1
|
Chen Y, Li Z, Kong F, Ju LA, Zhu C. Force-Regulated Spontaneous Conformational Changes of Integrins α 5β 1 and α Vβ 3. ACS NANO 2024; 18:299-313. [PMID: 38105535 PMCID: PMC10786158 DOI: 10.1021/acsnano.3c06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Integrins are cell surface nanosized receptors crucial for cell motility and mechanosensing of the extracellular environment, which are often targeted for the development of biomaterials and nanomedicines. As a key feature of integrins, their activity, structure and behavior are highly mechanosensitive, which are regulated by mechanical forces down to pico-Newton scale. Using single-molecule biomechanical approaches, we compared the force-modulated ectodomain bending/unbending conformational changes of two integrin species, α5β1 and αVβ3. It was found that the conformation of integrin α5β1 is determined by a threshold head-to-tail tension. By comparison, integrin αVβ3 exhibits bistability even without force and can spontaneously transition between the bent and extended conformations with an apparent transition time under a wide range of forces. Molecular dynamics simulations observed almost concurrent disruption of ∼2 hydrogen bonds during integrin α5β1 unbending, but consecutive disruption of ∼7 hydrogen bonds during integrin αVβ3 unbending. Accordingly, we constructed a canonical energy landscape for integrin α5β1 with a single energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to allow the conformational transition. In contrast, the energy landscape of integrin αVβ3 conformational changes was constructed with hexa-stable intermediate states and intermediate energy barriers that segregate the conformational change process into multiple small steps. Our study elucidates the different biomechanical inner workings of integrins α5β1 and αVβ3 at the submolecular level, helps understand their mechanosignaling processes and how their respective functions are facilitated by their distinctive mechanosensitivities, and provides useful design principles for the engineering of protein-based biomechanical nanomachines.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Biochemistry and Molecular Biology and Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Zhenhai Li
- Shanghai
Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute
of Applied Mathematics and Mechanics, School of Mechanics and Engineering
Science, Shanghai University, Shanghai 200072, China
| | - Fang Kong
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Biological Science, Nanyang Technological
University, Singapore 637551, Singapore
| | - Lining Arnold Ju
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Biomedical Engineering, The University
of Sydney, Darlington, New South Wales 2008, Australia
- Charles
Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Chen Y, Kong F, Li Z, Ju LA, Zhu C. Force-regulated spontaneous conformational changes of integrins α 5 β 1 and α V β 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523308. [PMID: 36712101 PMCID: PMC9881988 DOI: 10.1101/2023.01.09.523308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Force can modulate the properties and functions of macromolecules by inducing conformational changes, such as coiling/uncoiling, zipping/unzipping, and folding/unfolding. Here we compared force-modulated bending/unbending of two purified integrin ectodomains, α 5 β 1 and α V β 3 , using single-molecule approaches. Similar to previously characterized mechano-sensitive macromolecules, the conformation of α 5 β 1 is determined by a threshold head-to-tail tension, suggesting a canonical energy landscape with a deep energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to accelerate transition to the extended state. By comparison, α V β 3 exhibits bi-stability even without force and can spontaneously transition between the bent and extended conformations in a wide range of forces without energy supplies. Molecular dynamics simulations revealed consecutive formation and disruption of 7 hydrogen bonds during α V β 3 bending and unbending, respectively. Accordingly, we constructed an energy landscape with hexa-stable intermediate states to break down the energy barrier separating the bent and extended states into smaller ones, making it possible for the thermal agitation energy to overcome them sequentially and to be accumulated and converted into mechanical work required for α V β 3 to bend against force. Our study elucidates the different inner workings of α 5 β 1 and α V β 3 at the sub-molecular level, sheds lights on how their respectively functions are facilitated by their distinctive mechano-sensitivities, helps understand their signal initiation processes, and provides critical concepts and useful design principles for engineering of protein-based biomechanical nanomachines.
Collapse
|
3
|
Fechter P, Cruz Da Silva E, Mercier MC, Noulet F, Etienne-Seloum N, Guenot D, Lehmann M, Vauchelles R, Martin S, Lelong-Rebel I, Ray AM, Seguin C, Dontenwill M, Choulier L. RNA Aptamers Targeting Integrin α5β1 as Probes for Cyto- and Histofluorescence in Glioblastoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:63-77. [PMID: 31226519 PMCID: PMC6586995 DOI: 10.1016/j.omtn.2019.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Nucleic acid aptamers are often referred to as chemical antibodies. Because they possess several advantages, like their smaller size, temperature stability, ease of chemical modification, lack of immunogenicity and toxicity, and lower cost of production, aptamers are promising tools for clinical applications. Aptamers against cell surface protein biomarkers are of particular interest for cancer diagnosis and targeted therapy. In this study, we identified and characterized RNA aptamers targeting cells expressing integrin α5β1. This αβ heterodimeric cell surface receptor is implicated in tumor angiogenesis and solid tumor aggressiveness. In glioblastoma, integrin α5β1 expression is associated with an aggressive phenotype and a decrease in patient survival. We used a complex and original hybrid SELEX (selective evolution of ligands by exponential enrichment) strategy combining protein-SELEX cycles on the recombinant α5β1 protein, surrounded by cell-SELEX cycles using two different cell lines. We identified aptamer H02, able to differentiate, in cyto- and histofluorescence assays, glioblastoma cell lines, and tissues from patient-derived tumor xenografts according to their α5 expression levels. Aptamer H02 is therefore an interesting tool for glioblastoma tumor characterization.
Collapse
Affiliation(s)
- Pierre Fechter
- CNRS, UMR 7242, Biotechnologie et Signalisation Cellulaire, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Fanny Noulet
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Nelly Etienne-Seloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; Département de Pharmacie, Centre de Lutte Contre le Cancer Paul Strauss, 67000 Strasbourg, France
| | - Dominique Guenot
- EA 3430, Progression Tumorale et Micro-environnement, Approches Translationnelles et Épidémiologie, Université de Strasbourg, 67000 Strasbourg, France
| | - Maxime Lehmann
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Romain Vauchelles
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Sophie Martin
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Isabelle Lelong-Rebel
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Anne-Marie Ray
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Cendrine Seguin
- CNRS, UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France.
| |
Collapse
|
4
|
Burgos-Bravo F, Figueroa NL, Casanova-Morales N, Quest AFG, Wilson CAM, Leyton L. Single-molecule measurements of the effect of force on Thy-1/αvβ3-integrin interaction using nonpurified proteins. Mol Biol Cell 2017; 29:326-338. [PMID: 29212879 PMCID: PMC5996956 DOI: 10.1091/mbc.e17-03-0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/10/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
Single-molecule measurements combined with a novel mathematical strategy were applied to accurately characterize how bimolecular interactions respond to mechanical force, especially when protein purification is not possible. Specifically, we studied the effect of force on Thy-1/αvβ3 integrin interaction, a mediator of neuron-astrocyte communication. Thy-1 and αvβ3 integrin mediate bidirectional cell-to-cell communication between neurons and astrocytes. Thy-1/αvβ3 interactions stimulate astrocyte migration and the retraction of neuronal prolongations, both processes in which internal forces are generated affecting the bimolecular interactions that maintain cell–cell adhesion. Nonetheless, how the Thy-1/αvβ3 interactions respond to mechanical cues is an unresolved issue. In this study, optical tweezers were used as a single-molecule force transducer, and the Dudko-Hummer-Szabo model was applied to calculate the kinetic parameters of Thy-1/αvβ3 dissociation. A novel experimental strategy was implemented to analyze the interaction of Thy-1-Fc with nonpurified αvβ3-Fc integrin, whereby nonspecific rupture events were corrected by using a new mathematical approach. This methodology permitted accurately estimating specific rupture forces for Thy-1-Fc/αvβ3-Fc dissociation and calculating the kinetic and transition state parameters. Force exponentially accelerated Thy-1/αvβ3 dissociation, indicating slip bond behavior. Importantly, nonspecific interactions were detected even for purified proteins, highlighting the importance of correcting for such interactions. In conclusion, we describe a new strategy to characterize the response of bimolecular interactions to forces even in the presence of nonspecific binding events. By defining how force regulates Thy-1/αvβ3 integrin binding, we provide an initial step towards understanding how the neuron–astrocyte pair senses and responds to mechanical cues.
