1
|
Egu DT, Schmitt T, Ernst N, Ludwig RJ, Fuchs M, Hiermaier M, Moztarzadeh S, Morón CS, Schmidt E, Beyersdorfer V, Spindler V, Steinert LS, Vielmuth F, Sigmund AM, Waschke J. EGFR Inhibition by Erlotinib Rescues Desmosome Ultrastructure and Keratin Anchorage and Protects against Pemphigus Vulgaris IgG-Induced Acantholysis in Human Epidermis. J Invest Dermatol 2024; 144:2440-2452. [PMID: 38642796 DOI: 10.1016/j.jid.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Pemphigus is a severe blistering disease caused by autoantibodies primarily against the desmosomal cadherins desmoglein (DSG)1 and DSG3, which impair desmosome integrity. Especially for the acute phase, additional treatment options allowing to reduce corticosteroids would fulfill an unmet medical need. In this study, we provide evidence that EGFR inhibition by erlotinib ameliorates pemphigus vulgaris IgG-induced acantholysis in intact human epidermis. Pemphigus vulgaris IgG caused phosphorylation of EGFR (Y845) and Rous sarcoma-related kinase in human epidermis. In line with this, a phosphotyrosine kinome analysis revealed a robust response associated with EGFR and Rous sarcoma-related kinase family kinase signaling in response to pemphigus vulgaris IgG but not to pemphigus foliaceus autoantibodies. Erlotinib inhibited pemphigus vulgaris IgG-induced epidermal blistering and EGFR phosphorylation, loss of desmosomes, as well as ultrastructural alterations of desmosome size, plaque symmetry, and keratin filament insertion and restored the desmosome midline considered as hallmark of mature desmosomes. Erlotinib enhanced both single-molecule DSG3-binding frequency and strength and delayed DSG3 fluorescence recovery, supporting that EGFR inhibition increases DSG3 availability and cytoskeletal anchorage. Our data indicate that EGFR is a promising target for pemphigus therapy owing to its link to several signaling pathways known to be involved in pemphigus pathogenesis.
Collapse
Affiliation(s)
- Desalegn Tadesse Egu
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Schmitt
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nancy Ernst
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf Joachim Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Fuchs
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Matthias Hiermaier
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sina Moztarzadeh
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Carla Sebastià Morón
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Vivien Beyersdorfer
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Letyfee Sarah Steinert
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franziska Vielmuth
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Magdalena Sigmund
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Österberg AW, Östman-Smith I, Green H, Gunnarsson C, Fredrikson M, Liuba P, Fernlund E. Biomarkers and Proteomics in Sarcomeric Hypertrophic Cardiomyopathy in the Young-FGF-21 Highly Associated with Overt Disease. J Cardiovasc Dev Dis 2024; 11:105. [PMID: 38667723 PMCID: PMC11050055 DOI: 10.3390/jcdd11040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Any difference in biomarkers between genotype-positive individuals with overt hypertrophic cardiomyopathy (HCM), and genotype-positive but phenotype-negative individuals (G+P-) in HCM-associated pathways might shed light on pathophysiological mechanisms. We studied this in young HCM patients. Methods: 29 HCM patients, 17 G+P--individuals, and age- and sex-matched controls were prospectively included. We analyzed 184 cardiovascular disease-associated proteins by two proximity extension assays, categorized into biological pathways, and analyzed with multivariate logistic regression analysis. Significant proteins were dichotomized into groups above/below median concentration in control group. Results: Dichotomized values of significant proteins showed high odds ratio (OR) in overt HCMphenotype for Fibroblast growth factor-21 (FGF-21) 10 (p = 0.001), P-selectin glycoprotein ligand-1 (PSGL-1) OR 8.6 (p = 0.005), and Galectin-9 (Gal-9) OR 5.91 (p = 0.004). For G+P-, however, angiopoietin-1 receptor (TIE2) was notably raised, OR 65.5 (p = 0.004), whereas metalloproteinase inhibitor 4 (TIMP4) involved in proteolysis, in contrast, had reduced OR 0.06 (p = 0.013). Conclusions: This study is one of the first in young HCM patients and G+P- individuals. We found significantly increased OR for HCM in FGF-21 involved in RAS-MAPK pathway, associated with cardiomyocyte hypertrophy. Upregulation of FGF-21 indicates involvement of the RAS-MAPK pathway in HCM regardless of genetic background, which is a novel finding.
Collapse
Affiliation(s)
- Anna Wålinder Österberg
- Crown Princess Victoria Children’s Hospital, Linköping University Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, SE-58183 Linköping, Sweden;
| | - Ingegerd Östman-Smith
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-41680 Göteborg, Sweden;
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, SE-58185 Linköping, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, Department of Biomedical and Clinical Sciences, Centre for Rare Diseases in Southeast Region of Sweden, Linköping University, SE-58183 Linköping, Sweden;
| | - Mats Fredrikson
- Department of Clinical and Experimental Medicine, Linköping University, SE-58183 Linköping, Sweden
| | - Petru Liuba
- Paediatric Heart Centre, Skåne University Hospital and Department of Clinical Sciences, Lund University, SE-22185 Lund, Sweden;
| | - Eva Fernlund
- Crown Princess Victoria Children’s Hospital, Linköping University Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, SE-58183 Linköping, Sweden;
- Paediatric Heart Centre, Skåne University Hospital and Department of Clinical Sciences, Lund University, SE-22185 Lund, Sweden;
| |
Collapse
|
3
|
Myo Min KK, Ffrench CB, McClure BJ, Ortiz M, Dorward EL, Samuel MS, Ebert LM, Mahoney MG, Bonder CS. Desmoglein-2 as a cancer modulator: friend or foe? Front Oncol 2023; 13:1327478. [PMID: 38188287 PMCID: PMC10766750 DOI: 10.3389/fonc.2023.1327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Charlie B. Ffrench
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Barbara J. McClure
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael Ortiz
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Emma L. Dorward
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Queen Elizabeth Hospital, SA, Adelaide, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Claudine S. Bonder
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Shoykhet M, Dervishi O, Menauer P, Hiermaier M, Moztarzadeh S, Osterloh C, Ludwig RJ, Williams T, Gerull B, Kääb S, Clauss S, Schüttler D, Waschke J, Yeruva S. EGFR inhibition leads to enhanced desmosome assembly and cardiomyocyte cohesion via ROCK activation. JCI Insight 2023; 8:163763. [PMID: 36795511 PMCID: PMC10070108 DOI: 10.1172/jci.insight.163763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.
Collapse
Affiliation(s)
- Maria Shoykhet
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Orsela Dervishi
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Philipp Menauer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Matthias Hiermaier
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Sina Moztarzadeh
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Colin Osterloh
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tatjana Williams
- Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Sebastian Clauss
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU Hospital, LMU, Munich, Germany
| | - Dominik Schüttler
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU Hospital, LMU, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| |
Collapse
|
5
|
Desmoglein-2 is important for islet function and β-cell survival. Cell Death Dis 2022; 13:911. [PMID: 36309486 PMCID: PMC9617887 DOI: 10.1038/s41419-022-05326-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022]
Abstract
Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic β-cells. Although β-cell targeted autoimmune processes and β-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports β-cells. Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed by the insulin-producing β-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg2lo/lo), we observed a significant reduction in the number of pancreatic islets and islet size, and consequently, there was less total insulin content per islet cluster. Dsg2lo/lo mice also exhibited a reduction in blood vessel barrier integrity, an increased incidence of streptozotocin-induced diabetes, and islets isolated from Dsg2lo/lo mice were more susceptible to cytokine-induced β-cell apoptosis. Following transplantation into diabetic mice, islets isolated from Dsg2lo/lo mice were less effective than their wildtype counterparts at curing diabetes. In vitro assays using the Beta-TC-6 murine β-cell line suggest that DSG2 supports the actin cytoskeleton as well as the release of cytokines and chemokines. Taken together, our study suggests that DSG2 is an under-appreciated regulator of β-cell function in pancreatic islets and that a better understanding of this adhesion molecule may provide new opportunities to combat type 1 diabetes.
