1
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
2
|
Gao J, Su G, Liu J, Shen M, Zhang Z, Wang M. Formyl peptide receptors in the microglial activation: New perspectives and therapeutic potential for neuroinflammation. FASEB J 2024; 38:e70151. [PMID: 39520282 DOI: 10.1096/fj.202401927r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Secondary neurological impairment mediated by neuroinflammation is recognized as a crucial pathological factor in central nervous system (CNS) diseases. Currently, there exists a lack of specific therapies targeting neuroinflammation. Given that microglia constitute the primary immune cells involved in the neuroinflammatory response, a thorough comprehension of their role in CNS diseases is imperative for the development of efficacious treatments. Recent investigations have unveiled the significance of formyl peptide receptors (FPRs) in various neuroinflammatory diseases associated with microglial overactivation. Consequently, FPRs emerge as promising targets for modulating the neuroinflammatory response. This review aims to comprehensively explore the therapeutic potential of targeting FPRs in the management of microglia-mediated neuroinflammation. It delineates the molecular characteristics and functions of FPRs, elucidates their involvement in the inflammatory response linked to microglial overactivation, and synthesizes therapeutic strategies for regulating microglia-mediated neuroinflammation via FPR modulation, thereby charting a novel course for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
4
|
Castro-Gomez S, Heneka MT. Innate immune activation in neurodegenerative diseases. Immunity 2024; 57:790-814. [PMID: 38599171 DOI: 10.1016/j.immuni.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Activation of the innate immune system following pattern recognition receptor binding has emerged as one of the major pathogenic mechanisms in neurodegenerative disease. Experimental, epidemiological, pathological, and genetic evidence underscores the meaning of innate immune activation during the prodromal as well as clinical phases of several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Importantly, innate immune activation and the subsequent release of inflammatory mediators contribute mechanistically to other hallmarks of neurodegenerative diseases such as aberrant proteostatis, pathological protein aggregation, cytoskeleton abnormalities, altered energy homeostasis, RNA and DNA defects, and synaptic and network disbalance and ultimately to the induction of neuronal cell death. In this review, we discuss common mechanisms of innate immune activation in neurodegeneration, with particular emphasis on the pattern recognition receptors (PRRs) and other receptors involved in the detection of damage-associated molecular patterns (DAMPs).
Collapse
Affiliation(s)
- Sergio Castro-Gomez
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany; Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 2024; 265:115989. [PMID: 38199163 DOI: 10.1016/j.ejmech.2023.115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.
Collapse
Affiliation(s)
- Xiangyan Yi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jephthah O Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
6
|
Tuckey AN, Brandon A, Eslaamizaad Y, Siddiqui W, Nawaz T, Clarke C, Sutherland E, Williams V, Spadafora D, Barrington RA, Alvarez DF, Mulekar MS, Simmons JD, Fouty BW, Audia JP. Amyloid-β and caspase-1 are indicators of sepsis and organ injury. ERJ Open Res 2024; 10:00572-2023. [PMID: 38410714 PMCID: PMC10895426 DOI: 10.1183/23120541.00572-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 02/28/2024] Open
Abstract
Background Sepsis is a life-threatening condition that results from a dysregulated host response to infection, leading to organ dysfunction. Despite the prevalence and associated socioeconomic costs, treatment of sepsis remains limited to antibiotics and supportive care, and a majority of intensive care unit (ICU) survivors develop long-term cognitive complications post-discharge. The present study identifies a novel regulatory relationship between amyloid-β (Aβ) and the inflammasome-caspase-1 axis as key innate immune mediators that define sepsis outcomes. Methods Medical ICU patients and healthy individuals were consented for blood and clinical data collection. Plasma cytokine, caspase-1 and Aβ levels were measured. Data were compared against indices of multiorgan injury and other clinical parameters. Additionally, recombinant proteins were tested in vitro to examine the effect of caspase-1 on a functional hallmark of Aβ, namely aggregation. Results Plasma caspase-1 levels displayed the best predictive value in discriminating ICU patients with sepsis from non-infected ICU patients (area under the receiver operating characteristic curve=0.7080). Plasma caspase-1 and the Aβ isoform Aβx-40 showed a significant positive correlation and Aβx-40 associated with organ injury. Additionally, Aβ plasma levels continued to rise from time of ICU admission to 7 days post-admission. In silico, Aβ harbours a predicted caspase-1 cleavage site, and in vitro studies demonstrated that caspase-1 cleaved Aβ to inhibit its auto-aggregation, suggesting a novel regulatory relationship. Conclusions Aβx-40 and caspase-1 are potentially useful early indicators of sepsis and its attendant organ injury. Additionally, Aβx-40 has emerged as a potential culprit in the ensuing development of post-ICU syndrome.
Collapse
Affiliation(s)
- Amanda N. Tuckey
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
| | - Arcole Brandon
- Center for Lung Biology, University of South Alabama College of Medicine
| | - Yasaman Eslaamizaad
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Waqar Siddiqui
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Talha Nawaz
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Christopher Clarke
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Erica Sutherland
- Department of Internal Medicine, University of South Alabama College of Medicine
| | - Veronica Williams
- Department of Laboratory Medicine, University of South Alabama University Hospital
| | - Domenico Spadafora
- Flow Cytometry Shared Resources Laboratory, University of South Alabama College of Medicine
| | - Robert A. Barrington
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
- Flow Cytometry Shared Resources Laboratory, University of South Alabama College of Medicine
| | - Diego F. Alvarez
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Internal Medicine, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
| | - Madhuri S. Mulekar
- Department of Mathematics and Statistics, University of South Alabama College of Arts and Sciences
| | - Jon D. Simmons
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
- Department of Surgery, University of South Alabama College of Medicine
| | - Brian W. Fouty
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
| |
Collapse
|
7
|
Lorenzini I, Alsop E, Levy J, Gittings LM, Lall D, Rabichow BE, Moore S, Pevey R, Bustos LM, Burciu C, Bhatia D, Singer M, Saul J, McQuade A, Tzioras M, Mota TA, Logemann A, Rose J, Almeida S, Gao FB, Marks M, Donnelly CJ, Hutchins E, Hung ST, Ichida J, Bowser R, Spires-Jones T, Blurton-Jones M, Gendron TF, Baloh RH, Van Keuren-Jensen K, Sattler R. Moderate intrinsic phenotypic alterations in C9orf72 ALS/FTD iPSC-microglia despite the presence of C9orf72 pathological features. Front Cell Neurosci 2023; 17:1179796. [PMID: 37346371 PMCID: PMC10279871 DOI: 10.3389/fncel.2023.1179796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
While motor and cortical neurons are affected in C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated C9orf72 ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, C9orf72 ALS/FTD iPSC-MG mono-cultures form G4C2 repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins. Healthy control and C9orf72 ALS/FTD iPSC-MG equally express microglial specific genes and perform microglial functions, including inflammatory cytokine release and phagocytosis of extracellular cargos, such as synthetic amyloid beta peptides and healthy human brain synaptoneurosomes. RNA sequencing analysis revealed select transcriptional changes of genes associated with neuroinflammation or neurodegeneration in diseased microglia yet no significant differentially expressed microglial-enriched genes. Moderate molecular and functional differences were observed in C9orf72 iPSC-MG mono-cultures despite the presence of C9orf72 pathological features suggesting that a diseased microenvironment may be required to induce phenotypic changes in microglial cells and the associated neuronal dysfunction seen in C9orf72 ALS/FTD neurodegeneration.
