1
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Zhao L, Wang Y, Jaganathan A, Sun Y, Ma N, Li N, Han X, Sun X, Yi H, Fu S, Han F, Li X, Xiao K, Walsh MJ, Zeng L, Zhou M, Cheung KL. BRD4-PRC2 represses transcription of T-helper 2-specific negative regulators during T-cell differentiation. EMBO J 2023; 42:e111473. [PMID: 36719036 PMCID: PMC10015369 DOI: 10.15252/embj.2022111473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
BRD4 is a well-recognized transcriptional activator, but how it regulates gene transcriptional repression in a cell type-specific manner has remained elusive. In this study, we report that BRD4 works with Polycomb repressive complex 2 (PRC2) to repress transcriptional expression of the T-helper 2 (Th2)-negative regulators Foxp3 and E3-ubiqutin ligase Fbxw7 during lineage-specific differentiation of Th2 cells from mouse primary naïve CD4+ T cells. Brd4 binds to the lysine-acetylated-EED subunit of the PRC2 complex via its second bromodomain (BD2) to facilitate histone H3 lysine 27 trimethylation (H3K27me3) at target gene loci and thereby transcriptional repression. We found that Foxp3 represses transcription of Th2-specific transcription factor Gata3, while Fbxw7 promotes its ubiquitination-directed protein degradation. BRD4-mediated repression of Foxp3 and Fbxw7 in turn promotes BRD4- and Gata3-mediated transcriptional activation of Th2 cytokines including Il4, Il5, and Il13. Chemical inhibition of the BRD4 BD2 induces transcriptional de-repression of Foxp3 and Fbxw7, and thus transcriptional downregulation of Il4, Il5, and Il13, resulting in inhibition of Th2 cell lineage differentiation. Our study presents a previously unappreciated mechanism of BRD4's role in orchestrating a Th2-specific transcriptional program that coordinates gene repression and activation, and safeguards cell lineage differentiation.
Collapse
Affiliation(s)
- Li Zhao
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Yiqi Wang
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Anbalagan Jaganathan
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Yifei Sun
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ning Ma
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Ning Li
- The Institute of Genetics and Cytology, Northeast Normal UniversityChangchunChina
| | - Xinye Han
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Xueying Sun
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Huanfa Yi
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Shibo Fu
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Fangbin Han
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Xue Li
- Department of ChemistryMichigan State UniversityEast LansingMIUSA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence and Center for Clinical Mass SpectrometryAllegheny Health Network Cancer InstitutePittsburghPAUSA
- Department of Pharmacology and Chemical Biology, School of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Martin J Walsh
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Lei Zeng
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Ming‐Ming Zhou
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ka Lung Cheung
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
3
|
Bélanger S, Haupt S, Freeman BL, Getzler AJ, Diao H, Pipkin ME, Crotty S. The Transcription Factor YY-1 Is an Essential Regulator of T Follicular Helper Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1566-1573. [PMID: 36096645 PMCID: PMC11139054 DOI: 10.4049/jimmunol.2101176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/15/2022] [Indexed: 05/09/2024]
Abstract
T follicular helper (TFH) cells are a specialized subset of CD4 T cells that deliver critical help signals to B cells for the production of high-affinity Abs. Understanding the genetic program regulating TFH differentiation is critical if one wants to manipulate TFH cells during vaccination. A large number of transcription factor (TFs) involved in the regulation of TFH differentiation have been characterized. However, there are likely additional unknown TFs required for this process. To identify new TFs, we screened a large short hairpin RNA library targeting 353 TFs in mice using an in vivo RNA interference screen. Yin Yang 1 (YY-1) was identified as a novel positive regulator of TFH differentiation. Ablation of YY-1 severely impaired TFH differentiation following acute viral infection and protein immunization. We found that the zinc fingers of YY-1 are critical to support TFH differentiation. Thus, we discovered a novel TF involved in the regulation of TFH cells.
Collapse
Affiliation(s)
- Simon Bélanger
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA
| | - Sonya Haupt
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Brian L Freeman
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA
| | - Adam J Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA; and
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
4
|
Papadogkonas G, Papamatheakis DA, Spilianakis C. 3D Genome Organization as an Epigenetic Determinant of Transcription Regulation in T Cells. Front Immunol 2022; 13:921375. [PMID: 35812421 PMCID: PMC9257000 DOI: 10.3389/fimmu.2022.921375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In the heart of innate and adaptive immunity lies the proper spatiotemporal development of several immune cell lineages. Multiple studies have highlighted the necessity of epigenetic and transcriptional regulation in cell lineage specification. This mode of regulation is mediated by transcription factors and chromatin remodelers, controlling developmentally essential gene sets. The core of transcription and epigenetic regulation is formulated by different epigenetic modifications determining gene expression. Apart from “classic” epigenetic modifications, 3D chromatin architecture is also purported to exert fundamental roles in gene regulation. Chromatin conformation both facilitates cell-specific factor binding at specified regions and is in turn modified as such, acting synergistically. The interplay between global and tissue-specific protein factors dictates the epigenetic landscape of T and innate lymphoid cell (ILC) lineages. The expression of global genome organizers such as CTCF, YY1, and the cohesin complexes, closely cooperate with tissue-specific factors to exert cell type-specific gene regulation. Special AT-rich binding protein 1 (SATB1) is an important tissue-specific genome organizer and regulator controlling both long- and short-range chromatin interactions. Recent indications point to SATB1’s cooperation with the aforementioned factors, linking global to tissue-specific gene regulation. Changes in 3D genome organization are of vital importance for proper cell development and function, while disruption of this mechanism can lead to severe immuno-developmental defects. Newly emerging data have inextricably linked chromatin architecture deregulation to tissue-specific pathophysiological phenotypes. The combination of these findings may shed light on the mechanisms behind pathological conditions.
Collapse
Affiliation(s)
- George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- *Correspondence: Charalampos Spilianakis,
| |
Collapse
|
5
|
Fathy N, Kortam MA, Shaker OG, Sayed NH. Long Noncoding RNAs MALAT1 and ANRIL Gene Variants and the Risk of Cerebral Ischemic Stroke: An Association Study. ACS Chem Neurosci 2021; 12:1351-1362. [PMID: 33818067 DOI: 10.1021/acschemneuro.0c00822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebral ischemic stroke (CIS) is one of the primary causes of death worldwide and a major cause of long-term disability. Long noncoding RNAs (lncRNAs) have emerged as crucial mediators in the pathology of CIS; however, their potential importance is yet to be discovered. Herein, we examined the association of four single-nucleotide polymorphisms (SNPs) with the risk of CIS, their correlation with the lncRNAs, MALAT1 and ANRIL, expression, and the potential of serum MALAT1 and ANRIL as biomarkers for CIS. A total of 100 CIS patients and 100 healthy controls were recruited in the study. Genotyping and expression analysis of MALAT1 and ANRIL SNPs were carried out by qPCR. The present results showed that serum MALAT1 was downregulated, while serum ANRIL was overexpressed in CIS patients, relative to controls. MALAT1 downregulation discriminated CIS patients from controls by receiver-operating-characteristic analysis. Moreover, serum ANRIL denoted good diagnostic accuracy. MALAT1 rs619586 AA and rs3200401 CT, TT were associated with increased CIS risk, whereas ANRIL rs10965215 GG was found to be protective. The studied ANRIL rs10738605 polymorphism was not associated with CIS susceptibility. Notably, the G variant of MALAT1 rs619586 demonstrated a higher serum MALAT1 expression level. Multivariate logistic regression analysis revealed serum MALAT1 as well as MALAT1 rs3200401 CT + TT as independent predictors of CIS. Additionally, a negative association was found between the serum MALAT1 level and the National Institutes of Health Stroke Scale score. In conclusion, MALAT1 rs619586 and rs3200401 and ANRIL rs10965215 are novel prospective noninvasive diagnostic biomarkers for CIS predisposition.
