1
|
Panahi Meymandi AR, Akbari B, Soltantoyeh T, Shahosseini Z, Hosseini M, Hadjati J, Mirzaei HR. PX-478, an HIF-1α inhibitor, impairs mesoCAR T cell antitumor function in cervical cancer. Front Oncol 2024; 14:1357801. [PMID: 38425341 PMCID: PMC10903365 DOI: 10.3389/fonc.2024.1357801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated remarkable success in treating hematological malignancies. However, its efficacy against solid tumors, including cervical cancer, remains a challenge. Hypoxia, a common feature of the tumor microenvironment, profoundly impacts CAR T cell function, emphasizing the need to explore strategies targeting hypoxia-inducible factor-1α (HIF-1α). Methods In this study, we evaluated the effects of the HIF-1α inhibitor PX-478 on mesoCAR T cell function through in-silico and in vitro experiments. We conducted comprehensive analyses of HIF-1α expression in cervical cancer patients and examined the impact of PX-478 on T cell proliferation, cytokine production, cytotoxicity, and exhaustion markers. Results Our in-silico analyses revealed high expression of HIF-1α in cervical cancer patients, correlating with poor prognosis. PX-478 effectively reduced HIF-1α levels in T and HeLa cells. While PX-478 exhibited dose-dependent inhibition of antigen-nonspecific T and mesoCAR T cell proliferation, it had minimal impact on antigen-specific mesoCAR T cell proliferation. Notably, PX-478 significantly impaired the cytotoxic function of mesoCAR T cells and induced terminally exhausted T cells. Discussion Our results underscore the significant potential and physiological relevance of the HIF-1α pathway in determining the fate and function of both T and CAR T cells. However, we recognize the imperative for further molecular investigations aimed at unraveling the intricate downstream targets associated with HIF-1α and its influence on antitumor immunity, particularly within the context of hypoxic tumors. These insights serve as a foundation for the careful development of combination therapies tailored to counter immunosuppressive pathways within hypoxic environments and fine-tune CAR T cell performance in the intricate tumor microenvironment.
Collapse
Affiliation(s)
- Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahosseini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Vargova D, Kolková Z, Dargaj J, Bris L, Luptak J, Dankova Z, Franova S, Svihra J, Slávik P, Sutovska M. Analysis of HIF-1α expression and genetic polymorphisms in human clear cell renal cell carcinoma. Pathol Oncol Res 2024; 29:1611444. [PMID: 38273861 PMCID: PMC10808674 DOI: 10.3389/pore.2023.1611444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Introduction: Clear cell renal cell carcinoma (ccRCC) is mostly diagnosed incidentally and has relatively high recurrence rates. Alterations in VHL/HIF and mTOR pathways are commonly present in ccRCC. The present study attempted to identify potential diagnostic markers at the biochemical and molecular level. Methods: In total, 54 subjects (36 patients with ccRCC and 18 cancer-free controls) were enrolled. ELISA was used to measure the levels of HIF-1α in the tumor and healthy kidney tissue. The association between five selected SNPs (rs779805, rs11549465, rs2057482, rs2295080 and rs701848) located in genes of pathologically relevant pathways (VHL/HIF and mTOR) and the risk of ccRCC in the Slovak cohort was studied using real-time PCR. Results: Significant differences in HIF-1α tissue levels were observed between the tumor and healthy kidney tissue (p < 0.001). In the majority (69%) of cases, the levels of HIF-1α were higher in the kidney than in the tumor. Furthermore, the concentration of HIF-1α in the tumor showed a significant positive correlation with CCL3 and IL-1β (p (R2) 0.007 (0.47); p (R2) 0.011 (0.38). No relationship between intratumoral levels of HIF-1α and clinical tumor characteristics was observed. Rs11549465, rs2057482 in the HIF1A gene did not correlate with the expression of HIF-1α either in the tumor or in the normal kidney. None of the selected SNPs has influenced the susceptibility to ccRCC. Conclusion: More research is neccesary to elucidate the role of HIF-1α in the pathogenesis of ccRCC and the association between selected SNPs and susceptibility to this cancer.
Collapse
Affiliation(s)
- Daniela Vargova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolková
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Dargaj
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Lukas Bris
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Jan Luptak
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Svihra
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Pavol Slávik
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Martina Sutovska
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Boothby M, Cho SH. Hypoxia and the Hypoxia-Inducible Factors in Lymphocyte Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:115-141. [PMID: 39017842 DOI: 10.1007/978-3-031-62731-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Molecular oxygen doubles as a biomolecular building block and an element required for energy generation and metabolism in aerobic organisms. A variety of systems in mammalian cells sense the concentration of oxygen to which they are exposed and are tuned to the range present in our blood and tissues. The ability to respond to insufficient O2 in tissues is central to regulation of erythroid lineage cells, but challenges also are posed for immune cells by a need to adjust to very different oxygen concentrations. Hypoxia-inducible factors (HIFs) provide a major means of making such adjustments. For adaptive immunity, lymphoid lineages are initially defined in bone marrow niches; T lineage cells arise in the thymus, and B cells complete maturation in the spleen. Lymphocytes move from these first stops into microenvironments (bloodstream, lymphatics, and tissues) with distinct oxygenation in each. Herein, evidence pertaining to functions of the HIF transcription factors (TFs) in lymphocyte differentiation and function is reviewed. For the CD4+ and CD8+ subsets of T cells, the case is very strong that hypoxia and HIFs regulate important differentiation events and functions after the naïve lymphocytes emerge from the thymus. In the B lineage, the data indicate that HIF1 contributes to a balanced regulation of B-cell fates after antigen (Ag) activation during immunity. A model synthesized from the aggregate literature is that HIF in lymphocytes generally serves to modulate function in a manner dependent on the molecular context framed by other TFs and signals.
Collapse
Affiliation(s)
- Mark Boothby
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Medicine (Rheumatology and Immunology Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA.
| | - Sung Hoon Cho
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA
| |
Collapse
|
4
|
Minogue E, Cunha PP, Wadsworth BJ, Grice GL, Sah-Teli SK, Hughes R, Bargiela D, Quaranta A, Zurita J, Antrobus R, Velica P, Barbieri L, Wheelock CE, Koivunen P, Nathan JA, Foskolou IP, Johnson RS. Glutarate regulates T cell metabolism and anti-tumour immunity. Nat Metab 2023; 5:1747-1764. [PMID: 37605057 PMCID: PMC10590756 DOI: 10.1038/s42255-023-00855-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/03/2023] [Indexed: 08/23/2023]
Abstract
T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8+ T cell differentiation and increases cytotoxicity against target cells. In vivo administration of the compound is correlated with increased levels of both peripheral and intratumoural cytotoxic CD8+ T cells. These results demonstrate that glutarate is an important regulator of T cell metabolism and differentiation with a potential role in the improvement of T cell immunotherapy.