Collapse
Affiliation(s)
- Ileana Lorenzini
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Eric Alsop
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jennifer Levy
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Lauren M. Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Deepti Lall
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Benjamin E. Rabichow
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Stephen Moore
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Ryan Pevey
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lynette M. Bustos
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Camelia Burciu
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Divya Bhatia
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mo Singer
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Justin Saul
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Makis Tzioras
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas A. Mota
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Amber Logemann
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jamie Rose
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael Marks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher J. Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Shu-Ting Hung
- Department of Stem Cell Biology Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Justin Ichida
- Department of Stem Cell Biology Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Tara Spires-Jones
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Robert H. Baloh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
8
|
Coppin E, Zhang X, Ohayon L, Johny E, Dasari A, Zheng KH, Stiekema L, Cifuentes-Pagano E, Pagano PJ, Chaparala S, Stroes ES, Dutta P. Peripheral Ischemia Imprints Epigenetic Changes in Hematopoietic Stem Cells to Propagate Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2023; 43:889-906. [PMID: 36891902 PMCID: PMC10213134 DOI: 10.1161/atvbaha.123.318956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Peripheral ischemia caused by peripheral artery disease is associated with systemic inflammation, which may aggravate underlying comorbidities such as atherosclerosis and heart failure. However, the mechanisms of increased inflammation and inflammatory cell production in patients with peripheral artery disease remain poorly understood. METHODS We used peripheral blood collected from patients with peripheral artery disease and performed hind limb ischemia (HI) in Apoe-/- mice fed a Western diet and C57BL/6J mice with a standard laboratory diet. Bulk and single-cell RNA sequencing analysis, whole-mount microscopy, and flow cytometry were performed to analyze hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and relocation. RESULTS We observed augmented numbers of leukocytes in the blood of patients with peripheral artery disease and Apoe-/- mice with HI. RNA sequencing and whole-mount imaging of the bone marrow revealed HSPC migration into the vascular niche from the osteoblastic niche and their exaggerated proliferation and differentiation. Single-cell RNA sequencing demonstrated alterations in the genes responsible for inflammation, myeloid cell mobilization, and HSPC differentiation after HI. Heightened inflammation in Apoe-/- mice after HI aggravated atherosclerosis. Surprisingly, bone marrow HSPCs expressed higher amounts of the receptors for IL (interleukin)-1 and IL-3 after HI. Concomitantly, the promoters of Il1r1 and Il3rb had augmented H3K4me3 and H3K27ac marks after HI. Genetic and pharmacological inhibition of these receptors resulted in suppressed HSPC proliferation, reduced leukocyte production, and ameliorated atherosclerosis. CONCLUSIONS Our findings demonstrate increased inflammation, HSPC abundance in the vascular niches of the bone marrow, and elevated IL-3Rb and IL-1R1 (IL-1 receptor 1) expression in HSPC following HI. Furthermore, the IL-3Rb and IL-1R1 signaling plays a pivotal role in HSPC proliferation, leukocyte abundance, and atherosclerosis aggravation after HI.
Collapse
Affiliation(s)
- Emilie Coppin
- Regeneration in Hematopoiesis, Institute for Immunology, TU Dresden, Dresden, Germany
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Xinyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ankush Dasari
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kang H. Zheng
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lotte Stiekema
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Srilakshmi Chaparala
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erik S. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, 15213
| |
Collapse
|
9
|
Formyl peptide receptor 2 is an emerging modulator of inflammation in the liver. Exp Mol Med 2023; 55:325-332. [PMID: 36750693 PMCID: PMC9981720 DOI: 10.1038/s12276-023-00941-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 02/09/2023] Open
Abstract
Formyl peptide receptors (FPRs), which are seven-membrane G-protein coupled receptors, recognize chemotactic signals to protect hosts from pathogenic infections and mediate inflammatory responses in the body. There are three isoforms of FPRs in humans-FPR1, FPR2, and FPR3-and they bind to N-formyl peptides, except FPR3, and to various endogenous agonists. Among FPR family members, FPR2 has a lower affinity for N-formyl peptides than FPR1 and binds with a wide range of endogenous or exogenous agonists. Thus, FPR2 is considered the most ambiguous member. Accumulating evidence has shown that FPR2 is involved in the host's defense against bacterial infection and inflammation in liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, and liver cancer, suggesting the pathophysiological relevance of FPR2 to the liver. However, FPR2 has been shown to promote or suppress inflammation, depending on the type of FPR2-expressing cell and FPR2-bound ligands in the liver. Therefore, it is important to understand FPR2's function per se and to elucidate the mechanism underlying immunomodulation initiated by ligand-activated FPR2 before suggesting FPR2 as a novel therapeutic agent for liver diseases. In this review, up-to-date knowledge of FPR2, with general information on the FPR family, is provided. We shed light on the dual action of FPR2 in the liver and discuss the hepatoprotective roles of FPR2 itself and FPR2 agonists in mediating anti-inflammatory responses.
Collapse
|
10
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
11
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
12
|
Amyloid beta and its naturally occurring N-terminal variants are potent activators of human and mouse formyl peptide receptor 1. J Biol Chem 2022; 298:102642. [PMID: 36309087 PMCID: PMC9694488 DOI: 10.1016/j.jbc.2022.102642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Formyl peptide receptors (FPRs) may contribute to inflammation in Alzheimer's disease through interactions with neuropathological Amyloid beta (Aβ) peptides. Previous studies reported activation of FPR2 by Aβ1-42, but further investigation of other FPRs and Aβ variants is needed. This study provides a comprehensive overview of the interactions of mouse and human FPRs with different physiologically relevant Aβ-peptides using transiently transfected cells in combination with calcium imaging. We observed that, in addition to hFPR2, all other hFPRs also responded to Aβ1-42, Aβ1-40, and the naturally occurring variants Aβ11-40 and Aβ17-40. Notably, Aβ11-40 and Aβ17-40 are very potent activators of mouse and human FPR1, acting at nanomolar concentrations. Buffer composition and aggregation state are extremely crucial factors that critically affect the interaction of Aβ with different FPR subtypes. To investigate the physiological relevance of these findings, we examined the effects of Aβ11-40 and Aβ17-40 on the human glial cell line U87. Both peptides induced a strong calcium flux at concentrations that are very similar to those obtained in experiments for hFPR1 in HEK cells. Further immunocytochemistry, qPCR, and pharmacological experiments verified that these responses were primarily mediated through hFPR1. Chemotaxis experiments revealed that Aβ11-40 but not Aβ17-40 evoked cell migration, which argues for a functional selectivity of different Aβ peptides. Together, these findings provide the first evidence that not only hFPR2 but also hFPR1 and hFPR3 may contribute to neuroinflammation in Alzheimer's disease through an interaction with different Aβ variants.
Collapse
|
13
|
Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer’s disease. Int Immunopharmacol 2022; 110:109070. [DOI: 10.1016/j.intimp.2022.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
|
14
|
Roohbakhsh A, Etemad L, Karimi G. Resolvin D1: A key endogenous inhibitor of neuroinflammation. Biofactors 2022; 48:1005-1026. [PMID: 36176016 DOI: 10.1002/biof.1891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
After the initiation of inflammation, a series of processes start to resolve the inflammation. A group of endogenous lipid mediators, namely specialized pro-resolving lipid mediators is at the top list of inflammation resolution. Resolvin D1 (RvD1), is one of the lipid mediators with significant anti-inflammatory properties. It is produced from docosahexaenoic acid (omega-3 polyunsaturated fatty acid) in the body. In this article, we aimed to review the most recent findings concerning the pharmacological effects of RvD1 in the central nervous system with a focus on major neurological diseases and dysfunctions. A literature review of the past studies demonstrated that RvD1 plasma level changes during mania, depression, and Parkinson's disease. Furthermore, RVD1 and its epimer, aspirin-triggered RvD1 (AT-RvD1), have significant therapeutic effects on experimental models of ischemic and traumatic brain injuries, memory dysfunction, pain, depression, amyotrophic lateral sclerosis, and Alzheimer's and Parkinson's diseases. Interestingly, the beneficial effects of RvD1 and AT-RvD1 were mostly induced at nanomolar and micromolar concentrations implying the significant potency of these lipid mediators in treating diseases with inflammation.
Collapse
Affiliation(s)
- Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Mastromarino M, Favia M, Schepetkin IA, Kirpotina LN, Trojan E, Niso M, Carrieri A, Leśkiewicz M, Regulska M, Darida M, Rossignolo F, Fontana S, Quinn MT, Basta-Kaim A, Leopoldo M, Lacivita E. Design, Synthesis, Biological Evaluation, and Computational Studies of Novel Ureidopropanamides as Formyl Peptide Receptor 2 (FPR2) Agonists to Target the Resolution of Inflammation in Central Nervous System Disorders. J Med Chem 2022; 65:5004-5028. [PMID: 35257581 PMCID: PMC9942528 DOI: 10.1021/acs.jmedchem.1c02203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formyl peptide receptor 2 (FPR2) agonists can boost the resolution of inflammation and can offer alternative approaches for the treatment of pathologies with underlying chronic neuroinflammation, including neurodegenerative disorders. Starting from the FPR2 agonist 2 previously identified in our laboratory and through fine-tuning of FPR2 potency and metabolic stability, we have identified a new series of ureidopropanamide derivatives endowed with a balanced combination of such properties. Computational studies provided insights into the key interactions of the new compounds for FPR2 activation. In mouse microglial N9 cells and in rat primary microglial cells stimulated with lipopolysaccharide, selected compounds inhibited the production of pro-inflammatory cytokines, counterbalanced the changes in mitochondrial function, and inhibited caspase-3 activity. Among the new agonists, (S)-11l stands out also for the ability to permeate the blood-brain barrier and to accumulate in the mouse brain in vivo, thus representing a valuable pharmacological tool for studies in vivo.