Collapse
|
6
|
Müller L, Hatzfeld M, Keil R. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior. Front Cell Dev Biol 2021; 9:745670. [PMID: 34631720 PMCID: PMC8495202 DOI: 10.3389/fcell.2021.745670] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Desmosomes are intercellular junctions, which preserve tissue integrity during homeostatic and stress conditions. These functions rely on their unique structural properties, which enable them to respond to context-dependent signals and transmit them to change cell behavior. Desmosome composition and size vary depending on tissue specific expression and differentiation state. Their constituent proteins are highly regulated by posttranslational modifications that control their function in the desmosome itself and in addition regulate a multitude of desmosome-independent functions. This review will summarize our current knowledge how signaling pathways that control epithelial shape, polarity and function regulate desmosomes and how desmosomal proteins transduce these signals to modulate cell behavior.
Collapse
Affiliation(s)
- Lisa Müller
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - René Keil
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
7
|
Chen Y, Yang L, Qin Y, Liu S, Qiao Y, Wan X, Zeng H, Tang X, Liu M, Hou Y. Effects of differential distributed-JUP on the malignancy of gastric cancer. J Adv Res 2020; 28:195-208. [PMID: 33364056 PMCID: PMC7753239 DOI: 10.1016/j.jare.2020.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
JUP, a homologue of β-catenin, is a cell-cell junction protein involved in adhesion junction and desmosome composition. JUP may have a controversial role in different malignancies dependence of its competence with or collaboration with β-catenin as a transcription factor. In this study, we reveal that the function of JUP is related to its cellular location in GC development process from epithelium-like, low malignant GC to advanced EMT-phenotypic GC. Gradual loss of membrane and/or cytoplasm JUP is closely correlated with GC malignancy and poor prognostics. Knockdown of JUP in epithelium-like GC cells causes EMT and promotes GC cell migration and invasion. Ectopic expression of wild JUP in malignant GC cells leads to an attenuated malignant phenotype such as reduced cell invasive potential. In mechanism, loss of membrane and/or cytoplasm JUP abolishes the restrain of JUP to EGFR at cell membrane and results in increased p-AKT levels and AKT/GSK3β/β-catenin signaling activity. In addition, nuclear JUP interacts with nuclear β-catenin and TCF4 and plays a synergistic role with β-catenin in promoting TCF4 transcription and its downstream target MMP7 expression to fuel GC cell invasion.
Collapse
Affiliation(s)
- Yanlin Chen
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Liping Yang
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shuiqing Liu
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yina Qiao
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoli Tang
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Sajda T, Sinha AA. Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model. Front Immunol 2018; 9:692. [PMID: 29755451 PMCID: PMC5932349 DOI: 10.3389/fimmu.2018.00692] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV.
Collapse
Affiliation(s)
- Thomas Sajda
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
10
|
Overmiller AM, McGuinn KP, Roberts BJ, Cooper F, Brennan-Crispi DM, Deguchi T, Peltonen S, Wahl JK, Mahoney MG. c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget 2018; 7:37536-37555. [PMID: 26918609 PMCID: PMC5122330 DOI: 10.18632/oncotarget.7675] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
The desmosomal cadherin, desmoglein 2 (Dsg2), is deregulated in a variety of human cancers including those of the skin. When ectopically expressed in the epidermis of transgenic mice, Dsg2 activates multiple mitogenic signaling pathways and increases susceptibility to tumorigenesis. However, the molecular mechanism responsible for Dsg2-mediated cellular signaling is poorly understood. Here we show overexpression as well as co-localization of Dsg2 and EGFR in cutaneous SCCs in vivo. Using HaCaT keratinocytes, knockdown of Dsg2 decreases EGFR expression and abrogates the activation of EGFR, c-Src and Stat3, but not Erk1/2 or Akt, in response to EGF ligand stimulation. To determine whether Dsg2 mediates signaling through lipid microdomains, sucrose density fractionation illustrated that Dsg2 is recruited to and displaces Cav1, EGFR and c-Src from light density lipid raft fractions. STED imaging confirmed that the presence of Dsg2 disperses Cav1 from the cell-cell borders. Perturbation of lipid rafts with the cholesterol-chelating agent MβCD also shifts Cav1, c-Src and EGFR out of the rafts and activates signaling pathways. Functionally, overexpression of Dsg2 in human SCC A431 cells enhances EGFR activation and increases cell proliferation and migration through a c-Src and EGFR dependent manner. In summary, our data suggest that Dsg2 stimulates cell growth and migration by positively regulating EGFR level and signaling through a c-Src and Cav1-dependent mechanism using lipid rafts as signal modulatory platforms.
Collapse
Affiliation(s)
- Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen P McGuinn
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brett J Roberts
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Felicia Cooper
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Donna M Brennan-Crispi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takahiro Deguchi
- Laboratory of Biophysics, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku Hospital, Turku, Finland
| | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Choupani J, Mansoori Derakhshan S, Bayat S, Alivand MR, Shekari Khaniani M. Narrower insight to SIRT1 role in cancer: A potential therapeutic target to control epithelial-mesenchymal transition in cancer cells. J Cell Physiol 2018; 233:4443-4457. [PMID: 29194618 DOI: 10.1002/jcp.26302] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a highly networked cellular process which involves cell transition from the immotile epithelial to the motile mesenchymal phenotype, whereby cells lose their cell-cell adhesion and cell polarity. This important process is one of the underlying mechanisms for enabling invasion and metastasis of cancer cells which is considered as malignant phase of tumor progression. However, the molecular mechanisms of this process are not fully clarified. It is reported that Sirtuin1 (SIRT1), a NAD+ dependent class III histone deacetylase is associated with tumor metastasis through positive regulation of EMT in several types of cancers. Recent studies confirmed that up and down regulation of SIRT1 expression remarkably change the migration ability of different cancer cells in vitro and tumor metastasis in vivo. Also, according to this fact that carcinomas as the main human solid tumors, originate from different epithelial cell types, SIRT1 role in EMT has received a great attention due to its potential role in tumor development and metastasis. Therefore, SIRT1 has been proposed as a key regulator of cancer metastasis by promoting EMT, although little is known about the cleared effect of SIRT1 in this transition. Our aim in this review is to explain in more detail the role of SIRT1 in various signaling pathways related to carcinogenesis, with the focus on the promoting role of SIRT1 in EMT as a potential therapeutic target to control EMT and to prevent cancer progression.
Collapse
Affiliation(s)
- Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Bayat
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Abstract
Epidermolytic ichthyosis (EI) is a rare disorder of cornification caused by mutations in KRT1 and KRT10, encoding two suprabasal epidermal keratins. Because of the variable clinical features and severity of the disease, histopathology is often required to correctly direct the molecular analysis. EI is characterized by hyperkeratosis and vacuolar degeneration of the upper epidermis, also known as epidermolytic hyperkeratosis, hence the name of the disease. In the current report, the authors describe members of 2 families presenting with clinical features consistent with EI. The patients were shown to carry classical mutations in KRT1 or KRT10, but did not display epidermolytic changes on histology. These observations underscore the need to remain aware of the limitations of pathological features when considering a diagnosis of EI.
Collapse
|
13
|
Ebert LM, Tan LY, Johan MZ, Min KKM, Cockshell MP, Parham KA, Betterman KL, Szeto P, Boyle S, Silva L, Peng A, Zhang Y, Ruszkiewicz A, Zannettino ACW, Gronthos S, Koblar S, Harvey NL, Lopez AF, Shackleton M, Bonder CS. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis 2016; 19:463-86. [PMID: 27338829 PMCID: PMC5026727 DOI: 10.1007/s10456-016-9520-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/11/2016] [Indexed: 01/06/2023]
Abstract
Desmogleins (DSG) are a family of cadherin adhesion proteins that were first identified in desmosomes and provide cardiomyocytes and epithelial cells with the junctional stability to tolerate mechanical stress. However, one member of this family, DSG2, is emerging as a protein with additional biological functions on a broader range of cells. Here we reveal that DSG2 is expressed by non-desmosome-forming human endothelial progenitor cells as well as their mature counterparts [endothelial cells (ECs)] in human tissue from healthy individuals and cancer patients. Analysis of normal blood and bone marrow showed that DSG2 is also expressed by CD34+CD45dim hematopoietic progenitor cells. An inability to detect other desmosomal components, i.e., DSG1, DSG3 and desmocollin (DSC)2/3, on these cells supports a solitary role for DSG2 outside of desmosomes. Functionally, we show that CD34+CD45dimDSG2+ progenitor cells are multi-potent and pro-angiogenic in vitro. Using a ‘knockout-first’ approach, we generated a Dsg2 loss-of-function strain of mice (Dsg2lo/lo) and observed that, in response to reduced levels of Dsg2: (i) CD31+ ECs in the pancreas are hypertrophic and exhibit altered morphology, (ii) bone marrow-derived endothelial colony formation is impaired, (iii) ex vivo vascular sprouting from aortic rings is reduced, and (iv) vessel formation in vitro and in vivo is attenuated. Finally, knockdown of DSG2 in a human bone marrow EC line reveals a reduction in an in vitro angiogenesis assay as well as relocalisation of actin and VE-cadherin away from the cell junctions, reduced cell–cell adhesion and increased invasive properties by these cells. In summary, we have identified DSG2 expression in distinct progenitor cell subpopulations and show that, independent from its classical function as a component of desmosomes, this cadherin also plays a critical role in the vasculature.