Collapse
Affiliation(s)
- Eleanor Minogue
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pedro P Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Brennan J Wadsworth
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Guinevere L Grice
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Shiv K Sah-Teli
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Centre for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Rob Hughes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David Bargiela
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Javier Zurita
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Pedro Velica
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Barbieri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Centre for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Iosifina P Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Wahab R, Hasan MM, Azam Z, Grippo PJ, Al-Hilal TA. The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 2023; 200:115027. [PMID: 37517779 PMCID: PMC11099942 DOI: 10.1016/j.addr.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
Collapse
Affiliation(s)
- Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zulfikar Azam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
6
|
Mirzaei S, Ranjbar B, Tackallou SH, Aref AR. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol Res Pract 2023; 248:154676. [PMID: 37454494 DOI: 10.1016/j.prp.2023.154676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Low oxygen level at tumor microenvironment leads to a condition, known as hypoxia that is implicated in cancer progression. Upon hypoxia, HIF-1α undergoes activation and due to its oncogenic function and interaction with other molecular pathways, promotes tumor progression. The HIF-1α role in regulating breast cancer progression is described, Overall, HIF-1α has upregulation in breast tumor and due to its tumor-promoting function, its upregulation is in favor of breast tumor progression. HIF-1α overexpression prevents apoptosis in breast tumor and it promotes cell cycle progression. Silencing HIF-1α triggers cycle arrest and decreases growth. Migration of breast tumor enhances by HIF-1α signaling and it mainly induces EMT in providing metastasis. HIF-1α upregulation stimulates drug resistance and radio-resistance in breast tumor. Furthermore, HIF-1α signaling induces immune evasion of breast cancer. Berberine and pharmacological intervention suppress HIF-1α signaling in breast tumor and regulation of HIF-1α by non-coding RNAs occurs. Furthermore, HIF-1α is a biomarker in clinic.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
8
|
Ajouaou Y, Azouz A, Taquin A, Denanglaire S, Hussein H, Krayem M, Andris F, Moser M, Goriely S, Leo O. The oxygen sensor Prolyl hydroxylase domain 2 regulates the in vivo suppressive capacity of regulatory T cells. eLife 2022; 11:70555. [PMID: 35192456 PMCID: PMC8896828 DOI: 10.7554/elife.70555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 02/18/2022] [Indexed: 11/26/2022] Open
Abstract
The oxygen sensor prolyl hydroxylase domain 2 (PHD2) plays an important role in cell hypoxia adaptation by regulating the stability of HIF proteins (HIF1α and HIF2α) in numerous cell types, including T lymphocytes. The role of oxygen sensor on immune cells, particularly on regulatory T cell (Treg) function, has not been fully elucidated. The purpose of our study was to evaluate the role of PHD2 in the regulation of Treg phenotype and function. We demonstrate herein that selective ablation of PHD2 expression in Treg (PHD2ΔTreg mice) leads to a spontaneous systemic inflammatory syndrome, as evidenced by weight loss, development of a rectal prolapse, splenomegaly, shortening of the colon, and elevated expression of IFN-γ in the mesenteric lymph nodes, intestine, and spleen. PHD2 deficiency in Tregs led to an increased number of activated CD4 conventional T cells expressing a Th1-like effector phenotype. Concomitantly, the expression of innate-type cytokines such as Il1b, Il12a, Il12b, and Tnfa was found to be elevated in peripheral (gut) tissues and spleen. PHD2ΔTreg mice also displayed an enhanced sensitivity to dextran sodium sulfate-induced colitis and toxoplasmosis, suggesting that PHD2-deficient Tregs did not efficiently control inflammatory response in vivo, particularly those characterized by IFN-γ production. Further analysis revealed that Treg dysregulation was largely prevented in PHD2-HIF2α (PHD2-HIF2αΔTreg mice), but not in PHD2-HIF1α (PHD2-HIF1αΔTreg mice) double KOs, suggesting an important and possibly selective role of the PHD2-HIF2α axis in the control of Treg function. Finally, the transcriptomic analysis of PHD2-deficient Tregs identified the STAT1 pathway as a target of the PHD2-HIF2α axis in regulatory T cell phenotype and in vivo function.
Collapse
Affiliation(s)
| | | | | | | | - Hind Hussein
- Université Libre de Bruxelles, Gosselies, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Muriel Moser
- Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Oberdan Leo
- Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
9
|
Kheshtchin N, Hadjati J. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy. J Cell Physiol 2021; 237:1285-1298. [PMID: 34796969 DOI: 10.1002/jcp.30643] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
The development of new strategies of anticancer immunotherapies has provided promising approaches in the treatment of solid tumors. However, despite the improved survival in responders, most of the patients show incomplete responses with a lack of remarkable clinical improvement. Hypoxia has been identified as a common characteristic of solid tumors contributing to different aspects of tumor progression, including invasion, metastasis, and the creation of the immunosuppressive tumor microenvironment. Hypoxia, through its main mediator, hypoxia-inducible factor-1 (HIF-1) is also associated with the limited efficacy of immunotherapies. Therefore, designing new strategies for immunotherapy implicating therapeutic targeting of HIF-1 molecules may enhance the clinical effectiveness of immunotherapy. Here, we discuss the contribution of hypoxia to the development of the immunosuppressive tumor microenvironment. We will also outline different strategies for targeting hypoxia to provide insight into the therapeutic potential of the application of such strategies to improve the clinical benefit of cancer immunotherapy.
Collapse
Affiliation(s)
- Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Choi JU, Lee NK, Seo H, Chung SW, Al-Hilal TA, Park SJ, Kweon S, Min N, Kim SK, Ahn S, Kim UI, Park JW, Kang CY, Kim IS, Kim SY, Kim K, Byun Y. Anticoagulation therapy promotes the tumor immune-microenvironment and potentiates the efficacy of immunotherapy by alleviating hypoxia. J Immunother Cancer 2021; 9:jitc-2021-002332. [PMID: 34341129 PMCID: PMC8330593 DOI: 10.1136/jitc-2021-002332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Here, this study verifies that cancer-associated thrombosis (CAT) accelerates hypoxia, which is detrimental to the tumor immune microenvironment by limiting tumor perfusion. Therefore, we designed an oral anticoagulant therapy to improve the immunosuppressive tumor microenvironment and potentiate the efficacy of immunotherapy by alleviating tumor hypoxia. Experimental design A novel oral anticoagulant (STP3725) was developed to consistently prevent CAT formation. Tumor perfusion and hypoxia were analyzed with or without treating STP3725 in wild-type and P selectin knockout mice. Immunosuppressive cytokines and cells were analyzed to evaluate the alteration of the tumor microenvironment. Effector lymphocyte infiltration in tumor tissue was assessed by congenic CD45.1 mouse lymphocyte transfer model with or without anticoagulant therapy. Finally, various tumor models including K-Ras mutant spontaneous cancer model were employed to validate the role of the anticoagulation therapy in enhancing the efficacy of immunotherapy. Results CAT was demonstrated to be one of the perfusion barriers, which fosters immunosuppressive microenvironment by accelerating tumor hypoxia. Consistent treatment of oral anticoagulation therapy was proved to promote tumor immunity by alleviating hypoxia. Furthermore, this resulted in decrease of both hypoxia-related immunosuppressive cytokines and myeloid-derived suppressor cells while improving the spatial distribution of effector lymphocytes and their activity. The anticancer efficacy of αPD-1 antibody was potentiated by co-treatment with STP3725, also confirmed in various tumor models including the K-Ras mutant mouse model, which is highly thrombotic. Conclusions Collectively, these findings establish a rationale for a new and translational combination strategy of oral anticoagulation therapy with immunotherapy, especially for treating highly thrombotic cancers. The combination therapy of anticoagulants with immunotherapies can lead to substantial improvements of current approaches in the clinic.