Collapse
Affiliation(s)
- Francesca Burgos-Bravo
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Nataniel L Figueroa
- Physics Department, Pontificia Universidad Católica de Chile, 782-0436 Santiago, Chile
| | - Nathalie Casanova-Morales
- Biochemistry and Molecular Biology Department, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 838-0494 Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 838-0494 Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile .,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| |
Collapse
|
5
|
Mould AP, Askari JA, Byron A, Takada Y, Jowitt TA, Humphries MJ. Ligand-induced Epitope Masking: DISSOCIATION OF INTEGRIN α5β1-FIBRONECTIN COMPLEXES ONLY BY MONOCLONAL ANTIBODIES WITH AN ALLOSTERIC MODE OF ACTION. J Biol Chem 2016; 291:20993-21007. [PMID: 27484800 PMCID: PMC5076510 DOI: 10.1074/jbc.m116.736942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/29/2016] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking.
Collapse
Affiliation(s)
- A Paul Mould
- From the Biomolecular Analysis Core Facility and
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Adam Byron
- the Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom, and
| | - Yoshikazu Takada
- the Department of Vascular Biology, VB-1, The Scripps Research Institute, La Jolla, California 92037
| | | | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom,
| |
Collapse
|
6
|
Liang X, Garcia BL, Visai L, Prabhakaran S, Meenan NAG, Potts JR, Humphries MJ, Höök M. Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs. PLoS One 2016; 11:e0159118. [PMID: 27434228 PMCID: PMC4951027 DOI: 10.1371/journal.pone.0159118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/27/2016] [Indexed: 12/03/2022] Open
Abstract
Adherence of microbes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with α5β1 integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/α5β1integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/α5β1 integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/α5β1 on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic α5β1 interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/α5β1 affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs.
Collapse
Affiliation(s)
- Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | - Brandon L. Garcia
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | - Livia Visai
- Dep. of Molecular Medicine, UdR INSTM, Center for Tissue Engineering (C.I.T.), University of Pavia, 27100, Pavia, Italy
- Dep. of Occupational Medicine, Ergonomy and Disability, Salvatore Maugeri Foundation, IRCCS, Nanotechnology Laboratory, 27100, Pavia, Italy
| | - Sabitha Prabhakaran
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | | | - Jennifer R. Potts
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hubbard B, Buczek-Thomas JA, Nugent MA, Smith ML. Fibronectin Fiber Extension Decreases Cell Spreading and Migration. J Cell Physiol 2015; 231:1728-36. [DOI: 10.1002/jcp.25271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Brant Hubbard
- Molecular Biology; Cell Biology & Biochemistry Program; Boston University; Boston Massachusetts
| | | | - Matthew A. Nugent
- Department of Biomedical Engineering; Boston University; Boston Massachusetts
- Department of Biochemistry; Boston University School of Medicine; Boston Massachusetts
- Department of Biological Sciences; University of Massachusetts Lowell; Lowell Massachusetts
| | - Michael L. Smith
- Department of Biomedical Engineering; Boston University; Boston Massachusetts
| |
Collapse
|
8
|
Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors. Biochem J 2015; 464:301-13. [PMID: 25333419 DOI: 10.1042/bj20141047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.
Collapse
|
9
|
Abstract
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodelling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or 'primed', or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins, have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAbs) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease.
Collapse
Affiliation(s)
- M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
10
|
Fiore VF, Ju L, Chen Y, Zhu C, Barker TH. Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nat Commun 2014; 5:4886. [DOI: 10.1038/ncomms5886] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023] Open
|
11
|
Affiliation(s)
- M. W. Johansson
- Department of Biomolecular Chemistry; University of Wisconsin; Madison WI USA
| |
Collapse
|
12
|
Johansson MW, Mosher DF. Integrin activation States and eosinophil recruitment in asthma. Front Pharmacol 2013; 4:33. [PMID: 23554594 PMCID: PMC3612688 DOI: 10.3389/fphar.2013.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022] Open
Abstract
Eosinophil arrest and recruitment to the airway in asthma are mediated, at least in part, by integrins. Eosinophils express α4β1, α6β1, αLβ2, αMβ2, αXβ2, αDβ2, and α4β7 integrins, which interact with counter-receptors on other cells or ligands in the extracellular matrix. Whether a given integrin-ligand pair mediates cell adhesion and migration depends on the activation state of the integrin. Integrins exist in an inactive bent, an intermediate-activity extended closed, and a high-activity extended open conformation. Integrin activation states can be monitored by conformation-specific monoclonal antibodies (mAbs). Studies in mice indicate that both β1 and β2 integrins mediate eosinophil recruitment to the lung. In vitro studies indicate that α4β1 and αMβ2 are the principal integrins mediating eosinophil adhesion, including to vascular cell adhesion molecule-1 and the novel αMβ2 ligand periostin. In vivo, blood eosinophils have intermediate-activity β1 integrins, as judged by mAb N29, apparently resulting from eosinophil binding of P-selectin on the surface of activated platelets, and have a proportion of their β2 integrins in the intermediate conformation, as judged by mAb KIM-127, apparently due to exposure to low concentrations of interleukin-5 (IL-5). Airway eosinophils recovered by bronchoalveolar lavage (BAL) after segmental antigen challenge have high-activity β1 integrins and high-activity αMβ2 that does not require IL-5. Here we review information on how the activation states of eosinophil β1 and β2 integrins correlate with measurements of eosinophil recruitment and pulmonary function in asthma. Blood eosinophil N29 reactivity is associated with decreased lung function under various circumstances in non-severe asthma and KIM-127 with BAL eosinophil numbers, indicating that intermediate-activity α4β1 and αMβ2 of blood eosinophils are important for eosinophil arrest and consequently for recruitment and aspects of asthma.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
13
|
Kong F, Li Z, Parks WM, Dumbauld DW, García AJ, Mould AP, Humphries MJ, Zhu C. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol Cell 2013; 49:1060-8. [PMID: 23416109 PMCID: PMC3615084 DOI: 10.1016/j.molcel.2013.01.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 11/12/2012] [Accepted: 01/11/2013] [Indexed: 12/11/2022]
Abstract
Cells regulate adhesion in response to internally generated and externally applied forces. Integrins connect the extracellular matrix to the cytoskeleton and provide cells with mechanical anchorages and signaling platforms. Here we show that cyclic forces applied to a fibronectin-integrin α5β1 bond switch the bond from a short-lived state with 1 s lifetime to a long-lived state with 100 s lifetime. We term this phenomenon "cyclic mechanical reinforcement," as the bond strength remembers the history of force application and accumulates over repeated cycles, but does not require force to be sustained. Cyclic mechanical reinforcement strengthens the fibronectin-integrin α5β1 bond through the RGD binding site of the ligand with the synergy binding site greatly facilitating the process. A flexible integrin hybrid domain is also important for cyclic mechanical reinforcement. Our results reveal a mechanical regulation of receptor-ligand interactions and identify a molecular mechanism for cell adhesion strengthening by cyclic forces.