Collapse
Affiliation(s)
- Margherita Mastromarino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Maria Favia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Lylia N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smȩtna St., 31-343 Kraków, Poland
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Antonio Carrieri
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smȩtna St., 31-343 Kraków, Poland
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smȩtna St., 31-343 Kraków, Poland
| | | | | | - Stefano Fontana
- Aptuit Srl, an Evotec Company, Via A. Fleming, 4, 37135 Verona, Italy
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smȩtna St., 31-343 Kraków, Poland
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
16
|
Gutiérrez IL, Novellino F, Caso JR, García-Bueno B, Leza JC, Madrigal JLM. CCL2 Inhibition of Pro-Resolving Mediators Potentiates Neuroinflammation in Astrocytes. Int J Mol Sci 2022; 23:ijms23063307. [PMID: 35328727 PMCID: PMC8949263 DOI: 10.3390/ijms23063307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
The chemokine CCL2 participates in multiple neuroinflammatory processes, mainly through the recruitment of glial cells. However, CCL2 has also been proven to exert different types of actions on these cells, including the modification of their response to inflammatory stimuli. In the present study we analyzed the effect of CCL2 on the resolution of inflammation in astrocytes. We observed that genetic removal of CCL2 increases the expression of the enzymes responsible for the synthesis of specialized pro-resolving mediators arachidonate 15-lipoxygenase and arachidonate 5-lipoxygenase in the brain cortex of 5xFAD mice. The expression of FPR2 receptor, known to mediate the activity of pro-resolving mediators was also increased in mice lacking CCL2.The downregulation of these proteins by CCL2 was also observed in cultured astrocytes. This suggests that CCL2 inhibition of the resolution of inflammation could facilitate the progression of neuroinflammatory processes. The production of the pro-inflammatory cytokine IL-1beta by astrocytes was analyzed, and allowed us to confirm that CCL2 potentiates the activation of astrocytes trough the inhibition of pro-resolving pathways mediated by Resolvin D1. In addition, the analysis of the expression of TNFalpha, MIP1alpha and NOS2 further confirmed CCL2 inhibition of inflammation resolution in astrocytes.
Collapse
Affiliation(s)
- Irene L. Gutiérrez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Fabiana Novellino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council, Viale Europa, 88100 Catanzaro, Italy
| | - Javier R. Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Juan C. Leza
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - José L. M. Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Correspondence: ; Tel.: +34-913941463
| |
Collapse
|
17
|
Stuart BAR, Franitza AL, E L. Regulatory Roles of Antimicrobial Peptides in the Nervous System: Implications for Neuronal Aging. Front Cell Neurosci 2022; 16:843790. [PMID: 35321204 PMCID: PMC8936185 DOI: 10.3389/fncel.2022.843790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are classically known as important effector molecules in innate immunity across all multicellular organisms. However, emerging evidence begins to suggest multifunctional properties of AMPs beyond their antimicrobial activity, surprisingly including their roles in regulating neuronal function, such as sleep and memory formation. Aging, which is fundamental to neurodegeneration in both physiological and disease conditions, interestingly affects the expression pattern of many AMPs in an infection-independent manner. While it remains unclear whether these are coincidental events, or a mechanistic relationship exists, previous studies have suggested a close link between AMPs and a few key proteins involved in neurodegenerative diseases. This review discusses recent literature and advances in understanding the crosstalk between AMPs and the nervous system at both molecular and functional levels, with the aim to explore how AMPs may relate to neuronal vulnerability in aging.
Collapse
Affiliation(s)
- Bradey A. R. Stuart
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ariel L. Franitza
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lezi E
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Lezi E
| |
Collapse
|
18
|
Zhang J, Li Z, Fan M, Jin W. Lipoxins in the Nervous System: Brighter Prospects for Neuroprotection. Front Pharmacol 2022; 13:781889. [PMID: 35153778 PMCID: PMC8826722 DOI: 10.3389/fphar.2022.781889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Lipoxins (LXs) are generated from arachidonic acid and are involved in the resolution of inflammation and confer protection in a variety of pathological processes. In the nervous system, LXs exert an array of protective effects against neurological diseases, including ischemic or hemorrhagic stroke, neonatal hypoxia-ischemia encephalopathy, brain and spinal cord injury, Alzheimer's disease, multiple sclerosis, and neuropathic pain. Lipoxin administration is a potential therapeutic strategy in neurological diseases due to its notable efficiency and unique superiority regarding safety. Here, we provide an overview of LXs in terms of their synthesis, signaling pathways and neuroprotective evidence. Overall, we believe that, along with advances in lipoxin-related drug design, LXs will bring brighter prospects for neuroprotection.
Collapse
Affiliation(s)
- Jiayu Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Zhe Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Mingyue Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
19
|
Trojan E, Tylek K, Schröder N, Kahl I, Brandenburg LO, Mastromarino M, Leopoldo M, Basta-Kaim A, Lacivita E. The N-Formyl Peptide Receptor 2 (FPR2) Agonist MR-39 Improves Ex Vivo and In Vivo Amyloid Beta (1-42)-Induced Neuroinflammation in Mouse Models of Alzheimer's Disease. Mol Neurobiol 2021; 58:6203-6221. [PMID: 34468933 PMCID: PMC8639560 DOI: 10.1007/s12035-021-02543-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
The major histopathological hallmarks of Alzheimer's disease (AD) include β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Aβ 1-42 (Aβ1-42) has been shown to induce neurotoxicity and secretion of proinflammatory mediators that potentiate neurotoxicity. Proinflammatory and neurotoxic activities of Aβ1-42 were shown to be mediated by interactions with several cell surface receptors, including the chemotactic G protein-coupled N-formyl peptide receptor 2 (FPR2). The present study investigated the impact of a new FPR2 agonist, MR-39, on the neuroinflammatory response in ex vivo and in vivo models of AD. To address this question, organotypic hippocampal cultures from wild-type (WT) and FPR2-deficient mice (knockout, KO, FPR2-/-) were treated with fibrillary Aβ1-42, and the effect of the new FPR2 agonist MR-39 on the release of pro- and anti-inflammatory cytokines was assessed. Similarly, APP/PS1 double-transgenic AD mice were treated for 20 weeks with MR-39, and immunohistological staining was performed to assess neuronal loss, gliosis, and Aβ load in the hippocampus and cortex. The data indicated that MR-39 was able to reduce the Aβ1-42-induced release of proinflammatory cytokines and to improve the release of anti-inflammatory cytokines in mouse hippocampal organotypic cultures. The observed effect was apparently related to the inhibition of the MyD88/TRAF6/NFкB signaling pathway and a decrease in NLRP3 inflammasome activation. Administration of MR-39 to APP/PS1 mice improved neuronal survival and decreased microglial cell density and plaque load.These results suggest that FPR2 may be a promising target for alleviating the inflammatory process associated with AD and that MR-39 may be a useful therapeutic agent for AD.