Collapse
Affiliation(s)
- Lisa M Ebert
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Lih Y Tan
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Kay Khine Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Michaelia P Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Kate A Parham
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Paceman Szeto
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Samantha Boyle
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Lokugan Silva
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Angela Peng
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - YouFang Zhang
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Ruszkiewicz
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Andrew C W Zannettino
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Simon Koblar
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark Shackleton
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia. .,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
14
|
Intracellular Signaling and Desmoglein 2 Shedding Triggered by Human Adenoviruses Ad3, Ad14, and Ad14P1. J Virol 2015; 89:10841-59. [PMID: 26292319 DOI: 10.1128/jvi.01425-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED We recently discovered that desmoglein 2 (DSG2) is a receptor for human adenovirus species B serotypes Ad3, Ad7, Ad11, and Ad14. Ad3 is considered to be a widely distributed human pathogen. Ad3 binding to DSG2 triggers the transient opening of epithelial junctions. Here, we further delineate the mechanism that leads to DSG2-mediated epithelial junction opening in cells exposed to Ad3 and recombinant Ad3 fiber proteins. We identified an Ad3 fiber knob-dependent pathway that involves the phosphorylation of mitogen-activated protein (MAP) kinases triggering the activation of the matrix-metalloproteinase ADAM17. ADAM17, in turn, cleaves the extracellular domain of DSG2 that links epithelial cells together. The shed DSG2 domain can be detected in cell culture supernatant and also in serum of mice with established human xenograft tumors. We then extended our studies to Ad14 and Ad14P1. Ad14 is an important research and clinical object because of the recent appearance of a new, more pathogenic strain (Ad14P1). In a human epithelial cancer xenograft model, Ad14P1 showed more efficient viral spread and oncolysis than Ad14. Here, we tested the hypothesis that a mutation in the Ad14P1 fiber knob could account for the differences between the two strains. While our X-ray crystallography studies suggested an altered three-dimensional (3D) structure of the Ad14P1 fiber knob in the F-G loop region, this did not significantly change the fiber knob affinity to DSG2 or the intracellular signaling and DSG2 shedding in epithelial cancer cells. IMPORTANCE A number of widely distributed adenoviruses use the epithelial junction protein DSG2 as a receptor for infection and lateral spread. Interaction with DSG2 allows the virus not only to enter cells but also to open epithelial junctions which form a physical barrier to virus spread. Our study elucidates the mechanism beyond virus-triggered junction opening with a focus on adenovirus serotype 3. Ad3 binds to DSG2 with its fiber knob domain and triggers intracellular signaling that culminates in the cleavage of the extracellular domain of DSG2, thereby disrupting DSG2 homodimers between epithelial cells. We confirmed this pathway with a second DSG2-interacting serotype, Ad14, and its recently emerged strain Ad14P1. These new insights in basic adenovirus biology can be employed to develop novel drugs to treat adenovirus infection as well as be used as tools for gene delivery into epithelial tissues or epithelial tumors.
Collapse
|
15
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
16
|
Neuber S, Jäger S, Meyer M, Wischmann V, Koch PJ, Moll R, Schmidt A. c-Src mediated tyrosine phosphorylation of plakophilin 3 as a new mechanism to control desmosome composition in cells exposed to oxidative stress. Cell Tissue Res 2014; 359:799-816. [PMID: 25501895 DOI: 10.1007/s00441-014-2063-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
Plakophilins (PKP1 to PKP3) are essential for the structure and function of desmosomal junctions as demonstrated by the severe skin defects observed as a result of loss-of-function mutations in mice and men. PKPs play additional roles in cell signaling processes, such as those controlling the cellular stress response and cell proliferation. A key post-translational process controlling PKP function is phosphorylation. We have discovered that reactive oxygen species (ROS) trigger the c-Src kinase-mediated tyrosine (Tyr)-195 phosphorylation of PKP3. This modification is associated with a change in the subcellular distribution of the protein. Specifically, PKP3 bearing phospho-Tyr-195 is released from the desmosomes, suggesting that phospho-Tyr-195 is relevant for the control of desmosome disassembly and function, at least in cells exposed to ROS. Tyr-195 phosphorylation is transient under normal physiological conditions and seems to be strictly regulated, as the activation of particular growth factor receptors results in a modification at this site only when tyrosine phosphatases are inactivated by pervanadate. We have identified Tyr-195 of PKP3 as a phosphorylation target of epidermal growth factor receptor signaling. Interestingly, this PKP3 phosphorylation also occurs in certain poorly differentiated adenocarcinomas of the prostate, suggesting a possible role in tumor progression. Our study thus identifies a new mechanism controlling PKP3 and hence desmosome function in epithelial cells.
Collapse
Affiliation(s)
- Steffen Neuber
- Institute of Pathology, Philipps University of Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Kitajima Y. 150(th) anniversary series: Desmosomes and autoimmune disease, perspective of dynamic desmosome remodeling and its impairments in pemphigus. ACTA ACUST UNITED AC 2014; 21:269-80. [PMID: 25078507 DOI: 10.3109/15419061.2014.943397] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Desmosomes are the most important intercellular adhering junctions that adhere two adjacent keratinocytes directly with desmosomal cadherins, that is, desmogleins (Dsgs) and desmocollins, forming an epidermal sheet. Recently, two cell-cell adhesion states of desmosomes, that is, "stable hyper-adhesion" and "dynamic weak-adhesion" conditions have been recognized. They are mutually reversible through cell signaling events involving protein kinase C (PKC), Src and epidermal growth factor receptor (EGFR) during Ca(2+)-switching and wound healing. This remodeling is impaired in pemphigus vulgaris (PV, an autoimmune blistering disease), caused by anti-Dsg3 antibodies. The antibody binding to Dsg3 activates PKC, Src and EGFR, linked to generation of dynamic weak-adhesion desmosomes, followed by p38MAPK-mediated endocytosis of Dsg3, resulting in the specific depletion of Dsg3 from desmosomes and acantholysis. A variety of pemphigus outside-in signaling may explain different clinical (non-inflammatory, inflammatory, and necrolytic) types of pemphigus. Pemphigus could be referred to a "desmosome-remodeling disease involving pemphigus IgG-activated outside-in signaling events".
