1
|
Kim H, Park J, Kim H, Ko N, Park J, Jang E, Yoon S, Diaz J, Lee C, Jun Y. Structures of Vac8-containing protein complexes reveal the underlying mechanism by which Vac8 regulates multiple cellular processes. Proc Natl Acad Sci U S A 2023; 120:e2211501120. [PMID: 37094131 PMCID: PMC10161063 DOI: 10.1073/pnas.2211501120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Vac8, a yeast vacuolar protein with armadillo repeats, mediates various cellular processes by changing its binding partners; however, the mechanism by which Vac8 differentially regulates these processes remains poorly understood. Vac8 interacts with Nvj1 to form the nuclear-vacuole junction (NVJ) and with Atg13 to mediate cytoplasm-to-vacuole targeting (Cvt), a selective autophagy-like pathway that delivers cytoplasmic aminopeptidase I directly to the vacuole. In addition, Vac8 associates with Myo2, a yeast class V myosin, through its interaction with Vac17 for vacuolar inheritance from the mother cell to the emerging daughter cell during cell divisions. Here, we determined the X-ray crystal structure of the Vac8-Vac17 complex and found that its interaction interfaces are bipartite, unlike those of the Vac8-Nvj1 and Vac8-Atg13 complexes. When the key amino acids present in the interface between Vac8 and Vac17 were mutated, vacuole inheritance was severely impaired in vivo. Furthermore, binding of Vac17 to Vac8 prevented dimerization of Vac8, which is required for its interactions with Nvj1 and Atg13, by clamping the H1 helix to the ARM1 domain of Vac8 and thereby preventing exposure of the binding interface for Vac8 dimerization. Consistently, the binding affinity of Vac17-bound Vac8 for Nvj1 or Atg13 was markedly lower than that of free Vac8. Likewise, free Vac17 had no affinity for the Vac8-Nvj1 and Vac8-Atg13 complexes. These results provide insights into how vacuole inheritance and other Vac8-mediated processes, such as NVJ formation and Cvt, occur independently of one another.
Collapse
Affiliation(s)
- Hyejin Kim
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Jihyeon Park
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Hyunwoo Kim
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Naho Ko
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Jumi Park
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Eunhong Jang
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - So Young Yoon
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Joyce Anne R. Diaz
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Changwook Lee
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Youngsoo Jun
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| |
Collapse
|
2
|
Wang D, Yu X, Sheng P, Zhang G. The Transcriptomic Mechanism of a Novel Autolysis Induced by a Recombinant Antibacterial Peptide from Chicken Expressed in Pichia pastoris. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062029. [PMID: 35335392 PMCID: PMC8955930 DOI: 10.3390/molecules27062029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Autolysis is a common physiological process in eukaryotic cells that is often prevented or applied, especially in yeast expression systems. In this study, an antimicrobial peptide from chicken (AMP) was recombinantly expressed in the Pichia pastoris expression system, which induced a series of cellular autolysis phenotypes after methanol treatment, such as the aggregated, lysed, irregular, and enlarged cell morphology, while the cells expressing a recombinant aflatoxin-detoxifizyme (ADTZ) were not autolyzed. A comparative transcriptomic analysis showed that the transcriptomic profiles of cells derived from the autolysis and non-autolysis groups were well discriminated, suggesting that the mechanisms of autolysis were at the transcriptional level. A further differential expression gene (DEG) analysis showed that the DEGs from the two groups were involved mainly in autophagy, the MAPK signaling pathway, transcriptional factors, the central carbon metabolism, anti-stress functions, and so on. In the autolysis group, the cell activity was significantly reduced with the MAPK signaling pathway, the central carbon metabolism was down-regulated, and components of the cytoplasm-to-vacuole targeting (CVT) and mitophagy pathways were up-regulated, suggesting that the autophagy involved in the trafficking of intracellular molecules in the vacuole and mitochondrion contributed to autolysis, which was regulated by transcriptional factors and signal pathways at the transcriptional level. This study provides a theoretical basis for genetic modifications to prevent or utilize cell autolysis in the recombinant protein expression system.
Collapse
Affiliation(s)
- Dongsheng Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (P.S.); (G.Z.)
- Correspondence: (D.W.); (X.Y.)
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 1, Gongda Road, Huzhou 313200, China
- Correspondence: (D.W.); (X.Y.)
| | - Ping Sheng
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (P.S.); (G.Z.)
| | - Guohua Zhang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (P.S.); (G.Z.)
| |
Collapse
|
3
|
Cargo Release from Myosin V Requires the Convergence of Parallel Pathways that Phosphorylate and Ubiquitylate the Cargo Adaptor. Curr Biol 2020; 30:4399-4412.e7. [PMID: 32916113 DOI: 10.1016/j.cub.2020.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.
Collapse
|
4
|
Schuck S. Microautophagy - distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci 2020; 133:133/17/jcs246322. [PMID: 32907930 DOI: 10.1242/jcs.246322] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is fundamental for cell and organismal health. Two types of autophagy are conserved in eukaryotes: macroautophagy and microautophagy. During macroautophagy, autophagosomes deliver cytoplasmic constituents to endosomes or lysosomes, whereas during microautophagy lytic organelles take up cytoplasm directly. While macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become clear that microautophagy has a broad range of functions in biosynthetic transport, metabolic adaptation, organelle remodeling and quality control. This Review discusses the selective and non-selective microautophagic processes known in yeast, plants and animals. Based on the molecular mechanisms for the uptake of microautophagic cargo into lytic organelles, I propose to distinguish between fission-type microautophagy, which depends on ESCRT proteins, and fusion-type microautophagy, which requires the core autophagy machinery and SNARE proteins. Many questions remain to be explored, but the functional versatility and mechanistic diversity of microautophagy are beginning to emerge.
Collapse
Affiliation(s)
- Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Gatica D, Wen X, Cheong H, Klionsky DJ. Vac8 determines phagophore assembly site vacuolar localization during nitrogen starvation-induced autophagy. Autophagy 2020; 17:1636-1648. [PMID: 32508216 DOI: 10.1080/15548627.2020.1776474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Macroautophagy/autophagy is a key catabolic process in which different cellular components are sequestered inside double-membrane vesicles called autophagosomes for subsequent degradation. In yeast, autophagosome formation occurs at the phagophore assembly site (PAS), a specific perivacuolar location that works as an organizing center for the recruitment of different autophagy-related (Atg) proteins. How the PAS is localized to the vacuolar periphery is not well understood. Here we show that the vacuolar membrane protein Vac8 is required for correct vacuolar localization of the PAS. We provide evidence that Vac8 anchors the PAS to the vacuolar membrane by binding Atg13 and recruiting the Atg1 initiation complex. VAC8 deletion or mislocalization of the protein reduce autophagy activity, highlighting the importance of both the PAS and the correct vacuolar localization of the Atg1 initiation complex for efficient and robust autophagy.Abbreviations: AID: auxin-inducible degradation; Atg: autophagy-related; Cvt: cytoplasm-to-vacuole targeting; DMSO: dimethyl sulfoxide; ER: endoplasmic reticulum; GFP: green fluorescent protein; IAA: 3-indole acetic acid; PAS: phagophore assembly site; RFP: red fluorescent protein.
Collapse
Affiliation(s)
- Damian Gatica
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xin Wen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Heesun Cheong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae. Cells 2019; 8:cells8070661. [PMID: 31262095 PMCID: PMC6678646 DOI: 10.3390/cells8070661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023] Open
Abstract
The yeast vacuole is a vital organelle, which is required for the degradation of aberrant intracellular or extracellular substrates and the recycling of the resulting nutrients as newly available building blocks for the cellular metabolism. Like the plant vacuole or the mammalian lysosome, the yeast vacuole is the destination of biosynthetic trafficking pathways that transport the vacuolar enzymes required for its functions. Moreover, substrates destined for degradation, like extracellular endocytosed cargoes that are transported by endosomes/multivesicular bodies as well as intracellular substrates that are transported via different forms of autophagosomes, have the vacuole as destination. We found that non-selective bulk autophagy of cytosolic proteins as well as the selective autophagic degradation of peroxisomes (pexophagy) and ribosomes (ribophagy) was dependent on the armadillo repeat protein Vac8 in Saccharomyces cerevisiae. Moreover, we showed that pexophagy and ribophagy depended on the palmitoylation of Vac8. In contrast, we described that Vac8 was not involved in the acidification of the vacuole nor in the targeting and maturation of certain biosynthetic cargoes, like the aspartyl-protease Pep4 (PrA) and the carboxy-peptidase Y (CPY), indicating a role of Vac8 in the uptake of selected cargoes. In addition, we found that the hallmark phenotype of the vac8Δ strain, namely the characteristic appearance of fragmented and clustered vacuoles, depended on the growth conditions. This fusion defect observed in standard glucose medium can be complemented by the replacement with oleic acid or glycerol medium. This complementation of vacuolar morphology also partially restores the degradation of peroxisomes. In summary, we found that Vac8 controlled vacuolar morphology and activity in a context- and cargo-dependent manner.
