1
|
Munera López J, Alonso AM, Figueras MJ, Saldarriaga Cartagena AM, Hortua Triana MA, Diambra L, Vanagas L, Deng B, Moreno SNJ, Angel SO. Analysis of the Interactome of the Toxoplasma gondii Tgj1 HSP40 Chaperone. Proteomes 2023; 11:9. [PMID: 36976888 PMCID: PMC10056330 DOI: 10.3390/proteomes11010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan that causes toxoplasmosis in humans and animals. Central to its dissemination and pathogenicity is the ability to rapidly divide in the tachyzoite stage and infect any type of nucleated cell. Adaptation to different cell contexts requires high plasticity in which heat shock proteins (Hsps) could play a fundamental role. Tgj1 is a type I Hsp40 of T. gondii, an ortholog of the DNAJA1 group, which is essential during the tachyzoite lytic cycle. Tgj1 consists of a J-domain, ZFD, and DNAJ_C domains with a CRQQ C-terminal motif, which is usually prone to lipidation. Tgj1 presented a mostly cytosolic subcellular localization overlapping partially with endoplasmic reticulum. Protein-protein Interaction (PPI) analysis showed that Tgj1 could be implicated in various biological pathways, mainly translation, protein folding, energy metabolism, membrane transport and protein translocation, invasion/pathogenesis, cell signaling, chromatin and transcription regulation, and cell redox homeostasis among others. The combination of Tgj1 and Hsp90 PPIs retrieved only 70 interactors linked to the Tgj1-Hsp90 axis, suggesting that Tgj1 would present specific functions in addition to those of the Hsp70/Hsp90 cycle, standing out invasion/pathogenesis, cell shape motility, and energy pathway. Within the Hsp70/Hsp90 cycle, translation-associated pathways, cell redox homeostasis, and protein folding were highly enriched in the Tgj1-Hsp90 axis. In conclusion, Tgj1 would interact with a wide range of proteins from different biological pathways, which could suggest a relevant role in them.
Collapse
Affiliation(s)
- Jonathan Munera López
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Andrés Mariano Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Maria Julia Figueras
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Ana María Saldarriaga Cartagena
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Miryam A. Hortua Triana
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Luis Diambra
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, Burlington, VT 05405, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sergio Oscar Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| |
Collapse
|
2
|
Nagata K, Takahashi M, Kiryu-Seo S, Kiyama H, Saido TC. Distinct functional consequences of ECEL1/DINE missense mutations in the pathogenesis of congenital contracture disorders. Acta Neuropathol Commun 2017; 5:83. [PMID: 29132416 PMCID: PMC5683451 DOI: 10.1186/s40478-017-0486-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 11/10/2022] Open
Abstract
Endothelin-converting enzyme-like 1 (ECEL1, also termed DINE in rodents), a membrane-bound metalloprotease, has been identified as a gene responsible for distal arthrogryposis (DA). ECEL1-mutated DA is generally characterized by ocular phenotypes in addition to the congenital limb contractures that are common to all DA subtypes. Until now, the consequences of the identified pathogenic mutations have remained incompletely understood because of a lack of detailed phenotypic analyses in relevant mouse models. In this study, we generated a new knock-in mouse strain that carries an ECEL1/DINE pathogenic G607S missense mutation, based on a previous study reporting atypical DA hindlimb phenotypes in two siblings with the mutation. We compared the morphological phenotypes of G607S knock-in mice with C760R knock-in mice that we previously established. Both C760R and G607S knock-in mouse embryos showed similar axonal arborization defects with normal trajectory patterns from the spinal cord to the target hindlimb muscles, as well as axon guidance defects of the abducens nerves. Intriguingly, distinct phenotypes in DINE protein localization and mRNA expression were identified in these knock-in mouse lines. For G607S, DINE mRNA and protein expression was decreased or almost absent in motor neurons. In the C760R mutant mice DINE was expressed and localized in the somata of motor neurons but not in axons. Our mutant mouse data suggest that ECEL1/DINE G607S and C760R mutations both lead to motor innervation defects as primary causes in ECEL1-mutated congenital contracture disorders. However, the functional consequences of the two mutations are distinct, with loss of axonal transport of ECEL1/DINE in C760R mutants and mRNA expression deficits in G607S mutants.