Collapse
Affiliation(s)
- Jeong Uk Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, South Korea
| | - Na Kyeong Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, South Korea
| | - Hyungseok Seo
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Seung Woo Chung
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | - Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, South Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Nuri Min
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Seohyun Ahn
- ST Pharm Research & Development Center, Siheung-si, South Korea
| | - Uk-Il Kim
- ST Pharm Research & Development Center, Siheung-si, South Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Chang-Yuil Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, South Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, South Korea
| | - Sang Yoon Kim
- College of Medicine, University of Ulsan, Ulsan, South Korea
- Department of Otolaryngology, Asan Medical Center, Seoul, South Korea
| | - Kyungjin Kim
- ST Pharm Research & Development Center, Siheung-si, South Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Hatfield SM, Sitkovsky MV. Antihypoxic oxygenation agents with respiratory hyperoxia to improve cancer immunotherapy. J Clin Invest 2020; 130:5629-5637. [PMID: 32870821 PMCID: PMC7598059 DOI: 10.1172/jci137554] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia/HIF-1α- and extracellular adenosine/A2 adenosine receptor-mediated immunosuppression protects tissues from collateral damage by antipathogen immune cells. However, this mechanism also protects cancerous tissues by inhibiting antitumor immune cells in hypoxic and extracellular adenosine-rich tumors that are the most resistant to current therapies. Here, we explain a potentially novel, antiimmunosuppressive reasoning to justify strategies using respiratory hyperoxia and oxygenation agents in cancer treatment. Earlier attempts to use oxygenation of tumors as a monotherapy or to improve radiotherapy have failed because oxygenation protocols were not combined with immunotherapies of cancer. In contrast, the proposal for therapeutic use of antihypoxic oxygenation described here was motivated by the need to prevent the hypoxia/HIF-1α-driven accumulation of extracellular adenosine to (a) unleash antitumor immune cells from inhibition by intracellular cAMP and (b) prevent immunosuppressive transcription of cAMP response element- and hypoxia response element-containing immunosuppressive gene products (e.g., TGF-β). Use of oxygenation agents together with inhibitors of the A2A adenosine receptor may be required to enable the most effective cancer immunotherapy. The emerging outcomes of clinical trials of cancer patients refractory to all other treatments provide support for the molecular and immunological mechanism-based approach to cancer immunotherapy described here.
Collapse
|
12
|
Halpin-Veszeleiova K, Hatfield SM. Oxygenation and A2AR blockade to eliminate hypoxia/HIF-1α-adenosinergic immunosuppressive axis and improve cancer immunotherapy. Curr Opin Pharmacol 2020; 53:84-90. [PMID: 32841869 DOI: 10.1016/j.coph.2020.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
The promising results of the first in-human clinical study using A2AR antagonists for treatment of renal cell carcinoma highlight two decades of research into the hypoxia-A2-adenosinergic pathway. Importantly, clinical responses have been observed in patients who previously progressed on anti-PD-1/PDL-1 therapy, emphasizing the clinical importance of targeting A2AR signaling in cancer immunotherapies. Recently, it has been shown that systemic oxygenation weakens all known stages of the hypoxia-A2-adenosinergic axis. Therefore, we advocate the clinical use of systemic oxygenation and oxygenation agents in combination with A2AR blockade to further improve cancer immunotherapies. This approach is expected to completely eliminate the upstream (hypoxia-HIF-1α) and downstream (adenosine-A2AR) stages of the immunosuppressive hypoxia-adenosinergic signaling axis. This might be a necessary strategy to maximize the therapeutic benefits of A2AR antagonists and increase susceptibility of tumors to cancer treatments.
Collapse
Affiliation(s)
- Katarina Halpin-Veszeleiova
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
13
|
Wang F, Zhang J, Zhou G. HIF1α/PLD2 axis linked to glycolysis induces T-cell immunity in oral lichen planus. Biochim Biophys Acta Gen Subj 2020; 1864:129602. [PMID: 32205175 DOI: 10.1016/j.bbagen.2020.129602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is a common T-cell-mediated immunological disease. Hypoxia-inducible factor 1 alpha (HIF1α) plays an integral role in the glycolytic metabolism that facilitates immune functions from boosting cellular proliferative capacity to driving T-cell differentiation. In general, phospholipase D2 (PLD2) is required for HIF1α regulation. However, the involvement of HIF1α and PLD2 in dysfunctional T-cell immunity of OLP remains elusive. METHODS HIF1α and PLD2 expression in OLP lesions were determined by qRT-PCR, immunohistochemistry and immunofluorescence staining, and correlation analysis was carried out between their expressions. HIF1α or PLD2 silencing in T cells was performed to investigate the glycolytic alteration. Then their involvement in T-cell immunobiology was evaluated by detecting cell proliferation, cell cycle, apoptosis, and effector subsets differentiation. Additionally, the modulation of HIF1α on PLD2 expression and the engagement of mTOR in this process were explored. RESULTS HIF1α and PLD2 protein were highly expressed in OLP lesions and they were both observed in large numbers of local CD3+ T cells in OLP. Besides, HIF1α expression was positively correlated with PLD2 expression in OLP. Both HIF1α and PLD2 promoted T-cell proliferation and pro-inflammatory phenotype differentiation, which was associated with the upregulation of glycolysis mediated by HIF1α or PLD2. Moreover, HIF1α induced PLD2 expression in an mTOR-independent way. CONCLUSIONS HIF1α/PLD2 axis was supposed to be critical regulatory signaling involved in the T-cell immunity of OLP.
Collapse
Affiliation(s)
- Fang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, PR China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, PR China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, PR China.