Collapse
Affiliation(s)
- Nevine Fathy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona A. Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Chen L, Qu H, Guo M, Zhang Y, Cui Y, Yang Q, Bai R, Shi D. ANRIL and atherosclerosis. J Clin Pharm Ther 2019; 45:240-248. [PMID: 31703157 DOI: 10.1111/jcpt.13060] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/26/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The 3.8-kb-long antisense non-coding RNA at the INK4 locus (ANRIL) is transcribed from the short arm of human chromosome 9 on P21 and is associated with malfunction of the vascular endothelium, vascular smooth muscle cell (VSMC) proliferation/migration/senescence/apoptosis, mononuclear cell adhesion and proliferation, glycolipid metabolism disorder and DNA damage. Hence, ANRIL plays an important role in atherogenesis. Moreover, genome-wide association studies (GWAS) have identified ANRIL as a biomarker that is closely related to coronary heart disease (CHD). The objective of this review was to discuss the pathological mechanism of ANRIL in atherosclerotic development and its significance as a predictor of cardiovascular disease. METHODS Review of the PubMed, EMBASE and Cochrane databases for articles demonstrating the roles of ANRIL in the development of atherosclerotic diseases. RESULTS AND DISCUSSION The abnormal expression of ANRIL is linked to vascular endothelium injury; the proliferation, migration, senescence and apoptosis of VSMCs; mononuclear cell adhesion and proliferation; glycolipid metabolism disorder; DNA damage; and competing endogenous RNAs. Moreover, ANRIL accelerates the progression of CHD by regulating its single nucleotide polymorphisms (SNPs). WHAT IS NEW AND CONCLUSION Considering that ANRIL accelerates atherosclerosis (AS) development and is a risk factor for CHD, it is reasonable for us to explore an efficacious ANRIL-based therapy for AS in CHD.
Collapse
Affiliation(s)
- Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xi yuan), Beijing, China
| | - Hua Qu
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Guo
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Cui
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Chi JS, Li JZ, Jia JJ, Zhang T, Liu XM, Yi L. Long non-coding RNA ANRIL in gene regulation and its duality in atherosclerosis. Curr Med Sci 2017; 37:816-822. [PMID: 29270737 DOI: 10.1007/s11596-017-1812-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/16/2017] [Indexed: 02/05/2023]
Abstract
The antisense transcript long non-coding RNA (lncRNA) (antisense non-coding RNA in the INK4 locus, ANRIL) is an antisense of the cyclin-dependent kinase inhibitor 2B (CDKN2B) gene on chromosome 9p21 that contains an overlapping 299-bp region and shares a bidirectional promoter with alternate open reading frame (ARF). In the context of gene regulation, ANRIL is responsible for directly recruiting polycomb group (PcG) proteins, including polycomb repressive complex-1 (PRC-1) and polycomb repressive complex-2 (PRC-2), to modify the epigenetic chromatin state and subsequently inhibit gene expression in cis-regulation. On the other hand, previous reports have indicated that ANRIL is capable of binding to a specific site or sequence, including the Alu element, E2F transcription factor 1 (E2F1), and CCCTC-binding factor (CTCF), to achieve trans-regulation functions. In addition to its function in cell proliferation, adhesion and apoptosis, ANRIL is very closely associated with atherosclerosis- related diseases. The different transcripts and the SNPs that are related to atherosclerotic vascular diseases (ASVD-SNPs) are inextricably linked to the development and progression of atherosclerosis. Linear transcripts have been shown to be a risk factor for atherosclerosis, whereas circular transcripts are protective against atherosclerosis. Furthermore, ANRIL also acts as a component of the inflammatory pathway involved in the regulation of inflammation, which is considered to be one of the causes of atherosclerosis. Collectively, ANRIL plays an important role in the formation of atherosclerosis, and the artificial modification of ANRIL transcripts should be considered following the development of this disease.
Collapse
Affiliation(s)
- Jie-Shan Chi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
- Shantou University Medical College, Shantou, 515041, China
| | - Jian-Zhou Li
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Jing-Jing Jia
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Ting Zhang
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Xiao-Ma Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Reséndiz-Martínez J, Asbun-Bojalil J, Huerta-Yepez S, Vega M. Correlation of the expression of YY1 and Fas cell surface death receptor with apoptosis of peripheral blood mononuclear cells, and the development of multiple organ dysfunction in children with sepsis. Mol Med Rep 2017; 15:2433-2442. [PMID: 28447715 PMCID: PMC5428261 DOI: 10.3892/mmr.2017.6310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023] Open
Abstract
Multiple organ dysfunction (MOD) is a lethal complication in children with sepsis. Apoptosis of several cell types is involved in this process, and it is associated with increased Fas cell surface death receptor (Fas) expression. As YY1 transcription factor (YY1) negatively regulates the expression of Fas in cancer models, and is associated with the clinical outcome, it may be important in MOD. The present study aimed to determine the association between the expression of Fas, YY1 and apoptosis in children with sepsis, and its association with MOD, these factors were analyzed in 30 pediatric patients that had been diagnosed with sepsis. Peripheral blood mononuclear cells were purified from patients, and YY1 and Fas protein expression was assessed by immunocytochemistry. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Sepsis was monitored using clinical parameters, pediatric logistic organ dysfunction (PELOD) score and the pediatric mortality index. The results demonstrated that Fas expression was directly correlated with apoptosis levels and the expression of YY1 was inversely correlated with apoptosis levels. Patients with high levels of apoptosis exhibited increased disease severity and poor clinical outcome. Notably, the findings of the present study demonstrated that there were higher survival rates in patients with high YY1 expression, compared with those with low YY1 expression. Additionally, patients with MOD exhibited lower proportions of apoptotic cells compared with sepsis patients without MOD. Furthermore, the PELOD score was positively correlated with Fas and inversely correlated with YY1 expression. Finally, high apoptosis and low YY1 expression were prognostic factors associated with poor survival rates. These data suggested that YY1 may be important for apoptosis induction via the regulation of Fas during sepsis. Therefore, Fas may be a potential therapeutic target to prevent MOD through regulation of YY1 expression. Furthermore, YY1 and Fas expression in PBMCs may be used to as prognostic markers.