Collapse
|
3
|
Nagata K, Kiryu-Seo S, Tamada H, Okuyama-Uchimura F, Kiyama H, Saido TC. ECEL1 mutation implicates impaired axonal arborization of motor nerves in the pathogenesis of distal arthrogryposis. Acta Neuropathol 2016; 132:111-26. [PMID: 26951213 DOI: 10.1007/s00401-016-1554-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/15/2023]
Abstract
The membrane-bound metalloprotease endothelin-converting enzyme-like 1 (ECEL1) has been newly identified as a causal gene of a specific type of distal arthrogryposis (DA). In contrast to most causal genes of DA, ECEL1 is predominantly expressed in neuronal cells, suggesting a unique neurogenic pathogenesis in a subset of DA patients with ECEL1 mutation. The present study analyzed developmental motor innervation and neuromuscular junction formation in limbs of the rodent homologue damage-induced neuronal endopeptidase (DINE)-deficient mouse. Whole-mount immunostaining was performed in DINE-deficient limbs expressing motoneuron-specific GFP to visualize motor innervation throughout the limb. Although DINE-deficient motor nerves displayed normal trajectory patterns from the spinal cord to skeletal muscles, they indicated impaired axonal arborization in skeletal muscles in the forelimbs and hindlimbs. Systematic examination of motor innervation in over 10 different hindlimb muscles provided evidence that DINE gene disruption leads to insufficient arborization of motor nerves after arriving at the skeletal muscle. Interestingly, the axonal arborization defect in foot muscles appeared more severe than in other hindlimb muscles, which was partially consistent with the proximal-distal phenotypic discordance observed in DA patients. Additionally, the number of innervated neuromuscular junction was significantly reduced in the severely affected DINE-deficient muscle. Furthermore, we generated a DINE knock-in (KI) mouse model with a pathogenic mutation, which was recently identified in DA patients. Axonal arborization defects were clearly detected in motor nerves of the DINE KI limb, which was identical to the DINE-deficient limb. Given that the encoded sequences, as well as ECEL1 and DINE expression profiles, are highly conserved between mouse and human, abnormal arborization of motor axons and subsequent failure of NMJ formation could be a primary cause of DA with ECEL1 mutation.
Collapse
Affiliation(s)
- Kenichi Nagata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198, Japan.
| | - Sumiko Kiryu-Seo
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiromi Tamada
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumi Okuyama-Uchimura
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198, Japan.
| |
Collapse
|
4
|
Dieterich K, Quijano-Roy S, Monnier N, Zhou J, Fauré J, Smirnow DA, Carlier R, Laroche C, Marcorelles P, Mercier S, Mégarbané A, Odent S, Romero N, Sternberg D, Marty I, Estournet B, Jouk PS, Melki J, Lunardi J. The neuronal endopeptidase ECEL1 is associated with a distinct form of recessive distal arthrogryposis. Hum Mol Genet 2012; 22:1483-92. [PMID: 23236030 DOI: 10.1093/hmg/dds514] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Distal arthrogryposis (DA) is a heterogeneous subgroup of arthrogryposis multiplex congenita (AMC), a large family of disorders characterized by multiple congenital joint limitations due to reduced fetal movements. DA is mainly characterized by contractures afflicting especially the distal extremities without overt muscular or neurological signs. Although a limited number of genes mostly implicated in the contractile apparatus have been identified in DA, most patients failed to show mutations in currently known genes. Using a pangenomic approach, we demonstrated linkage of DA to chromosome 2q37 in two consanguineous families and the endothelin-converting enzyme like 1 (ECEL1) gene present in this region was associated with DA. Screening of a panel of 20 families with non-specific DA identified seven homozygous or compound heterozygous mutations of ECEL1 in a total of six families. Mutations resulted mostly in the absence of protein. ECEL1 is a neuronal endopeptidase predominantly expressed in the central nervous system and brain structures during fetal life in mice and human. ECEL1 plays a major role in intramuscular axonal branching of motor neurons in skeletal muscle during embryogenesis. A detailed review of clinical findings of DA patients with ECEL1 mutations revealed a homogeneous and recognizable phenotype characterized by limited knee flexion, flexed third to fifth fingers and severe muscle atrophy predominant on lower limbs and tongue that suggested a common pathogenic mechanism. We described a new and homogenous phenotype of DA associated with ECEL1 that resulted in symptoms involving rather the peripheral than the central nervous system and suggesting a developmental dysfunction.