| |
Collapse
|
14
|
Ohta A. Oxygen-dependent regulation of immune checkpoint mechanisms. Int Immunol 2019; 30:335-343. [PMID: 29846615 DOI: 10.1093/intimm/dxy038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy of cancer has finally materialized following the success of immune checkpoint blockade. Since down-regulation of immune checkpoint mechanisms is beneficial in cancer treatment, it is important to ask why tumors are infamously filled with the immunosuppressive mechanisms. Indeed, immune checkpoints are physiological negative feedback mechanisms of immune activities, and the induction of such mechanisms is important in preventing excessive destruction of inflamed normal tissues. A condition commonly found in tumors and inflamed tissues is tissue hypoxia. Oxygen deprivation under hypoxic conditions by itself is immunosuppressive because proper oxygen supply could support bioenergetic demands of immune cells for optimal immune responses. However, importantly, hypoxia has been found to up-regulate a variety of immune checkpoints and to be able to drive a shift toward a more immunosuppressive environment. Moreover, extracellular adenosine, which accumulates due to tissue hypoxia, also contributes to the up-regulation of other immune checkpoints. Taken together, tissue oxygen is a key regulator of the immune response by directly affecting the energy status of immune effectors and by regulating the intensity of immunoregulatory activity in the environment. The regulators of various immune checkpoint mechanisms may represent the next focus to modulate the intensity of immune responses and to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Akio Ohta
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Minatojima-Minamimachi, Kobe, Japan
| |
Collapse
|
15
|
Xu L, Sun WJ, Jia AJ, Qiu LL, Xiao B, Mu L, Li JM, Zhang XF, Wei Y, Peng C, Zhang DS, Xiang XD. MBD2 regulates differentiation and function of Th17 cells in neutrophils- dominant asthma via HIF-1α. JOURNAL OF INFLAMMATION-LONDON 2018; 15:15. [PMID: 30150897 PMCID: PMC6102869 DOI: 10.1186/s12950-018-0191-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/07/2018] [Indexed: 01/18/2023]
Abstract
Background T helper 17 (Th17) cells have proven to be crucial in the pathogenesis of neutrophils-dominant asthma. Hypoxia inducible factor-1α (HIF-1α) is involved in allergic responses in asthma. Our previous studies indicated that Methtyl-CpG binding domain protein 2 (MBD2) expression was increased in asthma patients. The aim of the present study is to understand how MBD2 interacts with HIF-1α to regulate Th17 cell differentiation and IL-17 expression in neutrophils-dominant asthma. Methods A neutrophils-dominant asthma mouse model was established using female C57BL/6 mice to investigate Th17 cell differentiation and MBD2 and HIF-1α expression regulation using flow cytometry, western blot or qRT-PCR. MBD2 and HIF-1α genes were silenced or overexpressed through lentiviral transduction to explore the roles of MBD2 in Th17 cell differentiation and IL-17 release in neutrophils-dominant asthma. Results A neutrophilic inflammatory asthma phenotype model was established successfully. This was characterized by airway hyperresponsiveness (AHR), increased BALF neutrophil granulocytes, activated Th17 cell differentiation, and high IL-17 levels. MBD2 and HIF-1α expression were significantly increased in the lung and spleen cells of mice with neutrophils-dominant asthma. Through overexpression or silencing of MBD2 and HIF-1α genes, we have concluded that MBD2 and HIF-1α regulate Th17 cell differentiation and IL-17 secretion. Moreover, MBD2 was also found to regulate HIF-1α expression. Conclusions Our findings have uncovered new roles for MBD2 and HIF-1α, and provide novel insights into the epigenetic regulation of neutrophils-dominant asthma. Electronic supplementary material The online version of this article (10.1186/s12950-018-0191-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Xu
- 1Department of the Second Thoracic Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine and Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, 410006 Hunan China
| | - Wen J Sun
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Ai J Jia
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Lu L Qiu
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Bing Xiao
- 3Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People's Republic of China
| | - Lin Mu
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China.,4Department of Respiratory Medicine, Peace Hospital, Changzhi Medical College, Changzhi, 046000 Shanxi China
| | - Jian M Li
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China.,5Department of Respiratory Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, 410005 Hunan China
| | - Xiu F Zhang
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China.,6Department of Respiratory Medicine, The Second Hospital, University of South China, 30 Jiefang Road, Hengyang, 421001 Hunan China
| | - Yan Wei
- Department of Respiratory, The First Hospital of Guangyuan City, 490 Juguo Road, Guangyuan, 628000 Sichuan China
| | - Cong Peng
- 8Dermatology and Venereology Department, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Dong S Zhang
- 3Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People's Republic of China
| | - Xu D Xiang
- 3Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People's Republic of China
| |
Collapse
|
16
|
Wang T, Meng J, Li L, Zhang G. Characterization of CgHIFα-Like, a Novel bHLH-PAS Transcription Factor Family Member, and Its Role under Hypoxia Stress in the Pacific Oyster Crassostrea gigas. PLoS One 2016; 11:e0166057. [PMID: 27814402 PMCID: PMC5096685 DOI: 10.1371/journal.pone.0166057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
Hypoxia-inducible factor (HIF), a critical member of the basic-helix-loop-helix (bHLH)-containing Per-Arnt-Sim (PAS) protein family, is a master transcription factor involved in maintaining oxygen homeostasis. In the present study, we isolated and characterized a novel bHLH-PAS family member, CgHIFα-like gene, from the Pacific oyster Crassostrea gigas, and determined its importance during hypoxia stress. The 3020-bp CgHIFα-like cDNA encoded a protein of 888 amino acids. The predicted CgHIFα-like amino acid sequence was conserved in the N-terminal bHLH, PAS, and PAC domains (but not in the C-terminal domain) and was most closely related to the HIF family in the bHLH-PAS protein phylogenic tree. Similar to the mammalian HIF-1α, CgHIFα-like could be expressed as four mRNA isoforms containing alternative 5′-untranslated regions and different translation initiation codons. At the mRNA level, these isoforms were expressed in a tissue-specific manner and showed increased transcription to varying degrees under hypoxic conditions. Additionally, the western blot analysis demonstrated that CgHIFα-like was induced by hypoxia. Electrophoretic mobility shift assay indicated that CgHIFα-like could bind to the hypoxia responsive element (HRE), whereas dual-luciferase reporter analysis demonstrated that CgHIFα-like could transactivate the reporter gene containing the HREs. In addition to CgHIFα-like, we identified CgARNT from the C. gigas, analyzed its expression pattern, and confirmed its interaction with CgHIFα-like using a yeast two-hybrid assay. In conclusion, this is the first report on the cloning and characterization of a novel hypoxia transcription factor in mollusks, which could accumulate under hypoxia and regulate hypoxia related gene expression by binding to HRE and dimerizing with CgARNT. As only one member of HIF has been identified in invertebrates to date, our results provide new insights into the unique mechanisms of hypoxia tolerance in mollusks.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LL); (GZ)
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LL); (GZ)
| |
Collapse
|
17
|
Charpentier T, Hammami A, Stäger S. Hypoxia inducible factor 1α: A critical factor for the immune response to pathogens and Leishmania. Cell Immunol 2016; 309:42-49. [DOI: 10.1016/j.cellimm.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
|
18
|
Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 2016; 36:439-445. [PMID: 27345407 DOI: 10.1038/onc.2016.225] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Tumors use several strategies to evade the host immune response, including creation of an immune-suppressive and hostile tumor environment. Tissue hypoxia due to inadequate blood supply is reported to develop very early during tumor establishment. Hypoxic stress has a strong impact on tumor cell biology. In particular, tissue hypoxia contributes to therapeutic resistance, heterogeneity and progression. It also interferes with immune plasticity, promotes the differentiation and expansion of immune-suppressive stromal cells, and remodels the metabolic landscape to support immune privilege. Therefore, tissue hypoxia has been regarded as a central factor for tumor aggressiveness and metastasis. In this regard, manipulating host-tumor interactions in the context of the hypoxic tumor microenvironment may be important in preventing or reverting malignant conversion. We will discuss how tumor microenvironment-driven transient compositional tumor heterogeneity involves hypoxic stress. Tumor hypoxia is a therapeutic concern since it can reduce the effectiveness of conventional therapies as well as cancer immunotherapy. Thus, understanding how tumor and stromal cells respond to hypoxia will allow for the design of innovative cancer therapies that can overcome these barriers. A better understanding of hypoxia-dependent mechanisms involved in the regulation of immune tolerance could lead to new strategies to enhance antitumor immunity. Therefore, discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance. In this context, critical hypoxia-associated pathways are attractive targets for immunotherapy of cancer. In this review, we summarize current knowledge regarding the molecular mechanisms induced by tumor cell hypoxia with a special emphasis on therapeutic resistance and immune suppression. We emphasize mechanisms of manipulating hypoxic stress and its associated pathways, which may support the development of more durable and successful cancer immunotherapy approaches in the future.
