1
|
Sun D, Guo Y, Tang P, Li H, Chen L. Arf6 as a therapeutic target: Structure, mechanism, and inhibitors. Acta Pharm Sin B 2023; 13:4089-4104. [PMID: 37799386 PMCID: PMC10547916 DOI: 10.1016/j.apsb.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 10/07/2023] Open
Abstract
ADP-ribosylation factor 6 (Arf6), a small G-protein of the Ras superfamily, plays pivotal roles in multiple cellular events, including exocytosis, endocytosis, actin remodeling, plasma membrane reorganization and vesicular transport. Arf6 regulates the progression of cancer through the activation of cell motility and invasion. Aberrant Arf6 activation is a potential therapeutic target. This review aims to understand the comprehensive function of Arf6 for future cancer therapy. The Arf6 GEFs, protein structure, and roles in cancer have been summarized. Comprehending the mechanism underlying Arf6-mediated cancer cell growth and survival is essential. The structural features of Arf6 and its efforts are discussed and may be contributed to the discovery of future novel protein-protein interaction inhibitors. In addition, Arf6 inhibitors and mechanism of action are listed in the table. This review further emphasizes the crucial roles in drug resistance and attempts to offer an outlook of Arf6 in cancer therapy.
Collapse
Affiliation(s)
- Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanyuan Guo
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Piyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
The C-terminal domain of EFA6A interacts directly with F-actin and assembles F-actin bundles. Sci Rep 2019; 9:19209. [PMID: 31844082 PMCID: PMC6915736 DOI: 10.1038/s41598-019-55630-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
The Arf6-specific exchange factor EFA6 is involved in the endocytic/recycling pathway for different cargos. In addition EFA6 acts as a powerful actin cytoskeleton organizer, a function required for its role in the establishment of the epithelial cell polarity and in neuronal morphogenesis. We previously showed that the C-terminus of EFA6 (EFA6-Ct) is the main domain which contributes to actin reorganization. Here, by in vitro and in vivo experiments, we sought to decipher, at the molecular level, how EFA6 controls the dynamic and structuring of actin filaments. We showed that EFA6-Ct interferes with actin polymerization by interacting with and capping actin filament barbed ends. Further, in the presence of actin mono-filaments, the addition of EFA6-Ct triggered the formation of actin bundles. In cells, when the EFA6-Ct was directed to the plasma membrane, as is the case for the full-length protein, its expression induced the formation of membrane protrusions enriched in actin cables. Collectively our data explain, at least in part, how EFA6 plays an essential role in actin organization by interacting with and bundling F-actin.
Collapse
|
3
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
4
|
Singh V, Davidson AC, Hume PJ, Humphreys D, Koronakis V. Arf GTPase interplay with Rho GTPases in regulation of the actin cytoskeleton. Small GTPases 2019; 10:411-418. [PMID: 28524754 PMCID: PMC6748364 DOI: 10.1080/21541248.2017.1329691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 01/04/2023] Open
Abstract
The Arf and Rho subfamilies of small GTPases are nucleotide-dependent molecular switches that act as master regulators of vesicular trafficking and the actin cytoskeleton organization. Small GTPases control cell processes with high fidelity by acting through distinct repertoires of binding partners called effectors. While we understand a great deal about how these GTPases act individually, relatively little is known about how they cooperate, especially in the control of effectors. This review highlights how Arf GTPases collaborate with Rac1 to regulate actin cytoskeleton dynamics at the membrane via recruiting and activating the Wave Regulatory Complex (WRC), a Rho effector that underpins lamellipodia formation and macropinocytosis. This provides insight into Arf regulation of the actin cytoskeleton, while putting the spotlight on small GTPase cooperation with emerging evidence of its importance in fundamental cell biology and interactions with pathogenic bacteria.
Collapse
Affiliation(s)
- Vikash Singh
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Peter J. Hume
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
5
|
Pipaliya SV, Schlacht A, Klinger CM, Kahn RA, Dacks J. Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol Biol Cell 2019; 30:1846-1863. [PMID: 31141460 PMCID: PMC6727740 DOI: 10.1091/mbc.e19-01-0073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase--activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Alexander Schlacht
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Christen M Klinger
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Joel Dacks
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
6
|
Saegusa S, Fukaya M, Kakegawa W, Tanaka M, Katsumata O, Sugawara T, Hara Y, Itakura M, Okubo T, Sato T, Yuzaki M, Sakagami H. Mice lacking EFA6C/Psd2, a guanine nucleotide exchange factor for Arf6, exhibit lower Purkinje cell synaptic density but normal cerebellar motor functions. PLoS One 2019; 14:e0216960. [PMID: 31095630 PMCID: PMC6522047 DOI: 10.1371/journal.pone.0216960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
ADP ribosylation factor 6 (Arf6) is a small GTPase that regulates various neuronal events including formation of the axon, dendrites and dendritic spines, and synaptic plasticity through actin cytoskeleton remodeling and endosomal trafficking. EFA6C, also known as Psd2, is a guanine nucleotide exchange factor for Arf6 that is preferentially expressed in the cerebellar cortex of adult mice, particularly in Purkinje cells. However, the roles of EFA6C in cerebellar development and functions remain unknown. In this study, we generated global EFA6C knockout (KO) mice using the CRISPR/Cas9 system and investigated their cerebellar phenotypes by histological and behavioral analyses. Histological analyses revealed that EFA6C KO mice exhibited normal gross anatomy of the cerebellar cortex, in terms of the thickness and cellularity of each layer, morphology of Purkinje cells, and distribution patterns of parallel fibers, climbing fibers, and inhibitory synapses. Electron microscopic observation of the cerebellar molecular layer revealed that the density of asymmetric synapses of Purkinje cells was significantly lower in EFA6C KO mice compared with wild-type control mice. However, behavioral analyses using accelerating rotarod and horizontal optokinetic response tests failed to detect any differences in motor coordination, learning or adaptation between the control and EFA6C KO mice. These results suggest that EFA6C plays ancillary roles in cerebellar development and motor functions.
Collapse
Affiliation(s)
- Shintaro Saegusa
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Tanaka
- Bio-imaging Center, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshiya Sato
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
7
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
8
|
Bhatt JM, Hancock W, Meissner JM, Kaczmarczyk A, Lee E, Viktorova E, Ramanadham S, Belov GA, Sztul E. Promiscuity of the catalytic Sec7 domain within the guanine nucleotide exchange factor GBF1 in ARF activation, Golgi homeostasis, and effector recruitment. Mol Biol Cell 2019; 30:1523-1535. [PMID: 30943106 PMCID: PMC6724685 DOI: 10.1091/mbc.e18-11-0711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the Golgi and trans-Golgi network (TGN) is disrupted by brefeldin A (BFA), which inhibits the Golgi-localized BFA-sensitive factor (GBF1) and brefeldin A-inhibited guanine nucleotide-exchange factors (BIG1 and BIG2). Using a cellular replacement assay to assess GBF1 functionality without interference from the BIGs, we show that GBF1 alone maintains Golgi architecture; facilitates secretion; activates ADP-ribosylation factor (ARF)1, 3, 4, and 5; and recruits ARF effectors to Golgi membranes. Unexpectedly, GBF1 also supports TGN integrity and recruits numerous TGN-localized ARF effectors. The impact of the catalytic Sec7 domain (Sec7d) on GBF1 functionality was assessed by swapping it with the Sec7d from ARF nucleotide-binding site opener (ARNO)/cytohesin-2, a plasma membrane GEF reported to activate all ARFs. The resulting chimera (GBF1-ARNO-GBF1 [GARG]) targets like GBF1, supports Golgi/TGN architecture, and facilitates secretion. However, unlike GBF1, GARG activates all ARFs (including ARF6) at the Golgi/TGN and recruits additional ARF effectors to the Golgi/TGN. Our results have general implications: 1) GEF's targeting is independent of Sec7d, but Sec7d influence the GEF substrate specificity and downstream effector events; 2) all ARFs have access to all membranes, but are restricted in their distribution by the localization of their activating GEFs; and 3) effector association with membranes requires the coincidental presence of activated ARFs and specific membrane identifiers.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William Hancock
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Justyna M Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aneta Kaczmarczyk
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ekaterina Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Sasanka Ramanadham
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
9
|
Kutscher LM, Keil W, Shaham S. RAB-35 and ARF-6 GTPases Mediate Engulfment and Clearance Following Linker Cell-Type Death. Dev Cell 2018; 47:222-238.e6. [PMID: 30220571 PMCID: PMC6200590 DOI: 10.1016/j.devcel.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/18/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022]
Abstract
Clearance of dying cells is essential for development and homeostasis. Conserved genes mediate apoptotic cell removal, but whether these genes control non-apoptotic cell removal is a major open question. Linker cell-type death (LCD) is a prevalent non-apoptotic developmental cell death process with features conserved from C. elegans to vertebrates. Using microfluidics-based long-term in vivo imaging, we show that unlike apoptotic cells, the C. elegans linker cell, which dies by LCD, is competitively phagocytosed by two neighboring cells, resulting in cell splitting. Subsequent cell elimination does not require apoptotic engulfment genes. Rather, we find that RAB-35 GTPase is a key coordinator of competitive phagocytosis onset and cell degradation. RAB-35 binds CNT-1, an ARF-6 GTPase activating protein, and removes ARF-6, a degradation inhibitor, from phagosome membranes. This facilitates phosphatidylinositol-4,5-bisphosphate removal from phagosome membranes, promoting phagolysosome maturation. Our studies suggest that RAB-35 and ARF-6 drive a conserved program eliminating cells dying by LCD.