Collapse
Affiliation(s)
- Klaus Dieterich
- Inserm U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologie, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mishra S. ‘Chargaff's Rules’ for Protein Folding: Stoichiometric Leitmotif Made Visible. J Biomol Struct Dyn 2011; 28:649-52; discussion 669-674. [DOI: 10.1080/073911011010524977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Ensafi AA, Dadkhah-Tehrani S, Karimi-Maleh H. A voltammetric sensor for the simultaneous determination of L-cysteine and tryptophan using a p-aminophenol-multiwall carbon nanotube paste electrode. ANAL SCI 2011; 27:409. [PMID: 21478617 DOI: 10.2116/analsci.27.409] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/10/2011] [Indexed: 02/06/2024]
Abstract
Two amino acids, L-cysteine and tryptophan, could be simultaneously determined in an aqueous solution (pH 6.0) using a carbon nanotube paste electrode (CNPE) modified with p-aminophenol as a mediator. The results indicate that the electrode is efficient in terms of its electrocatalytic activity for the oxidation of L-cysteine, leading to an overpotential reduced by more than 550 mV. Using differential pulse voltammetry, we could measure L-cysteine and tryptophan in one mixture independently from each other by a potential difference of about 600 mV. Electrochemical techniques are used to determine the diffusion coefficients, kinetic parameters such as electron transfer coefficient, and the rates of electro-oxidation of L-cysteine at the surface of the p-aminophenol-modified CNPE. The peak current is found to depend linearly on L-cysteine and tryptophan concentrations within the ranges of 0.5 - 100 µmol L(-1) L-cysteine and 10.0 - 300 µmol L(-1) tryptophan. The detection limits for L-cysteine and tryptophan are found to be 0.3 and 5.7 µmol L(-1), respectively. The proposed method is also used for the determination of L-cysteine and tryptophan in urine, river water, blood plasma, and serum samples using standard addition methods.
Collapse
Affiliation(s)
- Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | | | | |
Collapse
|
7
|
Baek JH, Woo TH, Kim CB, Park JH, Kim H, Lee S, Lee SH. Differential gene expression profiles in the venom gland/sac of Orancistrocerus drewseni (Hymenoptera: Eumenidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 71:205-222. [PMID: 19479740 DOI: 10.1002/arch.20316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To determine differential gene expression profiles in the venom gland and sac (gland/sac) of a solitary hunting wasp species, Orancistrocerus drewseni Saussure (1857), a subtractive cDNA library was constructed by suppression subtractive hybridization. A total of 498 expressed sequence tags (EST) were clustered and assembled into 205 contigs (94 multiple sequences and 111 singletons). About 65% (134) of the contigs had matched BLASTx hits (E< or =10(-4)). Among these, 115 contigs had similarity to proteins with assigned molecular function in the Gene Ontology database, and most of them (112 contigs, 83%) were homologous to genes from Hymenoptera, particularly to Apis mellifera (98 contigs). The contigs encoding hyaluronidase and phospholipase A2, known to be main components of wasp venoms, were found in high frequencies (27 and 4%, respectively, as judged by the number of ESTs) in the gene ontology category of catalytic activity. Full-length open reading frames of hyaluronidase and phospholipase A2 were characterized and their abundance in the venom gland/sac was confirmed by quantitative real-time PCR. Several contigs encoding enzymes, including zinc-metallopeptidases that are likely involved in the processing and activation of venomous proteins or peptides, were also identified from the library. Discovery of venom gland/sac-specific genes should promote further studies on biologically active components in the venom of O. drewseni.