Collapse
|
19
|
Kouidhi S, Noman MZ, Kieda C, Elgaaied AB, Chouaib S. Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function. Front Immunol 2016; 7:114. [PMID: 27066006 PMCID: PMC4810024 DOI: 10.3389/fimmu.2016.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
It is well recognized that the immune system and metabolism are highly integrated. In this context, multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. This review will discuss different potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. We will also provide a general framework for understanding how tumor microenvironmental metabolism, associated with hypoxic stress, interferes with T-cell priming and expansion. How T-cell metabolism drives T-cell-mediated immunity and how the manipulation of metabolic programing for therapeutic purposes will be also discussed.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR, LR11ES31, ISBST, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunis, Tunisia; Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Muhammad Zaeem Noman
- Laboratory «Integrative Tumor Immunology and Genetic Oncology» Equipe Labellisée LIGUE 2015, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1186, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301 , Orléans , France
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Salem Chouaib
- Laboratory «Integrative Tumor Immunology and Genetic Oncology» Equipe Labellisée LIGUE 2015, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1186, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
20
|
Phan AT, Goldrath AW. Hypoxia-inducible factors regulate T cell metabolism and function. Mol Immunol 2015; 68:527-35. [PMID: 26298577 PMCID: PMC4679538 DOI: 10.1016/j.molimm.2015.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 02/06/2023]
Abstract
Resolution of infection requires the coordinated response of heterogeneous cell types to a range of physiological and pathological signals to regulate their proliferation, migration, differentiation, and effector functions. One mechanism by which immune cells integrate these signals is through modulating metabolic activity. A well-studied regulator of cellular metabolism is the hypoxia-inducible factor (HIF) family, the highly conserved central regulators of adaptation to limiting oxygen tension. HIF's regulation of cellular metabolism and a variety of effector, signaling, and trafficking molecules has made these transcription factors a recent topic of interest in T cell biology. Low oxygen availability, or hypoxia, increases expression and stabilization of HIF in immune cells, activating molecular programs both unique and common among cell types, including glycolytic metabolism. Notably, numerous oxygen-independent signals, many of which are active in T cells, also result in enhanced HIF activity. Here, we discuss both oxygen-dependent and -independent regulation of HIF activity in T cells and the resulting impacts on metabolism, differentiation, function, and immunity.
Collapse
Affiliation(s)
- Anthony T Phan
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Ananda W Goldrath
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway? Mediators Inflamm 2015; 2015:584758. [PMID: 26491231 PMCID: PMC4600544 DOI: 10.1155/2015/584758] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/28/2014] [Indexed: 12/14/2022] Open
Abstract
Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.
Collapse
|
22
|
Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, Chouaib S. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol 2015; 309:C569-79. [PMID: 26310815 DOI: 10.1152/ajpcell.00207.2015] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor microenvironment is a complex system, playing an important role in tumor development and progression. Besides cellular stromal components, extracellular matrix fibers, cytokines, and other metabolic mediators are also involved. In this review we outline the potential role of hypoxia, a major feature of most solid tumors, within the tumor microenvironment and how it contributes to immune resistance and immune suppression/tolerance and can be detrimental to antitumor effector cell functions. We also outline how hypoxic stress influences immunosuppressive pathways involving macrophages, myeloid-derived suppressor cells, T regulatory cells, and immune checkpoints and how it may confer tumor resistance. Finally, we discuss how microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions.
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Meriem Hasmim
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Yosra Messai
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Stéphane Terry
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition, and Glycobiology, UPR 4301 Centre National de la Recherche Scientifique, Orléans, France; and
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Salem Chouaib
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France;
| |
Collapse
|
23
|
Integrative Analysis with Monte Carlo Cross-Validation Reveals miRNAs Regulating Pathways Cross-Talk in Aggressive Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:831314. [PMID: 26240829 PMCID: PMC4512830 DOI: 10.1155/2015/831314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/31/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
In this work an integrated approach was used to identify functional miRNAs regulating gene pathway cross-talk in breast cancer (BC). We first integrated gene expression profiles and biological pathway information to explore the underlying associations between genes differently expressed among normal and BC samples and pathways enriched from these genes. For each pair of pathways, a score was derived from the distribution of gene expression levels by quantifying their pathway cross-talk. Random forest classification allowed the identification of pairs of pathways with high cross-talk. We assessed miRNAs regulating the identified gene pathways by a mutual information analysis. A Fisher test was applied to demonstrate their significance in the regulated pathways. Our results suggest interesting networks of pathways that could be key regulatory of target genes in BC, including stem cell pluripotency, coagulation, and hypoxia pathways and miRNAs that control these networks could be potential biomarkers for diagnostic, prognostic, and therapeutic development in BC. This work shows that standard methods of predicting normal and tumor classes such as differentially expressed miRNAs or transcription factors could lose intrinsic features; instead our approach revealed the responsible molecules of the disease.
Collapse
|
24
|
Peng G, Liu Y. Hypoxia-inducible factors in cancer stem cells and inflammation. Trends Pharmacol Sci 2015; 36:374-83. [PMID: 25857287 DOI: 10.1016/j.tips.2015.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Hypoxia-inducible factors (HIF) mediate metabolic switches in cells in hypoxic environments, including those in both normal and malignant tissues with limited supplies of oxygen. Paradoxically, recent studies have shown that cancer stem cells (CSCs) and activated immune effector cells exhibit high HIF activity in normoxic environments and that HIF activity is critical in the maintenance of CSCs as well as the differentiation and function of inflammatory cells. Given that inflammation and CSCs are two major barriers to effective cancer therapy, targeting HIF may provide a new approach to developing such treatments.
Collapse
Affiliation(s)
- Gong Peng
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yang Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China; Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
25
|
Öörni K, Rajamäki K, Nguyen SD, Lähdesmäki K, Plihtari R, Lee-Rueckert M, Kovanen PT. Acidification of the intimal fluid: the perfect storm for atherogenesis. J Lipid Res 2014; 56:203-14. [PMID: 25424004 DOI: 10.1194/jlr.r050252] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Atherosclerotic lesions are often hypoxic and exhibit elevated lactate concentrations and local acidification of the extracellular fluids. The acidification may be a consequence of the abundant accumulation of lipid-scavenging macrophages in the lesions. Activated macrophages have a very high energy demand and they preferentially use glycolysis for ATP synthesis even under normoxic conditions, resulting in enhanced local generation and secretion of lactate and protons. In this review, we summarize our current understanding of the effects of acidic extracellular pH on three key players in atherogenesis: macrophages, apoB-containing lipoproteins, and HDL particles. Acidic extracellular pH enhances receptor-mediated phagocytosis and antigen presentation by macrophages and, importantly, triggers the secretion of proinflammatory cytokines from macrophages through activation of the inflammasome pathway. Acidity enhances the proteolytic, lipolytic, and oxidative modifications of LDL and other apoB-containing lipoproteins, and strongly increases their affinity for proteoglycans, and may thus have major effects on their retention and the ensuing cellular responses in the arterial intima. Finally, the decrease in the expression of ABCA1 at acidic pH may compromise cholesterol clearance from atherosclerotic lesions. Taken together, acidic extracellular pH amplifies the proatherogenic and proinflammatory processes involved in atherogenesis.