Collapse
Affiliation(s)
- Lena M Kutscher
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Wolfgang Keil
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA; Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Meissner JM, Bhatt JM, Lee E, Styers ML, Ivanova AA, Kahn RA, Sztul E. The ARF guanine nucleotide exchange factor GBF1 is targeted to Golgi membranes through a PIP-binding domain. J Cell Sci 2018; 131:jcs.210245. [PMID: 29361542 DOI: 10.1242/jcs.210245] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/15/2017] [Indexed: 11/20/2022] Open
Abstract
ADP-ribosylation factors (ARF) GTPases are activated by guanine nucleotide exchange factors (GEFs) to support cellular homeostasis. Key to understanding spatio-temporal regulation of ARF signaling is the mechanism of GEF recruitment to membranes. Small GEFs are recruited through phosphoinositide (PIP) binding by a pleckstrin homology (PH) domain downstream from the catalytic Sec7 domain (Sec7d). The large GEFs lack PH domains, and their recruitment mechanisms are poorly understood. We probed Golgi recruitment of GBF1, a GEF catalyzing ARF activation required for Golgi homeostasis. We show that the homology downstream of Sec7d-1 (HDS1) regulates Golgi recruitment of GBF1. We document that GBF1 binds phosphoinositides, preferentially PI3P, PI4P and PI(4,5)P2, and that lipid binding requires the HDS1 domain. Mutations within HDS1 that reduce GBF1 binding to specific PIPs in vitro inhibit GBF1 targeting to Golgi membranes in cells. Our data imply that HDS1 and PH domains are functionally analogous in that each uses lipid-based membrane information to regulate GEF recruitment. Lipid-based recruitment of GBF1 extends the paradigm of lipid regulation to small and large GEFs and suggests that lipid-based mechanisms evolved early during GEF diversification. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Justyna M Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jay M Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Melanie L Styers
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Anna A Ivanova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Eva R, Koseki H, Kanamarlapudi V, Fawcett JW. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J Cell Sci 2017; 130:3663-3675. [PMID: 28935671 PMCID: PMC5702059 DOI: 10.1242/jcs.207423] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) axons lose their intrinsic ability to regenerate upon maturity, whereas peripheral nervous system (PNS) axons do not. A key difference between these neuronal types is their ability to transport integrins into axons. Integrins can mediate PNS regeneration, but are excluded from adult CNS axons along with their Rab11 carriers. We reasoned that exclusion of the contents of Rab11 vesicles including integrins might contribute to the intrinsic inability of CNS neurons to regenerate, and investigated this by performing laser axotomy. We identify a novel regulator of selective axon transport and regeneration, the ARF6 guanine-nucleotide-exchange factor (GEF) EFA6 (also known as PSD). EFA6 exerts its effects from a location within the axon initial segment (AIS). EFA6 does not localise at the AIS in dorsal root ganglion (DRG) axons, and in these neurons, ARF6 activation is counteracted by an ARF GTPase-activating protein (GAP), which is absent from the CNS, ACAP1. Depleting EFA6 from cortical neurons permits endosomal integrin transport and enhances regeneration, whereas overexpressing EFA6 prevents DRG regeneration. Our results demonstrate that ARF6 is an intrinsic regulator of regenerative capacity, implicating EFA6 as a focal molecule linking the AIS, signalling and transport. This article has an associated First Person interview with the first author of the paper. Highlighted Article: EFA6 is shown to reside in the axon initial segment, where it functions to prevent growth-promoting molecules from entering mature CNS axons. Removing EFA6 elevates the regenerative potential of the axon.
Collapse
Affiliation(s)
- Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K
| | - Hiroaki Koseki
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K
| | | | - James W Fawcett
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K .,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine AVCR, Prague, Czech Republic
| |
Collapse
|
12
|
Nawrotek A, Zeghouf M, Cherfils J. Allosteric regulation of Arf GTPases and their GEFs at the membrane interface. Small GTPases 2016; 7:283-296. [PMID: 27449855 DOI: 10.1080/21541248.2016.1215778] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arf GTPases assemble protein complexes on membranes to carry out major functions in cellular traffic. An essential step is their activation by guanine nucleotide exchange factors (GEFs), whose Sec7 domain stimulates GDP/GTP exchange. ArfGEFs form 2 major families: ArfGEFs with DCB, HUS and HDS domains (GBF1 and BIG1/BIG2 in humans), which act at the Golgi; and ArfGEFs with a C-terminal PH domain (cytohesin, EFA6 and BRAG), which function at the plasma membrane and endosomes. In addition, pathogenic bacteria encode an ArfGEF with a unique membrane-binding domain. Here we review the allosteric regulation of Arf GTPases and their GEFs at the membrane interface. Membranes contribute several regulatory layers: at the GTPase level, where activation by GTP is coupled to membrane recruitment by a built-in structural device; at the Sec7 domain, which manipulates this device to ensure that Arf-GTP is attached to membranes; and at the level of non-catalytic ArfGEF domains, which form direct or GTPase-mediated interactions with membranes that enable a spectacular diversity of regulatory regimes. Notably, we show here that membranes increase the efficiency of a large ArfGEF (human BIG1) by 32-fold by interacting directly with its N-terminal DCB and HUS domains. The diversity of allosteric regulatory regimes suggests that ArfGEFs can function in cascades and circuits to modulate the shape, amplitude and duration of Arf signals in cells. Because Arf-like GTPases feature autoinhibitory elements similar to those of Arf GTPases, we propose that their activation also requires allosteric interactions of these elements with membranes or other proteins.
Collapse
Affiliation(s)
- Agata Nawrotek
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| | - Mahel Zeghouf
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| | - Jacqueline Cherfils
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| |
Collapse
|
13
|
Hanai A, Ohgi M, Yagi C, Ueda T, Shin HW, Nakayama K. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J Biochem 2015; 159:201-8. [PMID: 26330566 DOI: 10.1093/jb/mvv088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
Small GTPases play important roles in various aspects of cell division as well as membrane trafficking. We and others previously showed that ADP-ribosylation factor 6 (Arf6) is locally activated around the ingressing cleavage furrow and recruited to the Flemming body in late cytokinesis phases, and involved in faithful completion of cytokinesis. However, knockout of the Arf6 gene or Arf6 depletion by siRNAs did not drastically influence cytokinesis. We here show that, in addition to Arf6, Class I Arfs (Arf1 and Arf3) are localized to the Flemming body, and that double knockdown of Arf1 and Arf3 moderately increases the proportion of multinucleate cells and simultaneous knockdown of Arf1, Arf3 and Arf6 leads to severe cytokinesis defects. These observations indicate that Arf1 and Arf3 as well as Arf6 play important roles in cytokinesis. We further show that EFA6 (exchange factor for Arf6) activates not only Arf6 but also Arf1 in the cell. Taken together with our previous data, these Arf GTPases are likely to be locally activated by EFA6 and in turn targeted to the Flemming body to complete cytokinesis.
Collapse
Affiliation(s)
- Ayako Hanai
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minako Ohgi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chikako Yagi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoko Ueda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Dong P, Xu Q, An Y, Zhou BR, Lu P, Liu RC, Xu X. A Novel 1.0 Mb Duplication of Chromosome 8p22-21.3 in a Patient With Autism Spectrum Disorder. Child Neurol Open 2015; 2:1-6. [PMID: 35187197 PMCID: PMC8851130 DOI: 10.1177/2329048x15580673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/18/2015] [Accepted: 03/01/2015] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders are a group of neurodevelopmental disorders with a
strong genetic etiology. Cytogenetic abnormalities have been detected in
5% to 10% of the patients with autism spectrum disorders. In this
study, the authors present the clinical and array-based comparative genomic
hybridization evaluation of a 4-year-old male with autism spectrum disorder and
mental retardation. The patient was found to carry a de novo duplication of
chromosome 8p22-21.3 of 1.0 Mb as ascertained by quantitative polymerase chain
reaction, and this region encompassed 3 genes including Pleckstrin and
Sec7 domains-containing protein 3 (PSD3), SH2
domain-containing 4A (SH2D4A), and
Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1
(CSGALNACT1). This represents the smallest
rearrangement of chromosome 8p as yet found in a patient with autism spectrum
disorder, but the significance of this mutation is still ambiguous.