Collapse
Affiliation(s)
- Judith Reséndiz-Martínez
- Servicio de Terapia Intensiva Pediátrica, Hospital General Dr Gaudencio González Garza, Centro Medico La Raza IMSS, 02990 Mexico City, Mexico
| | - Juan Asbun-Bojalil
- Servicio de Terapia Intensiva Pediátrica, Hospital General Dr Gaudencio González Garza, Centro Medico La Raza IMSS, 02990 Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez S.S.A, 06720 Mexico City, Mexico
| | - Mario Vega
- Oncology Research Unit, Oncology Hospital, Siglo XXI National Medical Center, IMSS, 06720 Mexico City, Mexico
| |
Collapse
|
9
|
Maini J, Ghasemi M, Yandhuri D, Thakur SS, Brahmachari V. Human PRE-PIK3C2B, an intronic cis-element with dual function of activation and repression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:196-204. [PMID: 27932267 DOI: 10.1016/j.bbagrm.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 12/02/2016] [Indexed: 02/01/2023]
Abstract
The Polycomb/Trithorax Responsive Elements (PRE/TREs) are the cis-regulatory sequences that interact with both repressive (PcG) as well as activating (TrxG) complexes. However, most of the mammalian PREs are demonstrated to interact with the repressive polycomb (PcG) complexes only. We have carried out an unbiased search for proteins interacting with human PRE-PIK3C2B (hPRE-PIK3C2B) based on DNA affinity purification followed by mass spectrometry and identified MLL, MLL4 and WDR87 among other proteins in three biological replicates in HEK, U87 and HeLa cell lines. The hPRE-PIK3C2B interacts with the members of multiple activating complexes (COMPASS-like). The increase in the interaction of MLL and MLL4 on depletion of YY1 and the increase in the enrichment of YY1 and EZH2 upon MLL knockdown at the hPRE-PIK3C2B indicate the dual occupancy and suggest a concentration dependent enrichment of the activator or the repressor complex at hPRE-PIK3C2B. Further, we show that the hPRE-PIK3C2B interacts with the Drosophila homologues of PcG and TrxG proteins in transgenic flies. Here, we found that there is an increased enrichment of Pc (Polycomb) in comparison to Trx (TrxG protein) at hPRE-PIK3C2B in the Drosophila transgenic flies and this seems to be the default state while the balance is tipped towards the trithorax complex in PcG mutants. To the best of our knowledge, this is one of the early demonstrations of human PRE acting as a TRE without any sequence alteration.
Collapse
Affiliation(s)
- Jayant Maini
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Mohsen Ghasemi
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Deepti Yandhuri
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Suman S Thakur
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
10
|
Lin J, He Y, Chen J, Zeng Z, Yang B, Ou Q. A critical role of transcription factor YY1 in rheumatoid arthritis by regulation of interleukin-6. J Autoimmun 2016; 77:67-75. [PMID: 27829535 DOI: 10.1016/j.jaut.2016.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022]
Abstract
Previous studies have revealed a critical role of YY1, a "Yin Yang" transcription factor, in cancer development and progression. However, whether YY1 has any role in rheumatoid arthritis (RA) remains unknown. This study aims to explore the potential role of YY1 in RA pathogenesis. In this study, we found that YY1 was over-expressed in RA patients and CIA mice. Blocking of YY1 action with YY1 shRNA lentivirus ameliorated disease progression in CIA mice. We further analyzed the signaling pathway involved by ingenuity pathway analysis (IPA), results showed IL-6 signaling and JAK/Stat signaling pathway was significantly inhibited by LV-YY1-shRNA treatment. Moreover, we observed that blocking of YY1 reduced IL-6 production and downregulated Th17 population. Finally, we showed YY1 positively regulated IL-6 transcription by binding to the promoter region of the IL-6 gene. In conclusion, YY1 plays a critical role in promoting IL-6 transcription in RA which contribute to the inflammation of RA via stimulation of Th17 differentiation. Thus, YY1 is likely a key molecule involved in the inflammation process of RA. Targeting of YY1 may be a novel therapeutic strategy for RA.
Collapse
Affiliation(s)
- Jinpiao Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, China; The Genetic Diagnostic Laboratory, The First Affiliated Hospital of Fujian Medical University, China
| | - Yujue He
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, China; The Genetic Diagnostic Laboratory, The First Affiliated Hospital of Fujian Medical University, China
| | - Junmin Chen
- Department of Hematology and Rheumatology, The First Affiliated Hospital of Fujian Medical University, China
| | - Zhiyong Zeng
- Department of Hematology and Rheumatology, The First Affiliated Hospital of Fujian Medical University, China
| | - Bin Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, China; The Genetic Diagnostic Laboratory, The First Affiliated Hospital of Fujian Medical University, China
| | - Qishui Ou
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, China; The Genetic Diagnostic Laboratory, The First Affiliated Hospital of Fujian Medical University, China.
| |
Collapse
|
11
|
Zhou X, Han X, Wittfeldt A, Sun J, Liu C, Wang X, Gan LM, Cao H, Liang Z. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol 2016; 13:98-108. [PMID: 26618242 DOI: 10.1080/15476286.2015.1122164] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antisense Noncoding RNA in the INK4 Locus (ANRIL) is the prime candidate gene at Chr9p21, the well-defined genetic risk locus associated with multiple human diseases including coronary artery disease (CAD), while little is known regarding its role in the pathological processes. Endothelial dysfunction triggers atherosclerotic processes that are causatively linked to CAD. To evaluate the function of ANRIL in human endothelial cells (ECs), we examined ANRIL expression under pathological stimuli and found ANRIL was markedly induced by pro-inflammatory factors. Loss-of-function and chromatin immunoprecipitation approaches revealed that NF-κB mediates TNF-α induced ANRIL expression. RNA sequencing revealed that ANRIL silencing dysregulated expression of inflammatory genes including IL6 and IL8 under TNF-α treatment. We explored the regulatory mechanism of ANRIL on IL6/8 and found that Yin Yang 1 (YY1), an ANRIL binding transcriptional factor revealed by RNA immunoprecipitation, was required for IL6/8 expression under TNF-α treatment. YY1 was enriched at promoter loci of IL6/8 and ANRIL silencing impaired the enrichment, indicating a cooperation between ANRIL and YY1 in the regulation of inflammatory genes. For the first time, we establish the connection between ANRIL and NF-κB pathway and show that ANRIL regulates inflammatory responses through binding with YY1. The newly identified TNF-α-NF-κB-ANRIL/YY1-IL6/8 pathway enhances understanding of the etiology of CAD and provides potential therapeutic target for treatment of CAD.
Collapse
Affiliation(s)
- Xiao Zhou
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Xiaorui Han
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Ann Wittfeldt
- b Department of Molecular and Clinical Medicine , Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg , Sweden
| | - Jingzhi Sun
- c Department of Cardiolody , Affiliated Hospital of Jining Medical University , Jining , 272000 , China
| | - Chujun Liu
- d Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Xiaoxia Wang
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Li-Ming Gan
- b Department of Molecular and Clinical Medicine , Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg , Sweden.,e AstraZeneca R&D , Mölndal , Sweden
| | - Huiqing Cao
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Zicai Liang
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| |
Collapse
|
12
|
YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity. Nat Commun 2016; 7:10789. [PMID: 26892542 PMCID: PMC4762897 DOI: 10.1038/ncomms10789] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/21/2016] [Indexed: 01/01/2023] Open
Abstract
Regulatory T (T(reg)) cells are essential for maintenance of immune homeostasis. Foxp3 is the key transcription factor for T(reg)-cell differentiation and function; however, molecular mechanisms for its negative regulation are poorly understood. Here we show that YY1 expression is lower in T(reg) cells than T(conv) cells, and its overexpression causes a marked reduction of Foxp3 expression and abrogation of suppressive function of Treg cells. YY1 is increased in T(reg) cells under inflammatory conditions with concomitant decrease of suppressor activity in dextran sulfate-induced colitis model. YY1 inhibits Smad3/4 binding to and chromatin remodelling of the Foxp3 locus. In addition, YY1 interrupts Foxp3-dependent target gene expression by physically interacting with Foxp3 and by directly binding to the Foxp3 target genes. Thus, YY1 inhibits differentiation and function of T(reg) cells by blocking Foxp3.