Collapse
Affiliation(s)
- Ewa Trojan
- Department of Experimental Neuroendocrinology, Immunoendocrinology Laboratory, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Str, 31-343, Kraków, Poland
| | - Kinga Tylek
- Department of Experimental Neuroendocrinology, Immunoendocrinology Laboratory, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Str, 31-343, Kraków, Poland
| | - Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Iris Kahl
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | | | - Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari, via Orabona 4, 70125, Bari, Italy
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Immunoendocrinology Laboratory, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Str, 31-343, Kraków, Poland.
| | - Enza Lacivita
- Department of Pharmacy-Drug Sciences, University of Bari, via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
20
|
Busch L, Vieten S, Brödel S, Endres K, Bufe B. Emerging contributions of formyl peptide receptors to neurodegenerative diseases. Biol Chem 2021; 403:27-41. [PMID: 34505459 DOI: 10.1515/hsz-2021-0258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Inflammation is a central element of many neurodegenerative diseases. Formyl peptide receptors (FPRs) can trigger several receptor-dependent signal transduction pathways that play a key role in neuroinflammation and neurodegeneration. They are chemotactic receptors that help to regulate pro- and anti-inflammatory responses in most mammals. FPRs are primarily expressed in the immune and nervous systems where they interact with a complex pattern of pathogen-derived and host-endogenous molecules. Mounting evidence points towards a contribution of FPRs - via neuropathological ligands such as Amyloid beta, and neuroprotective ligands such as Humanin, Lipoxin A4, and Annexin A1 - to multiple pathological aspects of neurodegenerative diseases. In this review, we aim to summarize the interplay of FPRs with neuropathological and neuroprotective ligands. Next, we depict their capability to trigger a number of ligand-dependent cell signaling pathways and their potential to interact with additional intracellular cofactors. Moreover, we highlight first studies, demonstrating that a pharmacological inhibition of FPRs helps to ameliorate neuroinflammation, which may pave the way towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Stefan Vieten
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Susan Brödel
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
21
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
22
|
Piec PA, Pons V, Rivest S. Triggering Innate Immune Receptors as New Therapies in Alzheimer's Disease and Multiple Sclerosis. Cells 2021; 10:cells10082164. [PMID: 34440933 PMCID: PMC8393987 DOI: 10.3390/cells10082164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis and Alzheimer's disease are two complex neurodegenerative diseases involving the immune system. So far, available treatments provide at best mild improvements to patients' conditions. For decades now, a new set of molecules have been used to modulate and regulate the innate immunity in these pathologies. Most studies have been carried out in rodents and some of them have reported tremendous beneficial effects on the disease course. The modulation of innate immune cells is of great interest since it provides new hope for patients. In this review, we will briefly overview the therapeutic potential of some molecules and receptors in multiple sclerosis and Alzheimer's disease and how they could be used to exploit new therapeutic avenues.
Collapse
|
23
|
Emre C, Do KV, Jun B, Hjorth E, Alcalde SG, Kautzmann MAI, Gordon WC, Nilsson P, Bazan NG, Schultzberg M. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:116. [PMID: 34187579 PMCID: PMC8244172 DOI: 10.1186/s40478-021-01216-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Sustained brain chronic inflammation in Alzheimer’s disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates β-amyloid (Aβ) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aβ pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.
Collapse
|
24
|
Formyl peptide receptor 2, as an important target for ligands triggering the inflammatory response regulation: a link to brain pathology. Pharmacol Rep 2021; 73:1004-1019. [PMID: 34105114 PMCID: PMC8413167 DOI: 10.1007/s43440-021-00271-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022]
Abstract
Formyl peptide receptors (FPRs) belong to the family of seven-transmembrane G protein-coupled receptors. Among them, FPR2 is a low affinity receptor for N-formyl peptides and is considered the most promiscuous member of FPRs. FPR2 is able to recognize a broad variety of endogenous or exogenous ligands, ranging from lipid to proteins and peptides, including non-formylated peptides. Due to this property FPR2 has the ability to modulate both pro- and anti-inflammatory response, depending on the nature of the bound agonist and on the different recognition sites of the receptor. Thus, FPR2 takes part not only in the proinflammatory response but also in the resolution of inflammation (RoI) processes. Recent data have indicated that the malfunction of RoI may be the background for some central nervous system (CNS) disorders. Therefore, much interest is focused on endogenous molecules called specialized pro-resolving mediators (SPMs), as well as on new synthetic FPR2 agonists, which kick-start the resolution of inflammation (RoI) and modulate its course. Here, we shed some light on the general characteristics of the FPR family in humans and in the experimental animals. Moreover, we present a guide to understanding the "double faced" action of FPR2 activation in the context of immune-related diseases of the CNS.
Collapse
|
25
|
Wickstead ES, Irving MA, Getting SJ, McArthur S. Exploiting formyl peptide receptor 2 to promote microglial resolution: a new approach to Alzheimer's disease treatment. FEBS J 2021; 289:1801-1822. [PMID: 33811735 DOI: 10.1111/febs.15861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease and dementia are among the most significant current healthcare challenges given the rapidly growing elderly population, and the almost total lack of effective therapeutic interventions. Alzheimer's disease pathology has long been considered in terms of accumulation of amyloid beta and hyperphosphorylated tau, but the importance of neuroinflammation in driving disease has taken greater precedence over the last 15-20 years. Inflammatory activation of the primary brain immune cells, the microglia, has been implicated in Alzheimer's pathogenesis through genetic, preclinical, imaging and postmortem human studies, and strategies to regulate microglial activity may hold great promise for disease modification. Neuroinflammation is necessary for defence of the brain against pathogen invasion or damage but is normally self-limiting due to the engagement of endogenous pro-resolving circuitry that terminates inflammatory activity, a process that appears to fail in Alzheimer's disease. Here, we discuss the potential for a major regulator and promoter of resolution, the receptor FPR2, to restrain pro-inflammatory microglial activity, and propose that it may serve as a valuable target for therapeutic investigation in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Murray A Irving
- Institute of Dentistry, Barts and the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, UK
| | - Stephen J Getting
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Simon McArthur
- Institute of Dentistry, Barts and the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, UK
| |
Collapse
|
26
|
Kong Y, Liu K, Hua T, Zhang C, Sun B, Guan Y. PET Imaging of Neutrophils Infiltration in Alzheimer's Disease Transgenic Mice. Front Neurol 2020; 11:523798. [PMID: 33362678 PMCID: PMC7758535 DOI: 10.3389/fneur.2020.523798] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/29/2020] [Indexed: 12/04/2022] Open
Abstract
Neutrophils are important components in the innate immune system. Neutrophil hyperactivation is regarded as a characteristic of Alzheimer's disease (AD). But in vivo imaging tools observing neutrophil activity in AD dynamically is lacking. This study aimed to identify neutrophil infiltration in AD transgenic mice. We used the AD triple-mutant transgenic mouse model and identified the genotype with RT-PCR. Behavioral experiments including an open-field test, a Morris water maze, and a Y-maze test were performed to evaluate the status of this AD model. 18F-AV45, 18F-PM-PBB3, 68Ga-PEG-cFLFLFK, and 18F-DPA714 were synthesized according to previous reports. We employed microPET to detect tracer uptake in the AD model and the control mice at different stages. Western blotting was used to observe the expression of functional proteins. We proved the successful establishment of AD models by RT-PCR, behavioral tests, and 18F-AV45 and 18F-PM-PBB3 PET imaging. We found an increased neutrophil accumulation in the brains of the AD mice through 68Ga-PEG-cFLFLFK PET imaging and Western blot assay. Our studies also demonstrated an elevated level of CAP37, which is produced by neutrophils, in the AD brain, and treatment with CAP37 promoted the expression of Iba1, iNOS, and COX-2 in BV2 cultures. Furthermore, our 18F-DPA714 PET imaging studies verified the raised activation of microglia in the brain of transgenic AD mice. Collectively, our findings indicate the increased activity of neutrophils in the brain and heart of AD model mice, 68Ga-PEG-cFLFLFK PET imaging represents a sensitive method to observe the status of neutrophils in AD, and infiltrated neutrophils can induce the activation of microglia by releasing CAP37 and blocking the activity of neutrophils may be beneficial for the control of AD progression.
Collapse
Affiliation(s)
- Yanyan Kong
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kawai Liu
- Department of Mathematics, The Shanghai SMIC Private School, Shanghai, China
| | - Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Trojan E, Bryniarska N, Leśkiewicz M, Regulska M, Chamera K, Szuster-Głuszczak M, Leopoldo M, Lacivita E, Basta-Kaim A. The Contribution of Formyl Peptide Receptor Dysfunction to the Course of Neuroinflammation: A Potential Role in the Brain Pathology. Curr Neuropharmacol 2020; 18:229-249. [PMID: 31629396 PMCID: PMC7327951 DOI: 10.2174/1570159x17666191019170244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.