Collapse
Affiliation(s)
- Ping Dong
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, People's Republic of China.,Co-first authors
| | - Qiong Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, People's Republic of China.,Co-first authors
| | - Yu An
- Institute of Biomedical Sciences and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, People's Republic of China
| | - Bing-Rui Zhou
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ping Lu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ren-Chao Liu
- The R&D of Molecular Genetics Laboratory, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xiu Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Abstract
The Arf small G proteins regulate protein and lipid trafficking in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. In their GTP-bound form, Arf proteins recruit a specific set of protein effectors to the membrane surface. These effectors function in vesicle formation and tethering, non-vesicular lipid transport and cytoskeletal regulation. Beyond fundamental membrane trafficking roles, Arf proteins also regulate mitosis, plasma membrane signaling, cilary trafficking and lipid droplet function. Tight spatial and temporal regulation of the relatively small number of Arf proteins is achieved by their guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs), which catalyze GTP binding and hydrolysis, respectively. A unifying function of Arf proteins, performed in conjunction with their regulators and effectors, is sensing, modulating and transporting the lipids that make up cellular membranes. In this Cell Science at a Glance article and the accompanying poster, we discuss the unique features of Arf small G proteins, their functions in vesicular and lipid trafficking in cells, and how these functions are modulated by their regulators, the GEFs and GAPs. We also discuss how these Arf functions are subverted by human pathogens and disease states.
Collapse
Affiliation(s)
- Catherine L Jackson
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | - Samuel Bouvet
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| |
Collapse
|
16
|
EFA6 controls Arf1 and Arf6 activation through a negative feedback loop. Proc Natl Acad Sci U S A 2014; 111:12378-83. [PMID: 25114232 DOI: 10.1073/pnas.1409832111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) of the exchange factor for Arf6 (EFA6), brefeldin A-resistant Arf guanine nucleotide exchange factor (BRAG), and cytohesin subfamilies activate small GTPases of the Arf family in endocytic events. These ArfGEFs carry a pleckstrin homology (PH) domain in tandem with their catalytic Sec7 domain, which is autoinhibitory and supports a positive feedback loop in cytohesins but not in BRAGs, and has an as-yet unknown role in EFA6 regulation. In this study, we analyzed how EFA6A is regulated by its PH and C terminus (Ct) domains by reconstituting its GDP/GTP exchange activity on membranes. We found that EFA6 has a previously unappreciated high efficiency toward Arf1 on membranes and that, similar to BRAGs, its PH domain is not autoinhibitory and strongly potentiates nucleotide exchange on anionic liposomes. However, in striking contrast to both cytohesins and BRAGs, EFA6 is regulated by a negative feedback loop, which is mediated by an allosteric interaction of Arf6-GTP with the PH-Ct domain of EFA6 and monitors the activation of Arf1 and Arf6 differentially. These observations reveal that EFA6, BRAG, and cytohesins have unanticipated commonalities associated with divergent regulatory regimes. An important implication is that EFA6 and cytohesins may combine in a mixed negative-positive feedback loop. By allowing EFA6 to sustain a pool of dormant Arf6-GTP, such a circuit would fulfill the absolute requirement of cytohesins for activation by Arf-GTP before amplification of their GEF activity by their positive feedback loop.
Collapse
|
17
|
Caviston JP, Cohen LA, Donaldson JG. Arf1 and Arf6 promote ventral actin structures formed by acute activation of protein kinase C and Src. Cytoskeleton (Hoboken) 2014; 71:380-94. [PMID: 24916416 DOI: 10.1002/cm.21181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/16/2023]
Abstract
Arf proteins regulate membrane traffic and organelle structure. Although Arf6 is known to initiate actin-based changes in cell surface architecture, Arf1 may also function at the plasma membrane. Here we show that acute activation of protein kinase C (PKC) induced by the phorbol ester PMA led to the formation of motile actin structures on the ventral surface of Beas-2b cells, a lung bronchial epithelial cell line. Ventral actin structures also formed in PMA-treated HeLa cells that had elevated levels of Arf activation. For both cell types, formation of the ventral actin structures was enhanced by expression of active forms of either Arf1 or Arf6 and by the expression of guanine nucleotide exchange factors that activate these Arfs. By contrast, formation of these structures was blocked by inhibitors of PKC and Src and required phosphatidylinositol 4, 5-bisphosphate, Rac, Arf6, and Arf1. Furthermore, expression of ASAP1, an Arf1 GTPase activating protein (GAP) was more effective at inhibiting the ventral actin structures than was ACAP1, an Arf6 GAP. This study adds to the expanding role for Arf1 in the periphery and identifies a requirement for Arf1, a "Golgi Arf," in the reorganization of the cortical actin cytoskeleton on ventral surfaces, against the substratum.
Collapse
|
18
|
Arf6 exchange factor EFA6 and endophilin directly interact at the plasma membrane to control clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2014; 111:9473-8. [PMID: 24979773 DOI: 10.1073/pnas.1401186111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Arf family of small G proteins are involved in membrane traffic and organelle structure. They control the recruitment of coat proteins, and modulate the structure of actin filaments and the lipid composition of membranes. The ADP-ribosylation factor 6 (Arf6) isoform and the exchange factor for Arf6 (EFA6) are known to regulate the endocytic pathway of many different receptors. To determine the molecular mechanism of the EFA6/Arf6 function in vesicular transport, we searched for new EFA6 partners. In a two-hybrid screening using the catalytic Sec7 domain as a bait, we identified endophilin as a new partner of EFA6. Endophilin contains a Bin/Amphiphysin/Rvs (BAR) domain responsible for membrane bending, and an SH3 domain responsible for the recruitment of dynamin and synaptojanin, two proteins involved, respectively, in the fission and uncoating of clathrin-coated vesicles. By using purified proteins, we confirmed the direct interaction, and identified the N-BAR domain as the binding motif to EFA6A. We showed that endophilin stimulates the catalytic activity of EFA6A on Arf6. In addition, we observed that the Sec7 domain competes with flat but not with highly curved lipid membranes to bind the N-BAR. In cells, expression of EFA6A recruits endophilin to EFA6A-positive plasma membrane ruffles, whereas expression of endophilin rescues the EFA6A-mediated inhibition of transferrin internalization. Overall, our results support a model whereby EFA6 recruits endophilin on flat areas of the plasma membrane to control Arf6 activation and clathrin-mediated endocytosis.
Collapse
|
19
|
Wittinghofer A. Arf Proteins and Their Regulators: At the Interface Between Membrane Lipids and the Protein Trafficking Machinery. RAS SUPERFAMILY SMALL G PROTEINS: BIOLOGY AND MECHANISMS 2 2014. [PMCID: PMC7123483 DOI: 10.1007/978-3-319-07761-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Arf small GTP-binding (G) proteins regulate membrane traffic and organelle structure in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. The first function identified for Arf proteins was recruitment of cytosolic coat complexes to membranes to mediate vesicle formation. However, subsequent studies have uncovered additional functions, including roles in plasma membrane signalling pathways, cytoskeleton regulation, lipid droplet function, and non-vesicular lipid transport. In contrast to other families of G proteins, there are only a few Arf proteins in each organism, yet they function specifically at many different cellular locations. Part of this specificity is achieved by formation of complexes with their guanine nucleotide-exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyse GTP binding and hydrolysis, respectively. Because these regulators outnumber their Arf substrates by at least 3-to-1, an important aspect of understanding Arf function is elucidating the mechanisms by which a single Arf protein is incorporated into different GEF, GAP, and effector complexes. New insights into these mechanisms have come from recent studies showing GEF–effector interactions, Arf activation cascades, and positive feedback loops. A unifying theme in the function of Arf proteins, carried out in conjunction with their regulators and effectors, is sensing and modulating the properties of the lipids that make up cellular membranes.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
20
|
Yorimitsu T, Sato K, Takeuchi M. Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. FRONTIERS IN PLANT SCIENCE 2014; 5:411. [PMID: 25191334 PMCID: PMC4140167 DOI: 10.3389/fpls.2014.00411] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/03/2014] [Indexed: 05/21/2023]
Abstract
Small GTPase proteins play essential roles in the regulation of vesicular trafficking systems in eukaryotic cells. Two types of small GTPases, secretion-associated Ras-related protein (Sar) and ADP-ribosylation factor (Arf), act in the biogenesis of transport vesicles. Sar/Arf GTPases function as molecular switches by cycling between active, GTP-bound and inactive, GDP-bound forms, catalyzed by guanine nucleotide exchange factors and GTPase-activating proteins, respectively. Activated Sar/Arf GTPases undergo a conformational change, exposing the N-terminal amphipathic α-helix for insertion into membranes. The process triggers the recruitment and assembly of coat proteins to the membranes, followed by coated vesicle formation and scission. In higher plants, Sar/Arf GTPases also play pivotal roles in maintaining the dynamic identity of organelles in the secretory pathway. Sar1 protein strictly controls anterograde transport from the endoplasmic reticulum (ER) through the recruitment of plant COPII coat components onto membranes. COPII vesicle transport is responsible for the organization of highly conserved polygonal ER networks. In contrast, Arf proteins contribute to the regulation of multiple trafficking routes, including transport through the Golgi complex and endocytic transport. These transport systems have diversified in the plant kingdom independently and exhibit several plant-specific features with respect to Golgi organization, endocytic cycling, cell polarity and cytokinesis. The functional diversification of vesicular trafficking systems ensures the multicellular development of higher plants. This review focuses on the current knowledge of Sar/Arf GTPases, highlighting the molecular details of GTPase regulation in vesicle formation in yeast and advances in knowledge of the characteristics of vesicle trafficking in plants.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
| | - Masaki Takeuchi
- Department of Chemistry, Graduate School of Science, University of TokyoTokyo, Japan
- *Correspondence: Masaki Takeuchi, Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan e-mail:
| |
Collapse
|
21
|
Humphreys D, Davidson AC, Hume PJ, Makin LE, Koronakis V. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells. Proc Natl Acad Sci U S A 2013; 110:16880-5. [PMID: 24085844 PMCID: PMC3801044 DOI: 10.1073/pnas.1311680110] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ADP ribosylation factor (Arf) 6 anchors to the plasma membrane, where it coordinates membrane trafficking and cytoskeleton remodelling, but how it assembles actin filaments is unknown. By reconstituting membrane-associated actin assembly mediated by the WASP family veroprolin homolog (WAVE) regulatory complex (WRC), we recapitulated an Arf6-driven actin polymerization pathway. We show that Arf6 is divergent from other Arf members, as it was incapable of directly recruiting WRC. We demonstrate that Arf6 triggers actin assembly at the membrane indirectly by recruiting the Arf guanine nucleotide exchange factor (GEF) ARNO that activates Arf1 to enable WRC-dependent actin assembly. The pathogen Salmonella usurped Arf6 for host cell invasion by recruiting its canonical GEFs EFA6 and BRAG2. Arf6 and its GEFs facilitated membrane ruffling and pathogen invasion via ARNO, and triggered actin assembly by generating an Arf1-WRC signaling hub at the membrane in vitro and in cells. This study reconstitutes Arf6-dependent actin assembly to reveal a mechanism by which related Arf GTPases orchestrate distinct steps in the WRC cytoskeleton remodelling pathway.
