab focuses on developing tools to advance quantitative descriptions of cellular processes and disease within three areas of expertise: 1) Using particle diffusivity measurements to quantify biomolecular processes. Particle diffusometry is being used as a sensitive biosensor to detect the presence of pathogens in environmental and patient samples. 2) Development of novel protein tagging technologies that are used to label proteins in vivo to enable quantitative description of protein function and elucidate disease mechanisms. 3) Computational modeling of signal transduction mechanisms to understand cellular processes. Using computational techniques, we have recently described "competitive tuning" as a mechanism that might be used to regulate information transfer through protein networks, with implications in cell behavior and drug target analysis.
Collapse
Affiliation(s)
- Matthew C Pharris
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Neal M Patel
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
12
|
Li J, Zheng H, Wang W, Miao Y, Sheng Y, Feng C. Role of an isoform-specific residue at the calmodulin-heme (NO synthase) interface in the FMN - heme electron transfer. FEBS Lett 2018; 592:2425-2431. [PMID: 29904908 DOI: 10.1002/1873-3468.13158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
The interface between calmodulin (CaM) and the NO synthase (NOS) heme domain is the least characterized interprotein interface that the NOS isoforms must traverse through during catalysis. Our previous molecular dynamics simulations predicted a salt bridge between K497 in human inducible NOS (iNOS) heme domain and D118(CaM). Herein, the FMN - heme interdomain electron transfer (IET) rate was found to be notably decreased by charge-reversal mutation, while the IET in the iNOS K497D mutant is significantly restored by the CaM D118K mutation. The results of wild-type protein with added synthetic peptides further demonstrate the critical nature of K497 relative to the rest of the peptide sequence in modulating the IET. These data provide definitive evidence supporting the regulatory role of the isoform-specific K497 residue.
Collapse
Affiliation(s)
- Jinghui Li
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Wei Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Yinghong Sheng
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
13
|
Haque MM, Tejero J, Bayachou M, Kenney CT, Stuehr DJ. A cross-domain charge interaction governs the activity of NO synthase. J Biol Chem 2018; 293:4545-4554. [PMID: 29414777 DOI: 10.1074/jbc.ra117.000635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
NO synthase (NOS) enzymes perform interdomain electron transfer reactions during catalysis that may rely on complementary charge interactions at domain-domain interfaces. Guided by our previous results and a computer-generated domain-docking model, we assessed the importance of cross-domain charge interactions in the FMN-to-heme electron transfer in neuronal NOS (nNOS). We reversed the charge of three residues (Glu-762, Glu-816, and Glu-819) that form an electronegative triad on the FMN domain and then individually reversed the charges of three electropositive residues (Lys-423, Lys-620, and Lys-660) on the oxygenase domain (NOSoxy), to potentially restore a cross-domain charge interaction with the triad, but in reversed polarity. Charge reversal of the triad completely eliminated heme reduction and NO synthesis in nNOS. These functions were partly restored by the charge reversal at oxygenase residue Lys-423, but not at Lys-620 or Lys-660. Full recovery of heme reduction was probably muted by an accompanying change in FMN midpoint potential that made electron transfer to the heme thermodynamically unfavorable. Our results provide direct evidence that cross-domain charge pairing is required for the FMN-to-heme electron transfer in nNOS. The unique ability of charge reversal at position 423 to rescue function indicates that it participates in an essential cross-domain charge interaction with the FMN domain triad. This supports our domain-docking model and suggests that it may depict a productive electron transfer complex formed during nNOS catalysis.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Departments of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Jesús Tejero
- the Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, and
| | - Mekki Bayachou
- the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Claire T Kenney
- From the Departments of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- From the Departments of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
14
|
Romano DR, Pharris MC, Patel NM, Kinzer-Ursem TL. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins. PLoS Comput Biol 2017; 13:e1005820. [PMID: 29107982 PMCID: PMC5690689 DOI: 10.1371/journal.pcbi.1005820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/16/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023] Open
Abstract
A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. Learning and memory formation are likely associated with dynamic fluctuations in the connective strength of neuronal synapses. These fluctuations, called synaptic plasticity, are regulated by calcium ion (Ca2+) influx through ion channels localized to the post-synaptic membrane. Within the post-synapse, the dominant Ca2+ sensor protein, calmodulin (CaM), may activate a variety of downstream binding partners, each contributing to synaptic plasticity outcomes. The conditions at which certain binding partners most strongly activate are increasingly studied using computational models. Nearly all computational studies describe these binding partners in combinations of only one or two CaM binding proteins. In contrast, we combine seven well-studied CaM binding partners into a single model wherein they simultaneously compete for access to CaM. Our dynamic model suggests that competition narrows the window of conditions for optimal activation of some binding partners, mimicking the Ca2+-frequency dependence of some proteins in vivo. Further characterization of CaM-dependent signaling dynamics in neuronal synapses may benefit our understanding of learning and memory formation. Furthermore, we propose that competitive binding may be another framework, alongside feedback and feed-forward loops, signaling motifs, and spatial localization, that can be applied to other signal transduction networks, particularly second messenger cascades, to explain the dynamical behavior of protein activation.
Collapse
Affiliation(s)
- Daniel R. Romano
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Matthew C. Pharris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Neal M. Patel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chen L, Zheng H, Li W, Li W, Miao Y, Feng C. Role of a Conserved Tyrosine Residue in the FMN-Heme Interdomain Electron Transfer in Inducible Nitric Oxide Synthase. J Phys Chem A 2016; 120:7610-7616. [PMID: 27633182 DOI: 10.1021/acs.jpca.6b08207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains is essential in the biosynthesis of nitric oxide (NO) by the NO synthase (NOS) enzymes. A conserved tyrosine residue in the FMN domain (Y631 in human inducible NOS) was proposed to be a key part of the electron transfer pathway in the FMN/heme docked complex model. In the present study, the FMN-heme IET kinetics in the Y631F mutant and wild type of a bidomain oxygenase/FMN construct of human inducible NOS were determined by laser flash photolysis. The rate constant of the Y631F mutant is significantly decreased by ∼75% (compared to the wild type), showing that the tyrosine residue indeed facilitates the FMN-heme IET through the protein medium. The IET rate constant of the wild type protein decreases from 345 to 242 s-1 on going from H2O to 95% D2O, giving a solvent kinetic isotope effect of 1.4. In contrast, no deuterium isotope effect was observed for the Tyr-to-Phe mutant. Moreover, an appreciable change in the wild type iNOS IET rate constant value was observed upon changing pH. These results indicate that the FMN-heme IET is proton coupled, in which the conserved tyrosine residue may play an important role.