Collapse
Affiliation(s)
- Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| |
Collapse
|
28
|
Cussell PJ, Gomez Escalada M, Milton NG, Paterson AW. The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction. Neural Regen Res 2020; 15:1191-1198. [PMID: 31960798 PMCID: PMC7047793 DOI: 10.4103/1673-5374.272566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/20/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
N-formyl peptide receptors (FPRs) were first identified upon phagocytic leukocytes, but more than four decades of research has unearthed a plethora of non-myeloid roles for this receptor family. FPRs are expressed within neuronal tissues and markedly in the central nervous system, where FPR interactions with endogenous ligands have been implicated in the pathophysiology of several neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as neurological cancers such as neuroblastoma. Whilst the homeostatic function of FPRs in the nervous system is currently undefined, a variety of novel physiological roles for this receptor family in the neuronal context have been posited in both human and animal settings. Rapid developments in recent years have implicated FPRs in the process of neurogenesis and neuronal differentiation which, upon greater characterisation, could represent a novel pharmacological target for neuronal regeneration therapies that may be used in the treatment of brain/spinal cord injury, stroke and neurodegeneration. This review aims to summarize the recent progress made to determine the physiological role of FPRs in a neuronal setting, and to put forward a case for FPRs as a novel pharmacological target for conditions of the nervous system, and for their potential to open the door to novel neuronal regeneration therapies.
Collapse
Affiliation(s)
- Peter J.G. Cussell
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Margarita Gomez Escalada
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Nathaniel G.N. Milton
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Andrew W.J. Paterson
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| |
Collapse
|
29
|
Reversal of β-Amyloid-Induced Microglial Toxicity In Vitro by Activation of Fpr2/3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2139192. [PMID: 32617132 PMCID: PMC7313167 DOI: 10.1155/2020/2139192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Microglial inflammatory activity is thought to be a major contributor to the pathology of neurodegenerative conditions such as Alzheimer's disease (AD), and strategies to restrain their behaviour are under active investigation. Classically, anti-inflammatory approaches are aimed at suppressing proinflammatory mediator production, but exploitation of inflammatory resolution, the endogenous process whereby an inflammatory reaction is terminated, has not been fully investigated as a therapeutic approach in AD. In this study, we sought to provide proof-of-principle that the major proresolving actor, formyl peptide receptor 2, Fpr2, could be targeted to reverse microglial activation induced by the AD-associated proinflammatory stimulus, oligomeric β-amyloid (oAβ). The immortalised murine microglial cell line BV2 was employed as a model system to investigate the proresolving effects of the Fpr2 ligand QC1 upon oAβ-induced inflammatory, oxidative, and metabolic behaviour. Cytotoxic behaviour of BV2 cells was assessed through the use of cocultures with retinoic acid-differentiated human SH-SY5Y cells. Stimulation of BV2 cells with oAβ at 100 nM did not induce classical inflammatory marker production but did stimulate production of reactive oxygen species (ROS), an effect that could be reversed by subsequent treatment with the Fpr2 ligand QC1. Further investigation revealed that oAβ-induced ROS production was associated with NADPH oxidase activation and a shift in BV2 cell metabolic phenotype, activating the pentose phosphate pathway and NADPH production, changes that were again reversed by QC1 treatment. Microglial oAβ-stimulated ROS production was sufficient to induce apoptosis of bystander SH-SY5Y cells, an effect that could be prevented by QC1 treatment. In this study, we provide proof-of-concept data that indicate exploitation of the proresolving receptor Fpr2 can reverse damaging oAβ-induced microglial activation. Future strategies that are aimed at restraining neuroinflammation in conditions such as AD should examine proresolving actors as a mechanism to harness the brain's endogenous healing pathways and limit neuroinflammatory damage.
Collapse
|
30
|
Saare M, Tserel L, Haljasmägi L, Taalberg E, Peet N, Eimre M, Vetik R, Kingo K, Saks K, Tamm R, Milani L, Kisand K, Peterson P. Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. Aging Cell 2020; 19:e13127. [PMID: 32107839 PMCID: PMC7189998 DOI: 10.1111/acel.13127] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
Age‐related changes at the cellular level include the dysregulation of metabolic and signaling pathways. Analyses of blood leukocytes have revealed a set of alterations that collectively lower their ability to fight infections and resolve inflammation later in life. We studied the transcriptomic, epigenetic, and metabolomic profiles of monocytes extracted from younger adults and individuals over the age of 65 years to map major age‐dependent changes in their cellular physiology. We found that the monocytes from older persons displayed a decrease in the expression of ribosomal and mitochondrial protein genes and exhibited hypomethylation at the HLA class I locus. Additionally, we found elevated gene expression associated with cell motility, including the CX3CR1 and ARID5B genes, which have been associated with the development of atherosclerosis. Furthermore, the downregulation of two genes, PLA2G4B and ALOX15B, which belong to the arachidonic acid metabolism pathway involved in phosphatidylcholine conversion to anti‐inflammatory lipoxins, correlated with increased phosphatidylcholine content in monocytes from older individuals. We found age‐related changes in monocyte metabolic fitness, including reduced mitochondrial function and increased glycose consumption without the capacity to upregulate it during increased metabolic needs, and signs of increased oxidative stress and DNA damage. In conclusion, our results complement existing findings and elucidate the metabolic alterations that occur in monocytes during aging.
Collapse
Affiliation(s)
- Mario Saare
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Liina Tserel
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Liis Haljasmägi
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Egon Taalberg
- Department of Biochemistry Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Nadežda Peet
- Department of Pathophysiology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Margus Eimre
- Department of Pathophysiology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Rait Vetik
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology Institute of Clinical Medicine University of Tartu Tartu Estonia
- Clinic of Dermatology Tartu University Hospital Tartu Estonia
| | - Kai Saks
- Department of Internal Medicine Institute of Clinical Medicine University of Tartu Tartu Estonia
| | - Riin Tamm
- Laboratory of Immune Analysis, United Laboratories Tartu University Hospital Tartu Estonia
| | - Lili Milani
- Estonian Genome Center Institute of Genomics University of Tartu Tartu Estonia
| | - Kai Kisand
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Pärt Peterson
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| |
Collapse
|
31
|
Kim C, Livne-Bar I, Gronert K, Sivak JM. Fair-Weather Friends: Evidence of Lipoxin Dysregulation in Neurodegeneration. Mol Nutr Food Res 2020; 64:e1801076. [PMID: 31797529 DOI: 10.1002/mnfr.201801076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Lipoxins (LXs) are autacoids, specialized proresolving lipid mediators (SPMs) acting locally in a paracrine or autocrine fashion. They belong to a complex superfamily of dietary small polyunsaturated fatty acid (PUFA)-metabolites, which direct potent cellular responses to resolve inflammation and restore tissue homeostasis. Together, these SPM activities have been intensely studied in systemic inflammation and acute injury or infection, but less is known about LX signaling and activities in the central nervous system. LXs are derived from arachidonic acid, an omega-6 PUFA. In addition to well-established roles in systemic inflammation resolution, they have increasingly become implicated in regulating neuroinflammatory and neurodegenerative processes. In particular, chronic inflammation plays a central role in Alzheimer's disease (AD) etiology, and dysregulated LX production and activities have been reported in a variety of AD rodent models and clinical tissue samples, yet with complex and sometimes conflicting results. In addition, reduced LX production following retinal injury has been reported recently by the authors, and an intriguing direct neuronal activity promoting survival and homeostasis in retinal and cortical neurons is demonstrated. Here, the authors review and clarify this growing literature and suggest new research directions to further elaborate the role of lipoxins in neurodegeneration.
Collapse
Affiliation(s)
- Changmo Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Izhar Livne-Bar
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Karsten Gronert
- School of Optometry, Vision Science Program, University of California Berkeley, Berkeley, CA, 94720
- Infectious Disease and Immunity, University of California Berkeley, Berkeley, CA, 94720
| | - Jeremy M Sivak
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| |
Collapse
|
32
|
Rossi B, Constantin G, Zenaro E. The emerging role of neutrophils in neurodegeneration. Immunobiology 2020; 225:151865. [DOI: 10.1016/j.imbio.2019.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
|
33
|
Katayama H. Anti-interleukin-17A and anti-interleukin-23 antibodies may be effective against Alzheimer's disease: Role of neutrophils in the pathogenesis. Brain Behav 2020; 10:e01504. [PMID: 31849180 PMCID: PMC6955921 DOI: 10.1002/brb3.1504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/19/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Despite the remarkable progress achieved in the research on Alzheimer's disease (AD), its exact pathogenesis is not fully understood and effective therapies do not currently exist. In order to find effective therapy for AD, I ranged extensively over the literature and found an important paper by Tiffany and colleagues. RESULTS AND CONCLUSION Neuroinflammation has been proposed as a possible cause or driving force of AD. The discovery by Tiffany et al. that amyloid β (Aβ) is a formylpeptide receptor 2 agonist indicated that Aβ is a potent chemoattractant for phagocytic leukocytes. Therefore, in all likelihood Aβ attracts peripheral blood neutrophils, monocytes, as well as microglia cells in brain parenchyma, and activates them. However, the role of microglia cells and their precursor monocytes in AD pathogenesis remains elusive. Recently, neutrophils were found to be present in areas with Aβ deposits in AD brain and in transgenic AD model mice. Because brain is vulnerable to the effects of reactive oxygen species (ROS) and neutrophils secrete a large amount of ROS, neutrophils look like a driving force of AD. Therefore, a possibility arises that anti-IL-17A and anti-IL-23 antibodies are effective against AD, because these antibodies can be thought to interfere with neutrophil trafficking from the bone marrow to the blood circulation and thus inhibit neutrophil infiltration into AD brain. Clinical studies using anti-IL-17A and anti-IL-23 antibodies in patients with AD are required.