Collapse
|
13
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
14
|
A novel role of Yin-Yang-1 in pulmonary tuberculosis through the regulation of the chemokine CCL4. Tuberculosis (Edinb) 2015; 96:87-95. [PMID: 26786659 DOI: 10.1016/j.tube.2015.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/18/2015] [Accepted: 10/25/2015] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis (M. tb) is the etiological agent of pulmonary tuberculosis (TB); this disease remains a worldwide health problem. Yin-Yang-1 (YY1) plays a major role in the maintenance and progression of some pulmonary diseases, including pulmonary fibrosis. However, the role of YY1 in TB remains unknown. The aim of this study was to elucidate the role of YY1 in the regulation of CCL4 and its implication in TB. We determined whether YY1 regulates CCL4 using reporter plasmids, ChIP and siRNA assays. Immunohistochemistry and digital pathology were used to measure the expression of YY1 and CCL4 in a mouse model of TB. A retrospective comparison of patients with TB and control subjects was used to measure the expression of YY1 and CCL4 using tissue microarrays. Our results showed that YY1 regulates the transcription of CCL4; moreover, YY1, CCL4 and TGF-β were overexpressed in the lung tissues of mice with TB during the late stages of the disease and the tissues of TB patients. The expression of CCL4 and TGF-β correlated with YY1 expression. In conclusion, YY1 regulates CCL4 transcription; moreover, YY1 is overexpressed in experimental and human TB and is positively correlated with CCL4 and TGF-β expression. Therefore, treatments that decrease YY1 expression may be a new therapeutic strategy against TB.
Collapse
|
15
|
Yin-Yang 1 and Yin-Yang 2 exert opposing effects on the promoter activity of interleukin 4. Arch Pharm Res 2015; 39:547-554. [PMID: 26345265 DOI: 10.1007/s12272-015-0622-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Interleukin (IL)-4 acts on T cells as a growth and activation factor, and promotes the differentiation of type 2 T helper cells. In T cells, expression of the gene encoding IL-4 is regulated by inducible or constitutive factors. Yin-Yang (YY)-1 is one of constitutive transcription factors binding to the IL-4 promoter. The recently identified YY2 protein is similar to YY1, with both sharing high levels of homology in their zinc finger motifs. However, the role of YY2 in T cells is unclear. YY1 and YY2 were constitutively expressed in EL4 T cells, and their expression was not dependent on stimulation. IL-4 promoter (-741/+56 fragment) activity was enhanced by YY1, but inhibited by YY2. The enhanced IL-4 promoter activity by YY1 was reduced by simultaneous expression of YY2. In addition, the DNA binding affinity of YY1 to the IL-4 promoter was adversely affected by YY2. Our results suggest that YY1 and YY2 exert opposing effects on the IL-4 promoter as they compete for the same DNA binding sites.
Collapse
|
16
|
Higher TGF-β with lower CD124 and TSLP, but no difference in PAR-2 expression in bronchial biopsy of bronchial asthma patients in comparison with COPD patients. Appl Immunohistochem Mol Morphol 2015; 22:543-9. [PMID: 24185116 DOI: 10.1097/pai.0b013e3182a500a3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and bronchial asthma (BA) are 2 severe respiratory disorders with different predominated immunopathologies. There are several "novel molecules" from different families that are proposed as part of the etiopathogenesis of COPD and BA. Proteinase-activated receptor 2 (PAR-2), thymic stromal lymphoprotein (TSLP), interleukin-4 and its receptor (CD124), Yin-Yang 1 (YY1), and transforming growth factor beta (TGF-β) have been previously shown to be involved in the pathophysiology of both these diseases. We investigated PAR-2, TSLP, CD124 (interleukin-4R), TGF-β, and YY1 immunohistochemical expression in endobronchial and transbronchial biopsies from 22 BA patients and 20 COPD patients. Immunostaining for the above-mentioned antigens was quantified using a modified semiquantitative scoring system and statistically evaluated. The values of TGF-β in the epithelial cells (P=0.0007) and TGF-β in the submucosa (P=0.0075) were higher in the BA samples, whereas values of CD124 (P=0.0015) and TSLP (P=0.0106) were higher in the COPD samples. No statistically significant differences between the groups were recorded for PAR-2 and YY1. Airway inflammatory reaction diversity in BA and COPD seems to be disease specific; however, there are also shared mechanisms involved in the pathophysiology of both diseases.
Collapse
|
17
|
Wanyonyi SS, Lefevre C, Sharp JA, Nicholas KR. The extracellular matrix regulates MaeuCath1a gene expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:289-299. [PMID: 23500515 DOI: 10.1016/j.dci.2013.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 06/01/2023]
Abstract
We have previously shown that the gene for MaeuCath1, a cathelicidin secreted in wallaby milk is alternately spliced into two variants, MaeuCath1a and MaeuCath1b which are temporally regulated in order to provide antimicrobial protection to the newborn and stimulate mammary growth, respectively. The current study investigated the extracellular matrix (ECM) for its regulatory role in MaeuCath1 gene expression. Reverse transcription qPCR using RNA isolated from mammary epithelial cells (WallMEC) cultured on ECM showed that ECM regulates MaeuCath1a gene expression in a lactation phase-dependent manner. Luciferase reporter-based assays and in silico analysis of deletion fragments of the 2245bp sequence upstream of the translation start site identified ECM-dependent positive regulatory activity in the -709 to -15 region and repressor activity in the -919 to -710 region. Electrophoretic Gel Mobility Shift Assays (EMSA) using nuclear extract from ECM-treated WallMEC showed differential band shift in the -839 to -710 region.
Collapse
Affiliation(s)
- Stephen S Wanyonyi
- Molecular and Medical Research SRC, School of Medicine, Deakin University, 75 Pigdons Rd., Waurn Ponds, 3217 VIC, Australia.
| | | | | | | |
Collapse
|
18
|
Marković J, Grdović N, Dinić S, Karan-Djurašević T, Uskoković A, Arambašić J, Mihailović M, Pavlović S, Poznanović G, Vidaković M. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells. PLoS One 2013; 8:e59679. [PMID: 23555743 PMCID: PMC3608566 DOI: 10.1371/journal.pone.0059679] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/16/2013] [Indexed: 12/20/2022] Open
Abstract
Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional interplay of these proteins could finely balance Cxcl12 transcription.
Collapse
Affiliation(s)
- Jelena Marković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurašević
- Laboratory for Molecular Hematology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Arambašić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlović
- Laboratory for Molecular Hematology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
19
|
Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation. Proc Natl Acad Sci U S A 2012; 110:276-81. [PMID: 23248301 DOI: 10.1073/pnas.1214682110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Th2 locus control region (LCR) has been shown to be important in efficient and coordinated cytokine gene regulation during Th2 cell differentiation. However, the molecular mechanism for this is poorly understood. To study the molecular mechanism of the Th2 LCR, we searched for proteins binding to it. We discovered that transcription factor YY1 bound to the LCR and the entire Th2 cytokine locus in a Th2-specific manner. Retroviral overexpression of YY1 induced Th2 cytokine expression. CD4-specific knockdown of YY1 in mice caused marked reduction in Th2 cytokine expression, repressed chromatin remodeling, decreased intrachromosomal interactions, and resistance in an animal model of asthma. YY1 physically associated with GATA-binding protein-3 (GATA3) and is required for GATA3 binding to the locus. YY1 bound to the regulatory elements in the locus before GATA3 binding. Thus, YY1 cooperates with GATA3 and is required for regulation of the Th2 cytokine locus and Th2 cell differentiation.