Collapse
Affiliation(s)
| | | | - Peter J. Hume
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Laura E. Makin
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
22
|
Aizel K, Biou V, Navaza J, Duarte LV, Campanacci V, Cherfils J, Zeghouf M. Integrated conformational and lipid-sensing regulation of endosomal ArfGEF BRAG2. PLoS Biol 2013; 11:e1001652. [PMID: 24058294 PMCID: PMC3769224 DOI: 10.1371/journal.pbio.1001652] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022] Open
Abstract
The structure of endosomal ArfGEF BRAG2 in complex with Arf1, combined with an analysis of this GEF's efficiency on membranes, reveals a regulatory mechanism that simultaneously optimizes membrane recruitment and nucleotide exchange. The mechanisms whereby guanine nucleotide exchange factors (GEFs) coordinate their subcellular targeting to their activation of small GTPases remain poorly understood. Here we analyzed how membranes control the efficiency of human BRAG2, an ArfGEF involved in receptor endocytosis, Wnt signaling, and tumor invasion. The crystal structure of an Arf1–BRAG2 complex that mimics a membrane-bound intermediate revealed an atypical PH domain that is constitutively anchored to the catalytic Sec7 domain and interacts with Arf. Combined with the quantitative analysis of BRAG2 exchange activity reconstituted on membranes, we find that this PH domain potentiates nucleotide exchange by about 2,000-fold by cumulative conformational and membrane-targeting contributions. Furthermore, it restricts BRAG2 activity to negatively charged membranes without phosphoinositide specificity, using a positively charged surface peripheral to but excluding the canonical lipid-binding pocket. This suggests a model of BRAG2 regulation along the early endosomal pathway that expands the repertoire of GEF regulatory mechanisms. Notably, it departs from the auto-inhibitory and feedback loop paradigm emerging from studies of SOS and cytohesins. It also uncovers a novel mechanism of unspecific lipid-sensing by PH domains that may allow sustained binding to maturating membranes. Understanding the molecular mechanisms that allow guanine exchange factor proteins (GEFs) to coordinate their GDP/GTP exchange activity with their being targeted to specific intracellular membranes is an important issue. In this study, we solved the crystal structure of the ArfGEF BRAG2, an endosomal protein that is involved in invasive phenotypes in various tumors, in a complex with the small GTPase Arf1. We show that the pleckstrin homology (PH) domain of BRAG2 atypically does not auto-inhibit its Sec7 domain (as has been seen in ArfGEFs belonging to the cytohesin family), but instead potentiates nucleotide exchange 10-fold in solution and up to 2,000-fold in the presence of liposomes. This stimulatory effect requires negatively charged membranes, and does not involve a preference of the PH domain for specific phosphoinositides or the use of its canonical lipid-binding pocket. This uncovers a regulatory mechanism in which the PH domain controls GEF efficiency by concurrently optimizing membrane recruitment and nucleotide exchange.
Collapse
Affiliation(s)
- Kaheina Aizel
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Valérie Biou
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Jorge Navaza
- Institut de Biologie Structurale, CNRS/CEA/Université Joseph Fourier, Grenoble, France
- Unidad de Biofísica CSIC-UPV/EHU, Leioa, Bizkaia, Spain
| | - Lionel V. Duarte
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Valérie Campanacci
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
- * E-mail: (JC); (MZ)
| | - Mahel Zeghouf
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
- * E-mail: (JC); (MZ)
| |
Collapse
|
23
|
Hosokawa H, Dip PV, Merkulova M, Bakulina A, Zhuang Z, Khatri A, Jian X, Keating SM, Bueler SA, Rubinstein JL, Randazzo PA, Ausiello DA, Grüber G, Marshansky V. The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2. J Biol Chem 2013; 288:5896-913. [PMID: 23288846 DOI: 10.1074/jbc.m112.409169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H(+)-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1-17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2. Moreover, this peptide strongly inhibits GEF activity via direct interaction with the Sec7 domain of cytohesin-2. The structure of a2N(1-17) and its amino acids Phe(5), Met(10), and Gln(14) involved in interaction with Sec7 domain were determined by NMR spectroscopy analysis. In silico docking experiments revealed that part of the V-ATPase formed by its a2N(1-17) epitope competes with the switch 2 region of Arf1 and Arf6 for binding to the Sec7 domain of cytohesin-2. The amino acid sequence alignment and GEF activity studies also uncovered the conserved character of signaling between all four (a1-a4) a-subunit isoforms of mammalian V-ATPase and cytohesin-2. Moreover, the conserved character of this phenomenon was also confirmed in experiments showing binding of mammalian cytohesin-2 to the intact yeast V-ATPase holo-complex. Thus, here we have uncovered an evolutionarily conserved function of the V-ATPase as a novel cytohesin-signaling receptor.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The capping domain in RalF regulates effector functions. PLoS Pathog 2012; 8:e1003012. [PMID: 23166491 PMCID: PMC3499574 DOI: 10.1371/journal.ppat.1003012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/18/2012] [Indexed: 12/24/2022] Open
Abstract
The Legionella pneumophila effector protein RalF functions as a guanine nucleotide exchange factor (GEF) that activates the host small GTPase protein ADP-ribosylation factor (Arf), and recruits this host protein to the vacuoles in which this pathogen resides. GEF activity is conferred by the Sec7 domain located in the N-terminal region of RalF. Structural studies indicate that the C-terminal region of RalF makes contacts with residues in the Sec7 domain important for Arf interactions. Theoretically, the C-terminal region of RalF could prevent nucleotide exchange activity by blocking the ability of Arf to interact with the Sec7 domain. For this reason, the C-terminal region of RalF has been termed a capping domain. Here, the role of the RalF capping domain was investigated by comparing biochemical and effector activities mediated by this domain in both the Legionella RalF protein (LpRalF) and in a RalF ortholog isolated from the unrelated intracellular pathogen Rickettsia prowazekii (RpRalF). These data indicate that both RalF proteins contain a functional Sec7 domain and that the capping domain regulates RalF GEF activity. The capping domain has intrinsic determinants that mediate localization of the RalF protein inside of host cells and confer distinct effector activities. Localization mediated by the capping domain of LpRalF enables the GEF to modulate membrane transport in the secretory pathway, whereas, the capping domain of RpRalF enables this bacterial GEF to modulate actin dynamics occurring near the plasma membrane. Thus, these data reveal that divergence in the function of the C-terminal capping domain alters the in vivo functions of the RalF proteins. Legionella pneumophila and Rickettsia prowazekii are two pathogenic intracellular bacteria, phylogenetically distant and presenting different intracellular lifestyles. Interestingly, both organisms encode a protein called RalF, which in Legionella has been shown to be an effector protein that functions as a guanine nucleotide exchange factor (GEF) for the Arf family of eukaryotic GTPases. We show that the Sec7 domains in both proteins have a similar enzymatic ability to activate Arf1, however, the two proteins differ in their effector functions inside mammalian cells. The Legionella RalF protein targets secretory transport functions, whereas, the Rickettsia RalF protein modulates actin dynamics at the plasma membrane. These differences in RalF effector activities are mediated by a C-terminal domain that directs localization and interaction with host cell determinants. These data reveal important properties of the RalF protein that provide insight into differential roles for Arf during infection by Legionella and Rickettsia, and also provide a model for investigating how intracellular localization of structurally similar Arf GEFs enables a protein to regulate functionally distinct host cell processes.