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Dermatology, Kizawa Memorial Hospital, Professor Emeritus Gifu University School of Medicine , Minokamo City, Gifu Prefecture , Japan
| |
Collapse
|
18
|
Sullivan DP, Rüffer C, Muller WA. Isolation of the lateral border recycling compartment using a diaminobenzidine-induced density shift. Traffic 2014; 15:1016-29. [PMID: 24915828 DOI: 10.1111/tra.12184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023]
Abstract
The migration of leukocytes across the endothelium and into tissue is critical to mounting an inflammatory response. The lateral border recycling compartment (LBRC), a complex vesicular-tubule invagination of the plasma membrane found at endothelial cell borders, plays an important role in this process. Although a few proteins have been shown to be present in the LBRC, no unique marker is known. Here, we detail methods that can be used to characterize a subcellular compartment that lacks an identifying marker. Initial characterization of the LBRC was performed using standard subcellular fractionation with sucrose gradients and took advantage of the observation that the compartment migrated at a lower density than other membrane compartments. To isolate larger quantities of the compartment, we modified a classic technique known as a diaminobenzidine (DAB)-induced density shift. The DAB-induced density shift allowed for specific isolation of membranes labeled with horseradish peroxidase-conjugated antibody. Because the LBRC could be differentially labeled at 4 °C and 37 °C, we were able to identify proteins that are enriched in the compartment, despite lacking a unique marker. These methods serve as a model to others studying poorly characterized compartments and organelles and are applicable to a wide variety of biological systems.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | | | | |
Collapse
|
19
|
Abstract
Desmosomes anchor intermediate filaments at sites of cell contact established by the interaction of cadherins extending from opposing cells. The incorporation of cadherins, catenin adaptors, and cytoskeletal elements resembles the closely related adherens junction. However, the recruitment of intermediate filaments distinguishes desmosomes and imparts a unique function. By linking the load-bearing intermediate filaments of neighboring cells, desmosomes create mechanically contiguous cell sheets and, in so doing, confer structural integrity to the tissues they populate. This trait and a well-established role in human disease have long captured the attention of cell biologists, as evidenced by a publication record dating back to the mid-1860s. Likewise, emerging data implicating the desmosome in signaling events pertinent to organismal development, carcinogenesis, and genetic disorders will secure a prominent role for desmosomes in future biological and biomedical investigations.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg, School of Medicine , Chicago, IL , USA
| | | |
Collapse
|
20
|
Al-Jassar C, Bikker H, Overduin M, Chidgey M. Mechanistic basis of desmosome-targeted diseases. J Mol Biol 2013; 425:4006-22. [PMID: 23911551 PMCID: PMC3807649 DOI: 10.1016/j.jmb.2013.07.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/21/2022]
Abstract
Desmosomes are dynamic junctions between cells that maintain the structural integrity of skin and heart tissues by withstanding shear forces. Mutations in component genes cause life-threatening conditions including arrhythmogenic right ventricular cardiomyopathy, and desmosomal proteins are targeted by pathogenic autoantibodies in skin blistering diseases such as pemphigus. Here, we review a set of newly discovered pathogenic alterations and discuss the structural repercussions of debilitating mutations on desmosomal proteins. The architectures of native desmosomal assemblies have been visualized by cryo-electron microscopy and cryo-electron tomography, and the network of protein domain interactions is becoming apparent. Plakophilin and desmoplakin mutations have been discovered to alter binding interfaces, structures, and stabilities of folded domains that have been resolved by X-ray crystallography and NMR spectroscopy. The flexibility within desmoplakin has been revealed by small-angle X-ray scattering and fluorescence assays, explaining how mechanical stresses are accommodated. These studies have shown that the structural and functional consequences of desmosomal mutations can now begin to be understood at multiple levels of spatial and temporal resolution. This review discusses the recent structural insights and raises the possibility of using modeling for mechanism-based diagnosis of how deleterious mutations alter the integrity of solid tissues.
Collapse
Affiliation(s)
- Caezar Al-Jassar
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
21
|
Huang RYJ, Guilford P, Thiery JP. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 2013; 125:4417-22. [PMID: 23165231 DOI: 10.1242/jcs.099697] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University Hospital, 119074, Singapore
| | | | | |
Collapse
|
22
|
Bektas M, Jolly PS, Berkowitz P, Amagai M, Rubenstein DS. A pathophysiologic role for epidermal growth factor receptor in pemphigus acantholysis. J Biol Chem 2013; 288:9447-56. [PMID: 23404504 DOI: 10.1074/jbc.m112.438010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pemphigus family of autoimmune bullous disorders is characterized by autoantibody binding to desmoglein 1 and/or 3 (dsg1/dsg3). In this study we show that EGF receptor (EGFR) is activated following pemphigus vulgaris (PV) IgG treatment of primary human keratinocytes and that EGFR activation is downstream of p38 mitogen-activated protein kinase (p38). Inhibition of EGFR blocked PV IgG-triggered dsg3 endocytosis, keratin intermediate filament retraction, and loss of cell-cell adhesion in vitro. Significantly, inhibiting EGFR prevented PV IgG-induced blister formation in the passive transfer mouse model of pemphigus. These data demonstrate cross-talk between dsg3 and EGFR, that this cross-talk is regulated by p38, and that EGFR is a potential therapeutic target for pemphigus. Small-molecule inhibitors and monoclonal antibodies directed against EGFR are currently used to treat several types of solid tumors. This study provides the experimental rationale for investigating the use of EGFR inhibitors in pemphigus.
Collapse
Affiliation(s)
- Meryem Bektas
- Department of Dermatology, University of North Carolina, Chapel Hill, NC 27599-7287, USA
| | | | | | | | | |
Collapse
|
23
|
Ferone G, Mollo MR, Thomason HA, Antonini D, Zhou H, Ambrosio R, De Rosa L, Salvatore D, Getsios S, van Bokhoven H, Dixon J, Missero C. p63 control of desmosome gene expression and adhesion is compromised in AEC syndrome. Hum Mol Genet 2012; 22:531-43. [PMID: 23108156 PMCID: PMC3542863 DOI: 10.1093/hmg/dds464] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ankyloblepharon, ectodermal defects, cleft lip/palate (AEC) syndrome is a rare autosomal dominant disorder caused by mutations in the p63 gene, essential for embryonic development of stratified epithelia. The most severe cutaneous manifestation of this disorder is the long-lasting skin fragility associated with severe skin erosions after birth. Using a knock-in mouse model for AEC syndrome, we found that skin fragility was associated with microscopic blistering between the basal and suprabasal compartments of the epidermis and reduced desmosomal contacts. Expression of desmosomal cadherins and desmoplakin was strongly reduced in AEC mutant keratinocytes and in newborn epidermis. A similar impairment in desmosome gene expression was observed in human keratinocytes isolated from AEC patients, in p63-depleted keratinocytes and in p63 null embryonic skin, indicating that p63 mutations causative of AEC syndrome have a dominant-negative effect on the wild-type p63 protein. Among the desmosomal components, desmocollin 3, desmoplakin and desmoglein 1 were the most significantly reduced by mutant p63 both at the RNA and protein levels. Chromatin immunoprecipitation experiments and transactivation assays revealed that p63 controls these genes at the transcriptional level. Consistent with reduced desmosome function, AEC mutant and p63-deficient keratinocytes had an impaired ability to withstand mechanical stress, which was alleviated by epidermal growth factor receptor inhibitors known to stabilize desmosomes. Our study reveals that p63 is a crucial regulator of a subset of desmosomal genes and that this function is impaired in AEC syndrome. Reduced mechanical strength resulting from p63 mutations can be alleviated pharmacologically by increasing desmosome adhesion with possible therapeutic implications.
Collapse
|
24
|
Abstract
Desmosomes are intercellular adhesive junctions that are particularly prominent in tissues experiencing mechanical stress, such as the heart and epidermis. Whereas the related adherens junction links actin to calcium-dependent adhesion molecules known as classical cadherins, desmosomes link intermediate filaments (IF) to the related subfamily of desmosomal cadherins. By tethering these stress-bearing cytoskeletal filaments to the plasma membrane, desmosomes serve as integrators of the IF cytoskeleton throughout a tissue. Recent evidence suggests that IF attachment in turn strengthens desmosomal adhesion. This collaborative arrangement results in formation of a supracellular network, which is critical for imparting mechanical integrity to tissues. Diseases and animal models targeting desmosomal components highlight the importance of desmosomes in development and tissue integrity, while the downregulation of individual protein components in cancer metastasis and wound healing suggests their importance in cell homeostasis. This chapter will provide an update on desmosome composition, function, and regulation, and will also discuss recent work which raises the possibility that desmosome proteins do more than play a structural role in tissues where they reside.