Collapse
|
20
|
Rockwell CE, Monaco JJ, Qureshi N. A critical role for the inducible proteasomal subunits LMP7 and MECL1 in cytokine production by activated murine splenocytes. Pharmacology 2012; 89:117-26. [PMID: 22398747 DOI: 10.1159/000336335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE The proteasome is a multi-subunit complex that proteolytically cleaves proteins. The replacement of the constitutive proteasome subunits β1, β2, and/or β5 with the IFNγ-inducible subunits LMP2, MECL1, and/or LMP7 results in the 'immunoproteasome'. The inducible subunits change the cleavage specificities of the proteasome, but it is unclear whether they have functions in addition to this. The purpose of the present study was to determine the role of the proteasome in general, as well as LMP7 and MECL1 specifically, with regard to cytokine production by activated primary splenocytes. METHODS A LMP7/MECL1-null mouse was engineered to determine the roles of these subunits in cytokine production. Isolated splenocytes from wild-type and LMP7/MECL1-/- mice were treated with lactacystin and activated with PMA and ionomycin and subsequently cytokine mRNA levels were quantified. RESULTS The present study demonstrates that LMP7/MECL1 regulates the expression of IFNγ, IL4, IL10, IL2Rβ, GATA3, and t-bet. In contrast, the regulation of IL2, IL13, TNFα, and IL2Rα by the proteasome appears to occur independently of LMP7/MECL1. CONCLUSIONS Collectively, the present study demonstrates that LMP7 and MECL1 regulate cytokine expression, suggesting this system represents a novel mechanism for the regulation of cytokines and cytokine signaling.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Mich., USA
| | | | | |
Collapse
|
21
|
Abstract
Systemic sclerosis (SSc) has the highest fatality rate among connective tissue diseases and is characterized by vascular damage, inflammation and fibrosis. Currently, no therapy has proven effective in modifying the course of SSc, a reflection of its complex pathogenesis. T cell-derived cytokines have been implicated in the induction of fibrosis. The role of the pro-fibrotic type 2 cytokine IL-13 and its regulation appear to be important in the pathogenesis of SSc and other fibrotic disorders. Recent work has shown that dysregulated production of IL-13 by effector CD8+ T cells is critical for predisposing patients to more severe forms of cutaneous disease and that this dysregulation is associated with defects in the molecular control of IL-13 production, such as increased expression of the transcription factor GATA-3. Silencing of GATA-3 with siRNA significantly reduces IL-13 production by CD8+ T cells from patients. We review these new insights into SSc pathogenesis that will enable establishment of highly relevant biomarkers of immune dysfunction in patients predisposed to develop SSc and open new possibilities for development of more specific diagnosis and treatment.
Collapse
Affiliation(s)
- Patrizia Fuschiotti
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
22
|
Lin X, Sime PJ, Xu H, Williams MA, LaRussa L, Georas SN, Guo J. Yin yang 1 is a novel regulator of pulmonary fibrosis. Am J Respir Crit Care Med 2011; 183:1689-97. [PMID: 21169469 PMCID: PMC3136995 DOI: 10.1164/rccm.201002-0232oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 12/16/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The differentiation of fibroblasts into myofibroblasts is a cardinal feature of idiopathic pulmonary fibrosis (IPF). The transcription factor Yin Yang 1 (YY1) plays a role in the proliferation and differentiation of diverse cell types, but its role in fibrotic lung diseases is not known. OBJECTIVES To elucidate the mechanism by which YY1 regulates fibroblast differentiation and lung fibrosis. METHODS Lung fibroblasts were cultured with transforming growth factor (TGF)-β or tumor necrosis factor-α. Nuclear factor (NF)-κB, YY1, and α-smooth muscle actin (SMA) were determined in protein, mRNA, and promoter reporter level. Lung fibroblasts and lung fibrosis were assessed in a partial YY1-deficient mouse and a YY1(f/f) conditional knockout mouse after being exposed to silica or bleomycin. MEASUREMENTS AND MAIN RESULTS TGF-β and tumor necrosis factor-α up-regulated YY1 expression in lung fibroblasts. TGF-β-induced YY1 expression was dramatically decreased by an inhibitor of NF-κB, which blocked I-κB degradation. YY1 is significantly overexpressed in both human IPF and murine models of lung fibrosis, including in the aggregated pulmonary fibroblasts of fibrotic foci. Furthermore, the mechanism of fibrogenesis is that YY1 can up-regulate α-SMA expression in pulmonary fibroblasts. YY1-deficient (YY1(+/-)) mice were significantly protected from lung fibrosis, which was associated with attenuated α-SMA and collagen expression. Finally, decreasing YY1 expression through instilled adenovirus-cre in floxed-YY1(f/f) mice reduced lung fibrosis. CONCLUSIONS YY1 is overexpressed in fibroblasts in both human IPF and murine models in a NF-κB-dependent manner, and YY1 regulates fibrogenesis at least in part by increasing α-SMA and collagen expression. Decreasing YY1 expression may provide a new therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Lin
- Department of Medicine, University of Rochester Medical School, Rochester, New York; and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Patricia J. Sime
- Department of Medicine, University of Rochester Medical School, Rochester, New York; and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Haodong Xu
- Department of Medicine, University of Rochester Medical School, Rochester, New York; and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Marc A. Williams
- Department of Medicine, University of Rochester Medical School, Rochester, New York; and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Larry LaRussa
- Department of Medicine, University of Rochester Medical School, Rochester, New York; and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Steve N. Georas
- Department of Medicine, University of Rochester Medical School, Rochester, New York; and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jia Guo
- Department of Medicine, University of Rochester Medical School, Rochester, New York; and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
23
|
Inoue N, Watanabe M, Morita M, Tomizawa R, Akamizu T, Tatsumi K, Hidaka Y, Iwatani Y. Association of functional polymorphisms related to the transcriptional level of FOXP3 with prognosis of autoimmune thyroid diseases. Clin Exp Immunol 2010; 162:402-6. [PMID: 20942809 PMCID: PMC3026543 DOI: 10.1111/j.1365-2249.2010.04229.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2010] [Indexed: 02/03/2023] Open
Abstract
The severity of Hashimoto's disease (HD) and intractability (or inducibility to remission) of Graves' disease (GD) varies among patients. Forkhead box P3 (FoxP3) is a crucial regulatory factor for the development and function of regulatory T (T(reg) ) cells, and deficiency of the FoxP3 gene (FOXP3) suppresses the regulatory function of T(reg) cells. To clarify the association of the functional polymorphisms of the FOXP3 with the prognosis of GD and HD, we genotyped -3499A/G, -3279C/A and -2383C/T polymorphisms in FOXP3 gene obtained from 38 patients with severe HD, 40 patients with mild HD, 65 patients with intractable GD, in whom remission was difficult to induce, 44 patients with GD in remission and 71 healthy volunteers. The -3279CA genotype was more frequent in patients with GD in remission than in patients with intractable GD, and the -3279AA genotype, which correlates to defective transcription of FOXP3, was absent in patients with GD in remission. The -2383CC genotype was more frequent in patients with severe HD than in those with mild HD. In conclusion, the -3279A/C polymorphism is related to the development and intractability of GD and the -2383CC genotype to the severity of HD.