Collapse
Affiliation(s)
- Fang Kong
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zhenhai Li
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - William M. Parks
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David W. Dumbauld
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - A. Paul Mould
- Welcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, England, UK
| | - Martin J. Humphries
- Welcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, England, UK
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Li N, Mao D, Lü S, Tong C, Zhang Y, Long M. Distinct binding affinities of Mac-1 and LFA-1 in neutrophil activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4371-81. [PMID: 23514737 DOI: 10.4049/jimmunol.1201374] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Macrophage-1 Ag (Mac-1) and lymphocyte function-associated Ag-1 (LFA-1), two β2 integrins expressed on neutrophils (PMNs), mediate PMN recruitment cascade by binding to intercellular adhesive molecule 1. Distinct functions of LFA-1-initiating PMN slow rolling and firm adhesion but Mac-1-mediating cell crawling are assumed to be governed by the differences in their binding affinities and kinetic rates. In this study, we applied an adhesion frequency approach to compare their kinetics in the quiescent and activated states using three molecular systems, constitutively expressed receptors on PMNs, wild-type and high-affinity (HA) full-length constructs transfected on 293T cells, and wild-type and HA recombinant extracellular constructs. Data indicate that the difference in binding affinity between Mac-1 and LFA-1 is on-rate dominated with slightly or moderately varied off-rate. This finding was further confirmed when both β2 integrins were activated by chemokines (fMLF or IL-8), divalent cations (Mg(2+) or Mn(2+)), or disulfide bond lockage on an HA state. Structural analyses reveal that such the kinetics difference is likely attributed to the distinct conformations at the interface of Mac-1 or LFA-1 and intercellular adhesive molecule 1. This work furthers the understandings in the kinetic differences between Mac-1 and LFA-1 and in their biological correlations with molecular activation and structural bases.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Microgravity (National Microgravity Laboratory) and Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
15
|
Targeting of α(v)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia 2011; 13:516-25. [PMID: 21677875 DOI: 10.1593/neo.11122] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 02/03/2023] Open
Abstract
Acquisition of an invasive phenotype by cancer cells is a requirement for bone metastasis. Transformed epithelial cells can switch to a motile, mesenchymal phenotype by epithelial-mesenchymal transition (EMT). Recently, it has been shown that EMT is functionally linked to prostate cancer stem cells, which are not only critically involved in prostate cancer maintenance but also in bone metastasis. We showed that treatment with the non-peptide α(v)-integrin antagonist GLPG0187 dose-dependently increased the E-cadherin/vimentin ratio, rendering the cells a more epithelial, sessile phenotype. In addition, GLPG0187 dose-dependently diminished the size of the aldehyde dehydrogenase high subpopulation of prostate cancer cells, suggesting that α(v)-integrin plays an important role in maintaining the prostate cancer stem/progenitor pool. Our data show that GLPG0187 is a potent inhibitor of osteoclastic bone resorption and angiogenesis in vitro and in vivo. Real-time bioluminescent imaging in preclinical models of prostate cancer demonstrated that blocking α(v)-integrins by GLPG0187 markedly reduced their metastatic tumor growth according to preventive and curative protocols. Bone tumor burden was significantly lower in the preventive protocol. In addition, the number of bone metastases/mouse was significantly inhibited. In the curative protocol, the progression of bone metastases and the formation of new bone metastases during the treatment period was significantly inhibited. In conclusion, we demonstrate that targeting of integrins by GLPG0187 can inhibit the de novo formation and progression of bone metastases in prostate cancer by antitumor (including inhibition of EMT and the size of the prostate cancer stem cell population), antiresorptive, and antiangiogenic mechanisms.
Collapse
|
16
|
Johansson MW, Mosher DF. Activation of beta1 integrins on blood eosinophils by P-selectin. Am J Respir Cell Mol Biol 2011; 45:889-97. [PMID: 21441381 DOI: 10.1165/rcmb.2010-0402oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of β(1) integrins of blood eosinophils, assessed by mAb N29, correlates inversely with FEV(1) in two paradigms for studying control of human asthma. We asked whether P-selectin causes eosinophil β(1) integrin activation and results in increased adhesivity. By dual-label flow cytometry, eosinophils with high levels of surface-associated P-selectin had higher reactivity with the activation-sensitive anti-β(1) mAbs N29, 8E3, and 9EG7 than eosinophils with no or with a low-level of surface-associated P-selectin. Among patients with nonsevere asthma, surface P-selectin correlated with N29, 8E3, and 9EG7 signals. By immunofluorescence microscopy, surface-associated P-selectin was present in patches on eosinophils, some of which stained for the platelet marker thrombospondin-1. Activated β(1) and P-selectin partially colocalized on eosinophils. Soluble P-selectin added to whole blood enhanced activation of eosinophil β(1), but not β(2), integrins. In contrast, IL-5 activated eosinophil β(2), but not β(1), integrins. Eosinophils that did not attach to vascular cell adhesion molecule-1 (VCAM-1) in a static adhesion assay had a lower N29 signal than the original population. Soluble P-selectin added to whole blood enhanced eosinophil adhesion to VCAM-1. These findings are compatible with a scenario whereby P-selectin, on eosinophil-associated activated platelets or acquired from plasma or from prior interactions with endothelial cells or platelets, activates eosinophil α(4)β(1) integrin and stimulates eosinophils to adhere to VCAM-1 and move to the airway in asthma.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, 4285A, Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
17
|
Hoshino H, Kobayashi M, Mitoma J, Sato Y, Fukuda M, Nakayama J. An integrin alpha4beta7•IgG heterodimeric chimera binds to MAdCAM-1 on high endothelial venules in gut-associated lymphoid tissue. J Histochem Cytochem 2011; 59:572-83. [PMID: 21430257 DOI: 10.1369/0022155411404416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphocyte homing is regulated by a multistep process mediated by sequential adhesive interactions between circulating lymphocytes and high endothelial venules (HEVs). In gut-associated lymphoid tissue (GALT), the initial interactive step, "tethering and rolling," is partly mediated by integrin α4β7 expressed on GALT-homing lymphocytes and its ligand MAdCAM-1, which is exclusively expressed on HEVs in GALT. To probe functional MAdCAM-1 in tissue sections, we developed a soluble integrin α4β7 heterodimeric IgG chimera by joining the extracellular region of mouse integrin α4 and β7 subunits to a human IgG Fc domain. Western blot analysis revealed that co-transfection of HEK 293T cells with expression vectors encoding integrin α4•IgG and β7•IgG results in the formation of α4β7•IgG heterodimeric chimeras. This complex preferentially binds to CHO cells expressing MAdCAM-1 and, to a lesser extent, to cells expressing VCAM-1, but not to cells expressing ICAM-1. Moreover, α4β7•IgG specifically binds to HEVs in GALT in situ in a divalent cation-dependent fashion and inhibits lymphocyte binding to HEVs in GALT. These findings indicate that α4β7•IgG can be used as a probe for functional MAdCAM-1 expressed on HEVs in GALT and could potentially serve as an anti-inflammatory drug inhibiting GALT-specific lymphocyte migration.
Collapse
Affiliation(s)
- Hitomi Hoshino
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Siebert HC, Burg-Roderfeld M, Eckert T, Stötzel S, Kirch U, Diercks T, Humphries MJ, Frank M, Wechselberger R, Tajkhorshid E, Oesser S. Interaction of the α2A domain of integrin with small collagen fragments. Protein Cell 2010; 1:393-405. [PMID: 21203951 DOI: 10.1007/s13238-010-0038-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/27/2010] [Indexed: 11/29/2022] Open
Abstract
We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of single and triple-helical strands of the collagen fragments was scrutinized with atom force microscopy (AFM) techniques. Strong interactions of the triple-stranded fragments comparable to those of collagen can only be detected for the 42mer triple-helical collagen-like peptide under study (which contains 42 amino acid residues per strand) by solid phase assays as well as by surface plasmon resonance (SPR) measurements. However, changes in NMR signals during titration and characteristic saturation transfer difference (STD) NMR signals are also detectable when α2A is added to a solution of the 21mer single-stranded collagen fragment. Molecular dynamics (MD) simulations employing different sets of force field parameters were applied to study the interaction between triple-helical or single-stranded collagen fragments with α2A. It is remarkable that even single-stranded collagen fragments can form various complexes with α2A showing significant differences in the complex stability with identical ligands. The results of MD simulations are in agreement with the signal alterations in our NMR experiments, which are indicative of the formation of weak complexes between single-stranded collagen and α2A in solution. These results provide useful information concerning possible interactions of α2A with small collagen fragments that are of relevance to the design of novel therapeutic A-domain inhibitors.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany.