Collapse
|
34
|
Shang P, Zhang Y, Ma D, Hao Y, Wang X, Xin M, Zhang Y, Zhu M, Feng J. Inflammation resolution and specialized pro-resolving lipid mediators in CNS diseases. Expert Opin Ther Targets 2019; 23:967-986. [PMID: 31711309 DOI: 10.1080/14728222.2019.1691525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Inflammation resolution induced by specialized pro-resolving lipid mediators (SPMs) is a new concept. The application of SPMs is a promising therapeutic strategy that can potentially supersede anti-inflammatory drugs. Most CNS diseases are associated with hyperreactive inflammatory damage. CNS inflammation causes irreversible neuronal loss and permanent functional impairments. Given the high mortality and morbidity rates, the investigation of therapeutic strategies to ameliorate inflammatory damage is necessary.Areas covered: In this review, we explore inflammation resolution in CNS disorders. We discuss the underlying mechanisms and dynamic changes of SPMs and their precursors in neurological diseases and examine how this can potentially be incorporated into the clinic. References were selected from PubMed; most were published between 2010 and 2019.Expert opinion: Inflammation resolution is a natural process that emerges after acute or chronic inflammation. The evidence that SPMs can effectively ameliorate hyperreactive inflammation, shorten resolution time and accelerate tissue regeneration in CNS disorders. Adjuvants and nanotechnology offer opportunities for SPM drug design; however, more preclinical studies are necessary to investigate basic, critical issues such as safety.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yulei Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Meiying Xin
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunhai Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
35
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
36
|
Wang Z, Chen Y, Li X, Sultana P, Yin M, Wang Z. Amyloid-β 1-42 dynamically regulates the migration of neural stem/progenitor cells via MAPK-ERK pathway. Chem Biol Interact 2018; 298:96-103. [PMID: 30399361 DOI: 10.1016/j.cbi.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/15/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Neural stem/progenitor cell (NSPC) based therapy represents an attractive treatment for Alzheimer's disease (AD), the most common neurodegenerative disorder with no effective treatment to date. This can be achieved by stimulating endogenous NSPCs and/or administrating exogenously produced NSPCs. Successful repair requires the migration of NSPCs to the loci where neuronal loss occurs, differentiation and integration into neural networks. However, the progressive loss of neurons in the brain of AD patients suggests that the repair by endogenous NSPCs in the setting of AD may be defective. The production and deposition of amyloid-β1-42 (Aβ1-42) peptides is thought to be a central event in the pathogenesis of AD. Here we report that Aβ1-42 peptides inhibit the migration of in vitro cultured NSPCs by disturbing the ERK-MAPK signal pathway. We found that the migratory capacity of NSPCs was compromised upon treatment with oligomeric Aβ1-42; the inhibitory effect occurred in a dose-dependent manner. Our previous studies have shown that Aβ1-42 triggers the expression of GRK2 by unknown mechanism. Herein we found that the Aβ1-42 evoked upregulation of GRK2 expression was attenuated upon treatment with the ERK inhibitor SCH772984 at 2.5 μM, but not with inhibitors for p38 or JNK. We detected a dose-dependent increase in levels of phosphorylated ERK1/2 after incubation of cells with oligomeric Aβ1-42 peptides for 3 days. We observed that an increase in the phosphorylation of p38 and JNK coincided with reduced phosphorylation of ERK1/2 upon treatment with Aβ1-42 for 6 and/or 9 days. We hypothesize that the divergence of the activation of the MAPK family of pathways may contribute to the inhibition of NSPCs migration after the long-term incubation with Aβ1-42. Pretreatment with 1 μM MEK inhibitor U0126 reversed the effects of Aβ1-42 on GRK2 expression of and NSPC migration. Together, our results suggest that Aβ1-42 oligomers compromise the migratory capacity of NSPCs through the MEK-ERK pathway.
Collapse
Affiliation(s)
- Zhu Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yantian Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 the 16th Street, Charlestown, MA, 02129, USA
| | - Pinky Sultana
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
37
|
Russo R, Cattaneo F, Lippiello P, Cristiano C, Zurlo F, Castaldo M, Irace C, Borsello T, Santamaria R, Ammendola R, Calignano A, Miniaci MC. Motor coordination and synaptic plasticity deficits are associated with increased cerebellar activity of NADPH oxidase, CAMKII, and PKC at preplaque stage in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol Aging 2018; 68:123-133. [DOI: 10.1016/j.neurobiolaging.2018.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/14/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
|
38
|
Zheng Y, Joo HS, Nair V, Le KY, Otto M. Do amyloid structures formed by Staphylococcus aureus phenol-soluble modulins have a biological function? Int J Med Microbiol 2018; 308:675-682. [PMID: 28867522 PMCID: PMC5832552 DOI: 10.1016/j.ijmm.2017.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are alpha-helical, amphipathic peptides that have multiple functions in staphylococcal physiology and virulence. Recent research has suggested that PSMs form amyloid fibrils and amyloids are involved in PSM-mediated phenotypes such as cytolysis and biofilm stability. While we observed PSM amyloid formation using electron microscopy and dye assays, there were no apparent differences in the production of extracellular fibrous material between a PSM-deficient strain and the isogenic wild-type strain. Furthermore, we detected no correlation between cytolytic or pro-inflammatory activities with the propensity of PSM derivatives to form amyloids. In addition, we propose a model based on our finding of non-specific attachment of PSMs to DNA, which we here report results in resistance to DNase digestion, explaining previous findings on PSM-mediated biofilm stability without the necessity to assume amyloid involvement. Collectively, our results indicate that PSM amyloid formation may not be of major relevance for known key biological functions of PSMs. Intriguingly, however, we found that amyloid-forming capacity of PSMalpha3 allows almost no amino acid exchanges, suggesting importance of amyloid formation in possibly yet unknown functions of PSMs.
Collapse
Affiliation(s)
- Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Hwang-Soo Joo
- Department of Prepharm-Med, College of Natural Sciences, Duksung Women's University, 33 Samyang-ro 144-gil, Seoul 01369, South Korea
| | - Vinod Nair
- Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Katherine Y Le
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA.
| |
Collapse
|
39
|
Increase in soluble protein oligomers triggers the innate immune system promoting inflammation and vascular dysfunction in the pathogenesis of sepsis. Clin Sci (Lond) 2018; 132:1433-1438. [PMID: 30021912 DOI: 10.1042/cs20180368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
Sepsis is a profoundly morbid and life-threatening condition, and an increasingly alarming burden on modern healthcare economies. Patients with septic shock exhibit persistent hypotension despite adequate volume resuscitation requiring pharmacological vasoconstrictors, but the molecular mechanisms of this phenomenon remain unclear. The accumulation of misfolded proteins is linked to numerous diseases, and it has been observed that soluble oligomeric protein intermediates are the primary cytotoxic species in these conditions. Oligomeric protein assemblies have been shown to bind and activate a variety of pattern recognition receptors (PRRs) including formyl peptide receptor (FPR). While inhibition of endoplasmic reticulum (ER) stress and stabilization of protein homeostasis have been promising lines of inquiry regarding sepsis therapy, little attention has been given to the potential effects that the accumulation of misfolded proteins may have in driving sepsis pathogenesis. Here we propose that in sepsis, there is an accumulation of toxic misfolded proteins in the form of soluble protein oligomers (SPOs) that contribute to the inflammation and vascular dysfunction observed in sepsis via the activation of one or more PRRs including FPR. Our laboratory has shown increased levels of SPOs in the heart and intrarenal arteries of septic mice. We have also observed that exposure of resistance arteries and vascular smooth muscle cells to SPOs is associated with increased mitogen-activated protein kinase (MAPK) signaling including phosphorylated extracellular signal-regulated kinase (p-ERK) and p-P38 MAPK pathways, and that this response is abolished with the knockout of FPR. This hypothesis has promising clinical implications as it proposes a novel mechanism that can be exploited as a therapeutic target in sepsis.