Collapse
Affiliation(s)
- N Inoue
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Riveros C, Mellor D, Gandhi KS, McKay FC, Cox MB, Berretta R, Vaezpour SY, Inostroza-Ponta M, Broadley SA, Heard RN, Vucic S, Stewart GJ, Williams DW, Scott RJ, Lechner-Scott J, Booth DR, Moscato P. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010; 5:e14176. [PMID: 21152067 PMCID: PMC2995726 DOI: 10.1371/journal.pone.0014176] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/20/2010] [Indexed: 12/03/2022] Open
Abstract
Background Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). Conclusions/Significance Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
Collapse
Affiliation(s)
- Carlos Riveros
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Drew Mellor
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Kaushal S. Gandhi
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Fiona C. McKay
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Mathew B. Cox
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - S. Yahya Vaezpour
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mario Inostroza-Ponta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Simon A. Broadley
- School of Medicine, Griffith University, Brisbane, Australia
- Department of Neurology, Gold Coast Hospital, Southport, Australia
| | - Robert N. Heard
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Stephen Vucic
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Graeme J. Stewart
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | | | - Rodney J. Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Jeanette Lechner-Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - David R. Booth
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, St Lucia, Australia
- * E-mail:
| | | |
Collapse
|
25
|
FcepsilonRIalpha gene -18483A>C polymorphism affects transcriptional activity through YY1 binding. Immunogenetics 2009; 61:649-55. [PMID: 19685047 DOI: 10.1007/s00251-009-0391-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
Three frequent genetic polymorphisms in the human high-affinity IgE receptor alpha-subunit (FcepsilonRIalpha) were shown to be associated with allergic disorders and/or total serum IgE levels in allergic patients. Two of these were previously demonstrated to affect FcepsilonRIalpha expression while the third -18483A>C (rs2494262) has not yet been subjected to functional studies. We hypothesized that the -18483A>C variant affects transcriptional activity of the FcepsilonRIalpha distal promoter in monocytes in which FcepsilonRIalpha transcription is driven through that regulatory region. Indeed, we confirmed preferential binding of the YY1 transcription factor to the -18483C allele, resulting in lower transcriptional activity when compared with the -18483A allele.
Collapse
|
26
|
Roman J, Rangasamy T, Guo J, Sugunan S, Meednu N, Packirisamy G, Shimoda LA, Golding A, Semenza G, Georas SN. T-cell activation under hypoxic conditions enhances IFN-gamma secretion. Am J Respir Cell Mol Biol 2009; 42:123-8. [PMID: 19372249 DOI: 10.1165/rcmb.2008-0139oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Secondary lymphoid organs and peripheral tissues are characterized by hypoxic microenvironments, both in the steady state and during inflammation. Although hypoxia regulates T-cell metabolism and survival, very little is known about whether or how hypoxia influences T-cell activation. We stimulated mouse CD4(+) T cells in vitro with antibodies directed against the T-cell receptor (CD3) and CD28 under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions. Here we report that stimulation under hypoxic conditions augments the secretion of effector CD4(+) T-cell cytokines, especially IFN-gamma. The enhancing effects of hypoxia on IFN-gamma secretion were independent of mouse strain, and were also unaffected using CD4(+) T cells from mice lacking one copy of the gene encoding hypoxia-inducible factor-1alpha. Using T cells from IFN-gamma receptor-deficient mice and promoter reporter studies in transiently transfected Jurkat T cells, we found that the enhancing effects of hypoxia on IFN-gamma expression were not due to effects on IFN-gamma consumption or proximal promoter activity. In contrast, deletion of the transcription factor, nuclear erythroid 2 p45-related factor 2 attenuated the enhancing effect of hypoxia on IFN-gamma secretion and other cytokines. We conclude that hypoxia is a previously underappreciated modulator of effector cytokine secretion in CD4(+) T cells.
Collapse
Affiliation(s)
- Jessica Roman
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642-8692, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yin-Yang 1 regulates effector cytokine gene expression and T(H)2 immune responses. J Allergy Clin Immunol 2008; 122:195-201, 201.e1-5. [PMID: 18423564 DOI: 10.1016/j.jaci.2008.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 03/06/2008] [Accepted: 03/10/2008] [Indexed: 01/09/2023]
Abstract
BACKGROUND The transcription factor Yin-Yang 1 (YY-1) binds to the promoter regions of several T-cell cytokine genes, but the expression and contribution of this factor to cytokine gene expression and T-cell activation in vivo is not clear. OBJECTIVE We sought to better define the role of YY-1 in T-cell gene regulation and allergic immune responses. METHODS We studied cytokine gene expression in T lymphocytes isolated from wild-type mice and heterozygous littermates bearing 1 targeted yy-1 allele (yy-1(+/-) mice). T cells were stimulated with anti-T-cell receptor (anti-TCR) plus CD28 antibodies or with peptide antigen plus antigen-presenting cells by using newly generated yy-1(+/-) TCR transgenic mice. We also studied ovalbumin-driven allergic immune responses in a mouse model of asthma and YY-1 expression in lung tissue from human asthmatic subjects. RESULTS CD4(+) T cells from yy-1(+/-) mice secreted significantly less IL-4 and IFN-gamma compared with wild-type littermates after TCR-dependent activation, whereas IL-2 production was not significantly affected. Both airway inflammation and recall splenocyte IL-4 production were inhibited in yy-1(+/-) mice, as was antigen-driven T-cell proliferation. YY-1 expression was higher in airway biopsy specimens from asthmatic compared with control subjects. CONCLUSION These data indicate that YY-1 regulates T-cell cytokine gene expression and allergic immune responses in a gene dose-dependent manner.
Collapse
|
28
|
Jacob E, Hod-Dvorai R, Schif-Zuck S, Avni O. Unconventional association of the polycomb group proteins with cytokine genes in differentiated T helper cells. J Biol Chem 2008; 283:13471-81. [PMID: 18285333 DOI: 10.1074/jbc.m709886200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytokine transcription profiles of developing T helper 1 and T helper 2 cells are imprinted and induced appropriately following stimulation of differentiated cells. Epigenetic regulation combines several mechanisms to ensure the inheritance of transcriptional programs. We found that the expression of the polycomb group proteins, whose role in maintaining gene silencing is well documented, was induced during development in both T helper lineages. Nevertheless, the polycomb proteins, YY1, Mel-18, Ring1A, Ezh2, and Eed, bound to the Il4 and Ifng loci in a differential pattern. In contrast to the prevailing dogma, the binding activity of the polycomb proteins in differentiated T helper cells was associated with cytokine transcription. The polycomb proteins bound to the cytokine genes under resting conditions, and their binding was induced dynamically following stimulation. The recruitment of the polycomb proteins Mel-18 and Ezh2 to the cytokine promoters was inhibited in the presence of cyclosporine A, suggesting the involvement of NFAT. Considering their binding pattern at the cytokine genes and their known function in higher order folding of regulatory elements, we propose a model whereby the polycomb proteins, in some contexts, positively regulate gene expression by mediating long-distance chromosomal interactions.