Collapse
Affiliation(s)
- Li Chen
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States.,Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Wenbing Li
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Wei Li
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Yubin Miao
- Radiology, University of Colorado Denver , Denver, Colorado 80045, United States
| | - Changjian Feng
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States.,Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
16
|
Hedison TM, Leferink NGH, Hay S, Scrutton NS. Correlating Calmodulin Landscapes with Chemical Catalysis in Neuronal Nitric Oxide Synthase using Time-Resolved FRET and a 5-Deazaflavin Thermodynamic Trap. ACS Catal 2016; 6:5170-5180. [PMID: 27563493 PMCID: PMC4993522 DOI: 10.1021/acscatal.6b01280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/23/2016] [Indexed: 11/28/2022]
Abstract
![]()
A major challenge in enzymology is
the need to correlate the dynamic
properties of enzymes with, and understand the impact on, their catalytic
cycles. This is especially the case with large, multicenter enzymes
such as the nitric oxide synthases (NOSs), where the importance of
dynamics has been inferred from a variety of structural, single-molecule,
and ensemble spectroscopic approaches but where motions have not been
correlated experimentally with mechanistic steps in the reaction cycle.
Here we take such an approach. Using time-resolved spectroscopy employing
absorbance and Förster resonance energy transfer (FRET) and
exploiting the properties of a flavin analogue (5-deazaflavin mononucleotide
(5-dFMN)) and isotopically labeled nicotinamide coenzymes, we correlate
the timing of CaM structural changes when bound to neuronal nitric
oxide synthase (nNOS) with the nNOS catalytic cycle. We show that
remodeling of CaM occurs early in the electron transfer sequence (FAD
reduction), not at later points in the reaction cycle (e.g., FMN reduction).
Conformational changes are tightly correlated with FAD reduction kinetics
and reflect a transient “opening” and then “closure”
of the bound CaM molecule. We infer that displacement of the C-terminal
tail on binding NADPH and subsequent FAD reduction are the likely
triggers of conformational change. By combining the use of cofactor/coenzyme
analogues and time-resolved FRET/absorbance spectrophotometry, we
show how the reaction cycles of complex enzymes can be simplified,
enabling a detailed study of the relationship between protein dynamics
and reaction cycle chemistry—an approach that can also be used
with other complex multicenter enzymes.
Collapse
Affiliation(s)
- Tobias M. Hedison
- Manchester Synthetic Biology
Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester
Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Manchester Synthetic Biology
Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester
Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Sam Hay
- Manchester Synthetic Biology
Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester
Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Synthetic Biology
Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester
Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
17
|
Improved method for assembly of hemeprotein neuronal NO-synthase heterodimers. Anal Biochem 2016; 511:24-6. [PMID: 27487179 DOI: 10.1016/j.ab.2016.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
The assembly of mutated and wild type monomers into functional heterodimeric hemeproteins has provided important mechanistic insights. As in the case of NO synthase (NOS), the existing methods to make such heterodimeric NOSs are inefficient and labor intensive with typical yields of about 5%. We have found that expression of neuronal NOS heterodimers in insect cells, where we take advantage of an exogenous heme-triggered chaperone-assisted assembly process, provides an approximately 43% yield in heterodimeric NOS. In contrast, in Escherichia coli little heterodimerization occurred. Thus, insect cells are preferred and may represent a valuable method for assembly of other dimeric hemeproteins.
Collapse
|
18
|
Parhad SS, Jaiswal D, Ray K, Mazumdar S. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis. Biochem Biophys Res Commun 2016; 472:189-93. [PMID: 26923072 DOI: 10.1016/j.bbrc.2016.02.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/01/2022]
Abstract
The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in l-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005, India
| | - Deepa Jaiswal
- Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005, India; TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Krishanu Ray
- Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005, India.
| | - Shyamalava Mazumdar
- Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005, India.
| |
Collapse
|
19
|
Markwardt ML, Seckinger KM, Rizzo MA. Regulation of Glucokinase by Intracellular Calcium Levels in Pancreatic β Cells. J Biol Chem 2015; 291:3000-9. [PMID: 26698632 DOI: 10.1074/jbc.m115.692160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Glucokinase (GCK) controls the rate of glucose metabolism in pancreatic β cells, and its activity is rate-limiting for insulin secretion. Posttranslational GCK activation can be stimulated through either G protein-coupled receptors or receptor tyrosine kinase signaling pathways, suggesting a common mechanism. Here we show that inhibiting Ca(2+) release from the endoplasmic reticulum (ER) decouples GCK activation from receptor stimulation. Furthermore, pharmacological release of ER Ca(2+) stimulates activation of a GCK optical biosensor and potentiates glucose metabolism, implicating rises in cytoplasmic Ca(2+) as a critical regulatory mechanism. To explore the potential for glucose-stimulated GCK activation, the GCK biosensor was optimized using circularly permuted mCerulean3 proteins. This new sensor sensitively reports activation in response to insulin, glucagon-like peptide 1, and agents that raise cAMP levels. Transient, glucose-stimulated GCK activation was observed in βTC3 and MIN6 cells. An ER-localized channelrhodopsin was used to manipulate the cytoplasmic Ca(2+) concentration in cells expressing the optimized FRET-GCK sensor. This permitted quantification of the relationship between cytoplasmic Ca(2+) concentrations and GCK activation. Half-maximal activation of the FRET-GCK sensor was estimated to occur at ∼400 nm Ca(2+). When expressed in islets, fluctuations in GCK activation were observed in response to glucose, and we estimated that posttranslational activation of GCK enhances glucose metabolism by ∼35%. These results suggest a mechanism for integrative control over GCK activation and, therefore, glucose metabolism and insulin secretion through regulation of cytoplasmic Ca(2+) levels.
Collapse
Affiliation(s)
- Michele L Markwardt
- From the University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kendra M Seckinger
- From the University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mark A Rizzo
- From the University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
20
|
Astashkin AV, Feng C. Solving Kinetic Equations for the Laser Flash Photolysis Experiment on Nitric Oxide Synthases: Effect of Conformational Dynamics on the Interdomain Electron Transfer. J Phys Chem A 2015; 119:11066-75. [PMID: 26477677 DOI: 10.1021/acs.jpca.5b08414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
21
|
Sheng Y, Zhong L, Guo D, Lau G, Feng C. Insight into structural rearrangements and interdomain interactions related to electron transfer between flavin mononucleotide and heme in nitric oxide synthase: A molecular dynamics study. J Inorg Biochem 2015; 153:186-196. [PMID: 26277414 DOI: 10.1016/j.jinorgbio.2015.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/29/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Calmodulin (CaM) binding to nitric oxide synthase (NOS) enables a conformational change, in which the FMN domain shuttles between the FAD and heme domains to deliver electrons to the active site heme center. A clear understanding of this large conformational change is critical, since this step is the rate-limiting in NOS catalysis. Herein molecular dynamics simulations were conducted on a model of an oxygenase/FMN (oxyFMN) construct of human inducible NOS (iNOS). This is to investigate the structural rearrangements and the domain interactions related to the FMN-heme interdomain electron transfer (IET). We carried out simulations on the iNOS oxyFMN·CaM complex models in [Fe(III)][FMNH(-)] and [Fe(II)][FMNH] oxidation states, the pre- and post-IET states. The comparison of the dynamics and conformations of the iNOS construct at the two oxidation states has allowed us to identify key factors related to facilitating the FMN-heme IET process. The computational results demonstrated, for the first time, that the conformational change is redox-dependent. Predictions of the key interacting sites in optimal interdomain FMN/heme docking are well supported by experimental data in the literature. An intra-subunit pivot region is predicted to modulate the FMN domain motion and correlate with existence of a bottleneck in the conformational sampling that leads to the electron transfer-competent state. Interactions of the residues identified in this work are proposed to ensure that the FMN domain moves with appropriate degrees of freedom and docks to proper positions at the heme domain, resulting in efficient IET and nitric oxide production.