Collapse
|
40
|
Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer's disease-related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence. Neurobiol Aging 2018; 70:203-216. [PMID: 30031930 DOI: 10.1016/j.neurobiolaging.2018.06.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/26/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022]
Abstract
At early stages of Alzheimer's disease (AD), soluble amyloid beta (Aβ) accumulates in brain while microglia are in resting state. Microglia can recognize Aβ long after formation of plaques and release neurotoxic mediators. We examined impact of early minor activation of microglia by Toll-like receptors (TLRs) 2 and 4 agonists on Alzheimer's disease-related disturbed synaptic function and spatial memory in rats. Microglial BV-2 cells were treated by 0.1, 1, and 10 μg/mL of the TLRs ligands lipopolysaccharide, monophosphoryl lipid A (MPL), and Pam3Cys for 24 hours. Culture medium was then changed with media containing 1-μM Aβ. Tumour necrosis factor (TNF)-α and CCL3 levels were measured in the supernatant, 24 hours thereafter. One μg of TLRs ligands which was able to release low level of TNF-α and CCL3, was administered intracerebroventricularly (i.c.v) to adult male rats every 3 days for 24 days. At the half of the treatment period, Aβ1-42 was infused i.c.v (0.075 μg/hour) for 2 weeks. Finally, the following factors were measured: memory performance by Morris water maze, postsynaptic potentials of dentate gyrus following perforant pathway stimulation, hippocampal inflammatory cytokines interleukin 1 (IL-1)β and TNF-α, anti-inflammatory cytokines IL-10 and TGF-1β, microglia marker arginase 1, Aβ deposits, and the receptor involved in Aβ clearance, formyl peptide receptor 2 (FPR2). TLRs ligands caused dose-dependent release of TNF-α and CCL3 by BV-2 cells. Aβ-treated cells did not release TNF-α and CCL3, whereas those pretreated with MPL and Pam3Cys significantly released these cytokines in response to Aβ. Low-dose TLRs ligands improved the disturbance in spatial and working memory; restored the impaired long-term potentiation induced by Aβ; decreased TNF-α, and Aβ deposits; enhanced TGF-1β, IL-10, and arginase 1 in the hippocampus of Aβ-treated rats; and increased polarization of hippocampal microglia to the anti-inflammatory phenotype. The ligands increased formyl peptide receptor 2 in both BV-2 cells and hippocampus/cortex of Aβ-treated rats. Microglia can sense/clear soluble Aβ by early low-dose MPL and Pam3Cys and safeguard synaptic function and memory in rats.
Collapse
|
41
|
Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur J Pharmacol 2018; 833:339-348. [PMID: 29935171 DOI: 10.1016/j.ejphar.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The formyl peptide receptors (FPRs) are G protein coupled receptors that recognize a broad range of structurally distinct pathogen and danger-associated molecular patterns and mediate host defense to infection and tissue injury. It became evident that the cellular distribution and biological functions of FPRs extend beyond myeloid cells and governing their activation and trafficking. In recent years, significant progress has been made to position FPRs at check points that control the resolution of inflammation, tissue repair and return to homeostasis. Accumulating data indicate a role for FPRs in an ever-increasing range of human diseases, including atherosclerosis, chronic obstructive pulmonary disease, asthma, autoimmune diseases and cancer, in which dysregulated or defective resolution are increasingly recognized as critical component of the pathogenesis. This review summarizes recent advances on how FPRs recognize distinct ligands and integrate opposing cues to govern various responses and will discuss how this knowledge could be harnessed for developing novel therapeutic strategies to counter inflammation that underlies many human diseases.
Collapse
|
42
|
Kantarci A, Aytan N, Palaska I, Stephens D, Crabtree L, Benincasa C, Jenkins BG, Carreras I, Dedeoglu A. Combined administration of resolvin E1 and lipoxin A4 resolves inflammation in a murine model of Alzheimer's disease. Exp Neurol 2018; 300:111-120. [DOI: 10.1016/j.expneurol.2017.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/28/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
|
43
|
Stama ML, Lacivita E, Kirpotina LN, Niso M, Perrone R, Schepetkin IA, Quinn MT, Leopoldo M. Functional N-Formyl Peptide Receptor 2 (FPR2) Antagonists Based on the Ureidopropanamide Scaffold Have Potential To Protect Against Inflammation-Associated Oxidative Stress. ChemMedChem 2017; 12:1839-1847. [PMID: 28922577 PMCID: PMC5909973 DOI: 10.1002/cmdc.201700429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Indexed: 12/11/2022]
Abstract
Formyl peptide receptor 2 (FPR2) is a G protein coupled receptor belonging to the N-formyl peptide receptor (FPR) family that plays critical roles in peripheral and brain inflammatory responses. FPR2 has been proposed as a target for the development of drugs that could facilitate the resolution of chronic inflammatory reactions by enhancing endogenous anti-inflammation systems. Starting from lead compounds previously identified in our laboratories, we designed a new series of ureidopropanamide derivatives with the goal of converting functional activity from agonism into antagonism and to develop new FPR2 antagonists. Although none of the compounds behaved as antagonists, some of the compounds were able to induce receptor desensitization and, thus, functionally behaved as antagonists. Evaluation of these compounds in an in vitro model of neuroinflammation showed that they decreased the production of reactive oxygen species in mouse microglial N9 cells after stimulation with lipopolysaccharide. These FPR2 ligands may protect cells from damage due to inflammation-associated oxidative stress.
Collapse
Affiliation(s)
- Madia L. Stama
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Enza Lacivita
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Liliya N. Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mauro Niso
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Marcello Leopoldo
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
44
|
Yao P, Zhuo S, Mei H, Chen X, Li N, Zhu T, Chen S, Wang J, Hou R, Le Y. Androgen alleviates neurotoxicity of β-amyloid peptide (Aβ) by promoting microglial clearance of Aβ and inhibiting microglial inflammatory response to Aβ. CNS Neurosci Ther 2017; 23:855-865. [PMID: 28941188 PMCID: PMC6492702 DOI: 10.1111/cns.12757] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022] Open
Abstract
AIMS Lower androgen level in elderly men is a risk factor of Alzheimer's disease (AD). It has been reported that androgen reduces amyloid peptides (Aβ) production and increases Aβ degradation by neurons. Activated microglia are involved in AD by either clearing Aβ deposits through uptake of Aβ or releasing cytotoxic substances and pro-inflammatory cytokines. Here, we investigated the effect of androgen on Aβ uptake and clearance and Aβ-induced inflammatory response in microglia, on neuronal death induced by Aβ-activated microglia, and explored underlying mechanisms. METHODS Intracellular and extracellular Aβ were examined by immunofluorescence staining and Western blot. Amyloid peptides (Aβ) receptors, Aβ degrading enzymes, and pro-inflammatory cytokines were detected by RT-PCR, real-time PCR, and ELISA. Phosphorylation of MAP kinases and NF-κB was examined by Western blot. RESULTS We found that physiological concentrations of androgen enhanced Aβ42 uptake and clearance, suppressed Aβ42 -induced IL-1β and TNFα expression by murine microglia cell line N9 and primary microglia, and alleviated neuronal death induced by Aβ42 -activated microglia. Androgen administration also reduced Aβ42 -induced IL-1β expression and neuronal death in murine hippocampus. Mechanistic studies revealed that androgen promoted microglia to phagocytose and degrade Aβ42 through upregulating formyl peptide receptor 2 and endothelin-converting enzyme 1c expression, and inhibited Aβ42 -induced pro-inflammatory cytokines expression via suppressing MAPK p38 and NF-κB activation by Aβ42 , in an androgen receptor independent manner. CONCLUSION Our study demonstrates that androgen promotes microglia to phagocytose and clear Aβ42 and inhibits Aβ42 -induced inflammatory response, which may play an important role in reducing the neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Peng‐Le Yao
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Shu Zhuo
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Hong Mei
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Xiao‐Fang Chen
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Na Li
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Teng‐Fei Zhu
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Shi‐Ting Chen
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Ji‐Ming Wang
- Cancer and Inflammation ProgramCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMDUSA
| | - Rui‐Xing Hou
- Ruihua Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ying‐Ying Le
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Ruihua Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
45
|
Weiss E, Hanzelmann D, Fehlhaber B, Klos A, von Loewenich FD, Liese J, Peschel A, Kretschmer D. Formyl-peptide receptor 2 governs leukocyte influx in local Staphylococcus aureus infections. FASEB J 2017; 32:26-36. [PMID: 28855276 DOI: 10.1096/fj.201700441r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 01/15/2023]