Collapse
|
7
|
Ganesan S, Sosa Ponce ML, Tavassoli M, Shabits BN, Mahadeo M, Prenner EJ, Terebiznik MR, Zaremberg V. Metabolic control of cytosolic-facing pools of diacylglycerol in budding yeast. Traffic 2019; 20:226-245. [PMID: 30569465 DOI: 10.1111/tra.12632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Diacylglycerol (DAG) is a key signaling lipid and intermediate in lipid metabolism. Our knowledge of DAG distribution and dynamics in cell membranes is limited. Using live-cell fluorescence microscopy we investigated the localization of yeast cytosolic-facing pools of DAG in response to conditions where lipid homeostasis and DAG levels were known to be altered. Two main pools were monitored over time using DAG sensors. One pool was associated with vacuolar membranes and the other localized to sites of polarized growth. Dynamic changes in DAG distribution were observed during resumption of growth from stationary phase, when DAG is used to support phospholipid synthesis for membrane proliferation. Vacuolar membranes experienced constant morphological changes displaying DAG enriched microdomains coexisting with liquid-disordered areas demarcated by Vph1. Formation of these domains was dependent on triacylglycerol (TAG) lipolysis. DAG domains and puncta were closely connected to lipid droplets. Lack of conversion of DAG to phosphatidate in growth conditions dependent on TAG mobilization, led to the accumulation of DAG in a vacuolar-associated compartment, impacting the polarized distribution of DAG at budding sites. DAG polarization was also regulated by phosphatidylserine synthesis/traffic and sphingolipid synthesis in the Golgi.
Collapse
Affiliation(s)
| | - Maria L Sosa Ponce
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Marjan Tavassoli
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Brittney N Shabits
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mark Mahadeo
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Fukata Y, Murakami T, Yokoi N, Fukata M. Local Palmitoylation Cycles and Specialized Membrane Domain Organization. CURRENT TOPICS IN MEMBRANES 2015; 77:97-141. [PMID: 26781831 DOI: 10.1016/bs.ctm.2015.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Palmitoylation is an evolutionally conserved lipid modification of proteins. Dynamic and reversible palmitoylation controls a wide range of molecular and cellular properties of proteins including the protein trafficking, protein function, protein stability, and specialized membrane domain organization. However, technical difficulties in (1) detection of palmitoylated substrate proteins and (2) purification and enzymology of palmitoylating enzymes have prevented the progress in palmitoylation research, compared with that in phosphorylation research. The recent development of proteomic and chemical biology techniques has unexpectedly expanded the known complement of palmitoylated proteins in various species and tissues/cells, and revealed the unique occurrence of palmitoylated proteins in membrane-bound organelles and specific membrane compartments. Furthermore, identification and characterization of DHHC (Asp-His-His-Cys) palmitoylating enzyme-substrate pairs have contributed to elucidating the regulatory mechanisms and pathophysiological significance of protein palmitoylation. Here, we review the recent progress in protein palmitoylation at the molecular, cellular, and in vivo level and discuss how locally regulated palmitoylation machinery works for dynamic nanoscale organization of membrane domains.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tatsuro Murakami
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Norihiko Yokoi
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
9
|
Hönscher C, Ungermann C. A close-up view of membrane contact sites between the endoplasmic reticulum and the endolysosomal system: from yeast to man. Crit Rev Biochem Mol Biol 2014; 49:262-8. [PMID: 24382115 DOI: 10.3109/10409238.2013.875512] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Maintenance of organelle identity is crucial for the functionality of eukaryotic cells. Hence, transfer reactions between different compartments must be highly efficient and tightly regulated at the same time. Membrane contact sites (MCSs) represent an important route for inter-organelle transport and communication independent of vesicular trafficking. Due to extensive research, the mechanistic understanding of these sites increases constantly. However, how the formation and the versatile functions of MCSs are regulated is mainly unclear. Within this review, we focus on one well-known MCS, the nucleus-vacuole junction in yeast and discuss its analogy to endoplasmic reticulum-late endosome contacts in metazoan. Formation of the junction in yeast requires Vac8, a protein that is involved in various cellular processes at the yeast vacuole and a target of multiple posttranslational modifications. We discuss the possibility that dual functionality of proteins involved in contact formation is a common principle to coordinate inter-organelle transfer with organellar biogenesis.
Collapse
Affiliation(s)
- Carina Hönscher
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück , Osnabrück , Germany
| | | |
Collapse
|
10
|
The MAP kinase Slt2 is involved in vacuolar function and actin remodeling in Saccharomyces cerevisiae mutants affected by endogenous oxidative stress. Appl Environ Microbiol 2013; 79:6459-71. [PMID: 23956390 DOI: 10.1128/aem.01692-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress causes transient actin cytoskeleton depolarization and also provokes vacuole fragmentation in wild-type cells. Under conditions of oxidative stress induced by hydrogen peroxide, the Slt2 protein is required to repolarize the actin cytoskeleton and to promote vacuole fusion. In this study, we show that grx3 grx4 and grx5 mutants are cellular models of endogenous oxidative stress. This stress is the result of alterations in iron homeostasis that lead to impairment of vacuolar function and also to disorganization of the actin cytoskeleton. Slt2 overexpression suppresses defects in vacuolar function and actin cytoskeleton organization in the grx3 grx4 mutant. Slt2 exerts this effect independently of the intracellular levels of reactive oxygen species (ROS) and of iron homeostasis. The deletion of SLT2 in the grx3 grx4 mutant results in synthetic lethality related to vacuolar function with substantial vacuole fragmentation. The observation that both Vps4 and Vps73 (two proteins related to vacuole sorting) suppress vacuole fragmentation and actin depolarization in the grx3 grx4 slt2 triple mutant strengthens the hypothesis that Slt2 plays a role in vacuole homeostasis related to actin dynamics. Here we show that in sod1, grx5, and grx3 grx4 slt2 mutants, all of which are affected by chronic oxidative stress, the overexpression of Slt2 favors vacuole fusion through a mechanism dependent on an active actin cytoskeleton.
Collapse
|
11
|
Bak G, Lee EJ, Lee Y, Kato M, Segami S, Sze H, Maeshima M, Hwang JU, Lee Y. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. THE PLANT CELL 2013; 25:2202-16. [PMID: 23757398 PMCID: PMC3723621 DOI: 10.1105/tpc.113.110411] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 05/08/2023]
Abstract
Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate that vacuolar convolution is accompanied by acidification of the vacuole in fava bean (Vicia faba) guard cells during abscisic acid (ABA)-induced stomatal closure. Vacuolar acidification is necessary for the rapid stomatal closure induced by ABA, since a double mutant of the vacuolar H(+)-ATPase vha-a2 vha-a3 and vacuolar H(+)-PPase mutant vhp1 showed delayed stomatal closure. Furthermore, we provide evidence for the critical role of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] in changes in pH and morphology of the vacuole. Single and double Arabidopsis thaliana null mutants of phosphatidylinositol 3-phosphate 5-kinases (PI3P5Ks) exhibited slow stomatal closure upon ABA treatment compared with the wild type. Moreover, an inhibitor of PI3P5K reduced vacuolar acidification and convolution and delayed stomatal closure in response to ABA. Taken together, these results suggest that rapid ABA-induced stomatal closure requires PtdIns(3,5)P2, which is essential for vacuolar acidification and convolution.