Collapse
Affiliation(s)
- Eyal Jacob
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | |
Collapse
|
29
|
Sakhinia E, Glennie C, Hoyland JA, Menasce LP, Brady G, Miller C, Radford JA, Byers RJ. Clinical quantitation of diagnostic and predictive gene expression levels in follicular and diffuse large B-cell lymphoma by RT-PCR gene expression profiling. Blood 2007; 109:3922-8. [PMID: 17255358 DOI: 10.1182/blood-2006-09-046391] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent microarray gene expression profiling studies have identified gene signatures predictive of outcome, so-called "indicator" genes, for diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, measurement of these genes in routine practice remains difficult. We applied real-time polymerase chain reaction (PCR) to polyA cDNAs prepared from 106 archived human frozen lymph nodes (63 of FL, 25 of DLBCL, 10 reactive lymph nodes, and cases with paired samples of FL [4] and subsequent DLBCL [4]). Reverse transcription and polyA reverse transcriptase (RT)-PCR was performed, and resultant cDNA was probed by real-time PCR for 36 candidate indicator genes, selected from microarray studies. Nine genes showed statistically significant different expression between FL and DLBCL, including cyclin B, COL3A1, NPM3, H731, PRKCB1, OVGL, ZFPC150, HLA-DQ-a, and XPB. Of these, cyclin B, NPM3, and COL3A1 were higher in DLBCL. Six genes showed statistically significant higher expression in the neoplastic nodes compared with reactive nodes, namely PRKCB1, BCL-6, EAR2, ZFX, cyclin B, YY1. High levels of YY.1 were associated with a shorter survival interval in both FL and DLBCL. The method is simple, sensitive, and robust, facilitating routine use and may be used as a platform for clinical measurement of prognostic gene signatures.
Collapse
MESH Headings
- Disease-Free Survival
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/mortality
- Lymphoma, Follicular/diagnosis
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Follicular/mortality
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oligonucleotide Array Sequence Analysis
- Predictive Value of Tests
- Prognosis
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
Collapse
Affiliation(s)
- Ebrahim Sakhinia
- Division of Regenerative Medicine, School of Medicine, Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Villano CM, White LA. Expression of the helix–loop–helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes. Toxicol Appl Pharmacol 2006; 214:219-29. [PMID: 16494909 DOI: 10.1016/j.taap.2005.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 12/29/2022]
Abstract
The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes. Retinoids, vitamin A analogues, are powerful regulators of cell growth and differentiation and are widely used in the prevention and treatment of a variety of cancers in humans. Furthermore, retinoic acid is necessary for the maintenance of epithelial differentiation and demonstrates an inhibitory action on skin carcinogenesis. We examined the effect of all-trans retinoic acid on expression of ID-1, -2, -3, and -4 in normal human keratinocytes and found that exposure of these cells to all-trans retinoic acid causes an increase in both ID-1 and ID-3 gene expression. Furthermore, our data show that this increase is mediated by increased transcription involving several cis-acting elements in the distal portion of the promoter, including a CREB-binding site, an Egr1 element, and an YY1 site. These data demonstrate that the ID proteins are direct targets of the retinoic acid signaling pathway. Given the importance of the ID proteins to epidermal differentiation, these results suggest that IDs may be mediating some of the effects of all-trans retinoic acid in normal human keratinocytes.
Collapse
Affiliation(s)
- C M Villano
- Department of Biochemistry and Microbiology, 76 Lipman Drive, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
31
|
Abstract
Helper T cells coordinate immune responses through the production of cytokines. Th2 cells express the closely linked Il4, Il13, and Il5 cytokine genes, whereas these same genes are silenced in the Th1 lineage. The Th1/Th2 lineage choice has become a textbook example for the regulation of cell differentiation, and recent discoveries have further refined and expanded our understanding of how Th2 differentiation is initiated and reinforced by signals from antigen-presenting cells and cytokine-driven feedback loops. Epigenetic changes that stabilize the active or silent state of the Il4 locus in differentiating helper T cells have been a major focus of recent research. Overall, the field is progressing toward an integrated model of the signaling and transcription factor networks, cis-regulatory elements, epigenetic modifications, and RNA interference mechanisms that converge to determine the lineage fate and gene expression patterns of differentiating helper T cells.
Collapse
Affiliation(s)
- K Mark Ansel
- Harvard Medical School, CBR Institute for Biomedical Research, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
32
|
Keen JC, Cianferoni A, Florio G, Guo J, Chen R, Roman J, Wills-Karp M, Casolaro V, Georas SN. Characterization of a novel PMA-inducible pathway of interleukin-13 gene expression in T cells. Immunology 2006; 117:29-37. [PMID: 16423038 PMCID: PMC1782204 DOI: 10.1111/j.1365-2567.2005.02260.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although interleukin 13 (IL-13) is an important mediator of asthma and allergic diseases, the molecular mechanisms regulating IL-13 gene expression are not well understood. This study was designed to define the molecular mechanisms governing IL-13 gene expression in T cells. IL-13 expression was examined in human peripheral blood T cells and in the EL-4 T-cell line by enzyme-linked immunosorbent assay and reverse-transcription polymerase chain reaction. An IL-13 promoter deletion analysis was performed using luciferase-based reporter plasmids transiently transfected into EL-4 cells by electroporation. DNA binding factors were investigated using electrophoretic mobility shift assays. In contrast to IL-4 expression, which required concomitant activation of calcium- and protein kinase C- (PKC-) dependent signalling pathways, PKC activation alone was sufficient for IL-13 protein secretion in mitogen-primed (but not resting) peripheral blood T cells, and for IL-13 mRNA expression and promoter activity in EL-4 T cells. Promoter deletion analysis localized a phorbol 12-myristate 13-acetate (PMA)-sensitive element to a proximal promoter region between -109 and -79 base pairs upstream from the IL-13 transcription start site. This promoter region supported the binding of both constitutive and PMA-inducible nuclear factors in gel shift assays.
Collapse
Affiliation(s)
- Judith C Keen
- Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Balitmore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
During the twentieth century the gene emerged as the major driving force of biology. Initially, even the nature and behavior of gene vehicles, the chromosomes, were subjected to doubts. The basic or standard gene concept, as a unit of function, mutation, and recombination, had to be revised. Half a century was required for reaching a general consensus about the chemical nature of the genetic material, DNA and RNA. The relationship between single genes and individual proteins was a great milestone at the middle of the twentieth century, but within two decades it was realized that the relationship was more complex. Understanding of genetic coding, transcription, and translation during the 1960s laid a firm foundation to the "nucleic doctrine," harking back to the dicta of Lederberg (1959) and meaning that single nucleic acid genes alone were responsible for each separate function within the cell. However, important aspects of gene expression are recognized now as a function of the genome and many genes collaborate in circuits. It has come to light that genes may be mobile, exist in plasmids and cytoplasmic organelles, and can be imported by nonsexual means from other organisms or as synthetic products. Epigenetics has reborn as a new field of developmental genetics. The unorthodox prion proteins can even simulate some gene properties. Genetics was to an extent reincarnated as of the twenty-first century by assimilating the tools of cybernetics and of many formerly distant areas of science. This overview highlights some of the historical milestones that contributed to the development of our image of the gene, extending elements of issues laid down by Rédei (2003).
Collapse
Affiliation(s)
- George P Rédei
- University of Missouri, Life Sciences Center, Columbia, Missouri 65203, USA
| | | | | |
Collapse
|
34
|
Rubenfeld J, Guo J, Sookrung N, Chen R, Chaicumpa W, Casolaro V, Zhao Y, Natarajan V, Georas S. Lysophosphatidic acid enhances interleukin-13 gene expression and promoter activity in T cells. Am J Physiol Lung Cell Mol Physiol 2005; 290:L66-74. [PMID: 16199434 DOI: 10.1152/ajplung.00473.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a membrane-derived lysophospholipid with wide-ranging effects on multiple lung cells including airway epithelial and smooth muscle cells. LPA can augment migration and cytokine synthesis in lymphocytes, but its potential effects on Th2 cytokines have not been well studied. We examined the effects of physiological concentrations of LPA on IL-13 gene expression in human T cells. The Jurkat T cell line and human peripheral blood CD4+ T cells were incubated with LPA alone or with 1) pharmacological agonists of different signaling pathways, or 2) antibodies directed against the T cell receptor complex and costimulatory molecules. Luciferase-based reporter constructs driven by different lengths of the human IL-13 promoter were transfected by electroporation in Jurkat cells treated with and without LPA. The effects of LPA on IL-13 mRNA stability were examined using actinomycin D to halt ongoing transcription. Expression of mRNA encoding LPA2 and LPP-1 increased with T cell activation. LPA augmented IL-13 secretion under conditions of submaximal T cell activation. This was observed using pharmacological agonists activating intracellular calcium-, PKC-, and cAMP-dependent signaling pathways, as well as antibodies directed against CD3 and CD28. LPA only slightly prolonged IL-13 mRNA half-life in submaximally stimulated Jurkat cells. In contrast, LPA significantly enhanced transcriptional activation of the IL-13 promoter via regulatory elements contained within proximal 312 bp. The effects of LPA on IL-13 promoter activation appeared to be distinct from those mediated by GATA-3. LPA can augment IL-13 gene expression in T cells, especially under conditions of submaximal activation.