| | - Monika Burg-Roderfeld
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Thomas Eckert
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Sabine Stötzel
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Ulrike Kirch
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Tammo Diercks
- CiC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160, Derio, Spain.,Utrecht Facility for High-resolution NMR, Bijvoetcenter for Biomolecular Research Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Frank
- Molecular Structure Analysis Core Facility, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Rainer Wechselberger
- Utrecht Facility for High-resolution NMR, Bijvoetcenter for Biomolecular Research Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steffen Oesser
- Collagen Research Institute, Schauenburgerstr. 116, D-24118, Kiel, Germany
| |
Collapse
|
19
|
Askari JA, Tynan CJ, Webb SED, Martin-Fernandez ML, Ballestrem C, Humphries MJ. Focal adhesions are sites of integrin extension. ACTA ACUST UNITED AC 2010; 188:891-903. [PMID: 20231384 PMCID: PMC2845069 DOI: 10.1083/jcb.200907174] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
FRET experiments model integrin conformation changes in adherent cells. Integrins undergo global conformational changes that specify their activation state. Current models portray the inactive receptor in a bent conformation that upon activation converts to a fully extended form in which the integrin subunit leg regions are separated to enable ligand binding and subsequent signaling. To test the applicability of this model in adherent cells, we used a fluorescent resonance energy transfer (FRET)–based approach, in combination with engineered integrin mutants and monoclonal antibody reporters, to image integrin α5β1 conformation. We find that restricting leg separation causes the integrin to adopt a bent conformation that is unable to respond to agonists and mediate cell spreading. By measuring FRET between labeled α5β1 and the cell membrane, we find extended receptors are enriched in focal adhesions compared with adjacent regions of the plasma membrane. These results demonstrate definitely that major quaternary rearrangements of β1-integrin subunits occur in adherent cells and that conversion from a bent to extended form takes place at focal adhesions.
Collapse
Affiliation(s)
- Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | | | | | | | | | | |
Collapse
|
20
|
Mould AP, Koper E, Byron A, Zahn G, Humphries MJ. Mapping the ligand-binding pocket of integrin alpha5beta1 using a gain-of-function approach. Biochem J 2009; 424:179-89. [PMID: 19747169 PMCID: PMC3329623 DOI: 10.1042/bj20090992] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Integrin alpha5beta1 is a key receptor for the extracellular matrix protein fibronectin. Antagonists of human integrin alpha5beta1 have therapeutic potential as anti-angiogenic agents in cancer and diseases of the eye. However, the structure of the integrin is unsolved and the atomic basis of fibronectin and antagonist binding by integrin alpha5beta1 is poorly understood. In the present study, we demonstrate that zebrafish alpha5beta1 integrins do not interact with human fibronectin or the human alpha5beta1 antagonists JSM6427 and cyclic peptide CRRETAWAC. Zebrafish alpha5beta1 integrins do bind zebrafish fibronectin-1, and mutagenesis of residues on the upper surface and side of the zebrafish alpha5 subunit beta-propeller domain shows that these residues are important for the recognition of the Arg-Gly-Asp (RGD) motif and the synergy sequence [Pro-His-Ser-Arg-Asn (PHSRN)] in fibronectin. Using a gain-of-function analysis involving swapping regions of the zebrafish integrin alpha5 subunit with the corresponding regions of human alpha5 we show that blades 1-4 of the beta-propeller are required for human fibronectin recognition, suggesting that fibronectin binding involves a broad interface on the side and upper face of the beta-propeller domain. We find that the loop connecting blades 2 and 3 of the beta-propeller, the D3-A3 loop, contains residues critical for antagonist recognition, with a minor role played by residues in neighbouring loops. A new homology model of human integrin alpha5beta1 supports an important function for D3-A3 loop residues Trp157 and Ala158 in the binding of antagonists. These results will aid the development of reagents that block integrin alpha5beta1 functions in vivo.
Collapse
Affiliation(s)
- A. Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ewa Koper
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
21
|
Jülich D, Mould AP, Koper E, Holley SA. Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development 2009; 136:2913-21. [PMID: 19641014 DOI: 10.1242/dev.038935] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs) coat and subdivide animal tissues, but it is unclear how ECM formation is restricted to tissue surfaces and specific cell interfaces. During zebrafish somite morphogenesis, segmental assembly of an ECM composed of Fibronectin (FN) depends on the FN receptor Integrin alpha5beta1. Using in vivo imaging and genetic mosaics, our studies suggest that incipient Itgalpha5 clustering along the nascent border precedes matrix formation and is independent of FN binding. Integrin clustering can be initiated by Eph/Ephrin signaling, with Ephrin reverse signaling being sufficient for clustering. Prior to activation, Itgalpha5 expressed on adjacent cells reciprocally and non-cell-autonomously inhibits spontaneous Integrin clustering and assembly of an ECM. Surface derepression of this inhibition provides a self-organizing mechanism for the formation and maintenance of ECM along the tissue surface. Within the tissue, interplay between Eph/Ephrin signaling, ligand-independent Integrin clustering and reciprocal Integrin inhibition restricts de novo ECM production to somite boundaries.
Collapse
Affiliation(s)
- Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
22
|
Bass R, Wagstaff L, Ravenhill L, Ellis V. Binding of extracellular maspin to beta1 integrins inhibits vascular smooth muscle cell migration. J Biol Chem 2009; 284:27712-20. [PMID: 19638634 DOI: 10.1074/jbc.m109.038919] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the beta1 integrin subunit, and subsequently both alpha3beta1 and alpha5beta1, but not alphavbeta3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to alpha5beta1 was confirmed using a recombinant alpha5beta1-Fc fusion protein. Using conformation-dependent anti-beta1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of alpha5beta1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human alpha5 integrin, but not those lacking alpha5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment.
Collapse
Affiliation(s)
- Rosemary Bass
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
23
|
Kong F, García AJ, Mould AP, Humphries MJ, Zhu C. Demonstration of catch bonds between an integrin and its ligand. ACTA ACUST UNITED AC 2009; 185:1275-84. [PMID: 19564406 PMCID: PMC2712956 DOI: 10.1083/jcb.200810002] [Citation(s) in RCA: 510] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Binding of integrins to ligands provides anchorage and signals for the cell, making them prime candidates for mechanosensing molecules. How force regulates integrin-ligand dissociation is unclear. We used atomic force microscopy to measure the force-dependent lifetimes of single bonds between a fibronectin fragment and an integrin alpha(5)beta(1)-Fc fusion protein or membrane alpha(5)beta(1). Force prolonged bond lifetimes in the 10-30-pN range, a counterintuitive behavior called catch bonds. Changing cations from Ca(2+)/Mg(2+) to Mg(2+)/EGTA and to Mn(2+) caused longer lifetime in the same 10-30-pN catch bond region. A truncated alpha(5)beta(1) construct containing the headpiece but not the legs formed longer-lived catch bonds that were not affected by cation changes at forces <30 pN. Binding of monoclonal antibodies that induce the active conformation of the integrin headpiece shifted catch bonds to a lower force range. Thus, catch bond formation appears to involve force-assisted activation of the headpiece but not integrin extension.
Collapse
Affiliation(s)
- Fang Kong
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
24
|
Faye C, Moreau C, Chautard E, Jetne R, Fukai N, Ruggiero F, Humphries MJ, Olsen BR, Ricard-Blum S. Molecular interplay between endostatin, integrins, and heparan sulfate. J Biol Chem 2009; 284:22029-22040. [PMID: 19502598 DOI: 10.1074/jbc.m109.002840] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endostatin is an endogenous inhibitor of angiogenesis. Although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanism of action is not fully elucidated. We used surface plasmon resonance assays to characterize interactions between endostatin, integrins, and heparin/heparan sulfate. alpha5beta1 and alphavbeta3 integrins form stable complexes with immobilized endostatin (KD=approximately 1.8x10(-8) M, two-state model). Two arginine residues (Arg27 and Arg139) are crucial for the binding of endostatin to integrins and to heparin/heparan sulfate, suggesting that endostatin would not bind simultaneously to integrins and to heparan sulfate. Experimental data and molecular modeling support endostatin binding to the headpiece of the alphavbeta3 integrin at the interface between the beta-propeller domain of the alphav subunit and the betaA domain of the beta3 subunit. In addition, we report that alpha5beta1 and alphavbeta3 integrins bind to heparin/heparan sulfate. The ectodomain of the alpha5beta1 integrin binds to haparin with high affinity (KD=15.5 nM). The direct binding between integrins and heparin/heparan sulfate might explain why both heparan sulfate and alpha5beta1 integrin are required for the localization of endostatin in endothelial cell lipid rafts.