Collapse
Affiliation(s)
- Yinghong Sheng
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA.
| | - Linghao Zhong
- Pennsylvania State University at Mont Alto, 1 Campus Drive, Mont Alto, PA 17237, USA
| | - Dahai Guo
- Department of Bioengineering and Software Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA
| | - Gavin Lau
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
22
|
Nagpal L, Panda K. Characterization of calmodulin-free murine inducible nitric-oxide synthase. PLoS One 2015; 10:e0121782. [PMID: 25822458 PMCID: PMC4379030 DOI: 10.1371/journal.pone.0121782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/04/2015] [Indexed: 01/17/2023] Open
Abstract
Nitric-Oxide Synthase (NOS), that produces the biological signal molecule Nitric-Oxide (NO), exists in three different isoforms called, neuronal (nNOS), endothelial (eNOS) and inducible (iNOS). All NOS isoforms require post-translational interaction with the calcium-binding protein, calmodulin (CaM) for manifesting their catalytic activity. However, CaM has been suggested to control the translational assembly of the enzyme as well, particularly in helping its inducible isoform, iNOS assume a stable, heme-replete, dimeric and active form. Expression of recombinant murine iNOS in E.coli in the absence of CaM has been previously shown to give extremely poor yield of the enzyme which was claimed to be absolutely heme-free, devoid of flavins, completely monomeric and catalytically inactive when compared to the heme-replete, active, dimeric iNOS, generated through co-expression with CaM. In contrast, we found that although iNOS expressed without CaM does produce significantly low amounts of the CaM-free enzyme, the iNOS thus produced, is not completely devoid of heme and is neither entirely monomeric nor absolutely bereft of catalytic activity as reported before. In fact, iNOS synthesized in the absence of CaM undergoes compromised heme incorporation resulting in extremely poor dimerization and activity compared to its counterpart co-expressed with CaM. Moreover, such CaM-free iNOS has similar flavin content and reductase activity as iNOS co-expressed with CaM, suggesting that CaM may not be as much required for the functional assembly of the iNOS reductase domain as its oxygenase domain. LC-MS/MS-based peptide mapping of the CaM-free iNOS confirmed that it had the same full-length sequence as the CaM-replete iNOS. Isothermal calorimetric measurements also revealed high affinity for CaM binding in the CaM-free iNOS and thus the possible presence of a CaM-binding domain. Thus CaM is essential but not indispensible for the assembly of iNOS and such CaM-free iNOS may help in elucidating the role of CaM on iNOS catalysis.
Collapse
Affiliation(s)
- Latika Nagpal
- Department of Biotechnology & Guha Center for Genetic Engineering & Biotechnology, University of Calcutta, Kolkata, India
| | - Koustubh Panda
- Department of Biotechnology & Guha Center for Genetic Engineering & Biotechnology, University of Calcutta, Kolkata, India
- * E-mail:
| |
Collapse
|
23
|
Leferink NGH, Hay S, Rigby SEJ, Scrutton NS. Towards the free energy landscape for catalysis in mammalian nitric oxide synthases. FEBS J 2014; 282:3016-29. [PMID: 25491181 DOI: 10.1111/febs.13171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/30/2023]
Abstract
The general requirement for conformational sampling in biological electron transfer reactions catalysed by multi-domain redox systems has been emphasized in recent years. Crucially, we lack insight into the extent of the conformational space explored and the nature of the energy landscapes associated with these reactions. The nitric oxide synthases (NOS) produce the signalling molecule NO through a series of complex electron transfer reactions. There is accumulating evidence that protein domain dynamics and calmodulin binding are implicated in regulating electron flow from NADPH, through the FAD and FMN cofactors, to the haem oxygenase domain, where NO is generated. Simple models based on static crystal structures of the isolated reductase domain have suggested a role for large-scale motions of the FMN-binding domain in shuttling electrons from the reductase domain to the oxygenase domain. However, detailed insight into the higher-order domain architecture and dynamic structural transitions in NOS enzymes during enzyme turnover is lacking. In this review, we discuss the recent advances made towards mapping the catalytic free energy landscapes of NOS enzymes through integration of both structural techniques (e.g. cryo-electron microscopy) and biophysical techniques (e.g. pulsed-electron paramagnetic resonance). The general picture that emerges from these experiments is that NOS enzymes exist in an equilibrium of conformations, comprising a 'rugged' or 'frustrated' energy landscape, with a key regulatory role for calmodulin in driving vectorial electron transfer by altering the conformational equilibrium. A detailed understanding of these landscapes may provide new opportunities for discovery of isoform-specific inhibitors that bind at the dynamic interfaces of these multi-dimensional energy landscapes.
Collapse
Affiliation(s)
- Nicole G H Leferink
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| |
Collapse
|
24
|
The regulation of synaptic vesicle recycling by cGMP-dependent protein kinase type II in cerebellar granule cells under strong and sustained stimulation. J Neurosci 2014; 34:8788-99. [PMID: 24966379 DOI: 10.1523/jneurosci.0103-14.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
From the early periods of neurogenesis and migration, up until synaptogenesis, both nitric oxide (NO) and its downstream messenger, cGMP, are thought to influence the development of neurons. The NO/cGMP/cGMP-dependent protein kinase (cGK) pathway regulates the clustering and recruitment of synaptic proteins and vesicles to the synapse, adjusting the exoendocytic cycle to the intensity of activity and accelerating endocytosis following large-scale exocytosis. Here, we show that blockage of the N-methyl-D-aspartate receptor impairs the cycling of synaptic vesicles in a subset of boutons on cerebellar granule cells, an effect that was reversed by increasing cGMP. Furthermore, we demonstrate that presynaptic cGK type II (cGKII) plays a major role in this process. Using the FM1-43 dye to track vesicle recycling, we found that knockdown of cGKII and/or the application of a cGK inhibitor reduced the efficiency of synaptic vesicle recycling to a similar extent. Likewise, in cerebellar granule cells transfected with vGlut1-pHluorin to follow the exoendocytotic cycle, application of a cGK inhibitor slowed vesicle endocytosis when exocytosis was accelerated through strong and sustained stimulation. Additionally, ultrastructural analysis showed that cGKII knockdown or inhibition favored the formation of endosomal-like structures after strong and sustained stimulation. We conclude that cGKII controls the homeostatic balance of vesicle exocytosis and endocytosis in synaptic boutons of rat cerebellar granule cells.
Collapse
|
25
|
Yokom AL, Morishima Y, Lau M, Su M, Glukhova A, Osawa Y, Southworth DR. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain. J Biol Chem 2014; 289:16855-65. [PMID: 24737326 DOI: 10.1074/jbc.m114.564005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis.