Collapse
|
25
|
ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. J Neurosci 2012; 32:10352-64. [PMID: 22836268 DOI: 10.1523/jneurosci.1409-12.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.
Collapse
|
26
|
Su YL, Li JM, Li M, Luan JB, Ye XD, Wang XW, Liu SS. Transcriptomic analysis of the salivary glands of an invasive whitefly. PLoS One 2012; 7:e39303. [PMID: 22745728 PMCID: PMC3379992 DOI: 10.1371/journal.pone.0039303] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/18/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. METHODOLOGY/PRINCIPAL FINDINGS We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. CONCLUSIONS/SIGNIFICANCE The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission.
Collapse
Affiliation(s)
- Yun-Lin Su
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Min Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meng Li
- State Key Laboratory of Identification and Quarantine of Peony Germplasm Resource, Luoyang Entry-Exit Inspection and Quarantine Bureau, Luoyang, China
| | - Jun-Bo Luan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Dong Ye
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (XWW); (SSL)
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (XWW); (SSL)
| |
Collapse
|
27
|
Humphreys D, Davidson A, Hume PJ, Koronakis V. Salmonella virulence effector SopE and Host GEF ARNO cooperate to recruit and activate WAVE to trigger bacterial invasion. Cell Host Microbe 2012; 11:129-39. [PMID: 22341462 PMCID: PMC3314957 DOI: 10.1016/j.chom.2012.01.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/25/2011] [Accepted: 01/02/2012] [Indexed: 12/24/2022]
Abstract
Salmonella virulence effectors elicit host cell membrane ruffling to facilitate pathogen invasion. The WAVE regulatory complex (WRC) governs the underlying membrane-localized actin polymerization, but how Salmonella manipulates WRC is unknown. We show that Rho GTPase activation by the Salmonella guanine nucleotide exchange factor (GEF) SopE efficiently triggered WRC recruitment but not its activation, which required host Arf GTPase activity. Invading Salmonella recruited and activated Arf1 to facilitate ruffling and uptake. Arf3 and Arf6 could also enhance invasion. RNAi screening of host Arf-family GEFs revealed a key role for ARNO in pathogen invasion and generation of pathogen-containing macropinosomes enriched in Arf1 and WRC. Salmonella recruited ARNO via Arf6 and the phosphoinositide phosphatase effector SopB-induced PIP3 generation. ARNO in turn triggered WRC recruitment and activation, which was dramatically enhanced when SopE and ARNO cooperated. Thus, we uncover a mechanism by which pathogen and host GEFs synergize to regulate WRC and trigger Salmonella invasion.
Collapse
Affiliation(s)
- Daniel Humphreys
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB21QP, UK
| | | | | | | |
Collapse
|
28
|
Macia E, Partisani M, Paleotti O, Luton F, Franco M. Arf6 negatively controls the rapid recycling of the β2 adrenergic receptor. J Cell Sci 2012; 125:4026-35. [PMID: 22611259 DOI: 10.1242/jcs.102343] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β2-adrenergic receptor (β2AR), a member of the GPCR (G-protein coupled receptor) family, is internalized in a ligand- and β-arrestin-dependent manner into early endosomes, and subsequently recycled back to the plasma membrane. Here, we report that β-arrestin promotes the activation of the small G protein Arf6, which regulates the recycling and degradation of β2AR. We demonstrate in vitro that the C-terminal region of β-arrestin1 interacts directly and simultaneously with Arf6GDP and its specific exchange factor EFA6, to promote Arf6 activation. Similarly, the ligand-mediated activation of β2AR leads to the formation of Arf6GTP in vivo in a β-arrestin-dependent manner. Expression of either EFA6 or an activated Arf6 mutant caused accumulation of β2AR in the degradation pathway. This phenotype could be rescued by the expression of an activated mutant of Rab4, suggesting that Arf6 acts upstream of Rab4. We propose a model in which Arf6 plays an essential role in β2AR desensitization. The ligand-mediated stimulation of β2AR relocates β-arrestin to the plasma membrane, and triggers the activation of Arf6 by EFA6. The activation of Arf6 leads to accumulation of β2AR in the degradation pathway, and negatively controls Rab4-dependent fast recycling to prevent the re-sensitization of β2AR.
Collapse
Affiliation(s)
- Eric Macia
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS-Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
| | | | | | | | | |
Collapse
|
29
|
Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A. Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 β-cells and rat islets. Biochem Pharmacol 2011; 81:1016-27. [PMID: 21276423 DOI: 10.1016/j.bcp.2011.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 12/21/2022]
Abstract
Glucose-stimulated insulin secretion [GSIS] involves interplay between small G-proteins and their regulatory factors. Herein, we tested the hypothesis that Arf nucleotide binding site opener [ARNO], a guanine nucleotide-exchange factor [GEF] for the small G-protein Arf6, mediates the functional activation of Arf6, and that ARNO/Arf6 signaling axis, in turn, controls the activation of Cdc42 and Rac1, which have been implicated in GSIS. Molecular biological [i.e., expression of inactive mutants or siRNA] and pharmacological approaches were employed to assess the roles for ARNO/Arf6 signaling pathway in insulin secretion in normal rat islets and INS 832/13 cells. Degrees of activation of Arf6 and Cdc42/Rac1 were quantitated by GST-GGA3 and PAK-1 kinase pull-down assays, respectively. ARNO is expressed in INS 832/13 cells, rat islets and human islets. Expression of inactive mutants of Arf6 [Arf6-T27N] or ARNO [ARNO-E156K] or siRNA-ARNO markedly reduced GSIS in isolated β-cells. SecinH3, a selective inhibitor of ARNO/Arf6 signaling axis, also inhibited GSIS in INS 832/13 cells and rat islets. Stimulatory concentrations of glucose promoted Arf6 activation, which was inhibited by secinH3 or siRNA-ARNO, suggesting that ARNO/Arf6 signaling cascade is necessary for GSIS. SecinH3 or siRNA-ARNO also inhibited glucose-induced activation of Cdc42 and Rac1 suggesting that ARNO/Arf6 might be upstream to Cdc42 and Rac1 activation steps, which are necessary for GSIS. Lastly, co-immunoprecipitation and confocal microscopic studies suggested increased association between Arf6 and ARNO in glucose-stimulated β-cells. These findings provide the first evidence to implicate ARNO in the sequential activation of Arf6, Cdc42 and Rac1 culminating in GSIS.
Collapse
Affiliation(s)
- Bhavaani Jayaram
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University and β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, 259 Mack Avenue, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
30
|
Stalder D, Barelli H, Gautier R, Macia E, Jackson CL, Antonny B. Kinetic studies of the Arf activator Arno on model membranes in the presence of Arf effectors suggest control by a positive feedback loop. J Biol Chem 2010; 286:3873-83. [PMID: 21118813 DOI: 10.1074/jbc.m110.145532] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins of the cytohesin/Arno/Grp1 family of Arf activators are positive regulators of the insulin-signaling pathway and control various remodeling events at the plasma membrane. Arno has a catalytic Sec7 domain, which promotes GDP to GTP exchange on Arf, followed by a pleckstrin homology (PH) domain. Previous studies have revealed two functions of the PH domain: inhibition of the Sec7 domain and membrane targeting. Interestingly, the Arno PH domain interacts not only with a phosphoinositide (phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate) but also with an activating Arf family member, such as Arf6 or Arl4. Using the full-length membrane-bound forms of Arf1 and Arf6 instead of soluble forms, we show here that the membrane environment dramatically affects the mechanism of Arno activation. First, Arf6-GTP stimulates Arno at nanomolar concentrations on liposomes compared with micromolar concentrations in solution. Second, mutations in the PH domain that abolish interaction with Arf6-GTP render Arno completely inactive when exchange reactions are reconstituted on liposomes but have no effect on Arno activity in solution. Third, Arno is activated by its own product Arf1-GTP in addition to a distinct activating Arf isoform. Consequently, Arno activity is strongly modulated by competition with Arf effectors. These results show that Arno behaves as a bistable switch, having an absolute requirement for activation by an Arf protein but, once triggered, becoming highly active through the positive feedback effect of Arf1-GTP. This property of Arno might provide an explanation for its function in signaling pathways that, once triggered, must move forward decisively.