Collapse
|
26
|
Mockler MB, Conroy MJ, Lysaght J. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front Oncol 2014; 4:107. [PMID: 24904823 PMCID: PMC4032940 DOI: 10.3389/fonc.2014.00107] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/28/2014] [Indexed: 12/20/2022] Open
Abstract
The immune system has a key role to play in controlling cancer initiation and progression. T cell activation, which is central to anti-tumor immune responses, coincides with changes in cellular metabolism. Naïve T cells predominantly require an ATP generating metabolic profile, whereas proliferating effector T cells require anabolic metabolic profiles that promote rapid growth and proliferation. Furthermore, specific T cell subsets require distinct energetic and biosynthetic pathways to match their functional requirements. The often hostile tumor microenvironment can affect T cell immune responses by altering the resulting cellular metabolism. Tailoring immune responses by manipulating cellular metabolic pathways may provide an exciting new option for cancer immunotherapy. T cell responses might also be skewed via metabolic manipulation to treat the complications of obesity-associated inflammation, which is a rapidly growing global health problem and a major risk factor for many malignancies. In this review, the diverse metabolic requirements of T cells in anti-tumor immunity are discussed, as well as the profound influence of the tumor microenvironment and the possible avenues for manipulation to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Mary B Mockler
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin , Dublin , Ireland
| | - Melissa J Conroy
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin , Dublin , Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
27
|
Onishi H, Morisaki T, Kiyota A, Koya N, Tanaka H, Umebayashi M, Katano M. The Hedgehog inhibitor cyclopamine impairs the benefits of immunotherapy with activated T and NK lymphocytes derived from patients with advanced cancer. Cancer Immunol Immunother 2013; 62:1029-39. [PMID: 23591983 PMCID: PMC11029486 DOI: 10.1007/s00262-013-1419-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/20/2013] [Indexed: 01/02/2023]
Abstract
Hedgehog (Hh) signaling is activated in various types of cancer and contributes to the progression, proliferation, and invasiveness of cancer cells. Many Hh inhibitors are undergoing clinical trial and show promise as anticancer drugs. Hh signaling is also induced in the activated T and NK (TNK) lymphocytes that are used in immunotherapy. Activated TNK lymphocyte therapy is anticipated to work well within a tumor's hypoxic environment. However, most studies on the immunobiological functions of activated TNK lymphocytes have been conducted on healthy donor samples, under normoxic conditions. In the present study, we evaluated the effects of Hh inhibition and oxygen concentrations on the function of activated TNK lymphocytes derived from patients with advanced cancer. Proliferation, migration, surface NKG2D expression, and cytotoxicity were all significantly inhibited, and IFN-γ secretion was significantly increased upon Hh inhibitor treatment of activated TNK lymphocytes under hypoxic conditions in vitro. Tumors from mice injected with cyclopamine-treated activated TNK lymphocytes showed a significant increase in tumor size and had fewer apoptotic cells compared with the tumors in mice injected with control activated TNK lymphocytes. These results suggest that Hh signaling plays a pivotal role in activated TNK lymphocyte cell function. Combination therapy using Hh inhibitors and activated TNK lymphocytes derived from patients with advanced cancer may not be advantageous.
Collapse
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Georgiev P, Belikoff BB, Hatfield S, Ohta A, Sitkovsky MV, Lukashev D. Genetic deletion of the HIF-1α isoform I.1 in T cells enhances antibacterial immunity and improves survival in a murine peritonitis model. Eur J Immunol 2013; 43:655-66. [PMID: 23208786 PMCID: PMC3757952 DOI: 10.1002/eji.201242765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/07/2012] [Accepted: 11/29/2012] [Indexed: 12/30/2022]
Abstract
Hypoxia-adenosinergic suppression and redirection of the immune response has been implicated in the regulation of antipathogen and antitumor immunity, with hypoxia-inducible factor 1α (HIF-1α) playing a major role. In this study, we investigated the role of isoform I.1, a quantitatively minor alternative isoform of HIF-1α, in antibacterial immunity and sepsis survival. By using the cecal ligation and puncture model of bacterial peritonitis, we studied the function of I.1 isoform in T cells using mice with total I.1 isoform deficiency and mice with T-cell-targeted I.1 knockdown. We found that genetic deletion of the I.1 isoform resulted in enhanced resistance to septic lethality, significantly reduced bacterial load in peripheral blood, increased M1 macrophage polarization, augmented levels of proinflammatory cytokines in serum, and significantly decreased levels of the anti-inflammatory cytokine IL-10. Our data suggest a previously unrecognized immunosuppressive role for the I.1 isoform in T cells during bacterial sepsis. We interpret these data as indicative that the activation-inducible isoform I.1 hinders the contribution of T cells to the antibacterial response by affecting M1/M2 macrophage polarization and microbicidal function.
Collapse
Affiliation(s)
- Peter Georgiev
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, USA
| | - Bryan B. Belikoff
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, USA
| | - Stephen Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, USA
| | - Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, USA
| | - Michail V. Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, USA
| | - Dmitry Lukashev
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Wahl DR, Byersdorfer CA, Ferrara JLM, Opipari AW, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 2013; 249:104-15. [PMID: 22889218 DOI: 10.1111/j.1600-065x.2012.01148.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel R Wahl
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
30
|
Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer 2012; 132:2721-9. [PMID: 23055435 DOI: 10.1002/ijc.27901] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/25/2012] [Indexed: 12/23/2022]
Abstract
Low levels of oxygen or hypoxia is often an obstacle in health, particularly in pathological disorders like cancer. The main family of transcription factors responsible for cell survival and adaptation under strenuous conditions of hypoxia are the "hypoxia-inducible factors" (HIFs). Together with prolyl hydroxylase domain enzymes (PHDs), HIFs regulates tumor angiogenesis, proliferation, invasion, metastasis, in addition to resistance to radiation and chemotherapy. Additionally, the entire HIF transcription cascade is involved in the "seventh" hallmark of cancer; inflammation. Studies have shown that hypoxia can influence tumor associated immune cells toward assisting in tumor proliferation, differentiation, vessel growth, distant metastasis and suppression of the immune response via cytokine expression alterations. These changes are not necessarily analogous to HIF's role in non-cancer immune responses, where hypoxia often encourages a strong inflammatory response.
Collapse
Affiliation(s)
- Soulafa Mamlouk
- Emmy Noether Research Group and Institute of Pathology, University of Technology, Dresden, Germany
| | | |
Collapse
|
31
|
Bhawal UK, Ito Y, Tanimoto K, Sato F, Fujimoto K, Kawamoto T, Sasahira T, Hamada N, Kuniyasu H, Arakawa H, Kato Y, Abiko Y. IL-1β-mediated up-regulation of DEC1 in human gingiva cells via the Akt pathway. J Cell Biochem 2012; 113:3246-3253. [DOI: 10.1002/jcb.24205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
32
|
Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A 2012; 109:E2784-93. [PMID: 22988108 DOI: 10.1073/pnas.1202366109] [Citation(s) in RCA: 422] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have demonstrated dramatic shifts in metabolic supply-and-demand ratios during inflammation, a process resulting in localized tissue hypoxia within inflammatory lesions ("inflammatory hypoxia"). As part of the adaptive immune response, T cells are recruited to sites of inflammatory hypoxia. Given the profound effects of hypoxia on gene regulation, we hypothesized that T-cell differentiation is controlled by hypoxia. To pursue this hypothesis, we analyzed the transcriptional consequences of ambient hypoxia (1% oxygen) on a broad panel of T-cell differentiation factors. Surprisingly, these studies revealed selective, robust induction of FoxP3, a key transcriptional regulator for regulatory T cells (Tregs). Studies of promoter binding or loss- and gain-of-function implicated hypoxia-inducible factor (HIF)-1α in inducing FoxP3. Similarly, hypoxia enhanced Treg abundance in vitro and in vivo. Finally, Treg-intrinsic HIF-1α was required for optimal Treg function and Hif1a-deficient Tregs failed to control T-cell-mediated colitis. These studies demonstrate that hypoxia is an intrinsic molecular cue that promotes FoxP3 expression, in turn eliciting potent anti-inflammatory mechanisms to limit tissue damage in conditions of reduced oxygen availability.