Collapse
|
25
|
Rapôso C, Odorissi PAM, Oliveira ALR, Aoyama H, Ferreira CV, Verinaud L, Fontana K, Ruela-de-Sousa RR, da Cruz-Höfling MA. Effect of Phoneutria nigriventer Venom on the Expression of Junctional Protein and P-gp Efflux Pump Function in the Blood–Brain Barrier. Neurochem Res 2012; 37:1967-81. [DOI: 10.1007/s11064-012-0817-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 05/21/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
|
26
|
Rotty JD, Coulombe PA. A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. ACTA ACUST UNITED AC 2012; 197:381-9. [PMID: 22529101 PMCID: PMC3341159 DOI: 10.1083/jcb.201107078] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Keratin 6 negatively regulates Src kinase activity and the migratory potential of skin keratinocytes during wound repair. Injury to the epidermis triggers an elaborate homeostatic response resulting in tissue repair and recovery of the vital barrier function. The type II keratins 6a and 6b (K6a and K6b) are among the genes induced early on in wound-proximal keratinocytes and maintained during reepithelialization. Paradoxically, genetic ablation of K6a and K6b results in enhanced keratinocyte migration. In this paper, we show that this trait results from activation of Src kinase and key Src substrates that promote cell migration. Endogenous Src physically associated with keratin proteins in keratinocytes in a K6-dependent fashion. Purified Src bound K6-containing filaments via its SH2 domain in a novel phosphorylation-independent manner, resulting in kinase inhibition. K6 protein was enriched in the detergent-resistant membrane (DRM), a key site of Src inhibition, and DRMs from K6-null keratinocytes were depleted of both keratin and Src. We conclude that K6 negatively regulates Src kinase activity and the migratory potential of skin keratinocytes during wound repair. Our findings may also be important in related contexts such as cancer.
Collapse
Affiliation(s)
- Jeremy D Rotty
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21202, USA
| | | |
Collapse
|
27
|
Chavez MG, Buhr CA, Petrie WK, Wandinger-Ness A, Kusewitt DF, Hudson LG. Differential downregulation of e-cadherin and desmoglein by epidermal growth factor. Dermatol Res Pract 2012; 2012:309587. [PMID: 22312325 PMCID: PMC3270554 DOI: 10.1155/2012/309587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/01/2011] [Accepted: 10/02/2011] [Indexed: 12/03/2022] Open
Abstract
Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.
Collapse
Affiliation(s)
- Miquella G. Chavez
- Division of Bioengineering, Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christian A. Buhr
- College of Pharmacy, University of New Mexico, MSC 09 5360, Albuquerque, NM 87131, USA
| | - Whitney K. Petrie
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Angela Wandinger-Ness
- Department of Pathology, School of Medicine, University of New Mexico, MSC 08 4640, Albuquerque, NM 87131, USA
| | - Donna F. Kusewitt
- Science Park Research Division, Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Laurie G. Hudson
- College of Pharmacy, University of New Mexico, MSC 09 5360, Albuquerque, NM 87131, USA
- Science Park Research Division, Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
28
|
Kopera IA, Bilinska B, Cheng CY, Mruk DD. Sertoli-germ cell junctions in the testis: a review of recent data. Philos Trans R Soc Lond B Biol Sci 2010; 365:1593-605. [PMID: 20403872 DOI: 10.1098/rstb.2009.0251] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spermatogenesis is a process that involves an array of cellular and biochemical events, collectively culminating in the formation of haploid spermatids from diploid precursor cells known as spermatogonia. As germ cells differentiate from spermatogonia into elongated spermatids, they also progressively migrate across the entire length of the seminiferous epithelium until they reach the luminal edge in anticipation of spermiation at late stage VIII of spermatogenesis. At the same time, these germ cells must maintain stable attachment with Sertoli cells via testis-unique intermediate filament- (i.e. desmosome-like junctions) and actin- (i.e. ectoplasmic specializations, ESs) based cell junctions to prevent sloughing of immature germ cells from the seminiferous epithelium, which may result in infertility. In essence, both desmosome-like junctions and basal ESs are known to coexist between Sertoli cells at the level of the blood-testis barrier where they cofunction with the well-studied tight junction in maintaining the immunological barrier. However, the type of anchoring device that is present between Sertoli and germ cells depends on the developmental stage of the germ cell, i.e. desmosome-like junctions are present between Sertoli and germ cells up to, but not including, step 8 spermatids after which this junction type is replaced by the apical ES. While little is known about the biology of the desmosome-like junction in the testis, we have a relatively good understanding of the molecular architecture and the regulation of the ES. Here, we discuss recent findings relating to these two junction types in the testis, highlighting prospective areas that should be investigated in future studies.
Collapse
Affiliation(s)
- Ilona A Kopera
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Desmosomes are intercellular junctions whose primary function is strong intercellular adhesion, known as hyperadhesion. In the present review, we discuss how their structure appears to support this function as well as how they are assembled and down-regulated. Desmosomal components also have signalling functions that are important in tissue development and remodelling. Their adhesive and signalling functions are both compromised in genetic and autoimmune diseases that affect the heart, skin and mucous membranes. We conclude that much work is required on structure–function relationships within desmosomes in vivo and on how they participate in signalling processes to enhance our knowledge of tissue homoeostasis and human disease.
Collapse
|
30
|
Abstract
The structure, function, and regulation of desmosomal adhesion in vivo are discussed. Most desmosomes in tissues exhibit calcium-independent adhesion, which is strongly adhesive or “hyperadhesive”. This is fundamental to tissue strength. Almost all studies in culture are done on weakly adhesive, calcium-dependent desmosomes, although hyperadhesion can be readily obtained in confluent cell culture. Calcium dependence is a default condition in vivo, found in wounds and embryonic development. Hyperadhesion appears to be associated with an ordered arrangement of the extracellular domains of the desmosomal cadherins, which gives rise to the intercellular midline identified in ultrastructural studies. This in turn probably depends on molecular order in the desmosomal plaque. Protein kinase C downregulates hyperadhesion and there is preliminary evidence that it may also be regulated by tyrosine kinases. Downregulation of desmosomes in vivo may occur by internalisation of whole desmosomes rather than disassembly. Hyperadhesion has implications for diseases such as pemphigus.
Collapse
|
31
|
Loss of the desmosomal component perp impairs wound healing in vivo. Dermatol Res Pract 2010; 2010:759731. [PMID: 20628490 PMCID: PMC2902749 DOI: 10.1155/2010/759731] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/26/2010] [Accepted: 03/10/2010] [Indexed: 12/20/2022] Open
Abstract
Epithelial wound closure is a complex biological process that relies on the concerted action of activated keratinocytes and dermal fibroblasts to resurface and close the exposed wound. Modulation of cell-cell adhesion junctions is thought to facilitate cellular proliferation and migration of keratinocytes across the wound. In particular, desmosomes, adhesion complexes critical for maintaining epithelial integrity, are downregulated at the wound edge. It is unclear, however, how compromised desmosomal adhesion would affect wound reepithelialization, given the need for a delicate balance between downmodulating adhesive strength to permit changes in cellular morphology and maintaining adhesion to allow coordinated migration of keratinocyte sheets. Here, we explore the contribution of desmosomal adhesion to wound healing using mice deficient for the desmosomal component Perp. We find that Perp conditional knockout mice display delayed wound healing relative to controls. Furthermore, we determine that while loss of Perp compromises cell-cell adhesion, it does not impair keratinocyte proliferation and actually enhances keratinocyte migration in in vitro assays. Thus, Perp's role in promoting cell adhesion is essential for wound closure. Together, these studies suggest a role for desmosomal adhesion in efficient wound healing.
Collapse
|
32
|
Homozygous Mutations in the 5′ Region of the JUP Gene Result in Cutaneous Disease but Normal Heart Development in Children. J Invest Dermatol 2010; 130:1543-50. [DOI: 10.1038/jid.2010.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Todorović V, Desai BV, Eigenheer RA, Yin T, Amargo EV, Mrksich M, Green KJ, Patterson MJS. Detection of differentially expressed basal cell proteins by mass spectrometry. Mol Cell Proteomics 2009; 9:351-61. [PMID: 19955077 DOI: 10.1074/mcp.m900358-mcp200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ability of cells to modulate interactions with each other and the substrate is essential for epithelial tissue remodeling during processes such as wound healing and tumor progression. However, despite strides made in the field of proteomics, proteins involved in adhesion have been difficult to study. Here, we report a method for the enrichment and analysis of proteins associated with the basal surface of the cell and its underlying matrix. The enrichment involves deroofing the cells with 20 mM ammonium hydroxide and the removal of cytosolic and organellar proteins by stringent water wash. Proteomic profiling was achieved by LC-FTMS, which allowed comparison of differentially expressed or shared proteins under different cell states. First, we analyzed and compared the basal cell components of mouse keratinocytes lacking the cell-cell junction molecule plakoglobin with their control counterparts. Changes in the molecules involved in motility and invasion were detected in plakoglobin-deficient cells, including decreased detection of fibronectin, integrin beta(4), and FAT tumor suppressor. Second, we assessed the differences in basal cell components between two human oral squamous cell carcinoma lines originating from different sites in the oral cavity (CAL33 and UM-SCC-1). The data show differences between the two lines in the type and abundance of proteins specific to cell adhesion, migration, and angiogenesis. Therefore, the method described here has the potential to serve as a platform to assess proteomic changes in basal cell components including extracellular and adhesion-specific proteins involved in wound healing, cancer, and chronic and acquired adhesion-related disorders.
