1
|
Jani RA, Di Cicco A, Keren-Kaplan T, Vale-Costa S, Hamaoui D, Hurbain I, Tsai FC, Di Marco M, Macé AS, Zhu Y, Amorim MJ, Bassereau P, Bonifacino JS, Subtil A, Marks MS, Lévy D, Raposo G, Delevoye C. PI4P and BLOC-1 remodel endosomal membranes into tubules. J Biophys Biochem Cytol 2022; 221:213508. [PMID: 36169638 PMCID: PMC9524204 DOI: 10.1083/jcb.202110132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells and in vitro membrane systems, we show that phosphatidylinositol-4-phosphate (PI4P) and biogenesis of lysosome-related organelles complex 1 (BLOC-1) govern the formation, stability, and functions of recycling endosomal tubules. In vitro, BLOC-1 binds and tubulates negatively charged membranes, including those containing PI4P. In cells, endosomal PI4P production by type II PI4-kinases is needed to form and stabilize BLOC-1-dependent recycling endosomal tubules. Decreased PI4KIIs expression impairs the recycling of endosomal cargoes and the life cycles of intracellular pathogens such as Chlamydia bacteria and influenza virus that exploit the membrane dynamics of recycling endosomes. This study demonstrates how a phospholipid and a protein complex coordinate the remodeling of cellular membranes into functional tubules.
Collapse
Affiliation(s)
- Riddhi Atul Jani
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Silvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Daniel Hamaoui
- Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Cellular biology of microbial infection, Paris, France
| | - Ilse Hurbain
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Mathilde Di Marco
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Anne-Sophie Macé
- Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Palma de Cima, Lisboa, Portugal
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Agathe Subtil
- Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Cellular biology of microbial infection, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Graça Raposo
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Cédric Delevoye
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| |
Collapse
|
2
|
Rajasekaran SS, Illies C, Shears SB, Wang H, Ayala TS, Martins JO, Daré E, Berggren PO, Barker CJ. Protein kinase- and lipase inhibitors of inositide metabolism deplete IP 7 indirectly in pancreatic β-cells: Off-target effects on cellular bioenergetics and direct effects on IP6K activity. Cell Signal 2017; 42:127-133. [PMID: 29042286 PMCID: PMC5765549 DOI: 10.1016/j.cellsig.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022]
Abstract
Inositol pyrophosphates have emerged as important regulators of many critical cellular processes from vesicle trafficking and cytoskeletal rearrangement to telomere length regulation and apoptosis. We have previously demonstrated that 5-di-phosphoinositol pentakisphosphate, IP7, is at a high level in pancreatic β-cells and is important for insulin exocytosis. To better understand IP7 regulation in β-cells, we used an insulin secreting cell line, HIT-T15, to screen a number of different pharmacological inhibitors of inositide metabolism for their impact on cellular IP7. Although the inhibitors have diverse targets, they all perturbed IP7 levels. This made us suspicious that indirect, off-target effects of the inhibitors could be involved. It is known that IP7 levels are decreased by metabolic poisons. The fact that the inositol hexakisphosphate kinases (IP6Ks) have a high Km for ATP makes IP7 synthesis potentially vulnerable to ATP depletion. Furthermore, many kinase inhibitors are targeted to the ATP binding site of kinases, but given the similarity of such sites, high specificity is difficult to achieve. Here, we show that IP7 concentrations in HIT-T15 cells were reduced by inhibitors of PI3K (wortmannin, LY294002), PI4K (Phenylarsine Oxide, PAO), PLC (U73122) and the insulin receptor (HNMPA). Each of these inhibitors also decreased the ATP/ADP ratio. Thus reagents that compromise energy metabolism reduce IP7 indirectly. Additionally, PAO, U73122 and LY294002 also directly inhibited the activity of purified IP6K. These data are of particular concern for those studying signal transduction in pancreatic β-cells, but also highlight the fact that employment of these inhibitors could have erroneously suggested the involvement of key signal transduction pathways in various cellular processes. Conversely, IP7’s role in cellular signal transduction is likely to have been underestimated. In pancreatic β-cells several inhibitors of signal transduction reduce IP7 levels. There is a positive correlation between IP7 reduction and decrease in ATP/ADP. Inhibitors deplete IP7 levels indirectly by decreasing ATP/ADP levels. Some purportedly specific cell-signaling inhibitors directly target IP6K activity. Caution is required in interpreting data obtained using inhibitors of inositide metabolism.
Collapse
Affiliation(s)
- Subu Surendran Rajasekaran
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Christopher Illies
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Stephen B Shears
- Signal Transduction Laboratory/Inositol Signaling Group, NIEHS, Building 101, Room F239, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Huanchen Wang
- Signal Transduction Laboratory/Inositol Signaling Group, NIEHS, Building 101, Room F239, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thais S Ayala
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisabetta Daré
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| | - Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
4
|
Xu JX, Si M, Zhang HR, Chen XJ, Zhang XD, Wang C, Du XN, Zhang HL. Phosphoinositide kinases play key roles in norepinephrine- and angiotensin II-induced increase in phosphatidylinositol 4,5-bisphosphate and modulation of cardiac function. J Biol Chem 2014; 289:6941-6948. [PMID: 24448808 DOI: 10.1074/jbc.m113.527952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The seemly paradoxical Gq agonist-stimulated phosphoinositide production has long been known, but the underlying mechanism and its physiological significance are not known. In this study, we studied cardiac phosphoinositide levels in both cells and whole animals under the stimulation of norepinephrine (NE), angiotensin II (Ang II), and other physiologically relevant interventions. The results demonstrated that activation of membrane receptors related to NE or Ang II caused an initial increase and a later fall in phosphatidylinositol 4,5-bisphosphate (PIP2) levels in the primary cultured cardiomyocytes from adult rats. The possible mechanism underlying this increase in PIP2 was found to be through an enhanced activity of phosphatidylinositol 4-kinase IIIβ, which was mediated by an up-regulated interaction between phosphatidylinositol 4-kinase IIIβ and PKC; the increased activity of phosphatidylinositol 4-phosphate 5-kinase γ was also involved for NE-induced increase of PIP2. When the systolic functions of the NE/Ang II-treated cells were measured, a maintained or failed contractility was found to be correlated with a rise or fall in corresponding PIP2 levels. In two animal models of cardiac hypertrophy, PIP2 levels were significantly reduced in hypertrophic hearts induced by isoprenaline but not in those induced by swimming exercise. This study describes a novel mechanism for phosphoinositide metabolism and modulation of cardiac function.