Collapse
Affiliation(s)
- Gwangbae Bak
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Eun-Jung Lee
- POSTECH-UZH Global Research Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yuree Lee
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Mariko Kato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Heven Sze
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Jae-Ung Hwang
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Youngsook Lee
- POSTECH-UZH Global Research Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
12
|
Harmon RM, Simpson CL, Johnson JL, Koetsier JL, Dubash AD, Najor NA, Sarig O, Sprecher E, Green KJ. Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. J Clin Invest 2013; 123:1556-70. [PMID: 23524970 DOI: 10.1172/jci65220] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 01/17/2013] [Indexed: 01/27/2023] Open
Abstract
Genetic disorders of the Ras/MAPK pathway, termed RASopathies, produce numerous abnormalities, including cutaneous keratodermas. The desmosomal cadherin, desmoglein-1 (DSG1), promotes keratinocyte differentiation by attenuating MAPK/ERK signaling and is linked to striate palmoplantar keratoderma (SPPK). This raises the possibility that cutaneous defects associated with SPPK and RASopathies share certain molecular faults. To identify intermediates responsible for executing the inhibition of ERK by DSG1, we conducted a yeast 2-hybrid screen. The screen revealed that Erbin (also known as ERBB2IP), a known ERK regulator, binds DSG1. Erbin silencing disrupted keratinocyte differentiation in culture, mimicking aspects of DSG1 deficiency. Furthermore, ERK inhibition and the induction of differentiation markers by DSG1 required both Erbin and DSG1 domains that participate in binding Erbin. Erbin blocks ERK signaling by interacting with and disrupting Ras-Raf scaffolds mediated by SHOC2, a protein genetically linked to the RASopathy, Noonan-like syndrome with loose anagen hair (NS/LAH). DSG1 overexpression enhanced this inhibitory function, increasing Erbin-SHOC2 interactions and decreasing Ras-SHOC2 interactions. Conversely, analysis of epidermis from DSG1-deficient patients with SPPK demonstrated increased Ras-SHOC2 colocalization and decreased Erbin-SHOC2 colocalization, offering a possible explanation for the observed epidermal defects. These findings suggest a mechanism by which DSG1 and Erbin cooperate to repress MAPK signaling and promote keratinocyte differentiation.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kao PH, Chen YJ, Yang SY, Lin SR, Hu WP, Chang LS. Fusogenicity of Naja naja atra cardiotoxin-like basic protein on sphingomyelin vesicles containing oxidized phosphatidylcholine and cholesterol. J Biochem 2013; 153:523-33. [PMID: 23426438 DOI: 10.1093/jb/mvt013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of oxidized phosphatidylcholine (oxPC) and cholesterol (Chol) on Naja naja atra cardiotoxin-like basic protein (CLBP)-induced fusion and leakage in sphingomyelin (SM) vesicles. Compared with those on PC/SM/Chol vesicles, CLBP showed a lower activity to induce membrane permeability but a higher fusogenicity on oxPC/SM/Chol vesicles. A reduction in inner-leaflet fusion elucidated that CLBP fusogenicity was not in parallel to its membrane-leakage activity on oxPC/SM/Chol vesicles. The lipid domain formed by Chol and SM supported CLBP fusogenicity on oxPC/SM/Chol vesicles, while oxPC altered the interacted mode of CLBP with oxPC/SM/Chol vesicles as evidenced by Fourier transform infrared spectra analyses and colorimetric phospholipid/polydiacetylene membrane assay. Although CLBP showed similar binding affinity with PC/SM/Chol and oxPC/SM/Chol vesicles, the binding capability of CLBP with PC/SM/Chol and oxPC/SM/Chol vesicles was affected differently by NaCl. This emphasized that CLBP adopted different membrane interaction modes upon binding with PC/SM/Chol and oxPC/SM/Chol vesicles. CLBP induced fusion in vesicles containing oxPC bearing the aldehyde group, and aldehyde scavenger methoxyamine abrogated the CLBP ability to induce oxPC/SM/Chol fusion. Taken together, our data indicate that Chol and oxPC bearing aldehyde group alter the CLBP membrane-binding mode, leading to fusogenicity promotion while reducing the membrane-damaging activity of CLBP.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Beck JR, Fung C, Straub KW, Coppens I, Vashisht AA, Wohlschlegel JA, Bradley PJ. A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell invasion but not egress. PLoS Pathog 2013; 9:e1003162. [PMID: 23408890 PMCID: PMC3567180 DOI: 10.1371/journal.ppat.1003162] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO) rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic intervention against Toxoplasma and related apicomplexan parasites. Apicomplexans possess a highly polarized secretory pathway that is critical for their ability to invade host cells and cause disease. This unique cellular organization enables delivery of protein cargo to specialized secretory organelles called micronemes and rhoptries that drive forward penetration into the host cell. The rhoptries are tethered in a bundle at the apex of the parasite, but how these organelles are organized in this manner is unknown. In this work, we identify a rhoptry-localized palmitoyl acyl transferase (named TgDHHC7) that functions to properly affix the rhoptries at the apical end of the parasite. Conditional disruption of TgDHHC7 results in a failure to tether the rhoptries at the cell apex and a corresponding loss of rhoptry function. We exploit this mutant to clearly demonstrate a critical role for the rhoptries in host invasion but not attachment or egress. Additionally, we find that mutation of a key residue predicted to be required for catalytic activity renders TgDHHC7 non-functional and that knockdown of the candidate substrate TgARO produces an identical phenotype to loss of TgDHHC7. The finding that Toxoplasma employs protein palmitoylation to position the rhoptries at the cell apex provides new insight into the molecular mechanisms that underlie apicomplexan cell polarity, host invasion and pathogenesis.
Collapse
Affiliation(s)
- Josh R. Beck
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Connie Fung
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kurtis W. Straub
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Cabrera A, Herrmann S, Warszta D, Santos JM, John Peter AT, Kono M, Debrouver S, Jacobs T, Spielmann T, Ungermann C, Soldati-Favre D, Gilberger TW. Dissection of minimal sequence requirements for rhoptry membrane targeting in the malaria parasite. Traffic 2012; 13:1335-50. [PMID: 22759070 DOI: 10.1111/j.1600-0854.2012.01394.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 12/20/2022]
Abstract
Rhoptries are specialized secretory organelles characteristic of single cell organisms belonging to the clade Apicomplexa. These organelles play a key role in the invasion process of host cells by accumulating and subsequently secreting an unknown number of proteins mediating host cell entry. Despite their essential role, little is known about their biogenesis, components and targeting determinants. Here, we report on a conserved apicomplexan protein termed Armadillo Repeats-Only (ARO) protein that we localized to the cytosolic face of Plasmodium falciparum and Toxoplasma gondii rhoptries. We show that the first 20 N-terminal amino acids are sufficient for rhoptry membrane targeting. This protein relies on both - myristoylation and palmitoylation motifs - for membrane attachment. Although these lipid modifications are essential, they are not sufficient to direct ARO to the rhoptry membranes. Mutational analysis revealed additional residues within the first 20 amino acids of ARO that play an important role for rhoptry membrane attachment: the positively charged residues R9 and K14. Interestingly, the exchange of R9 with a negative charge entirely abolishes membrane attachment, whereas the exchange of K14 (and to a lesser extent K16) alters only its membrane specificity. Additionally, 17 proteins predicted to be myristoylated and palmitoylated in the first 20 N-terminal amino acids were identified in the genome of the malaria parasite. While most of the corresponding GFP fusion proteins were trafficked to the parasite plasma membrane, two were sorted to the apical organelles. Interestingly, these proteins have a similar motif identified for ARO.
Collapse
Affiliation(s)
- Ana Cabrera
- M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy. PLoS One 2012; 7:e33270. [PMID: 22448240 PMCID: PMC3308974 DOI: 10.1371/journal.pone.0033270] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/13/2012] [Indexed: 11/23/2022] Open
Abstract
Background The rice blast fungus Magnaporthe oryzae elaborates a specialized infection structure called an appressorium to breach the rice leaf surface and gain access to plant tissue. Appressorium development is controlled by cell cycle progression, and a single round of nuclear division occurs prior to appressorium formation. Mitosis is always followed by programmed cell death of the spore from which the appressorium develops. Nuclear degeneration in the spore is known to be essential for plant infection, but the precise mechanism by which it occurs is not known. Methodology/Principal Findings In yeast, nuclear breakdown requires a specific form of autophagy, known as piecemeal microautophagy of the nucleus (PMN), and we therefore investigated whether this process occurs in the rice blast fungus. Here, we report that M. oryzae possesses two conserved components of a putative PMN pathway, MoVac8 and MoTsc13, but that both are dispensable for nuclear breakdown during plant infection. MoVAC8 encodes a vacuolar membrane protein and MoTSC13 a peri-nuclear and peripheral ER protein. Conclusions/Significance We show that MoVAC8 is necessary for caffeine resistance, but dispensable for pathogenicity of M. oryzae, while MoTSC13 is involved in cell wall stress responses and is an important virulence determinant. By functional analysis of ΔMoatg1 and ΔMoatg4 mutants, we demonstrate that infection-associated nuclear degeneration in M. oryzae instead occurs by non-selective macroautophagy, which is necessary for rice blast disease.