Collapse
Affiliation(s)
- Adam L Yokom
- From the Department of Biological Chemistry, the Program in Chemical Biology, and
| | | | | | - Min Su
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | | | | | - Daniel R Southworth
- From the Department of Biological Chemistry, the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Sobolewska-Stawiarz A, Leferink NGH, Fisher K, Heyes DJ, Hay S, Rigby SEJ, Scrutton NS. Energy landscapes and catalysis in nitric-oxide synthase. J Biol Chem 2014; 289:11725-11738. [PMID: 24610812 PMCID: PMC4002082 DOI: 10.1074/jbc.m114.548834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nitric oxide (NO) plays diverse roles in mammalian physiology. It is involved in blood pressure regulation, neurotransmission, and immune response, and is generated through complex electron transfer reactions catalyzed by NO synthases (NOS). In neuronal NOS (nNOS), protein domain dynamics and calmodulin binding are implicated in regulating electron flow from NADPH, through the FAD and FMN cofactors, to the heme oxygenase domain, the site of NO generation. Simple models based on crystal structures of nNOS reductase have invoked a role for large scale motions of the FMN-binding domain in shuttling electrons from the FAD-binding domain to the heme oxygenase domain. However, molecular level insight of the dynamic structural transitions in NOS enzymes during enzyme catalysis is lacking. We use pulsed electron-electron double resonance spectroscopy to derive inter-domain distance relationships in multiple conformational states of nNOS. These distance relationships are correlated with enzymatic activity through variable pressure kinetic studies of electron transfer and turnover. The binding of NADPH and calmodulin are shown to influence interdomain distance relationships as well as reaction chemistry. An important effect of calmodulin binding is to suppress adventitious electron transfer from nNOS to molecular oxygen and thereby preventing accumulation of reactive oxygen species. A complex landscape of conformations is required for nNOS catalysis beyond the simple models derived from static crystal structures of nNOS reductase. Detailed understanding of this landscape advances our understanding of nNOS catalysis/electron transfer, and could provide new opportunities for the discovery of small molecule inhibitors that bind at dynamic protein interfaces of this multidimensional energy landscape.
Collapse
Affiliation(s)
- Anna Sobolewska-Stawiarz
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nicole G H Leferink
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Karl Fisher
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Derren J Heyes
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Sam Hay
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Stephen E J Rigby
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S Scrutton
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
27
|
Feng C, Chen L, Li W, Elmore BO, Fan W, Sun X. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. J Inorg Biochem 2013; 130:130-40. [PMID: 24084585 DOI: 10.1016/j.jinorgbio.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/12/2013] [Accepted: 09/05/2013] [Indexed: 11/25/2022]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, is responsible for biosynthesis of nitric oxide (NO) in mammals. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their biological functions by tight control of interdomain electron transfer (IET) process through interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O2 activation at the catalytic heme site. Emerging evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS by a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the FMN and heme domains in the three NOS isoforms. In the absence of a structure of full-length NOS, an integrated approach of spectroscopic, rapid kinetic and mutagenesis methods is required to unravel regulation mechanism of the FMN-heme IET process. This is to investigate the roles of the FMN domain motions and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in this area that are driven by the combined approach are the focuses of this review. A better understanding of the roles of interdomain FMN/heme interactions and CaM binding may serve as a basis for the rational design of new selective modulators of the NOS enzymes.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Nagpal L, Haque MM, Saha A, Mukherjee N, Ghosh A, Ranu BC, Stuehr DJ, Panda K. Mechanism of inducible nitric-oxide synthase dimerization inhibition by novel pyrimidine imidazoles. J Biol Chem 2013; 288:19685-97. [PMID: 23696643 PMCID: PMC3707674 DOI: 10.1074/jbc.m112.446542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/13/2013] [Indexed: 01/19/2023] Open
Abstract
Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases.
Collapse
Affiliation(s)
- Latika Nagpal
- From the Department of Biotechnology and Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Mohammad M. Haque
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Amit Saha
- the Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Nirmalya Mukherjee
- the Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arnab Ghosh
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Brindaban C. Ranu
- the Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Dennis J. Stuehr
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Koustubh Panda
- From the Department of Biotechnology and Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
29
|
Li W, Chen L, Lu C, Elmore BO, Astashkin AV, Rousseau DL, Yeh SR, Feng C. Regulatory role of Glu546 in flavin mononucleotide-heme electron transfer in human inducible nitric oxide synthase. Inorg Chem 2013; 52:4795-801. [PMID: 23570607 DOI: 10.1021/ic3020892] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) production by mammalian NO synthase (NOS) is believed to be regulated by the docking of the flavin mononucleotide (FMN) domain in one subunit of the dimer onto the heme domain of the adjacent subunit. Glu546, a conserved charged surface residue of the FMN domain in human inducible NOS (iNOS), is proposed to participate in the interdomain FMN/heme interactions [Sempombe et al. Inorg. Chem.2011, 50, 6869-6861]. In the present work, we further investigated the role of the E546 residue in the FMN-heme interdomain electron transfer (IET), a catalytically essential step in the NOS enzymes. Laser flash photolysis was employed to directly measure the FMN-heme IET kinetics for the E546N mutant of human iNOS oxygenase/FMN (oxyFMN) construct. The temperature dependence of the IET kinetics was also measured over the temperature range of 283-304 K to determine changes in the IET activation parameters. The E546N mutation was found to retard the IET by significantly raising the activation entropic barrier. Moreover, pulsed electron paramagnetic resonance data showed that the geometry of the docked FMN/heme complex in the mutant is basically the same as in the wild type construct, whereas the probability of formation of such a complex is about twice lower. These results indicate that the retarded IET in the E546N mutant is not caused by an altered conformation of the docked FMN/heme complex, but by a lower population of the IET-active conformation. In addition, the negative activation entropy of the mutant is still substantially lower than that of the holoenzyme. This supports a mechanism by which the FMN domain can modify the IET through altering probability of the docked state formation.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Calmodulin-induced structural changes in endothelial nitric oxide synthase. FEBS Lett 2012; 587:297-301. [PMID: 23266515 DOI: 10.1016/j.febslet.2012.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/21/2022]
Abstract
We have derived structures of intact calmodulin (CaM)-free and CaM-bound endothelial nitric oxide synthase (eNOS) by reconstruction from cryo-electron micrographs. The CaM-free reconstruction is well fitted by the oxygenase domain dimer, but the reductase domains are not visible, suggesting they are mobile and thus delocalized. Additional protein is visible in the CaM-bound reconstruction, concentrated in volumes near two basic patches on each oxygenase domain. One of these corresponds with a presumptive docking site for the reductase domain FMN-binding module. The other is proposed to correspond with a docking site for CaM. A model is suggested in which CaM binding and docking position the reductase domains near the oxygenase domains and promote docking of the FMN-binding modules required for electron transfer.