Collapse
Affiliation(s)
- Joshua Rubenfeld
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Klöting N, Klöting I. Genetic variation in the multifunctional transcription factor Yy1 and type 1 diabetes mellitus in the BB rat. Mol Genet Metab 2004; 82:255-9. [PMID: 15234341 DOI: 10.1016/j.ymgme.2004.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/16/2004] [Accepted: 04/26/2004] [Indexed: 11/26/2022]
Abstract
Spontaneous diabetes in B(io)B(reeding) rats is complex, polygenic, and recessively inherited. Several crossing studies have demonstrated that beside the class II genes of the major histocompatibility complex (MHC, Iddm1) additional non-MHC genes are involved in diabetes development. One of them, Iddm4, was initially mapped on chromosome 6q32. To study the physiologic importance of Iddm4 a congenic BB.SHR rat strain (BB.6S) was established. The BB.6S is characterised by a drastic reduction of diabetes frequency (86 vs. 14%) indicating existence of diabetes protective genes of SHR on the exchanged chromosomal segment. One of the possible diabetes susceptibility candidate genes located within this exchanged region is the multifunctional transcription factor Yin yang 1 (Yy1). Yy1 was therefore sequenced in BB/OK and SHR rats. No genetic variation in exons between BB/OK and SHR was found. However, three single nucleotide polymorphisms (SNPs) were detected in intron 4. To determine the "wild type" allele, intron 4 of several diabetes-resistant inbred rat strains (DA, LEW, BN, and WOKW) and wild rats was sequenced. In addition, a congenic BB/OK strain was established by introgressing the same segment of chromosome 6 (D6Rat184-D6Rat3) of wild rats onto BB/OK background (BB.6W). The sequence analysis showed the SNP pattern of SHR (A/C/C) in all inbred rat strains studied whereas both unrelated wild rats showed the pattern of BB/OK rats (T/G/A). The congenic BB.6W rats developed diabetes in the same extent than BB/OK rats. This finding may support the assumption that the SNP pattern of BB/OK and wild rats favours and that of SHR suppresses diabetes development. Because of strong synteny between rat chromosome 6q32 and human 14q32, Yy1 may be also of interest in human type 1 diabetics showing significant linkage to markers on chromosome 14q32.
Collapse
Affiliation(s)
- Nora Klöting
- Department of Laboratory Animal Science, Medical Faculty, University of Greifswald, 17497 Karlsburg, Germany.
| | | |
Collapse
|
36
|
Kalayci O, Birben E, Wu L, Oguma T, Storm Van's Gravesande K, Subramaniam V, Sheldon HK, Silverman ES, Lilly CM. Monocyte chemoattractant protein-4 core promoter genetic variants: influence on YY-1 affinity and plasma levels. Am J Respir Cell Mol Biol 2003; 29:750-6. [PMID: 12805085 DOI: 10.1165/rcmb.2003-0024oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Monocyte chemoattractant protein-4 (MCP-4) is a CC chemokine implicated in the recruitment of eosinophils, monocytes, and T-lymphocytes in diseases of mucosal inflammation, including asthma. We tested the hypothesis that there is a genetic basis for differences in MCP-4 expression among individuals by evaluating the effects of core promoter variants on MCP-4 expression. We identified two single-nucleotide T-to-C polymorphisms in the MCP-4 core promoter that occur 896 and 887 base pairs preceding the transcription initiation site. The -887 variant alters a consensus binding motif for the transcription factor YY-1. Electrophoretic mobility shift assay demonstrated that YY-1 containing nuclear extracts from tumor necrosis factor-alpha-stimulated peripheral blood mononuclear cells had greater avidity for the wild-type (YY-1 motif intact) sequence than for the variant sequence. Increasing doses of a YY-1 expression vector induced significantly greater reporter activity from MCP-4 core promoter expression constructs of the wild-type compared with the variant sequence in transient transfection experiments. The external validity of these observations was demonstrated by measuring plasma levels of MCP-4 from individuals with the alternative forms of the gene. Individuals bearing haplotypic variants of the MCP-4 core promoter that avidly bind the transcription factor YY-1 had higher plasma levels of MCP-4 than did individuals with variants with lower binding avidity (490, 360, and 360 pg/ml; P < 0.01). Our findings suggest that the MCP-4 core promoter YY-1 binding motif is functional, modulates the transcriptional regulation of the MCP-4 gene, and that part of the variance in the systemic expression of MCP-4 is determined by core promoter genetic variants.
Collapse
Affiliation(s)
- Omer Kalayci
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, 75 Francis Street, PBB 3rd Floor Clinics Building, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
38
|
Abstract
Antigen and cytokine receptor signals act in synergy to direct the differentiation of CD4+ T cells. These signals initiate reciprocal activation and silencing of the interferon-gamma (IFN-gamma) and interleukin 4 (IL-4) cytokine gene loci, changes that are heritably maintained in the resulting T helper type 1 (T(H)1) or T(H)2 cells and their progeny. Early, unpolarized transcription and chromatin remodeling of the poised cytokine genes of naive T cells is followed by consolidation and spreading of epigenetic changes and the establishment of self-reinforcing transcription factor networks. Recent studies have begun to elucidate the molecular mechanisms that establish and maintain polarized cytokine gene expression, and thus the cellular identity of differentiated helper T cells.
Collapse
Affiliation(s)
- K Mark Ansel
- Center for Blood Research, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
39
|
Li-Weber M, Krammer PH. Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nat Rev Immunol 2003; 3:534-43. [PMID: 12876556 DOI: 10.1038/nri1128] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin-4 (IL-4) is crucial for the differentiation of naive T helper (T(H)) cells into the T(H)2 effector cells that promote humoral (antibody) immunity and provide protection against intestinal helminths. IL-4 also has a central role in the pathogenesis of allergic inflammation. Many transcription factors are involved in the regulation of expression of the gene encoding IL-4. Initiation of transcription of the gene encoding IL-4 in naive T(H) cells is regulated by the T(H)2-specific transcription factor GATA3, whereas acute expression of the gene encoding IL-4 in T(H)2 cells is mediated by inducible, ubiquitous transcription factors after antigen encounter. This review focuses on acute activation of the gene encoding IL-4 in T cells and discusses therapeutic perspectives at the transcriptional level.
Collapse
Affiliation(s)
- Min Li-Weber
- Tumour Immunology Programme D030, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
40
|
Boothby M, Aronica M. Transcription regulation, allergic responses, and asthma. Immunol Allergy Clin North Am 2002. [DOI: 10.1016/s0889-8561(02)00026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|