Collapse
Affiliation(s)
- Danièle Stalder
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
31
|
Chen KY, Tsai PC, Hsu JW, Hsu HC, Fang CY, Chang LC, Tsai YT, Yu CJ, Lee FJS. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J Cell Sci 2010; 123:3478-89. [PMID: 20841378 DOI: 10.1242/jcs.074237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast, Arl3p recruits Arl1p GTPase to regulate Golgi function and structure. However, the molecular mechanism involved in regulating activation of Arl1p at the Golgi is unknown. Here, we show that Syt1p promoted activation of Arl1p and recruitment of a golgin protein, Imh1p, to the Golgi. Deletion of SYT1 resulted in the majority of Arl1p being distributed diffusely throughout the cytosol. Overexpression of Syt1p increased Arl1p-GTP production in vivo and the Syt1-Sec7 domain promoted nucleotide exchange on Arl1p in vitro. Syt1p function required the N-terminal region, Sec7 and PH domains. Arl1p, but not Arl3p, interacted with Syt1p. Localization of Syt1p to the Golgi did not require Arl3p. Unlike arl1Δ or arl3Δ mutants, syt1Δ did not show defects in Gas1p transport, cell wall integrity or vacuolar structure. These findings reveal that activation of Arl1p is regulated in part by Syt1p, and imply that Arl1p activation, by using more than one GEF, exerts distinct biological activities at the Golgi compartment.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
SAXS and X-ray crystallography suggest an unfolding model for the GDP/GTP conformational switch of the small GTPase Arf6. J Mol Biol 2010; 402:696-707. [PMID: 20709080 DOI: 10.1016/j.jmb.2010.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 11/22/2022]
Abstract
The small GTPases Arf1 and Arf6 have nonoverlapping functions in cellular traffic despite their very high sequence and structural resemblance. Notably, the exquisite isoform specificity of their guanine nucleotide exchange factors and their distinctive sensitivity to the drug brefeldin A cannot be explained by any straightforward structural model. Here we integrated structural and spectroscopic methods to address this issue using Δ13Arf6-GDP, a truncated mutant that mimics membrane-bound Arf6-GDP. The crystal structure of Δ13Arf6-GDP reveals an unprecedented unfolding of the GTPase core β-strands, which is fully accounted for by small-angle X-ray scattering data in solution and by ab initio three-dimensional envelope calculation. NMR chemical shifts identify this structural disorder in Δ13Arf6-GDP, but not in the closely related Δ17Arf1-GDP, which is consistent with their comparative thermodynamic and hydrodynamic analyses. Taken together, these experiments suggest an unfolding model for the nucleotide switch of Arf6 and shed new light on its biochemical differences with Arf1.
Collapse
|
33
|
El Azreq MA, Garceau V, Harbour D, Pivot-Pajot C, Bourgoin SG. Cytohesin-1 regulates the Arf6-phospholipase D signaling axis in human neutrophils: impact on superoxide anion production and secretion. THE JOURNAL OF IMMUNOLOGY 2009; 184:637-49. [PMID: 20018626 DOI: 10.4049/jimmunol.0901654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymorphonuclear neutrophil (PMN) stimulation with fMLP stimulates small G proteins such as ADP-ribosylation factors (Arfs) Arf1 and Arf6, leading to phospholipase D (PLD) activation and functions such as degranulation and the oxidative burst. However, the molecular links between fMLF receptors and PLD remain unclear. PMNs express cytohesin-1, an Arf-guanine exchange factor that activates Arfs, and its expression is strongly induced during the acquisition of the neutrophilic phenotype by neutrophil-like cells. The role of cytohesin-1 in the activation of the fMLF-Arf-PLD signaling axis, and the accomplishment of superoxide anion production, and degranulation was investigated in PMNs using the selective inhibitor of cytohesin, Sec 7 inhibitor H3 (secinH3). Cytohesin-1 inhibition with secinH3 leads to Arf6 but not Arf1 inhibition, demonstrating the specificity for Arf6, and fMLF-mediated activation of PLD and of the oxidative burst as well. We observed a decrease in fMLF-mediated protein secretion and expression of cell surface markers corresponding to primary (CD63/myeloperoxidase), secondary (CD66/lactoferrin), and tertiary (matrix metalloproteinase-9) granules in PMNs incubated with secinH3. Similarly, silencing cytohesin-1 or Arf6 in PLB-985 cells negatively affected fMLF-induced activation of PLD, superoxide production, and expression of granule markers on the cell surface. In contrast, stable overexpression of cytohesin-1 in PLB-985 cells enhanced fMLF-induced activation of Arf6, PLD, and NADPH oxidase. The results of this study provide evidence for an involvement of cytohesin-1 in the regulation of the functional responses of human PMNs and link these events, in part at least, to the activation of Arf6.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier de l'Université Québec-Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
34
|
Abstract
Signaling through the EGF receptor is regulated by endocytosis. ARAP1 is a protein with Arf guanosine triphosphatase-activating protein (GAP) and Rho GAP domains. We investigated the role of ARAP1 in EGF receptor endocytic trafficking. Following EGF treatment of cells, ARAP1 rapidly and transiently associated with the edge of the cell and punctate structures containing Rab5, rabaptin 5 and EGFR but not early embryonic antigen 1 (EEA1). EGF associated with the ARAP1-positive punctate structures prior to EEA1-positive early endosomes. Recruitment of ARAP1 to the punctate structures required active Rab5 and an additional signal from EGFR. Decreasing ARAP1 levels with small interfering RNA accelerated association of EGF with EEA1 endosomes and degradation of EGFR. Phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun-amino-terminal kinase (JNK) was diminished and more transient in cells with reduced levels of ARAP1 than in controls. Based on these findings, we propose that ARAP1 regulates the endocytic traffic of EGFR and, consequently, the rate of EGFR signal attenuation.
Collapse
Affiliation(s)
- Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
35
|
Donaldson JG, Porat-Shliom N, Cohen LA. Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signal 2008; 21:1-6. [PMID: 18647649 DOI: 10.1016/j.cellsig.2008.06.020] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/23/2008] [Indexed: 01/08/2023]
Abstract
There is increasing interest in endocytosis that occurs independently of clathrin coats and the fates of membrane proteins internalized by this mechanism. The appearance of clathrin-independent endocytic and membrane recycling pathways seems to vary with different cell types and cargo molecules. In this review we focus on studies that have been performed using HeLa and COS cells as model systems for understanding this membrane trafficking system. These endosomal membranes contain signaling molecules including H-Ras, Rac1, Arf6 and Rab proteins, and a lipid environment rich in cholesterol and PIP(2) providing a unique platform for cell signaling. Furthermore, activation of some of these signaling molecules (H-Ras, Rac and Arf6) can switch the constitutive form of clathrin-independent endocytosis into a stimulated one, associated with PM ruffling and macropinocytosis.
Collapse
Affiliation(s)
- Julie G Donaldson
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
36
|
DiNitto JP, Delprato A, Gabe Lee MT, Cronin TC, Huang S, Guilherme A, Czech MP, Lambright DG. Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol Cell 2008; 28:569-83. [PMID: 18042453 DOI: 10.1016/j.molcel.2007.09.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 07/30/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain. The crystal structure of the Grp1 Sec7-PH tandem reveals a pseudosubstrate mechanism of autoinhibition in which the linker region between domains and a C-terminal amphipathic helix physically block the docking sites for the switch regions of Arf GTPases. Mutations within either element result in partial or complete activation. Critical determinants of autoinhibition also contribute to insulin-stimulated plasma membrane recruitment. Autoinhibition can be largely reversed by binding of active Arf6 to Grp1 and by phosphorylation of tandem PKC sites in Cytohesin-1. These observations suggest that Grp1 family GEFs are autoregulated by mechanisms that depend on plasma membrane recruitment for activation.
Collapse
Affiliation(s)
- Jonathan P DiNitto
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Small G proteins play a central role in the organization of the secretory and endocytic pathways. The majority of such small G proteins are members of the Rab family, which are anchored to the bilayer by C-terminal prenyl groups. However, the recruitment of some effectors, including vesicle coat proteins, is mediated by a second class of small G proteins that is unique in having an N-terminal amphipathic helix that becomes available for membrane insertion upon GTP binding. Sar1, Arf1, and Arf6 are the best-characterized members of this ADP-ribosylation factor (Arf) family. In addition, all eukaryotes contain additional distantly related G proteins, often called Arf like, or Arls. The complete Arf family in humans has 29 members. The roles of these related G proteins are poorly understood, but recent work has shown that some are involved in membrane traffic or organizing the cytoskeleton. Here we review what is known about all the members of the Arf family, along with the known regulatory molecules that convert them between GDP- and GTP-bound states.
Collapse
|
38
|
ARF1 is directly involved in dynamin-independent endocytosis. Nat Cell Biol 2007; 10:30-41. [PMID: 18084285 DOI: 10.1038/ncb1666] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 11/29/2007] [Indexed: 12/20/2022]
Abstract
Endocytosis of glycosylphosphatidyl inositol (GPI)-anchored proteins (GPI-APs) and the fluid phase takes place primarily through a dynamin- and clathrin-independent, Cdc42-regulated pinocytic mechanism. This mechanism is mediated by primary carriers called clathrin-independent carriers (CLICs), which fuse to form tubular early endocytic compartments called GPI-AP enriched endosomal compartments (GEECs). Here, we show that reduction in activity or levels of ARF1 specifically inhibits GPI-AP and fluid-phase endocytosis without affecting other clathrin-dependent or independent endocytic pathways. ARF1 is activated at distinct sites on the plasma membrane, and by the recruitment of RhoGAP domain-containing protein, ARHGAP10, to the plasma membrane, modulates cell-surface Cdc42 dynamics. This results in the coupling of ARF1 and Cdc42 activity to regulate endocytosis at the plasma membrane. These findings provide a molecular basis for a crosstalk of endocytosis with secretion by the sharing of a key regulator of secretory traffic, ARF1.