Collapse
|
31
|
Iyanagi T, Xia C, Kim JJP. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch Biochem Biophys 2012; 528:72-89. [PMID: 22982532 PMCID: PMC3606592 DOI: 10.1016/j.abb.2012.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 12/31/2022]
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) and nitric oxide synthase (NOS), two members of the diflavin oxidoreductase family, are multi-domain enzymes containing distinct FAD and FMN domains connected by a flexible hinge. FAD accepts a hydride ion from NADPH, and reduced FAD donates electrons to FMN, which in turn transfers electrons to the heme center of cytochrome P450 or NOS oxygenase domain. Structural analysis of CYPOR, the prototype of this enzyme family, has revealed the exact nature of the domain arrangement and the role of residues involved in cofactor binding. Recent structural and biophysical studies of CYPOR have shown that the two flavin domains undergo large domain movements during catalysis. NOS isoforms contain additional regulatory elements within the reductase domain that control electron transfer through Ca(2+)-dependent calmodulin (CaM) binding. The recent crystal structure of an iNOS Ca(2+)/CaM-FMN construct, containing the FMN domain in complex with Ca(2+)/CaM, provided structural information on the linkage between the reductase and oxgenase domains of NOS, making it possible to model the holo iNOS structure. This review summarizes recent advances in our understanding of the dynamics of domain movements during CYPOR catalysis and the role of the NOS diflavin reductase domain in the regulation of NOS isozyme activities.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Department of Biochemistry, Medical College of Wisconsin, USA
- Department of Life Science, The Himeji Institute of Technology, University of Hyogo, Japan
| | - Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Jung-Ja P. Kim
- Department of Biochemistry, Medical College of Wisconsin, USA
| |
Collapse
|
32
|
Markwardt ML, Nkobena A, Ding SY, Rizzo MA. Association with nitric oxide synthase on insulin secretory granules regulates glucokinase protein levels. Mol Endocrinol 2012; 26:1617-29. [PMID: 22771492 PMCID: PMC3434526 DOI: 10.1210/me.2012-1183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Glucokinase (GCK) association with insulin-secretory granules is controlled by interaction with nitric oxide synthase (NOS) and is reversed by GCK S-nitrosylation. Nonetheless, the function of GCK sequestration on secretory granules is unknown. Here we report that the S-nitrosylation blocking V367M mutation prevents GCK accumulation on secretory granules by inhibiting association with NOS. Expression of this mutant is reduced compared with a second S-nitrosylation blocking GCK mutant (C371S) that accumulates to secretory granules and is expressed at levels greater than wild type. Even so, the rate of degradation for wild type and mutant GCK proteins were not significantly different from one another, and neither mutation disrupted the ability of GCK to be ubiquitinated. Furthermore, gene silencing of NOS reduced endogenous GCK content but did not affect β-actin content. Treatment of GCK(C371S) expressing cells with short interfering RNA specific for NOS also blocked accumulation of this protein to secretory granules and reduced expression levels to that of GCK(V367M). Conversely, cotransfection of catalytically inactive NOS increased GCK-mCherry levels. Expression of GCK(C371S) in βTC3 cells enhanced glucose metabolism compared with untransfected cells and cells expressing wild type GCK, even though this mutant has slightly reduced enzymatic activity in vitro. Finally, molecular dynamics simulations revealed that V367M induces conformational changes in GCK that are similar to S-nitrosylated GCK, thereby suggesting a mechanism for V367M-inhibition of NOS association. Our findings suggest that sequestration of GCK on secretory granules regulates cellular GCK protein content, and thus cellular GCK activity, by acting as a storage pool for GCK proteins.
Collapse
Affiliation(s)
- Michele L Markwardt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
33
|
Haque MM, Fadlalla MA, Aulak KS, Ghosh A, Durra D, Stuehr DJ. Control of electron transfer and catalysis in neuronal nitric-oxide synthase (nNOS) by a hinge connecting its FMN and FAD-NADPH domains. J Biol Chem 2012; 287:30105-16. [PMID: 22722929 PMCID: PMC3436266 DOI: 10.1074/jbc.m112.339697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/13/2012] [Indexed: 01/19/2023] Open
Abstract
In nitric-oxide synthases (NOSs), two flexible hinges connect the FMN domain to the rest of the enzyme and may guide its interactions with partner domains for electron transfer and catalysis. We investigated the role of the FMN-FAD/NADPH hinge in rat neuronal NOS (nNOS) by constructing mutants that either shortened or lengthened this hinge by 2, 4, and 6 residues. Shortening the hinge progressively inhibited electron flux through the calmodulin (CaM)-free and CaM-bound nNOS to cytochrome c, whereas hinge lengthening relieved repression of electron flux in CaM-free nNOS and had no impact or slowed electron flux through CaM-bound nNOS to cytochrome c. How hinge length influenced heme reduction depended on whether enzyme flavins were pre-reduced with NADPH prior to triggering heme reduction. Without pre-reduction, changing the hinge length was deleterious; with pre-reduction, the hinge shortening was deleterious, and hinge lengthening increased heme reduction rates beyond wild type. Flavin fluorescence and stopped-flow kinetic studies on CaM-bound enzymes suggested hinge lengthening slowed the domain-domain interaction needed for FMN reduction. All hinge length changes lowered NO synthesis activity and increased uncoupled NADPH consumption. We conclude that several aspects of catalysis are sensitive to FMN-FAD/NADPH hinge length and that the native hinge allows a best compromise among the FMN domain interactions and associated electron transfer events to maximize NO synthesis and minimize uncoupled NADPH consumption.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Mohammed A. Fadlalla
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kulwant S. Aulak
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Arnab Ghosh
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Deborah Durra
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J. Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
34
|
Astashkin AV, Elmore BO, Chen L, Fan W, Guillemette JG, Feng C. Pulsed ENDOR determination of the arginine location in the ferrous-NO form of neuronal NOS. J Phys Chem A 2012; 116:6731-9. [PMID: 22667467 DOI: 10.1021/jp302319c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian nitric oxide synthases (NOSs) are enzymes responsible for oxidation of L-arginine (L-Arg) to nitric oxide (NO). Mechanisms of reactions at the catalytic heme site are not well understood, and it is of current interest to study structures of the heme species that activates O(2) and transforms the substrate. The NOS ferrous-NO complex is a close mimic of the obligatory ferric (hydro)peroxo intermediate in NOS catalysis. In this work, pulsed electron-nuclear double resonance (ENDOR) was used to probe the position of the l-Arg substrate at the NO(•)-coordinated ferrous heme center(s) in the oxygenase domain of rat neuronal NOS (nNOS). The analysis of (2)H and (15)N ENDOR spectra of samples containing d(7)- or guanidino-(15)N(2) labeled L-Arg has resulted in distance estimates for the nearby guanidino nitrogen and the nearby proton (deuteron) at C(δ). The L-Arg position was found to be noticeably different from that in the X-ray crystal structure of nNOS ferrous-NO complex [Li et al. J. Biol. Inorg. Chem.2006, 11, 753-768], with the nearby guanidino nitrogen being ~0.5 Å closer to, and the nearby H(δ) about 1 Å further from, the NO ligand than in the X-ray structure. The difference might be related to the structural constraints imposed on the protein by the crystal. Importantly, in spite of its closer position, the guanidino nitrogen does not form a hydrogen bond with the NO ligand, as evidenced by the absence of significant isotropic hfi constant for N(g1). This is consistent with the previous reports that it is not the L-Arg substrate itself that would most likely serve as a direct proton donor to the diatomic ligands (NO and O(2)) bound to the heme.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
35
|
Li W, Fan W, Chen L, Elmore BO, Piazza M, Guillemette JG, Feng C. Role of an isoform-specific serine residue in FMN-heme electron transfer in inducible nitric oxide synthase. J Biol Inorg Chem 2012; 17:675-85. [PMID: 22407542 DOI: 10.1007/s00775-012-0887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/26/2012] [Indexed: 01/30/2023]
Abstract
In the crystal structure of a calmodulin (CaM)-bound FMN domain of human inducible nitric oxide synthase (NOS), the CaM-binding region together with CaM forms a hinge, and pivots on an R536(NOS)/E47(CaM) pair (Xia et al. J Biol Chem 284:30708-30717, 2009). Notably, isoform-specific human inducible NOS S562 and C563 residues form hydrogen bonds with the R536 residue through their backbone oxygens. In this study, we investigated the roles of the S562 and C563 residues in the NOS FMN-heme interdomain electron transfer (IET), the rates of which can be used to probe the interdomain FMN/heme alignment. Human inducible NOS S562K and C563R mutants of an oxygenase/FMN (oxyFMN) construct were made by introducing charged residues at these sites as found in human neuronal NOS and endothelial NOS isoforms, respectively. The IET rate constant of the S562K mutant is notably decreased by one third, and its flavin fluorescence intensity per micromole per liter is diminished by approximately 24 %. These results suggest that a positive charge at position 562 destabilizes the hydrogen-bond-mediated NOS/CaM alignment, resulting in slower FMN-heme IET in the mutant. On the other hand, the IET rate constant of the C563R mutant is similar to that of the wild-type, indicating that the mutational effect is site-specific. Moreover, the human inducible NOS oxyFMN R536E mutant was constructed to disrupt the bridging CaM/NOS interaction, and its FMN-heme IET rate was decreased by 96 %. These results demonstrated a new role of the isoform-specific serine residue of the key CaM/FMN(NOS) bridging site in regulating the FMN-heme IET (possibly by tuning the alignment of the FMN and heme domains).