Collapse
|
17
|
Wsp1 is downstream of Cin1 and regulates vesicle transport and actin cytoskeleton as an effector of Cdc42 and Rac1 in Cryptococcus neoformans. EUKARYOTIC CELL 2012; 11:471-81. [PMID: 22327008 DOI: 10.1128/ec.00011-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human Wiskott-Aldrich syndrome protein (WASP) is a scaffold linking upstream signals to the actin cytoskeleton. In response to intersectin ITSN1 and Rho GTPase Cdc42, WASP activates the Arp2/3 complex to promote actin polymerization. The human pathogen Cryptococcus neoformans contains the ITSN1 homolog Cin1 and the WASP homolog Wsp1, which share more homology with human proteins than those of other fungi. Here we demonstrate that Cin1, Cdc42/Rac1, and Wsp1 function in an effector pathway similar to that of mammalian models. In the cin1 mutant, expression of the autoactivated Wsp1-B-GBD allele partially suppressed the mutant defect in endocytosis, and expression of the constitutively active CDC42(Q61L) allele restored normal actin cytoskeleton structures. Similar phenotypic suppression can be obtained by the expression of a Cdc42-green fluorescent protein (GFP)-Wsp1 fusion protein. In addition, Rac1, which was found to exhibit a role in early endocytosis, activates Wsp1 to regulate vacuole fusion. Rac1 interacted with Wsp1 and depended on Wsp1 for its vacuolar membrane localization. Expression of the Wsp1-B-GBD allele restored vacuolar membrane fusion in the rac1 mutant. Collectively, our studies suggest novel ways in which this pathogenic fungus has adapted conserved signaling pathways to control vesicle transport and actin organization, likely benefiting survival within infected hosts.
Collapse
|
18
|
Abstract
RhoGDIs (Rho GDP-dissociation inhibitors) are the natural inhibitors of Rho GTPases. They interfere with Rho protein function by either blocking upstream activation or association with downstream signalling molecules. RhoGDIs can also extract membrane-bound Rho GTPases to form soluble cytosolic complexes. We have shown previously that purified yeast RhoGDI Rdi1p, can inhibit vacuole membrane fusion in vitro. In the present paper we functionally dissect Rdi1p to discover its mode of regulating membrane fusion. Overexpression of Rdi1p in vivo profoundly affected cell morphology including increased actin patches in mother cells indicative of polarity defects, delayed ALP (alkaline phosphatase) sorting and the presence of highly fragmented vacuoles indicative of membrane fusion defects. These defects were not caused by the loss of typical transport and fusion proteins, but rather were linked to the reduction of membrane localization and activation of Cdc42p and Rho1p. Subcellular fractionation showed that Rdi1p is predominantly a cytosolic monomer, free of bound Rho GTPases. Overexpression of endogenous Rdi1p, or the addition of exogenous Rdi1p, generated stable cytosolic complexes. Rdi1p structure-function analysis showed that membrane association via the C-terminal β-sheet domain was required for the functional inhibition of membrane fusion. Furthermore, Rdi1p inhibited membrane fusion through the binding of Rho GTPases independent from its extraction activity.
Collapse
|
19
|
|
20
|
Jones L, Tedrick K, Baier A, Logan MR, Eitzen G. Cdc42p is activated during vacuole membrane fusion in a sterol-dependent subreaction of priming. J Biol Chem 2009; 285:4298-306. [PMID: 20007700 DOI: 10.1074/jbc.m109.074609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cdc42p is a Rho GTPase that initiates signaling cascades at spatially defined intracellular sites for many cellular functions. We have previously shown that Cdc42p is localized to the yeast vacuole where it initiates actin polymerization during membrane fusion. Here we examine the activation cycle of Cdc42p during vacuole membrane fusion. Expression of either GTP- or GDP-locked Cdc42p mutants caused several morphological defects including enlarged cells and fragmented vacuoles. Stimulation of multiple rounds of fusion enhanced vacuole fragmentation, suggesting that cycles of Cdc42p activation, involving rounds of GTP binding and hydrolysis, are required to propagate Cdc42p signaling. We developed an assay to directly examine Cdc42p activation based on affinity to a probe derived from the p21-activated kinase effector, Ste20p. Cdc42p was rapidly activated during vacuole membrane fusion, which kinetically coincided with priming subreaction. During priming, Sec18p ATPase activity dissociates SNARE complexes and releases Sec17p, however, priming inhibitors such as Sec17p and Sec18p ligands did not block Cdc42p activation. Therefore, Cdc42p activation seems to be a parallel subreaction of priming, distinct from Sec18p activity. Specific mutants in the ergosterol synthesis pathway block both Sec17p release and Cdc42p activation. Taken together, our results define a novel sterol-dependent subreaction of vacuole priming that activates cycles of Cdc42p activity to facilitate membrane fusion.
Collapse
Affiliation(s)
- Lynden Jones
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
21
|
Nadolski MJ, Linder ME. Molecular recognition of the palmitoylation substrate Vac8 by its palmitoyltransferase Pfa3. J Biol Chem 2009; 284:17720-30. [PMID: 19416974 DOI: 10.1074/jbc.m109.005447] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Palmitoylation of the yeast vacuolar protein Vac8 is important for its role in membrane-mediated events such as vacuole fusion. It has been established both in vivo and in vitro that Vac8 is palmitoylated by the Asp-His-His-Cys (DHHC) protein Pfa3. However, the determinants of Vac8 critical for recognition by Pfa3 have yet to be elucidated. This is of particular importance because of the lack of a consensus sequence for palmitoylation. Here we show that Pfa3 was capable of palmitoylating each of the three N-terminal cysteines of Vac8 and that this reaction was most efficient when Vac8 is N-myristoylated. Additionally, when we analyzed the Src homology 4 (SH4) domain of Vac8 independent of the rest of the protein, palmitoylation by Pfa3 still occurred. However, the specificity of palmitoylation seen for the full-length protein was lost, and the SH4 domain was palmitoylated by all five of the yeast DHHC proteins tested. These data suggested that a region of the protein C-terminal to the SH4 domain was important for conferring specificity of palmitoylation. This was confirmed by use of a chimeric protein in which the SH4 domain of Vac8 was swapped for that of Meh1, another palmitoylated and N-myristoylated protein in yeast. In this case we saw specificity mimic that of wild type Vac8. Competition experiments revealed that the 11th armadillo repeat of Vac8 is an important element for recognition by Pfa3. This demonstrates that regions distant from the palmitoylated cysteines are important for recognition by DHHC proteins.
Collapse
Affiliation(s)
- Marissa J Nadolski
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
22
|
A novel motif at the C-terminus of palmitoyltransferases is essential for Swf1 and Pfa3 function in vivo. Biochem J 2009; 419:301-8. [DOI: 10.1042/bj20080921] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
S-acylation (commonly known as palmitoylation) is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of a protein through a thioester bond. This modification is predominantly mediated by a family of proteins referred to as PATs (palmitoyltransferases). Most PATs are polytopic membrane proteins, with four to six transmembrane domains, a conserved DHHC motif and variable C-and N-terminal regions, that are probably responsible for conferring localization and substrate specificity. There is very little additional information on the structure–function relationship of PATs. Swf1 and Pfa3 are yeast members of the DHHC family of proteins. Swf1 is responsible for the S-acylation of several transmembrane SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) and other integral membrane proteins. Pfa3 is required for the palmitoylation of Vac8, a protein involved in vacuolar fusion. In the present study we describe a novel 16-amino-acid motif present at the cytosolic C-terminus of PATs, that is required for Swf1 and Pfa3 function in vivo. Within this motif, we have identified a single residue in Swf1, Tyr323, as essential for function, and this is correlated with lack of palmitoylation of Tlg1, a SNARE that is a substrate of Swf1. The equivalent mutation in Pfa3 also affects its function. These mutations are the first phenotype-affecting mutations uncovered that do not lie within the DHHC domain, for these or any other PATs. The motif is conserved in 70% of PATs from all eukaryotic organisms analysed, and may have once been present in all PATs. We have named this motif PaCCT (‘Palmitoyltransferase Conserved C-Terminus’).