Collapse
Affiliation(s)
- Jia-Xi Xu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Man Si
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hui-Ran Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xing-Juan Chen
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xi-Dong Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chuan Wang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiao-Na Du
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hai-Lin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
7
|
Lou Y, Ma H, Lin WH, Chu ZQ, Mueller-Roeber B, Xu ZH, Xue HW. The highly charged region of plant beta-type phosphatidylinositol 4-kinase is involved in membrane targeting and phospholipid binding. PLANT MOLECULAR BIOLOGY 2006; 60:729-46. [PMID: 16649109 DOI: 10.1007/s11103-005-5548-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 11/29/2005] [Indexed: 05/08/2023]
Abstract
In Arabidopsis thaliana and Oryza sativa, two types of PI 4-kinase (PI4Ks) have been isolated and functionally characterized. The alpha-type PI4Ks (approximately 220 kDa) contain a PH domain, which is lacking in beta-type PI4Ks (approximately 120 kDa). Beta-type PI4Ks, exemplified by Arabidopsis AtPI4Kbeta and rice OsPI4K2, contain a highly charged repetitive segment designated PPC (Plant PI4K Charged) region, which is an unique domain only found in plant beta-type PI4Ks at present. The PPC region has a length of approximately 300 amino acids and harboring 11 (AtPI4Kbeta) and 14 (OsPI4K2) repeats, respectively, of a 20-aa motif. Studies employing a modified yeast-based "Sequence of Membrane-Targeting Detection" system demonstrate that the PPC(OsPI4K2) region, as well as the former 8 and latter 6 repetitive motifs within the PPC region, are able to target fusion proteins to the plasma membrane. Further detection on the transiently expressed GFP fusion proteins in onion epidermal cells showed that the PPC(OsPI4K2) region alone, as well as the region containing repetitive motifs 1-8, was able to direct GFP to the plasma membrane, while the regions containing less repetitive motifs, i.e. 6, 4, 2 or single motif(s) led to predominantly intracellular localization. Agrobacterium-mediated transient expression of PPC-GFP fusion protein further confirms the membrane-targeting capacities of PPC region. In addition, the predominant plasma membrane localization of AtPI4Kbeta was mediated by the PPC region. Recombinant PPC peptide, expressed in E. coli, strongly binds phosphatidic acid, PI and PI4P, but not phosphatidylcholine, PI5P, or PI(4,5)P2 in vitro, providing insights into potential mechanisms for regulating sub-cellular localization and lipid binding for the plant beta-type PI4Ks.
Collapse
Affiliation(s)
- Ying Lou
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science (SiBS), Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu J, Liu Z, Chuai S, Shen X. Phospholipase C and phosphatidylinositol 3-kinase signaling are involved in the exogenous arachidonic acid-stimulated respiratory burst in human neutrophils. J Leukoc Biol 2003; 74:428-37. [PMID: 12949247 DOI: 10.1189/jlb.1102537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To define the role of phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI-3K), signaling pathways in arachidonic acid (AA)-stimulated respiratory burst in human neutrophils, the AA-stimulated respiratory burst, Ins(1,4,5)P(3) production, PI-3K activation, and cytoplasmic Ca(2+) mobilization were investigated. It was found that Ins(1,4,5)P(3) production and PI-3K activity in AA-stimulated cells were increased in a dose-dependent manner. U73122, the PLC inhibitor, effectively inhibited the AA-stimulated respiratory burst and Ca(2+) release from the intracellular calcium store but not the activity of PI-3K, indicating the independence of PI-3K signaling on PLC activation. Wortmannin, the PI-3K inhibitor, at the concentration sufficient to inhibit PI-3K activity, can only partially inhibit Ca(2+) release from the internal store, indicating a partial regulation of PLC signaling by PI-3K and the existence of two pathways initiated by different PLC subfamilies. One is regulated by PI-3K activation, and the other is independent of PI-3K signaling. It was observed that AA could still induce a noncapacitative Ca(2+) entry in the cells when Ca(2+) release from the intracellular store was blocked by a PLC inhibitor, or a capacitative Ca(2+) entry was induced by preincubation with thapsigargin. However, the AA-mediated, noncapacitative Ca(2+) entry seems to play a little, if any, role in the stimulated respiratory burst. The present study suggests that the PLC signaling pathway, which may be activated by PLC(beta) and PLC(gamma), respectively, and the PI-3K signaling pathway are involved in the AA-stimulated respiratory burst in human neutrophil.
Collapse
Affiliation(s)
- Jiang Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing
| | | | | | | |
Collapse
|