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Feng C. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Coord Chem Rev 2012; 256:393-411. [PMID: 22523434 PMCID: PMC3328867 DOI: 10.1016/j.ccr.2011.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131 (USA) , Tel: 505-925-4326
| |
Collapse
|
37
|
Comparing the temperature dependence of FMN to heme electron transfer in full length and truncated inducible nitric oxide synthase proteins. FEBS Lett 2011; 586:159-62. [PMID: 22198200 DOI: 10.1016/j.febslet.2011.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 11/20/2022]
Abstract
The FMN-heme interdomain (intraprotein) electron transfer (IET) kinetics in full length and oxygenase/FMN (oxyFMN) construct of human iNOS were determined by laser flash photolysis over the temperature range from 283 to 304K. An appreciable increase in the rate constant value was observed with an increase in the temperature. Our previous viscosity study indicated that the IET process is conformationally gated, and Eyring equation was thus used to analyze the temperature dependence data. The obtained magnitude of activation entropy for the IET in the oxyFMN construct is only one-fifth of that for the holoenzyme. This indicates that the FMN domain in the holoenzyme needs to sample more conformations before the IET takes place, and that the FMN domain in the oxyFMN construct is better poised for efficient IET.
Collapse
|
38
|
Astashkin AV, Fan W, Elmore BO, Guillemette JG, Feng C. Pulsed ENDOR determination of relative orientation of g-frame and molecular frame of imidazole-coordinated heme center of iNOS. J Phys Chem A 2011; 115:10345-52. [PMID: 21834532 PMCID: PMC3174316 DOI: 10.1021/jp204969d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian nitric oxide synthase (NOS) is a flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide. Information about the relative alignment of the heme and FMN domains of NOS is important for understanding the electron transfer between the heme and FMN centers, but no crystal structure data for NOS holoenzyme are available. In our previous work [Astashkin, A. V.; Elmore, B. O.; Fan, W.; Guillemette, J. G.; Feng, C. J. Am. Chem. Soc. 2010, 132, 12059-12067], the distance between the imidazole-coordinated low-spin Fe(III) heme and FMN semiquinone in a human inducible NOS (iNOS) oxygenase/FMN construct has been determined by pulsed electron paramagnetic resonance (EPR). The orientation of the Fe-FMN radius vector, R(Fe-FMN), with respect to the heme g-frame was also determined. In the present study, pulsed electron-nuclear double resonance (ENDOR) investigation of the deuterons at carbons C2 and C5 in the deuterated coordinated imidazole was used to determine the relative orientation of the heme g-frame and molecular frame, from which R(Fe-FMN) can be referenced to the heme molecular frame. Numerical simulations of the ENDOR spectra showed that the g-factor axis corresponding to the low-field EPR turning point is perpendicular to the heme plane, whereas the axis corresponding to the high-field turning point is in the heme plane and makes an angle of about 80° with the coordinated imidazole plane. The FMN-heme domain docking model obtained in the previous work was found to be in qualitative agreement with the combined experimental results of the two pulsed EPR works.
Collapse
Affiliation(s)
- Andrei V. Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Weihong Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bradley O. Elmore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - J. Guy Guillemette
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
39
|
Intraprotein electron transfer between the FMN and heme domains in endothelial nitric oxide synthase holoenzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1997-2002. [PMID: 21864726 DOI: 10.1016/j.bbapap.2011.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 11/22/2022]
Abstract
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is an essential step in nitric oxide (NO) synthesis by NO synthase (NOS). The IET kinetics in neuronal and inducible NOS (nNOS and iNOS) holoenzymes have been previously determined in our laboratories by laser flash photolysis [reviewed in: C.J. Feng, G. Tollin, Dalton Trans., (2009) 6692-6700]. Here we report the kinetics of the IET in a bovine endothelial NOS (eNOS) holoenzyme in the presence and absence of added calmodulin (CaM). The IET rate constant in the presence of CaM is estimated to be ~4.3s(-1). No IET was observed in the absence of CaM, indicating that CaM is the primary factor in controlling the FMN-heme IET in the eNOS enzyme. The IET rate constant value for the eNOS holoenzyme is approximately 10 times smaller than those obtained for the iNOS and CaM-bound nNOS holoenzymes. Possible mechanisms underlying the difference in IET kinetics among the NOS isoforms are discussed. Because the rate-limiting step in the IET process in these enzymes is the conformational change from input state to output state, a slower conformational change (than in the other isoforms) is most likely to cause the slower IET in eNOS.