Collapse
|
23
|
Higashi-Fujime S, Nakamura A. Cell and molecular biology of the fastest myosins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:301-47. [PMID: 19584016 DOI: 10.1016/s1937-6448(09)76007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chara myosin is a class XI plant myosin in green algae Chara corallina and responsible for fast cytoplasmic streaming. The Chara myosin exhibits the fastest sliding movement of F-actin at 60 mum/s as observed so far, 10-fold of the shortening speed of muscle. It has some distinct properties differing from those of muscle myosin. Although knowledge about Chara myosin is very limited at present, we have tried to elucidate functional bases of its characteristics by comparing with those of other myosins. In particular, we have built the putative atomic model of Chara myosin by using the homology-based modeling system and databases. Based on the putative structure of Chara myosin obtained, we have analyzed the relationship between structure and function of Chara myosin to understand its distinct properties from various aspects by referring to the accumulated knowledge on mechanochemical and structural properties of other classes of myosin, particularly animal and fungal myosin V. We will also discuss the functional significance of Chara myosin in a living cell.
Collapse
Affiliation(s)
- Sugie Higashi-Fujime
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
24
|
Anand VC, Daboussi L, Lorenz TC, Payne GS. Genome-wide analysis of AP-3-dependent protein transport in yeast. Mol Biol Cell 2008; 20:1592-604. [PMID: 19116312 DOI: 10.1091/mbc.e08-08-0819] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The evolutionarily conserved adaptor protein-3 (AP-3) complex mediates cargo-selective transport to lysosomes and lysosome-related organelles. To identify proteins that function in AP-3-mediated transport, we performed a genome-wide screen in Saccharomyces cerevisiae for defects in the vacuolar maturation of alkaline phosphatase (ALP), a cargo of the AP-3 pathway. Forty-nine gene deletion strains were identified that accumulated precursor ALP, many with established defects in vacuolar protein transport. Maturation of a vacuolar membrane protein delivered via a separate, clathrin-dependent pathway, was affected in all strains except those with deletions of YCK3, encoding a vacuolar type I casein kinase; SVP26, encoding an endoplasmic reticulum (ER) export receptor for ALP; and AP-3 subunit genes. Subcellular fractionation and fluorescence microscopy revealed ALP transport defects in yck3Delta cells. Characterization of svp26Delta cells revealed a role for Svp26p in ER export of only a subset of type II membrane proteins. Finally, ALP maturation kinetics in vac8Delta and vac17Delta cells suggests that vacuole inheritance is important for rapid generation of proteolytically active vacuolar compartments in daughter cells. We propose that the cargo-selective nature of the AP-3 pathway in yeast is achieved by AP-3 and Yck3p functioning in concert with machinery shared by other vacuolar transport pathways.
Collapse
Affiliation(s)
- Vikram C Anand
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
25
|
Brett CL, Merz AJ. Osmotic regulation of Rab-mediated organelle docking. Curr Biol 2008; 18:1072-7. [PMID: 18619842 DOI: 10.1016/j.cub.2008.06.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Osmotic gradients across organelle and plasma membranes modulate the rates of membrane fission and fusion; sufficiently large gradients can cause membrane rupture [1-6]. Hypotonic gradients applied to living yeast cells trigger prompt (within seconds) swelling and fusion of Saccharomyces cerevisiae vacuoles, whereas hypertonic gradients cause vacuoles to fragment on a slower time scale [7-11]. Here, we analyze the influence of osmotic strength on homotypic fusion of isolated yeast vacuoles. Consistent with previously reported in vivo results, we find that decreases in osmolyte concentration increase the rate and extent of vacuole fusion in vitro, whereas increases in osmolyte concentration prevent fusion. Unexpectedly, our results reveal that osmolytes regulate fusion by inhibiting early Rab-dependent docking or predocking events, not late events. Our experiments reveal an organelle-autonomous pathway that may control organelle surface-to-volume ratio, size, and copy number: Decreasing the osmolyte concentration in the cytoplasmic compartment accelerates Rab-mediated docking and fusion. By altering the relationship between the organelle surface and its enclosed volume, fusion in turn reduces the risk of membrane rupture.
Collapse
Affiliation(s)
- Christopher L Brett
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | |
Collapse
|
26
|
Takeda K, Cabrera M, Rohde J, Bausch D, Jensen ON, Ungermann C. The vacuolar V1/V0-ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion. FEBS Lett 2008; 582:1558-63. [PMID: 18405665 DOI: 10.1016/j.febslet.2008.03.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/21/2008] [Accepted: 03/28/2008] [Indexed: 12/24/2022]
Abstract
At yeast vacuoles, phosphorylation of the HOPS subunit Vps41 depends on the Yck3 kinase. In a screen for mutants that mimic the yck3Delta phenotype, in which Vps41 accumulates in vacuolar dots, we observed that mutants in the V0-part of the V0/V1-ATPase, in particular in vma16Delta, also accumulate Vps41. This accumulation is not due to a phosphorylation defect, but to reduced release of Vps41 from vma16Delta vacuoles. One reason could be a connection to vacuole fission, which is blocked in V-ATPase mutants. Vacuole fusion is not impaired between vacuoles lacking the V0-subunits Vma16 or Vma6 and wild-type vacuoles, whereas fusion between mutant vacuoles is reduced. Our data suggest a connection between vacuole biogenesis and membrane fusion.
Collapse
Affiliation(s)
- Kozue Takeda
- Department of Biology, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Isgandarova S, Jones L, Forsberg D, Loncar A, Dawson J, Tedrick K, Eitzen G. Stimulation of actin polymerization by vacuoles via Cdc42p-dependent signaling. J Biol Chem 2007; 282:30466-75. [PMID: 17726018 DOI: 10.1074/jbc.m704117200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that actin ligands inhibit the fusion of yeast vacuoles in vitro, which suggests that actin remodeling is a subreaction of membrane fusion. Here, we demonstrate the presence of vacuole-associated actin polymerization activity, and its dependence on Cdc42p and Vrp1p. Using a sensitive in vitro pyrene-actin polymerization assay, we found that vacuole membranes stimulated polymerization, and this activity increased when vacuoles were preincubated under conditions that support membrane fusion. Vacuoles purified from a VRP1-gene deletion strain showed reduced polymerization activity, which could be recovered when reconstituted with excess Vrp1p. Cdc42p regulates this activity because overexpression of dominant-negative Cdc42p significantly reduced vacuole-associated polymerization activity, while dominant-active Cdc42p increased activity. We also used size-exclusion chromatography to directly examine changes in yeast actin induced by vacuole fusion. This assay confirmed that actin undergoes polymerization in a process requiring ATP. To further confirm the need for actin polymerization during vacuole fusion, an actin polymerization-deficient mutant strain was examined. This strain showed in vivo defects in vacuole fusion, and actin purified from this strain inhibited in vitro vacuole fusion. Affinity isolation of vacuole-associated actin and in vitro binding assays revealed a polymerization-dependent interaction between actin and the SNARE Ykt6p. Our results suggest that actin polymerization is a subreaction of vacuole membrane fusion governed by Cdc42p signal transduction.
Collapse
Affiliation(s)
- Sabina Isgandarova
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Baars TL, Petri S, Peters C, Mayer A. Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol Biol Cell 2007; 18:3873-82. [PMID: 17652457 PMCID: PMC1995711 DOI: 10.1091/mbc.e07-03-0205] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Like numerous other eukaryotic organelles, the vacuole of the yeast Saccharomyces cerevisiae undergoes coordinated cycles of membrane fission and fusion in the course of the cell cycle and in adaptation to environmental conditions. Organelle fission and fusion processes must be balanced to ensure organelle integrity. Coordination of vacuole fission and fusion depends on the interactions of vacuolar SNARE proteins and the dynamin-like GTPase Vps1p. Here, we identify a novel factor that impinges on the fusion-fission equilibrium: the vacuolar H(+)-ATPase (V-ATPase) performs two distinct roles in vacuole fission and fusion. Fusion requires the physical presence of the membrane sector of the vacuolar H(+)-ATPase sector, but not its pump activity. Vacuole fission, in contrast, depends on proton translocation by the V-ATPase. Eliminating proton pumping by the V-ATPase either pharmacologically or by conditional or constitutive V-ATPase mutations blocked salt-induced vacuole fragmentation in vivo. In living cells, fission defects are epistatic to fusion defects. Therefore, mutants lacking the V-ATPase display large single vacuoles instead of multiple smaller vacuoles, the phenotype that is generally seen in mutants having defects only in vacuolar fusion. Its dual involvement in vacuole fission and fusion suggests the V-ATPase as a potential regulator of vacuolar morphology and membrane dynamics.