Collapse
|
33
|
Enhanced neointima formation following arterial injury in immune deficient Rag-1-/- mice is attenuated by adoptive transfer of CD8 T cells. PLoS One 2011; 6:e20214. [PMID: 21629656 PMCID: PMC3101237 DOI: 10.1371/journal.pone.0020214] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/15/2011] [Indexed: 11/26/2022] Open
Abstract
T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8−/− or CD4−/− mice, respectively, to immune-deficient Rag-1−/− mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1−/− mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1−/− mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4−/− mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation.
Collapse
|
34
|
Hypoxia: a double-edged sword of immunity. J Mol Med (Berl) 2011; 89:657-65. [DOI: 10.1007/s00109-011-0724-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 12/12/2022]
|
35
|
Hypoxia-mediated control of HIF/ARNT machinery in epidermal keratinocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:60-72. [DOI: 10.1016/j.bbamcr.2010.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 11/22/2022]
|
36
|
Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1 alpha. Neoplasia 2010; 12:539-49. [PMID: 20651983 DOI: 10.1593/neo.92106] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C) induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-inducible factor 1 (HIF-1) regulates several cellular processes, including apoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific I.3 isoform of HIF-1 alpha and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF). Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1 alpha. However, the transfection of I.3 isoform of hif-1 alpha in LNCaP cells allows poly(I:C)-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1 alpha expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Immune modulation of neointimal formation after vascular injury has been investigated for several decades but the complexities involved continue to obscure a clearer understanding of the process. The rapidly changing field of immunology makes this knowledge imperative. RECENT FINDINGS The review discusses immune factors involved in the response to vascular injury. Although innate immune responses play a predominantly detrimental role, the adaptive immune response is more complex. Mechanisms of T-cell activation, recruitment, as well as possible regulation are highlighted. SUMMARY Progress in understanding the role of the immune system in the response to arterial injury has been impressive. However, recent findings underscore the need to unravel the intricacies involved such as the kinetics and specific pathways of activation, specificity of immune cell involvement, and identification of targets for therapy. This is relevant in light of the increasing reports of immune factors involved in vascular disease and intervention in the clinical setting.
Collapse
Affiliation(s)
- Paul C Dimayuga
- Oppenheimer Atherosclerotic Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California 90048, USA.
| | | | | |
Collapse
|
38
|
Larbi A, Cabreiro F, Zelba H, Marthandan S, Combet E, Friguet B, Petropoulos I, Barnett Y, Pawelec G. Reduced oxygen tension results in reduced human T cell proliferation and increased intracellular oxidative damage and susceptibility to apoptosis upon activation. Free Radic Biol Med 2010; 48:26-34. [PMID: 19796677 DOI: 10.1016/j.freeradbiomed.2009.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/25/2022]
Abstract
Cell culture and in vitro models are the basis for much biological research, especially in human immunology. Ex vivo studies of T cell physiology employ conditions attempting to mimic the in vivo situation as closely as possible. Despite improvements in controlling the cellular milieu in vitro, most of what is known about T cell behavior in vitro is derived from experiments on T cells exposed to much higher oxygen levels than are normal in vivo. In this study, we report a reduced proliferative response and increased apoptosis susceptibility after T cell activation at 2% oxygen compared to in air. To explain this observation, we tested the hypothesis of an impaired efficacy of intracellular protective mechanisms including antioxidant levels, oxidized protein repair (methionine sulfoxide reductases), and degradation (proteasome) activities. Indeed, after activation, there was a significant accumulation of intracellular oxidized proteins at more physiological oxygen levels concomitant with a reduced GSH:GSSG ratio. Proteasome and methionine sulfoxide reductase activities were also reduced. These data may explain the increased apoptotic rate observed at more physiological oxygen levels. Altogether, this study highlights the importance of controlling oxygen levels in culture when investigating oxygen-dependent phenomena such as oxidative stress.
Collapse
Affiliation(s)
- Anis Larbi
- Center for Medical Research, Tübingen Aging and Tumor Immunology Group, University of Tübingen, 72072 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang D, Malo D, Hekimi S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/- mouse mutants. THE JOURNAL OF IMMUNOLOGY 2009; 184:582-90. [PMID: 20007531 DOI: 10.4049/jimmunol.0902352] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) are believed to stabilize hypoxia-inducible factor (HIF)-1alpha, a transcriptional regulator of the immune response. Mclk1 encodes a mitochondrial protein that is necessary for ubiquinone biosynthesis. Heterozygote Mclk1(+/-) mutant mice are long-lived despite increased mitochondrial ROS and decreased energy metabolism. In this study, Mclk1(+/-) mutant mice in the C57BL/6J background displayed increased basal and induced expression of HIF-1alpha in liver and macrophages in association with elevated expression of inflammatory cytokines, in particular TNF-alpha. Mutant macrophages showed increased classical and decreased alternative activation, and mutant mice were hypersensitive to LPS. Consistent with these observations in vivo, knock-down of Mclk1 in murine RAW264.7 macrophage-like cells induced increased mitochondrial ROS as well as elevated expression of HIF-1alpha and secretion of TNF-alpha. We used an antioxidant peptide targeted to mitochondria to show that altered ROS metabolism is necessary for the enhanced expression of HIF-1alpha, which, in turn, is necessary for increased TNF-alpha secretion. These findings provide in vivo evidence for the action of mitochondrial ROS on HIF-1alpha activity and demonstrate that changes in mitochondrial function within physiologically tolerable limits modulate the immune response. Our results further suggest that altered immune function through a limited increase in HIF-1alpha expression can positively impact animal longevity.
Collapse
Affiliation(s)
- Dantong Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
40
|
Gaber T, Häupl T, Sandig G, Tykwinska K, Fangradt M, Tschirschmann M, Hahne M, Dziurla R, Erekul K, Lautenbach M, Kolar P, Burmester GR, Buttgereit F. Adaptation of human CD4+ T cells to pathophysiological hypoxia: a transcriptome analysis. J Rheumatol 2009; 36:2655-69. [PMID: 19884271 DOI: 10.3899/jrheum.090255] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Inflamed tissues are usually characterized by low oxygen levels. We investigated whether pathophysiological hypoxia (pO(2) < 1%) as found in the rheumatoid synovium modulates the transcriptome of human CD4+ T cells. METHODS We analyzed the extent to which hypoxia influences the transcriptome in the rheumatoid synovium according to a gene cluster reflecting adaptation to low oxygen levels. Hypoxia-inducible factor-1alpha (HIF-1alpha) was detected in the rheumatoid synovium using immunohistochemistry. Isolated human CD4+ T cells were exposed to hypoxia and analyzed using microarray analysis, quantitative polymerase chain reaction, and immunoblot detection. RESULTS In rheumatoid arthritis (RA) synovial tissue samples, hypoxia modulates the transcription profile. This profile is similar, but not identical, to that found in isolated CD4+ T cells incubated under hypoxic conditions. We show that HIF-1alpha is expressed in synovial tissue samples and in hypoxic CD4+ cells; and that hypoxia directly affects differential gene expression in human T cells with up to 4.8% modulation of the transcriptome. Functional genome analysis revealed substantial effects of hypoxia on immune response, transcriptional regulation, protein modification, cell growth and proliferation, and cell metabolism. CONCLUSION Severe hypoxia, a feature of joint inflammation, considerably modulates the transcriptome of cells found in the rheumatoid synovium. Human CD4+ T cells adapt to hypoxic conditions mainly by HIF-1-driven effects on the transcriptome reflecting a profound influence on immune functions. Thus, hypoxia must be taken into account when therapeutically targeting inflammation.