Collapse
Affiliation(s)
- Viktor Todorović
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Andersen NJ, Yeaman C. Sec3-containing exocyst complex is required for desmosome assembly in mammalian epithelial cells. Mol Biol Cell 2009; 21:152-64. [PMID: 19889837 PMCID: PMC2801709 DOI: 10.1091/mbc.e09-06-0459] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In epithelial cells, Sec3 associates with Exocyst complexes enriched at desmosomes and centrosomes, distinct from Sec6/8 complexes at the apical junctional complex. RNAi-mediated suppression of Sec3 alters trafficking of desmosomal cadherins and impairs desmosome morphology and function, without noticeable effect on adherens junctions. The Exocyst is a conserved multisubunit complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. In mammalian epithelial cells, Exocyst complexes are recruited to nascent sites of cell–cell contact in response to E-cadherin–mediated adhesive interactions, and this event is an important early step in the assembly of intercellular junctions. Sec3 has been hypothesized to function as a spatial landmark for the development of polarity in budding yeast, but its role in epithelial cells has not been investigated. Here, we provide evidence in support of a function for a Sec3-containing Exocyst complex in the assembly or maintenance of desmosomes, adhesive junctions that link intermediate filament networks to sites of strong intercellular adhesion. We show that Sec3 associates with a subset of Exocyst complexes that are enriched at desmosomes. Moreover, we found that membrane recruitment of Sec3 is dependent on cadherin-mediated adhesion but occurs later than that of the known Exocyst components Sec6 and Sec8 that are recruited to adherens junctions. RNA interference-mediated suppression of Sec3 expression led to specific impairment of both the morphology and function of desmosomes, without noticeable effect on adherens junctions. These results suggest that two different exocyst complexes may function in basal–lateral membrane trafficking and will enable us to better understand how exocytosis is spatially organized during development of epithelial plasma membrane domains.
Collapse
|
35
|
Choi HJ, Gross JC, Pokutta S, Weis WI. Interactions of plakoglobin and beta-catenin with desmosomal cadherins: basis of selective exclusion of alpha- and beta-catenin from desmosomes. J Biol Chem 2009; 284:31776-88. [PMID: 19759396 DOI: 10.1074/jbc.m109.047928] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin and beta-catenin are homologous armadillo repeat proteins found in adherens junctions, where they interact with the cytoplasmic domain of classical cadherins and with alpha-catenin. Plakoglobin, but normally not beta-catenin, is also a structural constituent of desmosomes, where it binds to the cytoplasmic domains of the desmosomal cadherins, desmogleins and desmocollins. Here, we report structural, biophysical, and biochemical studies aimed at understanding the molecular basis of selective exclusion of beta-catenin and alpha-catenin from desmosomes. The crystal structure of the plakoglobin armadillo domain bound to phosphorylated E-cadherin shows virtually identical interactions to those observed between beta-catenin and E-cadherin. Trypsin sensitivity experiments indicate that the plakoglobin arm domain by itself is more flexible than that of beta-catenin. Binding of plakoglobin and beta-catenin to the intracellular regions of E-cadherin, desmoglein1, and desmocollin1 was measured by isothermal titration calorimetry. Plakoglobin and beta-catenin bind strongly and with similar thermodynamic parameters to E-cadherin. In contrast, beta-catenin binds to desmoglein-1 more weakly than does plakoglobin. beta-Catenin and plakoglobin bind with similar weak affinities to desmocollin-1. Full affinity binding of desmoglein-1 requires sequences C-terminal to the region homologous to the catenin-binding domain of classical cadherins. Although pulldown assays suggest that the presence of N- and C-terminal beta-catenin "tails" that flank the armadillo repeat region reduces the affinity for desmosomal cadherins, calorimetric measurements show no significant effects of the tails on binding to the cadherins. Using purified proteins, we show that desmosomal cadherins and alpha-catenin compete directly for binding to plakoglobin, consistent with the absence of alpha-catenin in desmosomes.
Collapse
Affiliation(s)
- Hee-Jung Choi
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The pemphigus family of autoimmune blistering diseases is characterized by an autoantibody response to desmosomal cadherins in epithelia. Autoantibodies against desmogleins, desmosome cell adhesion molecules, induce loss of cell-cell adhesion that is characterized clinically by blister formation. The mechanism by which these autoantibodies induce loss of cell-cell adhesion is under active investigation, but appears to involve a coordinated intracellular response including activation of intracellular signaling and phosphorylation of a number of proteins in the target keratinocyte. Activation of p38 mitogen activated protein kinase may have a critical role in the acantholytic mechanism as inhibitors of p38MAPK block the ability of pemphigus IgG to induce blistering in pemphigus animal models.
Collapse
Affiliation(s)
- David S Rubenstein
- Department of Dermatology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7287, USA.
| | | |
Collapse
|
37
|
Pretel M, España A, Marquina M, Pelacho B, López-Picazo JM, López-Zabalza MJ. An imbalance in Akt/mTOR is involved in the apoptotic and acantholytic processes in a mouse model of pemphigus vulgaris. Exp Dermatol 2009; 18:771-80. [PMID: 19552768 DOI: 10.1111/j.1600-0625.2009.00893.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease characterized by the presence of IgG autoantibodies against Dsg3. Our aim was to investigate the molecular events implicated in the development and localization of apoptosis and acantholysis in PV. We used a passive transfer mouse model together with immunohistochemical (IHC) techniques and the TUNEL assay, with quantification analysis in the basal layer of the epidermis. The activated signalling molecules analysed and apoptotic cells detected showed an identical localization. Herein, we found for the first time in vivo an increased expression of activated HER receptor isoforms in the basal layer in PV lesions. Besides, we observed the almost total lack of activated Akt compared with a higher level of activated mTOR within the basal cells of the epidermis. Our observations strongly support that the restriction of acantholysis to the basal layer may be due, at least in part, to the selective and increased presence of activated HER receptor isoforms in these cells. After phosphorylation of HER receptor isoforms, intracellular signalling pathways are activated in the basal layer. In addition, the imbalance in Akt/mTOR that takes place in the basal cells may provide intracellular signals necessary for the development of apoptosis and acantholysis.
Collapse
Affiliation(s)
- Maider Pretel
- Department of Dermatology, University Clinic of Navarra, School of Medicine, University of Navarra, Navarra, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Kang KH, Lemke G, Kim JW. The PI3K-PTEN tug-of-war, oxidative stress and retinal degeneration. Trends Mol Med 2009; 15:191-8. [PMID: 19380252 DOI: 10.1016/j.molmed.2009.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 01/01/2023]
Abstract
The retinal pigment epithelium (RPE) is indispensable for photoreceptor function, not only because it provides functional photopigments to photoreceptors, but also because it eliminates oxidatively damaged materials from photoreceptors. Maintaining homeostatic antioxidative programs that support a healthy RPE is therefore important for the normal functioning of the eye. These homeostatic mechanisms, however, often fail in aged RPE cells that have been exposed repeatedly to excessive oxidative stress. When RPE cells succumb to oxidative stress, their death contributes to the development of retinal degenerative diseases such as age-related macular degeneration. Recent studies have highlighted the importance of reciprocal phosphoinositide signaling events orchestrated by phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) in the homeostatic programs that protect RPE cells against oxidative stress. Here, we discuss the role of PI3K signaling pathways in RPE cells and suggest that they might be crucial targets of oxidative molecules that initiate early pathological events in retinal degenerative diseases.