Collapse
Affiliation(s)
- Clément Faye
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Moreau
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Emilie Chautard
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Reidunn Jetne
- Department of Developmental Biology, Harvard School of Dental Medicine and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Naomi Fukai
- Department of Developmental Biology, Harvard School of Dental Medicine and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Florence Ruggiero
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| |
Collapse
|
25
|
Mahoney CM, Morgan MR, Harrison A, Humphries MJ, Bass MD. Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J Biol Chem 2009; 284:8898-909. [PMID: 19147498 PMCID: PMC2659247 DOI: 10.1074/jbc.m804281200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 01/06/2009] [Indexed: 11/06/2022] Open
Abstract
The application of pulsed, low intensity ultrasound is emerging as a potent therapy for the treatment of complex bone fractures and tissue damage. Ultrasonic stimuli accelerate fracture healing by up to 40% and enhance tendon and ligament healing by promoting cell proliferation, migration, and matrix synthesis through an unresolved mechanism. Ultrasound treatment also induces closure of nonunion fractures, at a success rate (85% of cases) similar to that of surgical intervention (68-96%) while avoiding the complications associated with surgery. The regulation of cell adhesion necessary for wound healing depends on cooperative engagement of the extracellular matrix receptors, integrin and syndecan, as exemplified by the wound healing defects observed in syndecan- and integrin-knock-out mice. This report distinguishes the influence of ultrasound on signals downstream of the prototypic fibronectin receptors, alpha(5)beta(1) integrin and syndecan-4, which cooperate to regulate Rac1 and RhoA. Ultrasonic stimulation fails to activate integrins or induce cell spreading on poor, electrostatic ligands. By contrast, ultrasound treatment overcomes the necessity of engagement or expression of syndecan-4 during the process of focal adhesion formation, which normally requires simultaneous engagement of both receptors. Ultrasound exerts an influence downstream of syndecan-4 and PKCalpha to specifically activate Rac1, itself a critical regulator of tissue repair, and to a lesser extent RhoA. The ability of ultrasound to bypass syndecan-4 signaling, which is known to facilitate efficient tissue repair, explains the reduction in healing times observed in ultrasound-treated patients. By substituting for one of the key axes of adhesion-dependent signaling, ultrasound therapy has considerable potential as a clinical technique.
Collapse
Affiliation(s)
- Claire M Mahoney
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom and Smith and Nephew, York Science Park, Heslington, York YO10 5DF, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Isaji T, Sato Y, Fukuda T, Gu J. N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. J Biol Chem 2009; 284:12207-16. [PMID: 19261610 DOI: 10.1074/jbc.m807920200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
N-Glycosylation of integrin alpha5beta1 plays a crucial role in cell spreading, cell migration, ligand binding, and dimer formation, but the detailed mechanisms by which N-glycosylation mediates these functions remain unclear. In a previous study, we showed that three potential N-glycosylation sites (alpha5S3-5) on the beta-propeller of the alpha5 subunit are essential to the functional expression of the subunit. In particular, site 5 (alpha5S5) is the most important for its expression on the cell surface. In this study, the function of the N-glycans on the integrin beta1 subunit was investigated using sequential site-directed mutagenesis to remove the combined putative N-glycosylation sites. Removal of the N-glycosylation sites on the I-like domain of the beta1 subunit (i.e. the Delta4-6 mutant) decreased both the level of expression and heterodimeric formation, resulting in inhibition of cell spreading. Interestingly, cell spreading was observed only when the beta1 subunit possessed these three N-glycosylation sites (i.e. the S4-6 mutant). Furthermore, the S4-6 mutant could form heterodimers with either alpha5S3-5 or alpha5S5 mutant of the alpha5 subunit. Taken together, the results of the present study reveal for the first time that N-glycosylation of the I-like domain of the beta1 subunit is essential to both the heterodimer formation and biological function of the subunit. Moreover, because the alpha5S3-5/beta1S4-6 mutant represents the minimal N-glycosylation required for functional expression of the beta1 subunit, it might also be useful for the study of molecular structures.
Collapse
Affiliation(s)
- Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | |
Collapse
|
27
|
Boucher C, St-Laurent G, Loignon M, Jolicoeur M, De Crescenzo G, Durocher Y. The bioactivity and receptor affinity of recombinant tagged EGF designed for tissue engineering applications is defined by the nature and position of the tags. Tissue Eng Part A 2009; 14:2069-77. [PMID: 18652537 DOI: 10.1089/ten.tea.2008.0037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For tissue engineering applications, growth factor immobilization on cell culture scaffolds bears the potential to stimulate cell proliferation while minimizing costs associated to soluble growth factor supply. In order to evaluate the potential of a de novo-designed heterodimerization peptide pair, namely the E and K coils, for epidermal growth factor (EGF) grafting on various scaffolds, production of coil-tagged EGF chimeras using a mammalian cell expression system as well as their purification have been performed. The influence of the type of coil (E or K) upon EGF bioactivity, assessed in an in vitro cell assay, was compared to that of the fragment crystallizable (Fc) domain of immunoglobulin G by monitoring phosphorylation of EGF receptor (EGFR) upon chimeric EGF exposure. Our results demonstrate that the type and the location of the tag have a strong impact on growth factor bioactivity (EC50 ranging from 5.5 to 63 nM). Additional surface plasmon resonance-based biosensor experiments were conducted to test the ability of captured chimeric EGF to bind to their receptor ectodomain in vitro. These experiments indicated that the oriented coiled-coil-mediated immobilization of EGF was significantly more efficient than a random approach as coil-tagged EGF displayed enhanced affinities for artificially dimerized EGFR ectodomain when compared to Fc-tagged EGF (apparent KD of 5 pM vs. 16 nM). Altogether, our results highly suggest that coil-tagged chimeras represent an attractive avenue for the oriented immobilization of growth factors for tissue engineering applications and that HEK293 cells offer a robust platform for their expression in a bioactive form.
Collapse
Affiliation(s)
- Cyril Boucher
- Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Valdramidou D, Humphries MJ, Mould AP. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1. J Biol Chem 2008; 283:32704-14. [PMID: 18820259 PMCID: PMC3329621 DOI: 10.1074/jbc.m802066200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.
Collapse
Affiliation(s)
- Dimitra Valdramidou
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
29
|
Radjabi AR, Sawada K, Jagadeeswaran S, Eichbichler A, Kenny HA, Montag A, Bruno K, Lengyel E. Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. J Biol Chem 2008; 283:2822-34. [PMID: 18048360 PMCID: PMC2805198 DOI: 10.1074/jbc.m704855200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The procoagulatory serine protease, thrombin, is known to induce invasion and metastasis in various cancers, but the mechanisms by which it promotes tumorigenesis are poorly understood. Because the 92-kDa gelatinase (MMP-9) is a known mediator of tumor cell invasion, we sought to determine whether and how thrombin regulates MMP-9. The thrombin receptor, PAR-1, and MMP-9 are expressed in osteosarcomas, as determined by immunohistochemistry. Stimulation of U2-OS osteosarcoma cells with thrombin and a thrombin receptor-activating peptide induced pro-MMP-9 secretion as well as cell surface-associated pro-MMP-9 expression and proteolytic activity. This was paralleled by an increase in MMP-9 mRNA and MMP-9 promoter activity. Thrombin-induced invasion of U2-OS cells through Matrigel was mediated by the phosphatidylinositol 3-kinase signaling pathway and could be inhibited with an MMP-9 antibody. The stimulation of MMP-9 by thrombin was paralleled by an increase in beta1-integrin mRNA and beta1-integrin expression on the cell surface, which was also mediated by phosphatidylinositol 3-kinase and was required for invasion. Thrombin activation induced and co-localized both beta1-integrin and pro-MMP-9 on the cell membrane, as evidenced by co-immunoprecipitation, confocal microscopy, and a protein binding assay. The thrombin-mediated association of these two proteins, as well as thrombin-mediated invasion of U2-OS cells, could be blocked with a cyclic peptide and with an antibody preventing binding of the MMP-9 hemopexin domain to beta1-integrin. These results suggest that thrombin induces expression and association of beta1-integrin with MMP-9 and that the cell surface localization of the protease by the integrin promotes tumor cell invasion.