Collapse
Affiliation(s)
- Ji Hyeong Baek
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirota FL, Eisenhaber F. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol 2007; 3:e66. [PMID: 17411337 PMCID: PMC1847700 DOI: 10.1371/journal.pcbi.0030066] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 02/23/2007] [Indexed: 11/18/2022] Open
Abstract
Three different prenyltransferases attach isoprenyl anchors to C-terminal motifs in substrate proteins. These lipid anchors serve for membrane attachment or protein–protein interactions in many pathways. Although well-tolerated selective prenyltransferase inhibitors are clinically available, their mode of action remains unclear since the known substrate sets of the various prenyltransferases are incomplete. The Prenylation Prediction Suite (PrePS) has been applied for large-scale predictions of prenylated proteins. To prioritize targets for experimental verification, we rank the predictions by their functional importance estimated by evolutionary conservation of the prenylation motifs within protein families. The ranked lists of predictions are accessible as PRENbase (http://mendel.imp.univie.ac.at/sat/PrePS/PRENbase) and can be queried for verification status, type of modifying enzymes (anchor type), and taxonomic distribution. Our results highlight a large group of plant metal-binding chaperones as well as several newly predicted proteins involved in ubiquitin-mediated protein degradation, enriching the known functional repertoire of prenylated proteins. Furthermore, we identify two possibly prenylated proteins in Mimivirus. The section HumanPRENbase provides complete lists of predicted prenylated human proteins—for example, the list of farnesyltransferase targets that cannot become substrates of geranylgeranyltransferase 1 and, therefore, are especially affected by farnesyltransferase inhibitors (FTIs) used in cancer and anti-parasite therapy. We report direct experimental evidence verifying the prediction of the human proteins Prickle1, Prickle2, the BRO1 domain–containing FLJ32421 (termed BROFTI), and Rab28 (short isoform) as exclusive farnesyltransferase targets. We introduce PRENbase, a database of large-scale predictions of protein prenylation substrates ranked by evolutionary conservation of the motif. Experimental evidence is presented for the selective farnesylation of targets with an evolutionary conserved modification site. Various cellular functions require reversible membrane localization of proteins. This is often facilitated by attaching lipids to the respective proteins, thus anchoring them to the membrane. For example, addition of prenyl lipid anchors (prenylation) is directed by a motif in the protein sequence that can be predicted using a recently developed method. We describe the prediction of protein prenylation in all currently known proteins. The annotated results are available as an online database: PRENbase. A ranking of the predictions is introduced, assuming that existence of a prenylation sequence motif in related proteins from different species (evolutionary conservation) relates to functional importance of the lipid anchor. We present experimental evidence for high-ranked human proteins predicted to be affected by anticancer drugs inhibiting prenylation.