Collapse
Affiliation(s)
- Kyung Hwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, South Korea
| | | | | |
Collapse
|
39
|
Heupel WM, Engerer P, Schmidt E, Waschke J. Pemphigus vulgaris IgG cause loss of desmoglein-mediated adhesion and keratinocyte dissociation independent of epidermal growth factor receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:475-85. [PMID: 19147829 DOI: 10.2353/ajpath.2009.080392] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autoantibody-induced cellular signaling mechanisms contribute to the pathogenesis of autoimmune blistering skin disease pemphigus vulgaris (PV). Recently, it was proposed that epidermal growth factor receptor (EGFR) might be involved in PV signaling pathways. In this study, we investigated the role of EGFR by comparing the effects of epidermal growth factor (EGF) and PV-IgG on the immortalized human keratinocyte cell line HaCaT, and primary normal human keratinocytes. In contrast to EGF treatment, PV-IgG neither caused the canonical activation of EGFR via phosphorylation at tyrosine (Y)1173 followed by internalization of EGFR nor the phosphorylation of the EGFR at the c-Src-dependent site Y845. Nevertheless, both PV-IgG and EGF led to cell dissociation and cytokeratin retraction in keratinocyte monolayers. Moreover, the effects of EGF were blocked by inhibition of EGFR and c-Src whereas the effects of PV-IgG were independent of both signaling pathways. Similarly, laser tweezer experiments revealed that impaired bead binding of epidermal cadherins desmoglein (Dsg) 3 and Dsg 1 in response to PV-IgG was not affected by inhibition of either EGFR or c-Src. In contrast, EGF treatment did not interfere with Dsg bead binding. Taken together, our study indicates that the loss of Dsg-mediated adhesion and keratinocyte dissociation in pemphigus is independent of EGFR. Moreover, the mechanisms by which both EGF and PV-IgG lead to keratinocyte dissociation and cytokeratin retraction appear to be different.
Collapse
|
40
|
Abstract
Desmosomes are intercellular junctions responsible for strong cell-cell adhesion in epithelia and cardiac muscle. Numerous studies have shown that the other major type of epithelial cell adhesion, the adherens junction, is destabilized by src-induced tyrosine phosphorylation of two of its principal components, E-cadherin and beta-catenin. Here we show that treatment of epithelial cells with the potent tyrosine phosphatase inhibitor sodium pervanadate causes tyrosine phosphorylation of the major desmosomal components desmoglein 2 and plakoglobin in both the non-ionic detergent soluble and insoluble cell fractions and, surprisingly, stabilizes desmosomal adhesion, inducing the hyper-adhesive form normally found in tissues and confluent cell sheets. Taken together with the few other studies on desmosomes these results suggest that the effects of tyrosine phosphorylation on desmosomal adhesion are complex.
Collapse
Affiliation(s)
- David R Garrod
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
41
|
Abstract
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany.
| |
Collapse
|
42
|
Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 2008; 128:501-16. [PMID: 18268536 DOI: 10.1038/sj.jid.5701248] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The process of epidermal renewal persists throughout the entire life of an organism. It begins when a keratinocyte progenitor leaves the stem cell compartment, undergoes a limited number of mitotic divisions, exits the cell cycle, and commits to terminal differentiation. At the end of this phase, the postmitotic keratinocytes detach from the basement membrane to build up the overlaying stratified epithelium. Although highly coordinated, this sequence of events is endowed with a remarkable versatility, which enables the quiescent keratinocyte to reintegrate into the cell cycle and become migratory when necessary, for example after wounding. It is this versatility that represents the Achilles heel of epithelial cells allowing for the development of severe pathologies. Over the past decade, compelling evidence has been provided that epithelial cancer cells achieve uncontrolled proliferation following hijacking of a "survival program" with PI3K/Akt and a "proliferation program" with growth factor receptor signaling at its core. Recent insights into adhesion receptor signaling now propose that integrins, but also cadherins, can centrally control these programs. It is suggested that the two types of adhesion receptors act as sensors to transmit extracellular stimuli in an outside-in mode, to inversely modulate epidermal growth factor receptor signaling and ensure cell survival. Hence, cell-matrix and cell-cell adhesion receptors likely play a more powerful and wide-ranging role than initially anticipated. This Perspective article discusses the relevance of this emerging field for epidermal growth and differentiation, which can be of importance for severe pathologies such as tumorigenesis and invasive metastasis, as well as psoriasis and Pemphigus vulgaris.
Collapse
|
43
|
Kanno M, Isa Y, Aoyama Y, Yamamoto Y, Nagai M, Ozawa M, Kitajima Y. P120-catenin is a novel desmoglein 3 interacting partner: identification of the p120-catenin association site of desmoglein 3. Exp Cell Res 2008; 314:1683-92. [PMID: 18343367 DOI: 10.1016/j.yexcr.2008.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 11/29/2022]
Abstract
P120-catenin (p120ctn) is an armadillo-repeat protein that directly binds to the intracytoplasmic domains of classical cadherins. p120ctn binding promotes the stabilization of cadherin complexes on the plasma membrane and thus positively regulates the adhesive activity of cadherins. Using co-immunoprecipitation, we show here that p120ctn associates to desmogleins (Dsg) 1 and 3. To determine which region is involved in the association between Dsg3 and p120ctn, we constructed mutant Dsg3 proteins, in which various cytoplasmic subdomains were removed. The tailless Dsg3 constructs Delta IA:AA1-641Dsg3 and Delta 641-714Dsg3, which do not contain the intracellular anchor (IA) region, did not coprecipitate with p120cn, nor did they colocalize at the plasma membrane. Immunocytochemical analysis revealed that p120ctn does not localize to desmosomes, but colocalizes with Dsg3 at the cell surface. A biotinylation assay for Dsg3 showed that biotinylated Delta 641-714Dsg3 was turned over more rapidly than wild-type Dsg3. These results indicate that the membrane proximal region (corresponding to residues 641-714) in the IA region of Dsg3 is necessary for complex formation with p120ctn, and to maintain free Dsg3 at the cell surface before it is integrated into desmosomes. In summary, we show that p120ctn is a novel interactor of the Dsg proteins, and may play a role in desmosome remodeling.
Collapse
Affiliation(s)
- Miho Kanno
- Department of Dermatology, Gifu University School of Medicine, Gifu City 501-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
45
|
Abstract
Desmosomes are highly specialized anchoring junctions that link intermediate filaments to sites of intercellular adhesion, thus facilitating the formation of a supracellular scaffolding that distributes mechanical forces throughout a tissue. These junctions are thus particularly important for maintaining the integrity of tissues that endure physical stress, such as the epidermis and myocardium. The importance of the classic mechanical functions of desmosomal constituents is underscored by pathologies reported in animal models and an ever-expanding list of human mutations that target both desmosomal cadherins and their associated cytoskeletal anchoring proteins. However, the notion that desmosomes are static structures that exist simply to glue cells together belies their susceptibility to remodeling in response to environmental cues and their important tissue-specific roles in cell behavior and signaling. Here, we review the molecular blueprint of the desmosome and models for assembling its protein components to form an adhesive interface and the desmosomal plaque. We also discuss emerging evidence of supra-adhesive roles for desmosomal proteins in regulating tissue morphogenesis and homeostasis. Finally, we highlight the dynamic nature of these adhesive organelles, examining mechanisms in health and disease for modulating adhesive strength and stability of desmosomes.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
46
|
Sharma P, Mao X, Payne AS. Beyond steric hindrance: the role of adhesion signaling pathways in the pathogenesis of pemphigus. J Dermatol Sci 2007; 48:1-14. [PMID: 17574391 DOI: 10.1016/j.jdermsci.2007.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/02/2007] [Accepted: 05/08/2007] [Indexed: 12/21/2022]
Abstract
Epidermal cell adhesion depends on the intercellular interactions of transmembrane cadherin glycoproteins, which form the basis of adherens junctions and desmosomes. Pemphigus is a blistering disease of the skin and mucous membranes characterized by autoantibodies against the cell surface desmosomal cadherins, desmoglein (Dsg) 3 and Dsg1. An unanswered question in pemphigus pathophysiology is the mechanism of acantholysis, or loss of keratinocyte cell adhesion. One longstanding theory for pemphigus pathogenesis is the concept of steric hindrance, in which pathogenic pemphigus autoantibodies cause loss of intercellular adhesion by directly interfering with desmosomal cadherin trans-interactions. However, several recent studies have demonstrated that modulation of p38MAPK, Rho family GTPase, c-myc, protein kinase C, and phospholipase C signaling pathways prevents keratinocyte dissociation induced by pemphigus autoantibodies. As it is unlikely that desmosomal signaling would occur only in response to pemphigus autoantibodies, these studies suggest that numerous different signaling molecules may play a role in desmosomal homeostasis. Many of these same signaling pathways regulate classical cadherins in adherens junctions. Given the recent discovery of bidirectional crosstalk between adherens junctions and desmosomes, it would be valuable to understand how signaling pathways implicated in pemphigus pathogenesis may be involved in more general mechanisms of desmosome and adherens junction regulation. In this review, we will summarize the evidence supporting a role for steric hindrance and signaling mechanisms in the pathogenesis of pemphigus acantholysis and discuss potential analogues in the classical cadherin literature.