Collapse
Affiliation(s)
- A. Reza Radjabi
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois 60637
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois 60637
| | - Sujatha Jagadeeswaran
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois 60637
| | - Alfred Eichbichler
- Department of Orthopedic Surgery, Bogenhausen Medical Center, Bavaria, 81925 Munich, Germany
| | - Hilary A. Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois 60637
| | - Anthony Montag
- Department of Pathology University of Chicago, Chicago, Illinois 60637
| | - Katharina Bruno
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois 60637
- Department of Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
30
|
Humphries JD, Humphries MJ. CD14 is a ligand for the integrin α4β1. FEBS Lett 2007; 581:757-63. [PMID: 17274987 DOI: 10.1016/j.febslet.2007.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/15/2007] [Accepted: 01/18/2007] [Indexed: 11/16/2022]
Abstract
Cell adhesion mediated by the integrin alpha4beta1 plays a key role in many biological processes reflecting both the number and functional significance of alpha4beta1 ligands. The lipopolysaccharide (LPS) receptor, CD14, is a GPI-linked cell surface glycoprotein with a wide range of reported functions and associations, some of which overlap with that of alpha4beta1. This overlap led us to test the specific hypothesis that alpha4beta1 and CD14 interact directly. Jurkat T cells (alpha4beta1(+)) were found to adhere to a recombinant CD14-Fc protein via alpha4beta1, whilst K562 cells (alpha4beta1(-)) did not. However, stable reexpression of the alpha4-subunit conferred this ability. The adhesion of both cell types to CD14 displayed activation state-dependent binding very similar to the interaction of alpha4beta1 with its prototypic ligand, VCAM-1. In solid-phase assays, CD14-Fc bound to affinity-purified alpha4beta1 in a dose-dependent manner that was induced by activating anti-beta1 mAbs. Finally, in related experiments, JY cells (alpha4beta7(+)) were also found to attach to CD14-Fc in an alpha4-dependent manner. In summary, CD14 is a novel ligand for alpha4beta1, exhibiting similar activation-state dependent binding characteristics as other alpha4beta1 ligands. The biological relevance of this interaction will be the subject of further studies.
Collapse
Affiliation(s)
- Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
31
|
Abstract
Integrins are large modular cell-surface receptors that regulate almost every aspect of cellular function through bidirectional signals transmitted across the lipid bilayer. Regulation of integrin activity is accomplished by complex and still incompletely understood biochemical pathways that modify integrin ligand binding, clustering, trafficking, and signaling functions. The dynamic tertiary and quaternary changes required to channel some of these activities have hampered, until recently, the crystal structure determination of these heterodimeric receptors. In this chapter, we review the methods used to purify and characterize these proteins biophysically and functionally, and to derive their three-dimensional structures.
Collapse
Affiliation(s)
- Jian-Ping Xiong
- Structural Biology Program, Leukocyte Biology and Inflammation Program, Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | | | | |
Collapse
|
32
|
Mould AP, McLeish JA, Huxley-Jones J, Goonesinghe AC, Hurlstone AFL, Boot-Handford RP, Humphries MJ. Identification of multiple integrin beta1 homologs in zebrafish (Danio rerio). BMC Cell Biol 2006; 7:24. [PMID: 16787535 PMCID: PMC1538996 DOI: 10.1186/1471-2121-7-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/20/2006] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Integrins comprise a large family of alpha,beta heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single beta1 gene, and the beta1 subunit associates with a large number of alpha subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about beta1 integrin sequences and functions in this organism. RESULTS Using RT-PCR, complete coding sequences of zebrafish beta1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two beta1 paralogs (beta1-1 and beta1-2) that have a high degree of identity to other vertebrate beta1 subunits. In addition, a third, more divergent, beta1 paralog is present (beta1-3), which may have altered ligand-binding properties. Zebrafish also have other divergent beta1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with beta1-3 these truncated forms comprise a novel group of beta1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to beta1-1 and beta1-2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of beta1-2 may have given rise to beta1-3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated beta1 paralogs appears to have taken place. The different zebrafish beta1 paralogs have varied patterns of temporal expression during development. Beta1-1 and beta1-2 are ubiquitously expressed in adult tissues, whereas the other beta1 paralogs generally show more restricted patterns of expression. CONCLUSION Zebrafish have a large set of integrin beta1 paralogs. beta1-1 and beta1-2 may share the roles of the solitary beta1 subunit found in other vertebrates, whereas beta1-3 and the truncated beta1 paralogs may have acquired novel functions.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Wei Y, Czekay RP, Robillard L, Kugler MC, Zhang F, Kim KK, Xiong JP, Humphries MJ, Chapman HA. Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding. ACTA ACUST UNITED AC 2005; 168:501-11. [PMID: 15684035 PMCID: PMC2171741 DOI: 10.1083/jcb.200404112] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Urokinase-type plasminogen activator receptors (uPARs), up-regulated during tumor progression, associate with β1 integrins, localizing urokinase to sites of cell attachment. Binding of uPAR to the β-propeller of α3β1 empowers vitronectin adhesion by this integrin. How uPAR modifies other β1 integrins remains unknown. Using recombinant proteins, we found uPAR directly binds α5β1 and rather than blocking, renders fibronectin (Fn) binding by α5β1 Arg-Gly-Asp (RGD) resistant. This resulted from RGD-independent binding of α5β1–uPAR to Fn type III repeats 12–15 in addition to type III repeats 9–11 bound by α5β1. Suppression of endogenous uPAR by small interfering RNA in tumor cells promoted weaker, RGD-sensitive Fn adhesion and altered overall α5β1 conformation. A β1 peptide (res 224NLDSPEGGF232) that models near the known α-chain uPAR-binding region, or a β1-chain Ser227Ala point mutation, abrogated effects of uPAR on α5β1. Direct binding and regulation of α5β1 by uPAR implies a modified “bent” integrin conformation can function in an alternative activation state with this and possibly other cis-acting membrane ligands.