Collapse
|
40
|
Ahn SH, Kim HJ, Jeong I, Hong YJ, Kim MJ, Rhie DJ, Jo YH, Hahn SJ, Yoon SH. Grape seed proanthocyanidin extract inhibits glutamate-induced cell death through inhibition of calcium signals and nitric oxide formation in cultured rat hippocampal neurons. BMC Neurosci 2011; 12:78. [PMID: 21810275 PMCID: PMC3160962 DOI: 10.1186/1471-2202-12-78] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/03/2011] [Indexed: 11/30/2022] Open
Abstract
Background Proanthocyanidin is a polyphenolic bioflavonoid with known antioxidant activity. Some flavonoids have a modulatory effect on [Ca2+]i. Although proanthocyanidin extract from blueberries reportedly affects Ca2+ buffering capacity, there are no reports on the effects of proanthocyanidin on glutamate-induced [Ca2+]i or cell death. In the present study, the effects of grape seed proanthocyanidin extract (GSPE) on glutamate-induced excitotoxicity was investigated through calcium signals and nitric oxide (NO) in cultured rat hippocampal neurons. Results Pretreatment with GSPE (0.3-10 μg/ml) for 5 min inhibited the [Ca2+]i increase normally induced by treatment with glutamate (100 μM) for 1 min, in a concentration-dependent manner. Pretreatment with GSPE (6 μg/ml) for 5 min significantly decreased the [Ca2+]i increase normally induced by two ionotropic glutamate receptor agonists, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). GSPE further decreased AMPA-induced response in the presence of 1 μM nimodipine. However, GSPE did not affect the 50 mM K+-induced increase in [Ca2+]i. GSPE significantly decreased the metabotropic glutamate receptor agonist (RS)-3,5-Dihydroxyphenylglycine-induced increase in [Ca2+]i, but it did not affect caffeine-induced response. GSPE (0.3-6 μg/ml) significantly inhibited synaptically induced [Ca2+]i spikes by 0.1 mM [Mg2+]o. In addition, pretreatment with GSPE (6 μg/ml) for 5 min inhibited 0.1 mM [Mg2+]o- and glutamate-induced formation of NO. Treatment with GSPE (6 μg/ml) significantly inhibited 0.1 mM [Mg2+]o- and oxygen glucose deprivation-induced neuronal cell death. Conclusions All these data suggest that GSPE inhibits 0.1 mM [Mg2+]o- and oxygen glucose deprivation-induced neurotoxicity through inhibition of calcium signals and NO formation in cultured rat hippocampal neurons.
Collapse
Affiliation(s)
- Seo-Hee Ahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li W, Fan W, Elmore BO, Feng C. Effect of solution viscosity on intraprotein electron transfer between the FMN and heme domains in inducible nitric oxide synthase. FEBS Lett 2011; 585:2622-6. [PMID: 21803041 DOI: 10.1016/j.febslet.2011.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/15/2022]
Abstract
The FMN-heme intraprotein electron transfer (IET) kinetics in a human inducible NOS (iNOS) oxygenase/FMN construct were determined by laser flash photolysis as a function of solution viscosity (1.0-3.0 cP). In the presence of ethylene glycol or sucrose, an appreciable decrease in the IET rate constant value was observed with an increase in the solution viscosity. The IET rate constant is inversely proportional to the viscosity for both viscosogens. This demonstrates that viscosity, and not other properties of the added viscosogens, causes the dependence of IET rates on the solvent concentration. The IET kinetics results indicate that the FMN-heme IET in iNOS is gated by a large conformational change of the FMN domain. The kinetics and NOS flavin fluorescence results together indicate that the docked FMN/heme state is populated transiently.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
42
|
Wu G, Berka V, Tsai AL. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes. J Inorg Biochem 2011; 105:1226-37. [PMID: 21763233 DOI: 10.1016/j.jinorgbio.2011.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/09/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022]
Abstract
Efficient electron transfer from reductase domain to oxygenase domain in nitric oxide synthase (NOS) is dependent on the binding of calmodulin (CaM). Rate constants for the binding of CaM to NOS target peptides was only determined previously by surface plasmon resonance (SPR) (Biochemistry 35, 8742-8747, 1996) suggesting that the binding of CaM to NOSs is slow and does not support the fast electron transfer in NOSs measured in previous and this studies. To resolve this contradiction, the binding rates of holo Alexa 350 labeled T34C/T110W CaM (Alexa-CaM) to target peptides from three NOS isozymes were determined using fluorescence stopped-flow. All three target peptides exhibited fast k(on) constants at 4.5°C: 6.6×10(8)M(-1)s(-1) for nNOS(726-749), 2.9×10(8)M(-1)s(-1) for eNOS(492-511) and 6.1×10(8)M(-1)s(-1) for iNOS(507-531), 3-4 orders of magnitude faster than those determined previously by SPR. Dissociation rates of NOS target peptides from Alexa-CaM/peptide complexes were measured by Ca(2+) chelation with ETDA: 3.7s(-1) for nNOS(726-749), 4.5s(-1) for eNOS(492-511), and 0.063s(-1) for iNOS(507-531). Our data suggest that the binding of CaM to NOS is fast and kinetically competent for efficient electron transfer and is unlikely rate-limiting in NOS catalysis. Only iNOS(507-531) was able to bind apo Alexa-CaM, but in a very different conformation from its binding to holo Alexa-CaM.
Collapse
Affiliation(s)
- Gang Wu
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
43
|
Zweier JL, Chen CA, Druhan LJ. S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal 2011; 14:1769-75. [PMID: 21261471 PMCID: PMC3078498 DOI: 10.1089/ars.2011.3904] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been shown to convert endothelial nitric oxide synthase (eNOS) from an NO-producing enzyme to an enzyme that generates superoxide, a process termed NOS uncoupling. This uncoupling of eNOS converts it to function as an NADPH oxidase with superoxide and hydrogen peroxide generation. eNOS uncoupling has been associated with many pathophysiologic conditions, such as heart failure, ischemia/reperfusion injury, hypertension, atherosclerosis, and diabetes. The mechanisms implicated in the uncoupling of eNOS include oxidation of the critical NOS cofactor tetrahydrobiopterin, depletion of L-arginine, and accumulation of methylarginines. All of these prior mechanisms of eNOS-derived reactive oxygen species formation occur primarily at the heme of the oxygenase domain and are blocked by heme blockers or the NOS inhibitor N-nitro-L-arginine methylester. Recently, we have identified another unique mechanism of redox regulation of eNOS through S-glutathionylation that was shown to be important in cell signaling and vascular disease. Herein, we briefly review the mechanisms of eNOS uncoupling as well as their interrelationships and the evidence for their importance in disease.
Collapse
Affiliation(s)
- Jay L. Zweier
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Chun-An Chen
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Lawrence J. Druhan
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
- Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
44
|
Astashkin AV, Elmore BO, Fan W, Guillemette JG, Feng C. Pulsed EPR determination of the distance between heme iron and FMN centers in a human inducible nitric oxide synthase. J Am Chem Soc 2010; 132:12059-67. [PMID: 20695464 DOI: 10.1021/ja104461p] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian nitric oxide synthase (NOS) is a homodimeric flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide (NO). Regulation of NO biosynthesis by NOS is primarily through control of interdomain electron transfer (IET) processes in NOS catalysis. The IET from the flavin mononucleotide (FMN) to heme domains is essential in the delivery of electrons required for O(2) activation in the heme domain and the subsequent NO synthesis by NOS. The NOS output state for NO production is an IET-competent complex of the FMN-binding domain and heme domain, and thereby it facilitates the IET from the FMN to the catalytic heme site. The structure of the functional output state has not yet been determined. In the absence of crystal structure data for NOS holoenzyme, it is important to experimentally determine the Fe...FMN distance to provide a key calibration for computational docking studies and for the IET kinetics studies. Here we used the relaxation-induced dipolar modulation enhancement (RIDME) technique to measure the electron spin echo envelope modulation caused by the dipole interactions between paramagnetic FMN and heme iron centers in the [Fe(III)][FMNH(*)] (FMNH(*): FMN semiquinone) form of a human inducible NOS (iNOS) bidomain oxygenase/FMN construct. The FMNH(*)...Fe distance has been directly determined from the RIDME spectrum. This distance (18.8 +/- 0.1 A) is in excellent agreement with the IET rate constant measured by laser flash photolysis [Feng, C. J.; Dupont, A.; Nahm, N.; Spratt, D.; Hazzard, J. T.; Weinberg, J.; Guillemette, J.; Tollin, G.; Ghosh, D. K. J. Biol. Inorg. Chem. 2009, 14, 133-142].