Collapse
Affiliation(s)
- Preety Sharma
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
47
|
Frusić-Zlotkin M, Raichenberg D, Wang X, David M, Michel B, Milner Y. Apoptotic mechanism in pemphigus autoimmunoglobulins-induced acantholysis--possible involvement of the EGF receptor. Autoimmunity 2007; 39:563-75. [PMID: 17101500 DOI: 10.1080/08916930600971836] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pemphigus is an autoimmune cutaneous disease characterized by circulating autoantibodies that cause blistering and erosions on skin and mucous membranes. Circulating autoantibodies bind to epidermal cell membrane and cause cell-cell detachment (acantholysis), leading to epidermal tissue damage and cell death. The principal target of pemphigus vulgaris autoantibodies (PV-IgG) is desmosomal cadherin desmoglein 3 (Dsg3), a constituent of desmosomes, mediating cell-cell adhesion. Several hypotheses for the mechanisms of acantholysis induction by PV-IgG exist, but the actual mechanism is not clear as yet. We have previously reported on apoptosis induction in PV-IgG-mediated epidermal tissue and cell damage as a possible mechanism of acantholysis and cell death (Wang et al. 2004, Apoptosis, 9:131-143). In this study we investigated the involvement of the EGFR and intracellular signal transduction pathways in the PV-IgG-induced apoptosis. We show here that PV-IgG induced activation/autophosphorylation of EGFR in cultured keratinocytes in vitro. The specific tyrosine kinase inhibitor AG1478 abrogated EGFR autophosphorylation, cell death, FasL appearance and acantholysis, all induced by PV-IgG, in parallel, confirming the involvement of EGFR in this Fas apoptotic cascade. Activation of EGFR was followed by phosphorylation of its downstream substrates, MAP kinase ERK and transcription factor c-Jun, and internalization of EGFR. Pharmacological inactivation of the EGFR and ERK kinase activities, by use of specific inhibitors AG1478 and PD98059 respectively, blocked PV-IgG-induced phosphorylation of EGFR, ERK and c-Jun and cellular apoptosis, measured by flow cytometry and caspase 3 activity. Prolonged activation of EGFR by PV-IgG led to dramatic internalization of this receptor, possibly reducing the ability of the cell to perform survival signals. This suggests that activation of EGFR, followed by its internalization, is pivotal for intracellular apoptotic signal transduction via ERK/c-Jun pathways, leading to acantholysis. Our experimental data indicate that the EGFR is instrumental in transducing apoptotic/acantholytic signals in keratinocytes cultures in response to PV-IgG treatment. The acantholytic effect caused by PV-IgG binding to cell surface receptors begins with and depends on cell surface receptor (EGFR) activation of intracellular signaling pathways (ERK pathway) and apoptosis induction (FasR pathway), which later lead to major cell-cell separation (acantholysis) and cell death.
Collapse
Affiliation(s)
- Marina Frusić-Zlotkin
- Myers Skin Biology and Biochemistry Lab, Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
48
|
High-resolution mapping of the desmosomal plaque and adhesive interface. J Invest Dermatol 2007; 127 Suppl 3:E13-4. [PMID: 21270803 DOI: 10.1038/sj.skinbio.6250006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Indexed: 11/08/2022]
|
49
|
Loranger A, Gilbert S, Brouard JS, Magin TM, Marceau N. Keratin 8 modulation of desmoplakin deposition at desmosomes in hepatocytes. Exp Cell Res 2006; 312:4108-19. [PMID: 17126832 DOI: 10.1016/j.yexcr.2006.09.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 01/15/2023]
Abstract
Keratins, the intermediate filament proteins of epithelial cells, connect to desmosomes, the cell-cell adhesion structures at the surface membrane. The building elements of desmosomes include desmoglein and desmocollin, which provide the actual cell adhesive properties, and desmoplakins, which anchor the keratin intermediate filaments to desmosomes. In the work reported here, we address the role of keratin 8 in modulating desmoplakin deposition at surface membrane in mouse hepatocytes. The experimental approach is based on the use of keratin 8- and keratin 18-null mouse hepatocytes as cell models. In wild-type mouse hepatocytes, desmoplakin is aligned with desmoglein and keratin 8 at the surface membrane. In keratin 8-null hepatocytes, the intermediate filament loss leads to alterations in desmoplakin distribution at the surface membrane, but not of desmoglein. Intriguingly, a significant proportion of keratin 18-null hepatocytes express keratin 8 at the surface membrane, associated with a proper desmoplakin alignment with desmoglein at desmosomes. A Triton treatment of the monolayer reveals that most of the desmoplakin present in either wild-type, keratin 8- or keratin 18-null hepatocytes is insoluble. Deletion analysis of keratin 8 further suggests that the recovery of desmoplakin alignment requires the keratin 8 rod domain. In addition, similarly to other works revealing a key role of desmoplakin phosphorylation on its interaction with intermediate filaments, we find that the phosphorylation status of the keratin 8 head domain affects desmoplakin distribution at desmosomes. Together, the data indicate that a proper alignment/deposition of desmoplakin with keratins and desmoglein in hepatocytes requires keratin 8, through a reciprocal phosphoserine-dependent process.
Collapse
Affiliation(s)
- Anne Loranger
- Centre de recherche en cancérologie, QC, Canada G1R 2J6
| | | | | | | | | |
Collapse
|
50
|
Yin T, Getsios S, Caldelari R, Godsel LM, Kowalczyk AP, Müller EJ, Green KJ. Mechanisms of plakoglobin-dependent adhesion: desmosome-specific functions in assembly and regulation by epidermal growth factor receptor. J Biol Chem 2005; 280:40355-63. [PMID: 16183992 DOI: 10.1074/jbc.m506692200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plakoglobin (PG) is a member of the Armadillo family of adhesion/signaling proteins that can be incorporated into both adherens junctions and desmosomes. Loss of PG results in defects in the mechanical integrity of heart and skin and decreased adhesive strength in keratinocyte cultures established from the skin of PG knock-out (PG-/-) mice, the latter of which cannot be compensated for by overexpressing the closely related beta-catenin. In this study, we examined the mechanisms of PG-regulated adhesion in murine keratinocytes. Biochemical and morphological analyses indicated that junctional incorporation of desmosomal, but not adherens junction, components was impaired in PG-/- cells compared with PG+/- controls. Re-expression of PG, but not beta-catenin, in PG-/- cells largely reversed these effects, indicating a key role for PG in desmosome assembly. Epidermal growth factor (EGF) receptor activation resulted in Tyr phosphorylation of PG, which was accompanied by a loss of desmoplakin from desmosomes and decreased adhesive strength following 18-h EGF treatment. Importantly, introduction of a phosphorylation-deficient PG mutant into PG null cells prevented the EGF receptor-dependent loss of desmoplakin from junctions, attenuating the effects of long term EGF treatment on cell adhesion. Therefore, PG is essential for maintaining and regulating adhesive strength in keratinocytes largely through its contributions to desmosome assembly and structure. As a target for modulation by EGF, regulation of PG-dependent adhesion may play an important role during wound healing and tumor metastasis.
Collapse
Affiliation(s)
- Taofei Yin
- Department of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|