Collapse
|
9
|
Kiryu-Seo S. Identification and functional analysis of damage-induced neuronal endopeptidase (DINE), a nerve injury associated molecule. Anat Sci Int 2006; 81:1-6. [PMID: 16526590 DOI: 10.1111/j.1447-073x.2006.00136.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nerve regeneration is a complex process associated with the expression of hundreds of genes. To elucidate the molecular mechanism responsible for nerve regeneration, hundreds of nerve regeneration-associated genes have been hunted using differential display polymerase chain reaction (DD-PCR), random cloning, microarray and proteomics. Damage-induced neuronal endopeptidase (DINE) is a newly identified nerve regeneration-related molecule derived from normal and axotomized hypoglosssal nuclei using DD-PCR. After full-length cloning, we have found that DINE is a neuron-specific membrane-bound metalloprotease. Damage-induced neuronal endopeptidase shares homology with neprilysin and endothelin-converting enzyme, which degrade or process neuropeptides. Although DINE has some neuroprotective effects, the physiological function of, as well as the substrate for, DINE remains obscure. The most intriguing property of DINE is its extreme transcriptional response against various types of nerve injuries, including that of the peripheral and central nervous systems. Thus, a more detailed expression profile of DINE mRNA was investigated using the dorsal root ganglion (DRG) after sciatic nerve injury. In the DRG, DINE mRNA was observed in small-sized DRG neurons after axotomy. This expression profile was similar to that of the neuropeptide galanin. Both in vitro and in vivo studies revealed that leukemia inhibitory factor and nerve growth factor withdrawal additively enhanced the expression of DINE, as well as that of galanin. Damage-induced neuronal endopeptidase and galanin may use common transcriptional regulation machinery. Although functional correlation of these molecules remains unclear, their simultaneous induction may provide more successful protection for injured neurons.
Collapse
Affiliation(s)
- Sumiko Kiryu-Seo
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
10
|
Voisin S, Ouimet T. The ultimate tryptophan residue of neprilysin 2 is not involved in protein maturation and enzymatic activity. Biochem Biophys Res Commun 2005; 335:356-60. [PMID: 16081046 DOI: 10.1016/j.bbrc.2005.07.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 07/18/2005] [Indexed: 11/20/2022]
Abstract
Modeling the three-dimensional structure of neprilysin 2 (NEP2) using the crystal structure of neprilysin as template revealed that their active sites share many common features, though slight differences therein cannot completely account for their specific pharmacological profiles. Recent evidence also suggest that residues outside the active site can play crucial functions in the maturation and enzymatic activity of these metalloproteases. To further explore the functions of amino acids in the acquisition and maintenance of the NEP2 structure, site-directed mutagenesis of conserved residues involved in the enzymatic activity of ECE-1 was performed. In particular, the ultimate tryptophan residue of ECE-1 was recently shown to be important in its activation. This residue was thus mutated in the secreted isoform of NEP2, as were proline residues located in its vicinity. Expression of these mutants in AtT20 cells and study of their secretion and catalytic activities shows that while the ultimate tryptophan residue of the NEP2 sequence is not essential to its proper and activity, structural changes in its vicinity can have a severe impact on the maturation processes involved in the activation of NEP2.
Collapse
Affiliation(s)
- Stéphanie Voisin
- INSERM U573, Centre Paul Broca, 2ter rue d'Alésia, 75014 Paris, France
| | | |
Collapse
|
11
|
Hidden localization motifs: naturally occurring peroxisomal targeting signals in non-peroxisomal proteins. Genome Biol 2004; 5:R97. [PMID: 15575971 PMCID: PMC545800 DOI: 10.1186/gb-2004-5-12-r97] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 10/11/2004] [Accepted: 11/09/2004] [Indexed: 11/13/2022] Open
Abstract
Functional but silent peroxisomal targeting signals have been found in non- peroxisomal proteins. This discovery has important implications for sequence-based signal prediction and for evolution. Background Can sequence segments coding for subcellular targeting or for posttranslational modifications occur in proteins that are not substrates in either of these processes? Although considerable effort has been invested in achieving low false-positive prediction rates, even accurate sequence-analysis tools for the recognition of these motifs generate a small but noticeable number of protein hits that lack the appropriate biological context but cannot be rationalized as false positives. Results We show that the carboxyl termini of a set of definitely non-peroxisomal proteins with predicted peroxisomal targeting signals interact with the peroxisomal matrix protein receptor peroxin 5 (PEX5) in a yeast two-hybrid test. Moreover, we show that examples of these proteins - chicken lysozyme, human tyrosinase and the yeast mitochondrial ribosomal protein L2 (encoded by MRP7) - are imported into peroxisomes in vivo if their original sorting signals are disguised. We also show that even prokaryotic proteins can contain peroxisomal targeting sequences. Conclusions Thus, functional localization signals can evolve in unrelated protein sequences as a result of neutral mutations, and subcellular targeting is hierarchically organized, with signal accessibility playing a decisive role. The occurrence of silent functional motifs in unrelated proteins is important for the development of sequence-based function prediction tools and the interpretation of their results. Silent functional signals have the potential to acquire importance in future evolutionary scenarios and in pathological conditions.