Collapse
Affiliation(s)
- Tonie L. Baars
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| | - Sebastian Petri
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, 72076 Tübingen, Germany
| | - Christopher Peters
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| | - Andreas Mayer
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| |
Collapse
|
29
|
Jennings ML, Howren TR, Cui J, Winters M, Hannigan R. Transport and regulatory characteristics of the yeast bicarbonate transporter homolog Bor1p. Am J Physiol Cell Physiol 2007; 293:C468-76. [PMID: 17459946 DOI: 10.1152/ajpcell.00286.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The functional properties of the Saccharomyces cerevisiae bicarbonate transporter homolog Bor1p (YNL275wp) were characterized by measuring boron (H3BO3), Na+, and Cl− fluxes. Neither Na+ nor Cl− appears to be a transported substrate for Bor1p. Uphill efflux of boron mediated by Bor1p was demonstrated directly by loading cells with boron and resuspending in a low-boron medium. Cells with intact BOR1, but not the deletant strain, transport boron outward until the intracellular concentration is sevenfold lower than that in the medium. Boron efflux through Bor1p is a saturable function of intracellular boron (apparent Km ∼1–2 mM). The extracellular pH dependences of boron distribution and efflux indicate that uphill efflux is driven by the inward H+ gradient. Addition of 30 mM HCO3− does not affect boron extrusion by Bor1p, indicating that HCO3− does not participate in Bor1p function. Functional Bor1p is present in cells grown in medium with no added boron, and overnight growth in 10 mM H3BO3 causes only a small increase in the levels of functional Bor1p and in BOR1 mRNA. The fact that Bor1p is expressed when there is no need for boron extrusion and is not strongly induced in the presence of growth-inhibitory boron concentrations is surprising if the main physiological function of yeast Bor1p is boron efflux. A possible role in vacuolar dynamics for Bor1p was recently reported by Decker and Wickner ( 10 ). Under the conditions used presently, there appears to be mildly abnormal vacuolar morphology in the deletant strain.
Collapse
Affiliation(s)
- Michael L Jennings
- Dept. of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Mail Slot 505, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Vac8p is a multifunctional yeast protein involved in several distinct vacuolar events including vacuole inheritance, vacuole homotypic fusion, nucleus-vacuole junction formation and the cytoplasm to vacuole protein targeting pathway. Vac8p associates with the vacuole membrane via myristoylation and palmitoylation. Vac8p has three putative palmitoylation sites, at Cys 4, 5 and 7. Here, we show that each of these cysteines may serve as a palmitoylation site. Palmitoylation at Cys 7 alone provides partial function of Vac8p, whereas palmitoylation at either Cys 4 or Cys 5 alone is sufficient for Vac8p function. In the former mutant, there is a severe defect in the localization of Vac8p to the vacuole membrane, while in the latter mutants, there is a partial defect in the localization of Vac8p. In addition, our studies provide evidence that palmitoylation targets Vac8p to specific membrane subdomains.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Cell & Developmental Biology, Life Sciences Institute, 210 Washtenaw Avenue, Room 6437, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | |
Collapse
|
31
|
Meiringer CTA, Ungermann C. Probing protein palmitoylation at the yeast vacuole. Methods 2006; 40:171-6. [PMID: 17012029 DOI: 10.1016/j.ymeth.2006.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 06/23/2006] [Indexed: 11/15/2022] Open
Abstract
A protein's function depends on its localization to the right cellular compartment. A number of proteins require lipidation to associate with membranes. Protein palmitoylation is a reversible lipid modification and has been shown to mediate both membrane localization and control protein function. At the yeast vacuole, several palmitoylated proteins have been identified that are required for vacuole biogenesis, including the fusion factor Vac8, the SNARE Ykt6 and the casein kinase Yck3. Moreover, both the DHHC-CRD acyltransferase Pfa3 and Ykt6 are involved in palmitoylation at the vacuole Here, we present and discuss methods to probe for protein palmitoylation at vacuoles.
Collapse
|
32
|
Nazarko TY, Polupanov AS, Manjithaya RR, Subramani S, Sibirny AA. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell 2006; 18:106-18. [PMID: 17079731 PMCID: PMC1751328 DOI: 10.1091/mbc.e06-06-0554] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.
Collapse
Affiliation(s)
- Taras Y. Nazarko
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
| | - Andriy S. Polupanov
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
| | - Ravi R. Manjithaya
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Suresh Subramani
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Andriy A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
- Department of Metabolic Engineering, Rzeszow University, Cwiklinskiej 2, Rzeszow 3-601, Poland
| |
Collapse
|
33
|
Duex JE, Nau JJ, Kauffman EJ, Weisman LS. Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. EUKARYOTIC CELL 2006; 5:723-31. [PMID: 16607019 PMCID: PMC1459661 DOI: 10.1128/ec.5.4.723-731.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphoinositide lipids regulate complex events via the recruitment of proteins to a specialized region of the membrane at a specific time. Precise control of both the synthesis and turnover of phosphoinositide lipids is integral to membrane trafficking, signal transduction, and cytoskeletal rearrangements. Little is known about the acute regulation of the levels of these signaling lipids. When Saccharomyces cerevisiae cells are treated with hyperosmotic medium the levels of phosphatidylinositol 3,5-bisphosphate (PI3,5P(2)) increase 20-fold. Here we show that this 20-fold increase is rapid and occurs within 5 min. Surprisingly, these elevated levels are transient. Fifteen minutes following hyperosmotic shock they decrease at a rapid rate, even though the cells remain in hyperosmotic medium. In parallel with the rapid increase in the levels of PI3,5P(2), vacuole volume decreases rapidly. Furthermore, concomitant with a return to basal levels of PI3,5P(2) vacuole volume is restored. We show that Fig 4p, consistent with its proposed role as a PI3,5P(2) 5-phosphatase, is required in vivo for this rapid return to basal levels of PI3,5P(2). Surprisingly, we find that Fig 4p is also required for the hyperosmotic shock-induced increase in PI3,5P(2) levels. These findings demonstrate that following hyperosmotic shock, large, transient changes occur in the levels of PI3,5P(2) and further suggest that Fig 4p is important in regulating both the acute rise and subsequent fall in PI3,5P(2) levels.
Collapse
Affiliation(s)
- Jason E Duex
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | |
Collapse
|
34
|
Sakai Y, Oku M, van der Klei IJ, Kiel JAKW. Pexophagy: autophagic degradation of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1767-75. [PMID: 17005271 DOI: 10.1016/j.bbamcr.2006.08.023] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 12/25/2022]
Abstract
The abundance of peroxisomes within a cell can rapidly decrease by selective autophagic degradation (also designated pexophagy). Studies in yeast species have shown that at least two modes of peroxisome degradation are employed, namely macropexophagy and micropexophagy. During macropexophagy, peroxisomes are individually sequestered by membranes, thus forming a pexophagosome. This structure fuses with the vacuolar membrane, resulting in exposure of the incorporated peroxisome to vacuolar hydrolases. During micropexophagy, a cluster of peroxisomes is enclosed by vacuolar membrane protrusions and/or segmented vacuoles as well as a newly formed membrane structure, the micropexophagy-specific membrane apparatus (MIPA), which mediates the enclosement of the vacuolar membrane. Subsequently, the engulfed peroxisome cluster is degraded. This review discusses the current state of knowledge of pexophagy with emphasis on studies on methylotrophic yeast species.
Collapse
Affiliation(s)
- Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
35
|
Tang F, Peng Y, Nau JJ, Kauffman EJ, Weisman LS. Vac8p, an Armadillo Repeat Protein, Coordinates Vacuole Inheritance With Multiple Vacuolar Processes. Traffic 2006; 7:1368-77. [PMID: 16824055 DOI: 10.1111/j.1600-0854.2006.00458.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vac8p, an armadillo (ARM) repeat protein, is required for multiple vacuolar processes. It functions in vacuole inheritance, cytoplasm-to-vacuole protein targeting pathway, formation of the nucleus-vacuole junction and vacuole-vacuole fusion. These functions each utilize a distinct Vac8p-binding partner. Here, we report an additional Vac8p function: caffeine resistance. We show that Vac8p function in caffeine resistance is mediated via a newly identified Vac8p-binding partner, Tco89p. The interaction between Vac8p and each binding partner requires an overlapping subset of Vac8p ARM repeats. Moreover, these partners can compete with each other for access to Vac8p. Furthermore, Vac8p is enriched in three separate subdomains on the vacuole, each with a unique binding partner dedicated to a different vacuolar function. These findings suggest that a major role of Vac8p is to spatially separate multiple functions thereby enabling vacuole inheritance to occur concurrently with other vacuolar processes.