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
45
|
Feng C, Fan W, Dupont A, Guy Guillemette J, Ghosh DK, Tollin G. Electron transfer in a human inducible nitric oxide synthase oxygenase/FMN construct co-expressed with the N-terminal globular domain of calmodulin. FEBS Lett 2010; 584:4335-8. [PMID: 20868689 DOI: 10.1016/j.febslet.2010.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 11/26/2022]
Abstract
The FMN-heme intraprotein electron transfer (IET) kinetics in a human inducible NOS (iNOS) oxygenase/FMN (oxyFMN) construct co-expressed with NCaM, a truncated calmodulin (CaM) construct that includes only its N-terminal globular domain consisting of residues 1-75, were determined by laser flash photolysis. The IET rate constant is significantly decreased by nearly fourfold (compared to the iNOS oxyFMN co-expressed with full length CaM). This supports an important role of full length CaM in proper interdomain FMN/heme alignment in iNOS. The IET process was not observed with added excess EDTA, suggesting that Ca(2+) depletion results in the FMN domain moving away from the heme domain. The results indicate that a Ca(2+)-dependent reorganization of the truncated CaM construct could cause a major modification of the NCaM/iNOS association resulting in a loss of the IET.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
46
|
NO synthase: structures and mechanisms. Nitric Oxide 2010; 23:1-11. [PMID: 20303412 DOI: 10.1016/j.niox.2010.03.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/24/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
Abstract
Production of NO from arginine and molecular oxygen is a complex chemical reaction unique to biology. Our understanding of the chemical and regulation mechanisms of the NO synthases has developed over the past two decades, uncovering some extraordinary features. This article reviews recent progress and highlights current issues and controversies. The structure of the enzyme has now been determined almost in entirety, although it is as a selection of fragments, which are difficult to assemble unambiguously. NO synthesis is driven by electron transfer through FAD and FMN cofactors, which is controlled by calmodulin binding in the constitutive mammalian enzymes. Many of the unique structural features involved have been characterised, but the mechanics of calmodulin-dependent activation are largely unresolved. Ultimately, NO is produced in the active site by the reaction of arginine with activated heme-bound oxygen in two distinct cycles. The unique role of the tetrahydrobiopterin cofactor as an electron donor in this process has now been established, but the subsequent chemical events are currently a matter of intense speculation and debate.
Collapse
|
47
|
Guan ZW, Haque MM, Wei CC, Garcin ED, Getzoff ED, Stuehr DJ. Lys842 in neuronal nitric-oxide synthase enables the autoinhibitory insert to antagonize calmodulin binding, increase FMN shielding, and suppress interflavin electron transfer. J Biol Chem 2009; 285:3064-75. [PMID: 19948738 DOI: 10.1074/jbc.m109.000810] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys(842)) lies within a putative CaM binding helix in the middle of the AI. We investigated its role by substituting residues that neutralize (Ala) or reverse (Glu) the charge at Lys(842). Compared with wild type nNOS, the mutant enzymes had greater cytochrome c reductase and NADPH oxidase activities in the CaM-free state, were able to bind CaM at lower calcium concentration, and had lower rates of heme reduction and NO synthesis in one case (K842A). Moreover, stopped-flow spectrophotometric experiments with the nNOS reductase domain indicate that the CaM-free mutants had faster flavin reduction kinetics and had less shielding of their FMN subdomains compared with wild type and no longer increased their level of FMN shielding in response to NADPH binding. Thus, Lys(842) is critical for the known functions of the AI and also enables two additional functions of the AI as newly identified here: suppression of electron transfer to FMN and control of the conformational equilibrium of the nNOS reductase domain. Its effect on the conformational equilibrium probably explains suppression of catalysis by the AI.
Collapse
Affiliation(s)
- Zhi-Wen Guan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
48
|
Xia C, Misra I, Iyanagi T, Kim JJP. Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase. J Biol Chem 2009; 284:30708-17. [PMID: 19737939 DOI: 10.1074/jbc.m109.031682] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOSs) catalyze the conversion of l-arginine to nitric oxide and citrulline. There are three NOS isozymes, each with a different physiological role: neuronal NOS, endothelial NOS, and inducible NOS (iNOS). NOSs consist of an N-terminal oxygenase domain and a C-terminal reductase domain, linked by a calmodulin (CaM)-binding region. CaM is required for NO production, but unlike other NOS isozymes, iNOS binds CaM independently of the exogenous Ca(2+) concentration. We have co-expressed CaM and the FMN domain of human iNOS, which includes the CaM-binding region. The Ca(2+)-bound protein complex (CaCaMxFMN) forms an air-stable semiquinone when reduced with NADPH and reduces cytochrome c when reconstituted with the iNOS FAD/NADPH domain. We have solved the crystal structure of the CaCaMxFMN complex in four different conformations, each with a different relative orientation, between the FMN domain and the bound CaM. The CaM-binding region together with bound CaM forms a hinge, pivots on the conserved Arg(536), and regulates electron transfer from FAD to FMN and from FMN to heme by adjusting the relative orientation and distance among the three cofactors. In addition, the relative orientations of the N- and C-terminal lobes of CaM are also different among the four conformations, suggesting that the flexibility between the two halves of CaM also contributes to the fine tuning of the orientation/distance between the redox centers. The data demonstrate a possible mode for precise control of electron transfer by altering the distance and orientation of redox centers in a protein displaying domain movement.
Collapse
Affiliation(s)
- Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
49
|
Stuehr DJ, Tejero J, Haque MM. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 2009; 276:3959-74. [PMID: 19583767 DOI: 10.1111/j.1742-4658.2009.07120.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide synthases belong to a family of dual-flavin enzymes that transfer electrons from NAD(P)H to a variety of heme protein acceptors. During catalysis, their FMN subdomain plays a central role by acting as both an electron acceptor (receiving electrons from FAD) and an electron donor, and is thought to undergo large conformational movements and engage in two distinct protein-protein interactions in the process. This minireview summarizes what we know about the many factors regulating nitric oxide synthase flavoprotein domain function, primarily from the viewpoint of how they impact electron input/output and conformational behaviors of the FMN subdomain.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
50
|
Sempombe J, Elmore BO, Sun X, Dupont A, Ghosh DK, Guillemette JG, Kirk ML, Feng C. Mutations in the FMN domain modulate MCD spectra of the heme site in the oxygenase domain of inducible nitric oxide synthase. J Am Chem Soc 2009; 131:6940-1. [PMID: 19405537 DOI: 10.1021/ja902141v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.
Collapse
Affiliation(s)
- Joseph Sempombe
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|