Collapse
Affiliation(s)
- Ying Wei
- Department of Medicine and Pulmonary and Critical Care Division, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mould AP, Travis MA, Barton SJ, Hamilton JA, Askari JA, Craig SE, Macdonald PR, Kammerer RA, Buckley PA, Humphries MJ. Evidence that monoclonal antibodies directed against the integrin beta subunit plexin/semaphorin/integrin domain stimulate function by inducing receptor extension. J Biol Chem 2005; 280:4238-46. [PMID: 15557320 PMCID: PMC3328395 DOI: 10.1074/jbc.m412240200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The overall structure of integrins is that of a ligand-binding head connected to two long legs. The legs can exhibit a pronounced bend at the "knees," and it has been proposed that the legs undergo a dramatic straightening when integrins transit from a low affinity to a high affinity state. The knee region contains domains from both alpha and beta subunits, including the N-terminal plexin/semaphorin/integrin (PSI) domain of the beta subunit. The role played by the knee domains in the regulation of integrin-ligand binding is uncertain. Here we show that: (i) monoclonal antibodies (mAbs) N29 and 8E3 have epitopes in the beta(1) subunit PSI domain and stimulate ligand binding to alpha(5)beta(1); (ii) N29 and 8E3 cause long range conformational changes that alter the ligand binding activity of the head region; (iii) the stimulatory action of these mAbs is dependent on the calf-1 domain, which forms part of the alpha subunit knee; and (iv) the epitopes of 8E3 and N29 map close to the extreme N terminus of the PSI and are likely to lie on the side of this domain that faces the alpha subunit. Taken together, our data suggest that the binding of these mAbs results in a levering apart of the PSI and calf-1 domains, and thereby causes the alpha and beta subunit knees to separate. Several major inferences can be drawn from our findings. First, the PSI domain appears to form part of an interface with the alpha subunit that normally restrains the integrin in a bent state. Second, the PSI domain is important for the transduction of conformational changes from the knee to head. Third, unbending is likely to provide a general mechanism for control of integrin-ligand recognition.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Clark K, Pankov R, Travis MA, Askari JA, Mould AP, Craig SE, Newham P, Yamada KM, Humphries MJ. A specific alpha5beta1-integrin conformation promotes directional integrin translocation and fibronectin matrix formation. J Cell Sci 2005; 118:291-300. [PMID: 15615773 PMCID: PMC3329624 DOI: 10.1242/jcs.01623] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Integrin adhesion receptors are structurally dynamic proteins that adopt a number of functionally relevant conformations. We have produced a conformation-dependent anti-alpha5 monoclonal antibody (SNAKA51) that converts alpha5beta1 integrin into a ligand-competent form and promotes fibronectin binding. In adherent fibroblasts, SNAKA51 preferentially bound to integrins in fibrillar adhesions. Clustering of integrins expressing this activation epitope induced directional translocation of alpha5beta1, mimicking fibrillar adhesion formation. Priming of alpha5beta1 integrin by SNAKA51 increased the accumulation of detergent-resistant fibronectin in the extracellular matrix, thus identifying an integrin conformation that promotes matrix assembly. The SNAKA51 epitope was mapped to the calf-1/calf-2 domains. We propose that the action of the antibody causes the legs of the integrin to change conformation and thereby primes the integrin to bind ligand. These findings identify SNAKA51 as the first anti-integrin antibody to selectively recognize a subset of adhesion contacts, and they identify an integrin conformation associated with integrin translocation and fibronectin matrix formation.
Collapse
Affiliation(s)
- Katherine Clark
- Craniofacial Developmental Biology and Regeneration Branch, NIDCR, NIH, Bethesda, Maryland 20892, USA
| | - Roumen Pankov
- Craniofacial Developmental Biology and Regeneration Branch, NIDCR, NIH, Bethesda, Maryland 20892, USA
| | - Mark A. Travis
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Janet A. Askari
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - A. Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Susan E. Craig
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Peter Newham
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Kenneth M. Yamada
- Craniofacial Developmental Biology and Regeneration Branch, NIDCR, NIH, Bethesda, Maryland 20892, USA
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
36
|
Barton SJ, Travis MA, Askari JA, Buckley PA, Craig SE, Humphries MJ, Mould AP. Novel activating and inactivating mutations in the integrin beta1 subunit A domain. Biochem J 2004; 380:401-7. [PMID: 14967067 PMCID: PMC1224172 DOI: 10.1042/bj20031973] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/09/2004] [Accepted: 02/17/2004] [Indexed: 12/31/2022]
Abstract
The ligand-binding activity of integrins is regulated by shape changes that convert these receptors from a resting (or inactive) state to an active state. However, the precise conformational changes that take place in head region of integrins (the site of ligand binding) during activation are not well understood. The portion of the integrin beta subunit involved in ligand recognition contains a von Willebrand factor type A domain, which comprises a central beta-sheet surrounded by seven alpha helices (alpha1-alpha7). Using site-directed mutagenesis, we show here that point mutation of hydrophobic residues in the alpha1 and alpha7 helices (which would be predicted to increase the mobility of these helices) markedly increases the ligand-binding activity of both integrins alpha5beta1 and alpha4beta1. In contrast, mutation of a hydrophilic residue near the base of the alpha1 helix decreases activity and also suppresses exposure of activation epitopes on the underlying hybrid domain. Our results provide new evidence that shifts of the alpha1 and alpha7 helices are involved in activation of the A domain. Although these changes are grossly similar to those defined in the A domains found in some integrin alpha subunits, movement of the alpha1 helix appears to play a more prominent role in betaA domain activation.
Collapse
Affiliation(s)
- Stephanie J Barton
- The Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Mould AP, Barton SJ, Askari JA, Craig SE, Humphries MJ. Role of ADMIDAS Cation-binding Site in Ligand Recognition by Integrin α5β1. J Biol Chem 2003; 278:51622-9. [PMID: 14532288 DOI: 10.1074/jbc.m306655200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and multiple cation-binding sites are found in both alpha and beta integrin subunits. A key cation-binding site that lies in the beta subunit A-domain is known as the metal-ion dependent adhesion site (MIDAS). Recent x-ray crystal structures of integrin alpha V beta 3 have identified a novel cation binding site in this domain, known as the ADMIDAS (adjacent to MIDAS). The role of this novel site in ligand recognition has yet to be elucidated. Using the interaction between alpha 5 beta 1 and fibronectin as a model system, we show that mutation of residues that form the ADMIDAS site inhibits ligand binding but this effect can be partially rescued by the use of activating monoclonal antibodies. The ADMIDAS mutants had decreased expression of activation epitopes recognized by 12G10, 15/7, and HUTS-4, suggesting that the ADMIDAS is important for stabilizing the active conformation of the integrin. Consistent with this suggestion, the ADMIDAS mutations markedly increased the dissociation rate of the integrin-fibronectin complex. Mutation of the ADMIDAS residues also reduced the allosteric inhibition of Mn2+-supported ligand binding by Ca2+, suggesting that the ADMIDAS is a Ca2+-binding site involved in the inhibition of Mn2+-supported ligand binding. Mutations of the ADMIDAS site also perturbed transduction of a conformational change from the MIDAS through the C-terminal helix region of the beta A domain to the underlying hybrid domain, implying an important role for this site in receptor signaling.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | |
Collapse
|
38
|
Mould AP, Symonds EJH, Buckley PA, Grossmann JG, McEwan PA, Barton SJ, Askari JA, Craig SE, Bella J, Humphries MJ. Structure of an integrin-ligand complex deduced from solution x-ray scattering and site-directed mutagenesis. J Biol Chem 2003; 278:39993-9. [PMID: 12871973 DOI: 10.1074/jbc.m304627200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural basis of the interaction of integrin heterodimers with their physiological ligands is poorly understood. We have used solution x-ray scattering to visualize the head region of integrin alpha 5 beta 1 in an inactive (Ca2+-occupied) state, and in complex with a fragment of fibronectin containing the RGD and synergy recognition sequences. Shape reconstructions of the data have been interpreted in terms of appropriate molecular models. The scattering data suggest that the head region undergoes no gross conformational changes upon ligand binding but do lend support to a proposed outward movement of the hybrid domain in the beta subunit. Fibronectin is observed to bind across the top of the head region, which contains an alpha subunit beta-propeller and a beta subunit vWF type A domain. The model of the complex indicates that the synergy region binds on the side of the beta-propeller domain. In support of this suggestion, mutagenesis of a prominent loop region on the side of the propeller identifies two residues (Tyr208 and Ile210) involved in recognition of the synergy region. Our data provide the first view of a complex between an integrin and a macromolecular ligand in solution, at a nominal resolution of approximately 10 A.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Takagi J, Strokovich K, Springer TA, Walz T. Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J 2003; 22:4607-15. [PMID: 12970173 PMCID: PMC212714 DOI: 10.1093/emboj/cdg445] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The membrane-distal headpiece of integrins has evolved to specifically bind large extracellular protein ligands, but the molecular architecture of the resulting complexes has not been determined. We used molecular electron microscopy to determine the three-dimensional structure of the ligand-binding headpiece of integrin alpha5beta1 complexed with fragments of its physiological ligand fibronectin. The density map for the unliganded alpha5beta1 headpiece shows a 'closed' conformation similar to that seen in the alphaVbeta3 crystal structure. By contrast, binding to fibronectin induces an 'open' conformation with a dramatic, approximately 80 degrees change in the angle of the hybrid domain of the beta subunit relative to its I-like domain. The fibronectin fragment binds to the interface between the beta-propeller and I-like domains in the integrin headpiece through the RGD-containing module 10, but direct contact of the synergy-region-containing module 9 to integrin is not evident. This finding is corroborated by kinetic analysis of real-time binding data, which shows that the synergy site greatly enhances k(on) but has little effect on the stability or k(off) of the complex.