Collapse
Affiliation(s)
- Fusheng Tang
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
36
|
Subramanian K, Dietrich LEP, Hou H, LaGrassa TJ, Meiringer CTA, Ungermann C. Palmitoylation determines the function of Vac8 at the yeast vacuole. J Cell Sci 2006; 119:2477-85. [PMID: 16720644 DOI: 10.1242/jcs.02972] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Palmitoylation stably anchors specific proteins to membranes, but may also have a direct effect on the function of a protein. The yeast protein Vac8 is required for efficient vacuole fusion, inheritance and cytosol-to-vacuole trafficking. It is anchored to vacuoles by an N-terminal myristoylation site and three palmitoylation sites, also known as the SH4 domain. Here, we address the role of Vac8 palmitoylation and show that the position and number of substrate cysteines within the SH4 domain determine the vacuole localization of Vac8: stable vacuole binding of Vac8 requires two cysteines within the N-terminus, regardless of the combination. Importantly, our data suggest that palmitoylation adds functionality to Vac8 beyond simple localization. A mutant Vac8 protein, in which the palmitoylation sites were replaced by a stretch of basic residues, still localizes to vacuole membranes and functions in cytosol-to-vacuole transport, but can only complement the function of Vac8 in morphology and inheritance if it also contains a single cysteine within the SH4 domain. Our data suggest that palmitoylation is not a mere hydrophobic anchor required solely for localization, but influences the protein function(s).
Collapse
Affiliation(s)
- Kanagaraj Subramanian
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Barelle CJ, Richard ML, Gaillardin C, Gow NAR, Brown AJP. Candida albicans VAC8 is required for vacuolar inheritance and normal hyphal branching. EUKARYOTIC CELL 2006; 5:359-67. [PMID: 16467476 PMCID: PMC1405888 DOI: 10.1128/ec.5.2.359-367.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hyphal growth is prevalent during most Candida albicans infections. Current cell division models, which are based on cytological analyses of C. albicans, predict that hyphal branching is intimately linked with vacuolar inheritance in this fungus. Here we report the molecular validation of this model, showing that a specific mutation that disrupts vacuolar inheritance also affects hyphal division. The armadillo repeat-containing protein Vac8p plays an important role in vacuolar inheritance in Saccharomyces cerevisiae. The VAC8 gene was identified in the C. albicans genome sequence and was resequenced. Homozygous C. albicans vac8Delta deletion mutants were generated, and their phenotypes were examined. Mutant vac8Delta cells contained fragmented vacuoles, and minimal vacuolar material was inherited by daughter cells in hyphal or budding forms. Normal rates of growth and hyphal extension were observed for the mutant hyphae on solid serum-containing medium. However, branching frequencies were significantly increased in the mutant hyphae. These observations are consistent with a causal relationship between vacuolar inheritance and the cell division cycle in the subapical compartments of C. albicans hyphae. The data support the hypothesis that cytoplasmic volume, rather than cell size, is critical for progression through G1.
Collapse
Affiliation(s)
- Caroline J Barelle
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Abstract
Organelle inheritance is one of several processes that occur during cell division. Recent studies on yeast vacuole inheritance have indicated rules that probably apply to most organelle-inheritance pathways. They have uncovered a molecular mechanism for membrane-cargo transport that is partially conserved from yeast to humans. They have also shown that the transport complex, which is composed of a molecular motor and its receptor, regulates the destination and timing of vacuole movement and might coordinate organelle movement with several other organelle functions.
Collapse
Affiliation(s)
- Lois S Weisman
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
39
|
Reese C, Mayer A. Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. ACTA ACUST UNITED AC 2006; 171:981-90. [PMID: 16365164 PMCID: PMC2171322 DOI: 10.1083/jcb.200510018] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fusion pore opening and expansion are considered the most energy-demanding steps in viral fusion. Whether this also applies to soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE)- and Rab-dependent fusion events has been unknown. We have addressed the problem by characterizing the effects of lysophosphatidylcholine (LPC) and other late-stage inhibitors on lipid mixing and pore opening during vacuole fusion. LPC inhibits fusion by inducing positive curvature in the bilayer and changing its biophysical properties. The LPC block reversibly prevented formation of the hemifusion intermediate that allows lipid, but not content, mixing. Transition from hemifusion to pore opening was sensitive to guanosine-5'-(gamma-thio)triphosphate. It required the vacuolar adenosine triphosphatase V0 sector and coincided with its transformation. Pore opening was rate limiting for the reaction. As with viral fusion, opening the fusion pore may be the most energy-demanding step for intracellular, SNARE-dependent fusion reactions, suggesting that fundamental aspects of lipid mixing and pore opening are related for both systems.
Collapse
Affiliation(s)
- Christoph Reese
- Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland
| | | |
Collapse
|
40
|
Samuel MA, Salt JN, Shiu SH, Goring DR. Multifunctional arm repeat domains in plants. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:1-26. [PMID: 17098053 DOI: 10.1016/s0074-7696(06)53001-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arm repeat domains are composed of multiple 42 amino acid Arm repeats and are found in the proteomes of all eukaryotic organisms. The Arm repeat domain is a highly conserved right-handed super helix of alpha-helices involved in protein-protein interactions. The well-characterized Arm repeat proteins in animal and plants are known to function in diverse cellular processes including signal transduction, cytoskeletal regulation, nuclear import, transcriptional regulation, and ubiquitination. While Arm repeat domains are found in all eukaryotes, plants have evolved some unique domain organizations, such as the U-box and Arm repeat domain combination, with specialized functions. The plant-specific U-box/Arm repeat proteins are the largest family of Arm repeat proteins in all the genomes surveyed, and more recent data have implicated these proteins as E3 ubiquitin ligases. While functions have not been assigned for most of the plant Arm repeat proteins, recent studies have demonstrated their importance in multiple processes such as self-incompatibility, hormone signaling, and disease resistance.
Collapse
Affiliation(s)
- Marcus A Samuel
- Department of Botany, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | | | | | |
Collapse
|
41
|
Ungermann C, Langosch D. Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci 2005; 118:3819-28. [PMID: 16129880 DOI: 10.1242/jcs.02561] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular membrane fusion occurs with exquisite coordination and specificity. Each fusion event requires three basic components: Rab-GTPases organize the fusion site; SNARE proteins act during fusion; and N-ethylmaleimide-sensitive factor (NSF) plus its cofactor alpha-SNAP are required for recycling or activation of the fusion machinery. Whereas Rab-GTPases seem to mediate the initial membrane contact, SNAREs appear to lie at the center of the fusion process. It is known that formation of complexes between SNAREs from apposed membranes is a prerequisite for lipid bilayer mixing; however, the biophysics and many details of SNARE function are still vague. Nevertheless, recent observations are shedding light on the role of SNAREs in membrane fusion. Structural studies are revealing the mechanisms by which SNARES form complexes and interact with other proteins. Furthermore, it is now apparent that the SNARE transmembrane segment not only anchors the protein but engages in SNARE-SNARE interactions and plays an active role in fusion. Recent work indicates that the fusion process itself may comprise two stages and proceed via a hemifusion intermediate.
Collapse
Affiliation(s)
- Christian Ungermann
- Biochemie Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | | |
Collapse
|
42
|
Smotrys JE, Schoenfish MJ, Stutz MA, Linder ME. The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. ACTA ACUST UNITED AC 2005; 170:1091-9. [PMID: 16186255 PMCID: PMC2171546 DOI: 10.1083/jcb.200507048] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Palmitoylation of the vacuolar membrane protein Vac8p is essential for vacuole fusion in yeast (Veit, M., R. Laage, L. Dietrich, L. Wang, and C. Ungermann. 2001. EMBO J. 20:3145–3155; Wang, Y.X., E.J. Kauffman, J.E. Duex, and L.S. Weisman. 2001. J. Biol. Chem. 276:35133–35140). Proteins that contain an Asp-His-His-Cys (DHHC)–cysteine rich domain (CRD) are emerging as a family of protein acyltransferases, and are therefore candidates for mediators of Vac8p palmitoylation. Here we demonstrate that the DHHC-CRD proteins Pfa3p (protein fatty acyltransferase 3, encoded by YNL326c) and Swf1p are important for vacuole fusion. Cells lacking Pfa3p had fragmented vacuoles when stressed, and cells lacking both Pfa3p and Swf1p had fragmented vacuoles under normal growth conditions. Pfa3p promoted Vac8p membrane association and palmitoylation in vivo and partially purified Pfa3p palmitoylated Vac8p in vitro, establishing Vac8p as a substrate for palmitoylation by Pfa3p. Vac8p is the first N-myristoylated, palmitoylated protein identified as a substrate for a DHHC-CRD protein.