Abstract
Leukocytes express formyl-peptide receptors (FPRs), which sense microbe-associated molecular pattern (MAMP) molecules, leading to leukocyte chemotaxis and activation. We recently demonstrated that phenol-soluble modulin (PSM) peptides from highly pathogenic Staphylococcus aureus are efficient ligands for the human FPR2. How PSM detection by FPR2 impacts on the course of S. aureus infections has remained unknown. We characterized the specificity of mouse FPR2 (mFpr2) using a receptor-transfected cell line, homeobox b8 (Hoxb8), and primary neutrophils isolated from wild-type (WT) or mFpr2-/- mice. The influx of leukocytes into the peritoneum of WT and mFpr2-/- mice was analyzed. We demonstrate that mFpr2 is specifically activated by PSMs in mice, and they represent the first secreted pathogen-derived ligands for the mFpr2. Intraperitoneal infection with S. aureus led to lower numbers of immigrated leukocytes in mFpr2-/- compared with WT mice at 3 h after infection, and this difference was not observed when mice were infected with an S. aureus PSM mutant. Our data support the hypothesis that the mFpr2 is the functional homolog of the human FPR2 and that a mouse infection model represents a suitable model for analyzing the role of PSMs during infection. PSM recognition by mFpr2 shapes leukocyte influx in local infections, the typical infections caused by S. aureus-Weiss, E., Hanzelmann, D., Fehlhaber, B., Klos, A., von Loewenich, F. D., Liese, J., Peschel, A., Kretschmer, D. Formyl-peptide receptor 2 governs leukocyte influx in local Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Elisabeth Weiss
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Dennis Hanzelmann
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Beate Fehlhaber
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Friederike D von Loewenich
- Department of Medical Microbiology and Hygiene, Medical Center, University of Mainz, Mainz, Germany; and
| | - Jan Liese
- Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany;
| |
Collapse
|
46
|
He HQ, Ye RD. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017; 22:E455. [PMID: 28335409 PMCID: PMC6155412 DOI: 10.3390/molecules22030455] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
The formyl peptide receptors (FPRs) are G protein-coupled receptors that transduce chemotactic signals in phagocytes and mediate host-defense as well as inflammatory responses including cell adhesion, directed migration, granule release and superoxide production. In recent years, the cellular distribution and biological functions of FPRs have expanded to include additional roles in homeostasis of organ functions and modulation of inflammation. In a prototype, FPRs recognize peptides containing N-formylated methionine such as those produced in bacteria and mitochondria, thereby serving as pattern recognition receptors. The repertoire of FPR ligands, however, has expanded rapidly to include not only N-formyl peptides from microbes but also non-formyl peptides of microbial and host origins, synthetic small molecules and an eicosanoid. How these chemically diverse ligands are recognized by the three human FPRs (FPR1, FPR2 and FPR3) and their murine equivalents is largely unclear. In the absence of crystal structures for the FPRs, site-directed mutagenesis, computer-aided ligand docking and structural simulation have led to the identification of amino acids within FPR1 and FPR2 that interact with several formyl peptides. This review article summarizes the progress made in the understanding of FPR ligand diversity as well as ligand recognition mechanisms used by these receptors.
Collapse
Affiliation(s)
- Hui-Qiong He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
47
|
Pietronigro EC, Della Bianca V, Zenaro E, Constantin G. NETosis in Alzheimer's Disease. Front Immunol 2017; 8:211. [PMID: 28303140 PMCID: PMC5332471 DOI: 10.3389/fimmu.2017.00211] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Its neuropathological features include amyloid-β (Aβ) accumulation, the formation of neurofibrillary tangles, and the loss of neurons and synapses. Neuroinflammation is a well-established feature of AD pathogenesis, and a better understanding of its mechanisms could facilitate the development of new therapeutic approaches. Recent studies in transgenic mouse models of AD have shown that neutrophils adhere to blood vessels and migrate inside the parenchyma. Moreover, studies in human AD subjects have also shown that neutrophils adhere and spread inside brain vessels and invade the parenchyma, suggesting these cells play a role in AD pathogenesis. Indeed, neutrophil depletion and the therapeutic inhibition of neutrophil trafficking, achieved by blocking LFA-1 integrin in AD mouse models, significantly reduced memory loss and the neuropathological features of AD. We observed that neutrophils release neutrophil extracellular traps (NETs) inside blood vessels and in the parenchyma of AD mice, potentially harming the blood–brain barrier and neural cells. Furthermore, confocal microscopy confirmed the presence of NETs inside the cortical vessels and parenchyma of subjects with AD, providing more evidence that neutrophils and NETs play a role in AD-related tissue destruction. The discovery of NETs inside the AD brain suggests that these formations may exacerbate neuro-inflammatory processes, promoting vascular and parenchymal damage during AD. The inhibition of NET formation has achieved therapeutic benefits in several models of chronic inflammatory diseases, including autoimmune diseases affecting the brain. Therefore, the targeting of NETs may delay AD pathogenesis and offer a novel approach for the treatment of this increasingly prevalent disease.
Collapse
Affiliation(s)
| | - Vittorina Della Bianca
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| | - Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| |
Collapse
|
48
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
49
|
Zhao H, Sonada S, Yoshikawa A, Ohinata K, Yoshikawa M. Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors. Peptides 2016; 83:16-20. [PMID: 27475912 DOI: 10.1016/j.peptides.2016.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/01/2016] [Accepted: 07/06/2016] [Indexed: 01/28/2023]
Abstract
Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1mg/kg (ip.) or 1mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Functional Food Science, Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805, Japan
| | - Soushi Sonada
- Department of Functional Food Science, Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805, Japan
| | - Akihiro Yoshikawa
- Department of Functional Food Science, Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805, Japan; Functional Research Laboratory, 8-1 Kitagaito, Ichinobe, Joyo, Kyoto 610-0114, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masaaki Yoshikawa
- Department of Functional Food Science, Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805, Japan; Functional Research Laboratory, 8-1 Kitagaito, Ichinobe, Joyo, Kyoto 610-0114, Japan.
| |
Collapse
|
50
|
Pietronigro E, Zenaro E, Constantin G. Imaging of Leukocyte Trafficking in Alzheimer's Disease. Front Immunol 2016; 7:33. [PMID: 26913031 PMCID: PMC4753285 DOI: 10.3389/fimmu.2016.00033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/23/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and is characterized by a progressive decline of cognitive functions. The neuropathological features of AD include amyloid beta (Aβ) deposition, intracellular neurofibrillary tangles derived from the cytoskeletal hyperphosphorylated tau protein, amyloid angiopathy, the loss of synapses, and neuronal degeneration. In the last decade, inflammation has emerged as a key feature of AD, but most studies have focused on the role of microglia-driven neuroinflammation mechanisms. A dysfunctional blood-brain barrier has also been implicated in the pathogenesis of AD, and several studies have demonstrated that the vascular deposition of Aβ induces the expression of adhesion molecules and alters the expression of tight junction proteins, potentially facilitating the transmigration of circulating leukocytes. Two-photon laser scanning microscopy (TPLSM) has become an indispensable tool to dissect the molecular mechanisms controlling leukocyte trafficking in the central nervous system (CNS). Recent TPLSM studies have shown that vascular deposition of Aβ in the CNS promotes intraluminal neutrophil adhesion and crawling on the brain endothelium and also that neutrophils extravasate in the parenchyma preferentially in areas with Aβ deposits. These studies have also highlighted a role for LFA-1 integrin in neutrophil accumulation in the CNS of AD-like disease models, revealing that LFA-1 inhibition reduces the corresponding cognitive deficit and AD neuropathology. In this article, we consider how current imaging techniques can help to unravel new inflammation mechanisms in the pathogenesis of AD and identify novel therapeutic strategies to treat the disease by interfering with leukocyte trafficking mechanisms.
Collapse
Affiliation(s)
- Enrica Pietronigro
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| | - Elena Zenaro
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| |
Collapse
|