Collapse
|
39
|
Viaud J, Zeghouf M, Barelli H, Zeeh JC, Padilla A, Guibert B, Chardin P, Royer CA, Cherfils J, Chavanieu A. Structure-based discovery of an inhibitor of Arf activation by Sec7 domains through targeting of protein-protein complexes. Proc Natl Acad Sci U S A 2007; 104:10370-5. [PMID: 17563369 PMCID: PMC1965520 DOI: 10.1073/pnas.0700773104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Indexed: 12/24/2022] Open
Abstract
Small molecules that produce nonfunctional protein-protein complexes are an alternative to competitive inhibitors for the inhibition of protein functions. Here we target the activation of the small GTP-binding protein Arf1, a major regulator of membrane traffic, by the Sec7 catalytic domain of its guanine nucleotide exchange factor ARNO. The crystal structure of the Arf1-GDP/ARNO complex, which initiates the exchange reaction, was used to discover an inhibitor, LM11, using in silico screening of a flexible pocket near the Arf1/ARNO interface. Using fluorescence kinetics and anisotropy, NMR spectroscopy and mutagenesis, we show that LM11 acts following a noncompetitive mechanism in which the inhibitor targets both Arf1-GDP and the Arf1-GDP/ARNO complex and produces a nonfunctional Arf-GDP/ARNO complex whose affinity is similar to that of the native complex. In addition, LM11 recognizes features of both Arf and ARNO near the Arf/Sec7 interface, a characteristic reminiscent of the paradigm interfacial inhibitor Brefeldin A. We then show that LM11 is a cell-active inhibitor that impairs Arf-dependent trafficking structures at the Golgi. Furthermore, LM11 inhibits ARNO-dependent migration of Madin-Darby canine kidney (MDCK) cells, demonstrating that ARNO is a target of LM11 in cells. Remarkably, LM11 inhibits the activation of Arf1 but not Arf6 in vitro, pointing to a possible synergy between Arf1 and Arf6 activation by ARNO in cell migration. Our design method shows that flexible regions in protein-protein complexes provide drugable sites with the potential to develop novel tools for investigating and inhibiting signaling pathways.
Collapse
Affiliation(s)
- Julien Viaud
- *Institut National de la Santé et de la Recherche Médicale, U554 and
- Université Montpellier 1 et 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - Mahel Zeghouf
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France; and
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique–Unité Mixte de Recherche 6097, 660 Route des Lucioles, 06560 Valbonne, France
| | - Jean-Christophe Zeeh
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France; and
| | - André Padilla
- *Institut National de la Santé et de la Recherche Médicale, U554 and
- Université Montpellier 1 et 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - Bernard Guibert
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France; and
| | - Pierre Chardin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique–Unité Mixte de Recherche 6097, 660 Route des Lucioles, 06560 Valbonne, France
| | - Catherine A. Royer
- *Institut National de la Santé et de la Recherche Médicale, U554 and
- Université Montpellier 1 et 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - Jacqueline Cherfils
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France; and
| | - Alain Chavanieu
- *Institut National de la Santé et de la Recherche Médicale, U554 and
- Université Montpellier 1 et 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, 34090 Montpellier, France
| |
Collapse
|
40
|
Abstract
To ensure that extracellular stimuli are translated into intracellular signals of appropriate magnitude and specificity, most signaling cascades are tightly regulated. One of the major mechanisms involved in the regulation of G protein-coupled receptors (GPCRs) involves their endocytic trafficking. GPCR endocytic trafficking entails the targeting of receptors to discrete endocytic sites at the plasma membrane, followed by receptor internalization and intracellular sorting. This regulates the level of cell surface receptors, the sorting of receptors to degradative or recycling pathways, and in some cases the specific signaling pathways. In this chapter we discuss the mechanisms that regulate receptor endocytic trafficking, emphasizing the role of GPCR kinases (GRKs) and arrestins in this process.
Collapse
Affiliation(s)
- Catherine A C Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
41
|
Cohen LA, Honda A, Varnai P, Brown FD, Balla T, Donaldson JG. Active Arf6 recruits ARNO/cytohesin GEFs to the PM by binding their PH domains. Mol Biol Cell 2007; 18:2244-53. [PMID: 17409355 PMCID: PMC1877112 DOI: 10.1091/mbc.e06-11-0998] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ARNO is a soluble guanine nucleotide exchange factor (GEF) for the Arf family of GTPases. Although in biochemical assays ARNO prefers Arf1 over Arf6 as a substrate, its localization in cells at the plasma membrane (PM) suggests an interaction with Arf6. In this study, we found that ARNO activated Arf1 in HeLa and COS-7 cells resulting in the recruitment of Arf1 on to dynamic PM ruffles. By contrast, Arf6 was activated less by ARNO than EFA6, a canonical Arf6 GEF. Remarkably, Arf6 in its GTP-bound form recruited ARNO to the PM and the two proteins could be immunoprecipitated. ARNO binding to Arf6 was not mediated through the catalytic Sec7 domain, but via the pleckstrin homology (PH) domain. Active Arf6 also bound the PH domain of Grp1, another ARNO family member. This interaction was direct and required both inositol phospholipids and GTP. We propose a model of sequential Arf activation at the PM whereby Arf6-GTP recruits ARNO family GEFs for further activation of other Arf isoforms.
Collapse
Affiliation(s)
- Lee Ann Cohen
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, and
| | - Akira Honda
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, and
| | - Peter Varnai
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Fraser D. Brown
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, and
| | - Tamas Balla
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Julie G. Donaldson
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, and
| |
Collapse
|
42
|
Grodnitzky JA, Syed N, Kimber MJ, Day TA, Donaldson JG, Hsu WH. Somatostatin receptors signal through EFA6A-ARF6 to activate phospholipase D in clonal beta-cells. J Biol Chem 2007; 282:13410-8. [PMID: 17353194 DOI: 10.1074/jbc.m701940200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Somatostatin (SS) is a peptide hormone that inhibits insulin secretion in beta-cells by activating its G(i/o)-coupled receptors. Our previous work indicated that a betagamma-dimer of G(i/o) coupled to SS receptors can activate phospholipase D1 (PLD1) (Cheng, H., Grodnitzky, J. A., Yibchok-anun, S., Ding, J., and Hsu, W. H. (2005) Mol. Pharmacol. 67, 2162-2172). The aim of the present study was to elucidate the mechanisms underlying SS-induced PLD activation. We demonstrated the presence of ADP-ribosylation factor Arf1 and Arf6 in clonal beta-cells, HIT-T15. We also determined that the activation of PLD1 was mediated through Arf6. Overexpression of dominant-negative (dn) Arf6 mutant, Arf6(T27N), and suppression of mRNA levels using siRNA, both abolished SS-induced PLD activation, while overexpression of wild type Arf6 further enhanced this PLD activation. In contrast, overexpression of dn-Arf1 mutant Arf1(T31N) or dn-Arf5 mutant Arf5(T31N) failed to reduce SS-induced PLD activation. These findings suggested that Arf6, but not Arf1 or Arf5, mediates the effect of SS. We further determined the involvement of the Arf6 guanine nucleotide exchange factor (GEF) EFA6A, a GEF previously thought to be found predominantly in the brain, in the activation of PLD1 in HIT-T15 cells. Using Northern and Western blot analyses, both mRNA and protein of EFA6A were found in these cells. Overexpression of dn-EFA6A mutant, EFA6A(E242K), and suppression of mRNA levels using siRNA, both abolished SS-induced PLD activation, whereas overexpression of dn-EFA6B mutant, EFA6B(E651K), failed to reduce SS-induced PLD activation. In addition, overexpression of dn-ARNO mutant, ARNO(E156K), another GEF of Arf6, had no effect on SS-induced activation of PLD. Taken together, these results suggest that SS signals through EFA6A to activate Arf6-PLD cascade.
Collapse
Affiliation(s)
- Justin A Grodnitzky
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
43
|
Shultz T, Nash-Livni N, Shmuel M, Altschuler Y. EFA6 regulates endosomal trafficking and affects early endosomes in polarized MDCK cells. Biochem Biophys Res Commun 2006; 351:106-12. [PMID: 17054918 DOI: 10.1016/j.bbrc.2006.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Accepted: 10/03/2006] [Indexed: 12/21/2022]
Abstract
The small-GTPase family of ADP ribosylation factors (ARFs) recruit coat proteins to promote vesicle budding. ARFs are activated by an association with sec7-containing exchange factors which load them with GTP. In epithelial cells, the small GTPase ARF6 operates within the endocytic system and has been shown to associate with ARNO to promote apical endocytosis and early to late endosomal trafficking. EFA6 has been shown to stimulate tight-junction formation and maintenance. Here, we show that in polarized epithelial MDCK cells, EFA6 is localized to early endosomes, causes their dramatic enlargement, and promotes basolateral targeting of IgA, which is normally targeted to the apical PM. These results suggest that the physiological function of ARF6 within the endocytic system is regulated by the exchange factor it associates with.