Collapse
Affiliation(s)
- Jessica E Smotrys
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
43
|
Gachet Y, Codlin S, Hyams JS, Mole SE. btn1, theSchizosaccharomyces pombehomologue of the human Batten disease geneCLN3, regulates vacuole homeostasis. J Cell Sci 2005; 118:5525-36. [PMID: 16291725 DOI: 10.1242/jcs.02656] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the Schizosaccharomyces pombe homologue of the human Batten disease gene, CLN3. This gene, btn1, encodes a predicted transmembrane protein that is 30% identical and 48% similar to its human counterpart. Cells deleted for btn1 were viable but had enlarged and more alkaline vacuoles. Conversely overexpression of Btn1p reduced both vacuole diameter and pH. Thus Btn1p regulates vacuole homeostasis. The vacuolar defects of btn1Δ cells were rescued by heterologous expression of CLN3, proving that Btn1p and CLN3 are functional homologues. The disease severity of Batten disease-causing mutations (G187A, E295K and V330F), when expressed in btn1 appeared to correlate with their effect on vacuolar pH, suggesting that elevated lysosomal pH contributes to the disease process. In fission yeast, both Btn1p and CLN3 trafficked to the vacuole membrane via early endocytic and pre-vacuolar compartments, and localisation of Btn1p to the vacuole membrane was dependent on the Ras GTPase Ypt7p. Importantly, vacuoles in cells deleted for both ypt7 and btn1 were larger and more alkaline than those of cells deleted for ypt7 alone, indicating that Btn1p has a functional role prior to reaching the vacuole. Consistently, btn1 and vma1, the gene encoding subunit A of the V1 portion of vATPase, showed conditional synthetic lethality, and in cells deleted for vma1 (a subunit of the vacuolar ATPase) Btn1p was essential for septum deposition during cytokinesis.
Collapse
Affiliation(s)
- Yannick Gachet
- Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
44
|
Abstract
Autophagy is a process in which cytosol and organelles are sequestered within double-membrane vesicles that deliver the contents to the lysosome/vacuole for degradation and recycling of the resulting macromolecules. It plays an important role in the cellular response to stress, is involved in various developmental pathways and functions in tumor suppression, resistance to pathogens and extension of lifespan. Conversely, autophagy may be associated with certain myopathies and neurodegenerative conditions. Substantial progress has been made in identifying the proteins required for autophagy and in understanding its molecular basis; however, many questions remain. For example, Tor is one of the key regulatory proteins at the induction step that controls the function of a complex including Atg1 kinase, but the target of Atg1 is not known. Although autophagy is generally considered to be nonspecific, there are specific types of autophagy that utilize receptor and adaptor proteins such as Atg11; however, the means by which Atg11 connects the cargo with the sequestering vesicle, the autophagosome, is not understood. Formation of the autophagosome is a complex process and neither the mechanism of vesicle formation nor the donor membrane origin is known. The final breakdown of the sequestered cargo relies on well-characterized lysosomal/vacuolar proteases; the roles of lipases, by contrast, have not been elucidated, and we do not know how the integrity of the lysosome/vacuole membrane is maintained during degradation.
Collapse
Affiliation(s)
- Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Reese C, Heise F, Mayer A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 2005; 436:410-4. [PMID: 15924133 DOI: 10.1038/nature03722] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 05/09/2005] [Indexed: 11/09/2022]
Abstract
The question concerning whether all membranes fuse according to the same mechanism has yet to be answered satisfactorily. During fusion of model membranes or viruses, membranes dock, the outer membrane leaflets mix (termed hemifusion), and finally the fusion pore opens and the contents mix. Viral fusion proteins consist of a membrane-disturbing 'fusion peptide' and a helical bundle that pin the membranes together. Although SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes form helical bundles with similar topology, it is unknown whether SNARE-dependent fusion events on intracellular membranes proceed through a hemifusion state. Here we identify the first hemifusion state for SNARE-dependent fusion of native membranes, and place it into a sequence of molecular events: formation of helical bundles by SNAREs precedes hemifusion; further progression to pore opening requires additional peptides. Thus, SNARE-dependent fusion may proceed along the same pathway as viral fusion: both use a docking mechanism via helical bundles and additional peptides to destabilize the membrane and efficiently induce lipid mixing. Our results suggest that a common lipidic intermediate may underlie all fusion reactions of lipid bilayers.
Collapse
Affiliation(s)
- Christoph Reese
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | | | | |
Collapse
|
46
|
Dietrich LE, Ungermann C. On the mechanism of protein palmitoylation. EMBO Rep 2005; 5:1053-7. [PMID: 15520806 PMCID: PMC1299172 DOI: 10.1038/sj.embor.7400277] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 08/26/2004] [Indexed: 11/08/2022] Open
Abstract
Protein palmitoylation or, more specifically, S-acylation is a reversible post-translational lipid modification. Despite the identification of several proteins that are altered in this way, our understanding of the enzymology of this process has been hampered by the lack of well-characterized acyltransferases. We now know of three proteins in Saccharomyces cerevisiae that promote palmitoylation: effector of Ras function (Erf2), ankyrin-repeat-containing protein (Akr1) and the SNARE protein Ykt6. Erf2 and Akr1 are integral membrane proteins that contain a cysteine-rich domain and an Asp-His-His-Cys motif, both of which catalyse acylation at the carboxyl terminus of their target proteins. Recently, we discovered that Ykt6 mediates the amino-terminal acylation of the fusion protein Vac8. Even though these three proteins differ in sequence, topology, size and substrate specificity, they might function in a similar manner. In this review, we discuss these observations in the context of a potential general mechanism of acylation.
Collapse
Affiliation(s)
- Lars E.P. Dietrich
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Christian Ungermann
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- Tel: +49 6221 544 180; Fax: +49 6221 544 366;
| |
Collapse
|
47
|
Abstract
Cell adhesion is a basic property of animal cells, but is also present in many other eukaryotes. Did cell adhesion systems arise independently in different eukaryotic groups, or do they share common origins? Recent results show that cell adhesion proteins related to cadherin, IgG-like CAM and C-type lectin are present both in sponges, the most distant animal branch, and in eukaryote groups outside the metazoan lineage, indicating that these forms of adhesion arose prior to animal evolution. Furthermore, proteins containing features of animal adhesion systems, such as Fas-1 and thrombospondin domains, are distributed throughout the eukaryotes and function in cell adhesion.
Collapse
Affiliation(s)
- Adrian Harwood
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT.
| | | |
Collapse
|
48
|
Dietrich LEP, LaGrassa TJ, Rohde J, Cristodero M, Meiringer CTA, Ungermann C. ATP-independent control of Vac8 palmitoylation by a SNARE subcomplex on yeast vacuoles. J Biol Chem 2005; 280:15348-55. [PMID: 15701652 DOI: 10.1074/jbc.m410582200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast vacuole fusion requires palmitoylated Vac8. We previously showed that Vac8 acylation occurs early in the fusion reaction, is blocked by antibodies against Sec18 (yeast N-ethylmaleimide-sensitive fusion protein (NSF)), and is mediated by the R-SNARE Ykt6. Here we analyzed the regulation of this reaction on purified vacuoles. We show that Vac8 acylation is restricted to a narrow time window, is independent of ATP hydrolysis by Sec18, and is stimulated by the ion chelator EDTA. Analysis of vacuole protein complexes indicated that Ykt6 is part of a complex distinct from the second R-SNARE, Nyv1. We speculate that during vacuole fusion, Nyv1 is the classical R-SNARE, whereas the Ykt6-containing complex has a novel function in Vac8 palmitoylation.
Collapse
Affiliation(s)
- Lars E P Dietrich
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. ACTA ACUST UNITED AC 2005; 167:1087-98. [PMID: 15611334 PMCID: PMC2172599 DOI: 10.1083/jcb.200409068] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein–protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble “vertex” ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)–VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the “regulatory lipids” ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin regulate phosphatidylinositol 3-phosphate vertex enrichment. Though the PX domain of the SNARE Vam7p has direct affinity for only 3-phosphoinositides, all the regulatory lipids which are needed for vertex assembly affect Vam7p association with vacuoles. Thus, the assembly of the vacuole vertex ring microdomain arises from interdependent lipid and protein partitioning and binding rather than either lipid partitioning or protein interactions alone.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|
50
|
Peters C, Baars TL, Bühler S, Mayer A. Mutual Control of Membrane Fission and Fusion Proteins. Cell 2004; 119:667-78. [PMID: 15550248 DOI: 10.1016/j.cell.2004.11.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 09/27/2004] [Accepted: 10/20/2004] [Indexed: 11/24/2022]
Abstract
Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.
Collapse
Affiliation(s)
- Christopher Peters
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | | | | | |
Collapse
|