Collapse
Affiliation(s)
- Junichi Takagi
- The Center for Blood Research, Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
40
|
Mould AP, Barton SJ, Askari JA, McEwan PA, Buckley PA, Craig SE, Humphries MJ. Conformational changes in the integrin beta A domain provide a mechanism for signal transduction via hybrid domain movement. J Biol Chem 2003; 278:17028-35. [PMID: 12615914 DOI: 10.1074/jbc.m213139200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ligand-binding head region of integrin beta subunits contains a von Willebrand factor type A domain (betaA). Ligand binding activity is regulated through conformational changes in betaA, and ligand recognition also causes conformational changes that are transduced from this domain. The molecular basis of signal transduction to and from betaA is uncertain. The epitopes of mAbs 15/7 and HUTS-4 lie in the beta(1) subunit hybrid domain, which is connected to the lower face of betaA. Changes in the expression of these epitopes are induced by conformational changes in betaA caused by divalent cations, function perturbing mAbs, or ligand recognition. Recombinant truncated alpha(5)beta(1) with a mutation L358A in the alpha7 helix of betaA has constitutively high expression of the 15/7 and HUTS-4 epitopes, mimics the conformation of the ligand-occupied receptor, and has high constitutive ligand binding activity. The epitopes of 15/7 and HUTS-4 map to a region of the hybrid domain that lies close to an interface with the alpha subunit. Taken together, these data suggest that the transduction of conformational changes through betaA involves shape shifting in the alpha7 helix region, which is linked to a swing of the hybrid domain away from the alpha subunit.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Eble JA, Berditchevski F. Purification of integrins and characterization of integrin-associated proteins. Methods Cell Biol 2003; 69:223-46. [PMID: 12070995 DOI: 10.1016/s0091-679x(02)69015-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, Universität Münster, 48149 Münster, Germany
| | | |
Collapse
|
42
|
Li F, Redick SD, Erickson HP, Moy VT. Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophys J 2003; 84:1252-62. [PMID: 12547805 PMCID: PMC1302701 DOI: 10.1016/s0006-3495(03)74940-6] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Accepted: 09/30/2002] [Indexed: 12/27/2022] Open
Abstract
The interaction of the alpha(5)beta(1) integrin and its ligand, fibronectin (FN), plays a crucial role in the adhesion of cells to the extracellular matrix. An important intrinsic property of the alpha(5)beta(1)/FN interaction is the dynamic response of the complex to a pulling force. We have carried out atomic force microscopy measurements of the interaction between alpha(5)beta(1) and a fibronectin fragment derived from the seventh through tenth type III repeats of FN (i.e., FN7-10) containing both the arg-gly-asp (RGD) sequence and the synergy site. Direct force measurements obtained from an experimental system consisting of an alpha(5)beta(1) expressing K562 cell attached to the atomic force microscopy cantilever and FN7-10 adsorbed on a substrate were used to determine the dynamic response of the alpha(5)beta(1)/FN7-10 complex to a pulling force. The experiments were carried out over a three-orders-of-magnitude change in loading rate and under conditions that allowed for detection of individual alpha(5)beta(1)/FN7-10 interactions. The dynamic rupture force of the alpha(5)beta(1)/FN7-10 complex revealed two regimes of loading: a fast loading regime (>10,000 pN/s) and a slow loading regime (<10,000 pN/s) that characterize the inner and outer activation barriers of the complex, respectively. Activation by TS2/16 antibody increased both the frequency of adhesion and elevated the rupture force of the alpha(5)beta(1)/wild type FN7-10 complex to higher values in the slow loading regime. In experiments carried out with a FN7-10 RGD deleted mutant, the force measurements revealed that both inner and outer activation barriers were suppressed by the mutation. Mutations to the synergy site of FN, however, suppressed only the outer barrier activation of the complex. For both the RGD and synergy deletions, the frequency of adhesion was less than that of the wild type FN7-10, but was increased by integrin activation. The rupture force of these mutants was only slightly less than that of the wild type, and was not increased by activation. These results suggest that integrin activation involved a cooperative interaction with both the RGD and synergy sites.
Collapse
Affiliation(s)
- Feiya Li
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
43
|
Mould AP, Askari JA, Barton S, Kline AD, McEwan PA, Craig SE, Humphries MJ. Integrin activation involves a conformational change in the alpha 1 helix of the beta subunit A-domain. J Biol Chem 2002; 277:19800-5. [PMID: 11893752 DOI: 10.1074/jbc.m201571200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ligand-binding region of integrin beta subunits contains a von Willebrand factor type A-domain: an alpha/beta "Rossmann" fold containing a metal ion-dependent adhesion site (MIDAS) on its top face. Although there is evidence to suggest that the betaA-domain undergoes changes in tertiary structure during receptor activation, the identity of the secondary structure elements that change position is unknown. The mAb 12G10 recognizes a unique cation-regulated epitope on the beta(1) A-domain, induction of which parallels the activation state of the integrin (i.e. competency for ligand recognition). The ability of Mn(2+) and Mg(2+) to stimulate 12G10 binding is abrogated by mutation of the MIDAS motif, demonstrating that the MIDAS is a Mn(2+)/Mg(2+) binding site and that occupancy of this site induces conformational changes in the A-domain. The cation-regulated region of the 12G10 epitope maps to Arg(154)/Arg(155) in the alpha1 helix. Our results demonstrate that the alpha1 helix undergoes conformational alterations during integrin activation and suggest that Mn(2+) acts as a potent activator of beta(1) integrins because it can promote a shift in the position of this helix. The mechanism of beta subunit A-domain activation appears to be distinct from that of the A-domains found in some integrin alpha subunits.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kamata T, Takada Y. Platelet integrin alphaIIbbeta3-ligand interactions: what can we learn from the structure? Int J Hematol 2001; 74:382-9. [PMID: 11794692 DOI: 10.1007/bf02982080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Upon vascular injury, platelets initiate interaction with exposed subendothelial matrices through various receptors such as glycoprotein (GP) Ib/IX/V complex, alpha2beta1 integrin, and GPVI/FcRgamma. Although these interactions cannot sustain stable platelet thrombus formation by themselves, they ultimately lead to the activation of alphaIIbbeta3 integrin (GPIIb-IIIa complex [GPIIb-IIIa]), the most abundant receptor in platelets. The alphaIIbbeta3 integrin plays a central role in primary hemostasis by serving as a receptor for fibrinogen and von Willebrand factor (vWf). It establishes a stable interaction with vWf bound to the extracellular matrices and uses fibrinogen as a bridging molecule in platelet aggregate formation. The alphaIIbbeta3 integrin also plays an important role in the pathogenesis of thrombosis. Over the past decades, a tremendous amount of effort has been made to elucidate the ligand-binding mechanisms of alphaIIbbeta3, in part because of its clinical significance. Most of the studies have relied on biochemical analyses of purified alphaIIbbeta3 or recombinant proteins generated in vitro. With the lack of actual 3-dimensional structure, molecular modeling has provided a useful framework for interpreting such experimental data on structure-function correlation of integrin molecules. However, it has also generated disagreement between different models. The aim of this minireview is to summarize the past efforts as well as the recent accomplishments in elucidating the structure/function of alphaIIbbeta3. Finally, we will try to explain all those experimental data using the recently published crystal structure of the extracellular domains of the alphaVbeta3 heterodimeric complex.
Collapse
Affiliation(s)
- T Kamata
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|