Collapse
Affiliation(s)
- Tamar Shultz
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
44
|
Perez-Mansilla B, Ha VL, Justin N, Wilkins AJ, Carpenter CL, Thomas GMH. The differential regulation of phosphatidylinositol 4-phosphate 5-kinases and phospholipase D1 by ADP-ribosylation factors 1 and 6. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1429-42. [PMID: 17071135 DOI: 10.1016/j.bbalip.2006.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 09/08/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Phosphatidylinositol 4-phosphate 5-kinases [PtdIns4P5Ks] synthesise the majority of cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and phospholipase D1 (PLD1) synthesises large amounts of phosphatidic acid (PtdOH). The activities of PtdIns4P5Ks and PLDs are thought to be coupled during cell signalling in order to support large simultaneous increases in both PtdIns(4,5)P(2) and PtdOH, since PtdOH activates PtdIns4P5Ks and PLD1 requires PtdIns(4,5)P(2) as a cofactor. However, little is known about the control of such a system. Membrane recruitment of ADP-ribosylation factors (Arfs) activates both PtdIns4P5Ks and PLDs, but it is not known if each enzyme is controlled in series by different Arfs or in parallel by a single form. We show through pull-down and vesicle sedimentation interaction assays that PtdIns4P5K activation may be facilitated by Arf-enhanced membrane association. However PtdIns4P5Ks discriminate poorly between near homogeneously myristoylated Arf1 and Arf6 although examples of all three known active isoforms (mouse alpha>beta, gamma) respond to these G-proteins. Conversely PLD1 genuinely prefers Arf1 and so the two lipid metabolising enzymes are differentially controlled. We propose that isoform selective Arf/PLD interaction and not Arf/PtdIns4P5K will be the critical trigger in the formation of distinct, optimal triples of Arf/PLDs/PtdIns4P5Ks and be the principle regulator of any coupled increases in the signalling lipids PtdIns(4,5)P(2) and PtdOH.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- Department of Physiology, University College London, Rockefeller Building, 21 University Street, London WC1E 6JJ, UK
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The ADP-ribosylation factor (ARF) small GTPases regulate vesicular traffic and organelle structure by recruiting coat proteins, regulating phospholipid metabolism and modulating the structure of actin at membrane surfaces. Recent advances in our understanding of the signalling pathways that are regulated by ARF1 and ARF6, two of the best characterized ARF proteins, provide a molecular context for ARF protein function in fundamental biological processes, such as secretion, endocytosis, phagocytosis, cytokinesis, cell adhesion and tumour-cell invasion.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences and the Walther Cancer Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| | | |
Collapse
|
46
|
|
47
|
Li M, Ng SSM, Wang J, Lai L, Leung SY, Franco M, Peng Y, He ML, Kung HF, Lin MCM. EFA6A enhances glioma cell invasion through ADP ribosylation factor 6/extracellular signal-regulated kinase signaling. Cancer Res 2006; 66:1583-90. [PMID: 16452216 DOI: 10.1158/0008-5472.can-05-2424] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
EFA6A, or Pleckstrin and Sec7 domain protein, is a member of guanine nucleotide exchange factors for ADP ribosylation factor 6 (ARF6). Whereas EFA6A is specifically expressed in the brain, little is known about its function in glial cells or glioma. Here we show that elevated EFA6A expression is detectable in both low-grade and high-grade human glioma tissues samples. To investigate the role of EFA6A in glioma carcinogenesis, we generated a human glioblastoma cell line which conditionally overexpresses EFA6A (U373-EFA6A). We showed that overexpression of EFA6A had no effect on cell proliferation, apoptosis, or cell cycle control. However, as shown by wound healing and in vitro cell invasion assays, it significantly enhanced the cell motility and invasiveness whereas silencing EFA6A by its dominant negative mutant EFA6A(E242K) produced opposite effects. We further showed that ARF6/extracellular signal-regulated kinase (ERK) signaling is required for the EFA6A-mediated cell invasion because both EFA6A(E242K) and ARF6 dominant negative mutant ARF6(T27N) markedly reduced the phosphorylated ERK level and EFA6A-mediated invasive capacity. Consistently, mitogen-activated protein kinase/ERK kinase inhibitor U0126 could abolish the EFA6A-induced cell invasion. These results suggest for the first time a potential role of EFA6A/ARF6/ERK signal cascade in glioma cell migration and invasion.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry, Open Laboratory of Chemical Biology, Institute of Molecular Technology for Drug Discovery and Synthesis, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zeeh JC, Zeghouf M, Grauffel C, Guibert B, Martin E, Dejaegere A, Cherfils J. Dual specificity of the interfacial inhibitor brefeldin a for arf proteins and sec7 domains. J Biol Chem 2006; 281:11805-14. [PMID: 16484231 DOI: 10.1074/jbc.m600149200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs), which activate small GTP-binding proteins (SMG) by stimulating their GDP/GTP exchange, are emerging as candidate targets for the inhibition of cellular pathways involved in diseases. However, their specific inhibition by competitive inhibitors is challenging, because GEF and SMG families comprise highly similar members. Nature shows us an alternative strategy called interfacial inhibition, exemplified by Brefeldin A (BFA). BFA inhibits the activation of Arf1 by its GEFs in vivo by stabilizing an abortive complex between Arf-GDP and the catalytic Sec7 domain of some of its GEFs. Here we characterize the specificity of BFA toward wild-type (ARNO and BIG1) and mutant Sec7 domains and toward class I, II, and III Arfs. We find that BFA sensitivity of the exchange reaction depends on the nature of both the Sec7 domain and the Arf protein. A single Phe/Tyr substitution is sufficient to achieve BFA sensitivity of the Sec7 domain, which is supported by our characterization of brefeldin C (BFC), a BFA analog that cannot interact with the Tyr residue, and by free energy computations. We further show that Arf1 and Arf5, but not Arf6, are BFA-sensitive, despite their having every BFA-interacting residue in common. Analysis of Arf6 mutants points to the dynamics of the interswitch, which is involved in membrane-to-nucleotide signal propagation, as contributing to, although not sufficient for, BFA sensitivity. Altogether, our results reveal the Tyr/Phe substitution as a novel tool for monitoring BFA sensitivity of cellular ArfGEFs and document the exquisite and dual specificity that can be achieved by an interfacial inhibitor.
Collapse
Affiliation(s)
- Jean-Christophe Zeeh
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Paleotti O, Macia E, Luton F, Klein S, Partisani M, Chardin P, Kirchhausen T, Franco M. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem 2005; 280:21661-6. [PMID: 15802264 DOI: 10.1074/jbc.m503099200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein ADP-ribosylation factor 6 (Arf6) is involved in plasma membrane/endosomes trafficking. However, precisely how the activation of Arf6 regulates vesicular transport is still unclear. Here, we show that, in vitro, recombinant Arf6GTP recruits purified clathrin-adaptor complex AP-2 (but not AP-1) onto phospholipid liposomes in the absence of phosphoinositides. We also show that phosphoinositides and Arf6 tightly cooperate to translocate AP-2 to the membrane. In vivo, Arf6GTP (but not Arf6GDP) was found associated to AP-2. The expression of the GTP-locked mutant of Arf6 leads to the plasma membrane redistribution of AP-2 in Arf6GTP-enriched areas. Finally, we demonstrated that the expression of the GTP-locked mutant of Arf6 inhibits transferrin receptor internalization without affecting its recycling. Altogether, our results demonstrated that Arf6GTP interacts specifically with AP-2 and promotes its membrane recruitment. These findings strongly suggest that Arf6 plays a major role in clathrin-mediated endocytosis by directly controlling the assembly of the AP-2/clathrin coat.
Collapse
Affiliation(s)
- Olivia Paleotti
- Institut de Pharmacologie Moleculaire et Cellulaire, CNRS-Unité Mixte de Recherche 6097, 660 Route des Lucioles, 06560 Valbonne Sophia-Antipolis, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dubois T, Paléotti O, Mironov AA, Fraisier V, Stradal TEB, De Matteis MA, Franco M, Chavrier P. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat Cell Biol 2005; 7:353-64. [PMID: 15793564 DOI: 10.1038/ncb1244] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/25/2005] [Indexed: 11/08/2022]
Abstract
The small GTP-binding ADP-ribosylation factor 1 (ARF1) acts as a master regulator of Golgi structure and function through the recruitment and activation of various downstream effectors. It has been proposed that members of the Rho family of small GTPases also control Golgi function in coordination with ARF1, possibly through the regulation of Arp2/3 complex and actin polymerization on Golgi membranes. Here, we identify ARHGAP10--a novel Rho GTPase-activating protein (Rho-GAP) that is recruited to Golgi membranes through binding to GTP-ARF1. We show that ARHGAP10 functions preferentially as a GAP for Cdc42 and regulates the Arp2/3 complex and F-actin dynamics at the Golgi through the control of Cdc42 activity. Our results establish a role for ARHGAP10 in Golgi structure and function at the crossroads between ARF1 and Cdc42 signalling pathways.
Collapse
Affiliation(s)
- Thierry Dubois
- Membrane and Cytoskeleton Dynamics Group, Institut Curie, CNRS-UMR144, 75248 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|