Collapse
|
12
|
Macours N, Poels J, Hens K, Francis C, Huybrechts R. Structure, evolutionary conservation, and functions of angiotensin- and endothelin-converting enzymes. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:47-97. [PMID: 15464852 PMCID: PMC7126198 DOI: 10.1016/s0074-7696(04)39002-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angiotensin-converting enzyme, a member of the M2 metalloprotease family, and endothelin-converting enzyme, a member of the M13 family, are key components in the regulation of blood pressure and electrolyte balance in mammals. From this point of view, they serve as important drug targets. Recently, the involvement of these enzymes in the development of Alzheimer's disease was discovered. The existence of homologs of these enzymes in invertebrates indicates that these enzyme systems are highly conserved during evolution. Most invertebrates lack a closed circulatory system, which excludes the need for blood pressure regulators. Therefore, these organisms represent excellent targets for gaining new insights and revealing additional physiological roles of these important enzymes. This chapter reviews the structural and functional aspects of ACE and ECE and will particularly focus on these enzyme homologues in invertebrates.
Collapse
Affiliation(s)
- Nathalie Macours
- Laboratory for Developmental Physiology, Genomics and Proteomics, Katholieke Universteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
13
|
Macours N, Poels J, Hens K, Luciani N, De Loof A, Huybrechts R. An endothelin-converting enzyme homologue in the locust, Locusta migratoria: functional activity, molecular cloning and tissue distribution. INSECT MOLECULAR BIOLOGY 2003; 12:233-240. [PMID: 12752656 DOI: 10.1046/j.1365-2583.2003.00406.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Endothelin-converting enzyme is the key enzyme in the process of endothelin production. Endothelin is a peptide that plays an important role in vasoconstriction and the development of neural crest-derived cells in vertebrates. Activity assays performed on membrane extracts from Locusta migratoria brain revealed the existence of a protease activity responsible for the formation of mature endothelin-1 from its precursor, big endothelin. Cloning experiments led to a cDNA sequence (Lom ECE) with an open reading frame of 727 amino acid residues displaying all the characteristic ECE features. A comparison of ECE activity levels among different tissues of the locust showed a high enzyme activity in the gonads and midgut. RT-PCR experiments showed a wide tissue distribution of Lom ECE mRNA, with transcription being most abundant in brain tissue.
Collapse
Affiliation(s)
- N Macours
- Laboratory for Developmental Physiology and Molecular Biology, Zoological Institute, KULeuven, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
14
|
MacLeod KJ, Husain RD, Gage DA, Ahn K. Constitutive Phosphorylation of Human Endothelin-converting Enzyme-1 Isoforms. J Biol Chem 2002; 277:46355-63. [PMID: 12244060 DOI: 10.1074/jbc.m207972200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the phosphorylation of human endothelin-converting enzyme-1 (hECE-1) and identify potential residues involved, both in vivo and in vitro phosphorylation labeling assays of hECE-1 isoforms were performed in combination with site-directed mutagenesis and mass spectrometric analyses. Initial studies found that endogenous hECE-1 was constitutively phosphorylated in a primary endothelial cell line. The four known isoforms of hECE-1 expressed in this cell line (1a, 1b, 1c, and 1d) were then cloned by reverse transcription-PCR to determine which isoform(s) may be phosphorylated. The isoforms differ only in the first portion of their short amino-terminal cytoplasmic domains whereas their transmembrane domains and ectodomains of the proteins are identical. Isoforms 1b, 1c, and 1d but not 1a, were constitutively phosphorylated in vivo when expressed in Chinese hamster ovary cells and casein kinase I readily phosphorylated the immunopurified isoforms in vitro. Site-directed mutagenesis established that two conserved serine residues, Ser(18) and Ser(20), (numbering based on isoform 1c) form at least one phosphorylation site in these three isoforms. Mutant forms of 1b, 1c, and 1d were constructed in which a single alanine was introduced at either serine residue and a double mutant for each isoform was constructed as well in which both serines were replaced with alanine. Phosphorylation of the single mutants was greatly reduced and was nearly abolished in the double mutants in both in vivo and in vitro labeling assays. Analysis by MALDI-MS of (32)P-labeled proteolytic peptides derived from wild type 1c and the 1c mutants supported both Ser(18) and Ser(20) as phosphorylated residues. These data demonstrate the first finding that hECE-1 is constitutively phosphorylated within its cytoplasmic domain in an isoform-specific manner.
Collapse
Affiliation(s)
- Kathryn J MacLeod
- Department of CNS Molecular Sciences, Pfizer Global Research and Development, Ann Arbor Laboratories, Ann Arbor, Michigan 48105, USA.
| | | | | | | |
Collapse
|
15
|
Navarrete Santos A, Wulfänger J, Helbing G, Blosz T, Langner J, Riemann D. Two C-terminal cysteines are necessary for proper folding of the peptidase neprilysin/CD10. Biochem Biophys Res Commun 2002; 295:423-7. [PMID: 12150966 DOI: 10.1016/s0006-291x(02)00675-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neprilysin (NEP) consists of 749 amino acids with two conserved cysteines (734, 746) and a putative CAAX motif (residues 746-749, CRVW) at the C-terminus. To investigate the role of the C-terminal conserved cysteine residues, three NEP mutants (C734S, C746S, and double mutant C734S/C746S) were constructed by use of site-directed mutagenesis. Western blot analysis of lysates of transfected cells revealed the presence of three NEP forms in wild type and mutants with a different glycosylation pattern. Point mutations of C734 as well as C746 by serine dramatically diminished the plasma membrane association of NEP as detected by flow cytometry and laser scanning microscopy. Endoprotease enzyme activity was slightly diminished in the C746S-NEP variant and was not detectable in the C734S-form of NEP suggesting a pivotal role of the C734 in the proper folding of the enzyme. Prenylation of NEP was not detected in an in vivo assay.
Collapse
|
16
|
Abstract
Hirschsprung disease is the most common congenital malformation of the enteric nervous system. Phenotypic expression is variable because of incomplete penetrance, and the pathogenesis is multifactorial. Although mutations of the RET tyrosine kinase gene remain the most commonly identified cause, there are now eight separate human gene loci identified whose mutations result in this disease. Analysis of these gene products in experimental animal models and cell systems has led to an increasing elucidation of the signaling pathways that are in operation during specific embryonic time stages and that direct the spatial arrangements and differentiation of enteric neuroblasts. Mutation analysis through in vitro cell expression studies has led to detailed descriptions of the affected microdomains of signal pathway receptors and the cellular pathogenesis of abnormal signaling that leads to apoptosis of developing neurons before the completion of enteric nervous system development. The full description of the pathogenesis of this disorder awaits the definition of new genetic loci, multiple gene interactions, and the acknowledgment of random events that may lead to aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- William M Belknap
- Section of Pediatric Gastroenterology, Department of Pediatrics, Henry Ford Health System, Detroit, Michigan 48202, USA.
| |
Collapse
|