Collapse
Affiliation(s)
- Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hatfield S, Belikoff B, Lukashev D, Sitkovsky M, Ohta A. The antihypoxia-adenosinergic pathogenesis as a result of collateral damage by overactive immune cells. J Leukoc Biol 2009; 86:545-8. [PMID: 19564571 DOI: 10.1189/jlb.0908577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here, we attract attention to the possibility of iatrogenic exacerbation of immune-mediated tissue damage as a result of the unintended weakening of the tissue-protecting, hypoxia-adenosinergic pathway. These immunosuppressive, anti-inflammatory pathways play a critical and nonredundant role in the protection of normal tissues from collateral damage during an inflammatory response. We believe that it is the tissue hypoxia associated with inflammatory damage that leads to local inhibition of overactive immune cells by activating A2AR and A2BR and stabilizing HIF-1alpha. We show in an animal model of acute lung injury that oxygenation (i.e., inspiring supplemental oxygen) reverses tissue hypoxia and exacerbates ongoing inflammatory lung tissue damage. However, little has been done to carefully investigate and prevent this in a clinical setting. Similarly, the consumption of caffeine antagonizes A2ARs, resulting in exacerbation of ongoing acute inflammation. It is suggested that although the elimination of hypoxia-adenosinergic immunosuppression is desirable to improve vaccines, it is important to take into account the unintentional effects of supplemental oxygen and caffeine, which may increase collateral, inflammatory tissue damage.
Collapse
Affiliation(s)
- Stephen Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Ramanathan M, Luo W, Csóka B, Haskó G, Lukashev D, Sitkovsky MV, Leibovich SJ. Differential regulation of HIF-1alpha isoforms in murine macrophages by TLR4 and adenosine A(2A) receptor agonists. J Leukoc Biol 2009; 86:681-9. [PMID: 19477908 DOI: 10.1189/jlb.0109021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adenosine A(2A)R and TLR agonists synergize to induce an "angiogenic switch" in macrophages, down-regulating TNF-alpha and up-regulating VEGF expression. This switch involves transcriptional regulation of VEGF by HIF-1, transcriptional induction of HIF-1alpha by LPS (TLR4 agonist), and A(2A)R-dependent post-transcriptional regulation of HIF-1alpha stability. Murine HIF-1alpha is expressed as two mRNA isoforms: HIF-1alphaI.1 and -I.2, which contain alternative first exons and promoters. HIF-1alphaI.2 is expressed ubiquitously, and HIF-1alphaI.1 is tissue-specific. We investigated the regulation of these isoforms in macrophages by TLR4 and A(2A)R agonists. HIF-1alphaI.1 is induced strongly compared with HIF-1alphaI.2 upon costimulation with LPS and A(2A)R agonists (NECA or CGS21680). In unstimulated cells, the I.1 isoform constituted approximately 4% of HIF-1alpha transcripts; in LPS and NECA- or CGS21680-treated macrophages, this level was approximately 15%, indicating a substantial contribution of HIF-1alphaI.1 to total HIF-1alpha expression. The promoters of both isoforms were induced by LPS but not enhanced further by NECA, suggesting A(2A)R-mediated post-transcriptional regulation. LPS/NECA-induced expression of HIF-1alphaI.1 was down-regulated by Bay 11-7085 (NF-kappaB inhibitor) and ZM241385 (A(2A)R antagonist). Although VEGF and IL-10 expression by HIF-1alphaI.1-/- macrophages was equivalent to that of wild-type macrophages, TNF-alpha, MIP-1alpha, IL-6, IL-12p40, and IL-1beta expression was significantly greater, suggesting a role for HIF-1alphaI.1 in modulating expression of these cytokines. A(2A)R expression in unstimulated macrophages was low but was induced rapidly by LPS in a NF-kappaB-dependent manner. LPS-induced expression of A(2A)Rs and HIF-1alpha and A(2A)R-dependent HIF-1alpha mRNA and protein stabilization provide mechanisms for the synergistic effects of LPS and A(2A)R agonists on macrophage VEGF expression.
Collapse
Affiliation(s)
- Madhuri Ramanathan
- Department of Cell Biology and Molecular Medicine and The Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Roman J, Rangasamy T, Guo J, Sugunan S, Meednu N, Packirisamy G, Shimoda LA, Golding A, Semenza G, Georas SN. T-cell activation under hypoxic conditions enhances IFN-gamma secretion. Am J Respir Cell Mol Biol 2009; 42:123-8. [PMID: 19372249 DOI: 10.1165/rcmb.2008-0139oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Secondary lymphoid organs and peripheral tissues are characterized by hypoxic microenvironments, both in the steady state and during inflammation. Although hypoxia regulates T-cell metabolism and survival, very little is known about whether or how hypoxia influences T-cell activation. We stimulated mouse CD4(+) T cells in vitro with antibodies directed against the T-cell receptor (CD3) and CD28 under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions. Here we report that stimulation under hypoxic conditions augments the secretion of effector CD4(+) T-cell cytokines, especially IFN-gamma. The enhancing effects of hypoxia on IFN-gamma secretion were independent of mouse strain, and were also unaffected using CD4(+) T cells from mice lacking one copy of the gene encoding hypoxia-inducible factor-1alpha. Using T cells from IFN-gamma receptor-deficient mice and promoter reporter studies in transiently transfected Jurkat T cells, we found that the enhancing effects of hypoxia on IFN-gamma expression were not due to effects on IFN-gamma consumption or proximal promoter activity. In contrast, deletion of the transcription factor, nuclear erythroid 2 p45-related factor 2 attenuated the enhancing effect of hypoxia on IFN-gamma secretion and other cytokines. We conclude that hypoxia is a previously underappreciated modulator of effector cytokine secretion in CD4(+) T cells.
Collapse
Affiliation(s)
- Jessica Roman
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642-8692, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ben-Shoshan J, Afek A, Maysel-Auslender S, Barzelay A, Rubinstein A, Keren G, George J. HIF-1alpha overexpression and experimental murine atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29:665-70. [PMID: 19251587 DOI: 10.1161/atvbaha.108.183319] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lymphocytes play an important role in the progression of atherosclerosis. Recently, hypoxia inducible factor-1 (HIF-1) was found to attenuate inflammation by regulating T cell activation and cytokine production. We studied the effects of overexpression of HIF-1alpha in ApoE knockout murine lymphocytes, on experimental atherosclerosis. METHODS AND RESULTS ApoE-/- mice were submitted to intravenous hydrodynamic injection of empty plasmid or HIF-1alphaP564A (HIF-1alpha mutated stabilized construct). Robust expression of HIF-1alpha was evident in spleen cells of recipient animals. Increased expression of IL-10 as well as decreased expression of IFN-gamma was measured in splenocytes of HIF-1alpha-treated mice by RT-PCR. One week postinjection, antibody array analysis revealed a pattern consistent with a T helper 1 to T helper 2 shift. On sacrifice, assessment of aortic sinus lesions revealed a significant reduction in plaque size in HIF-1alpha injected mice. A reduced expression of IFN-gamma was evident in CD4+ spleen-derived lymphocytes and aortas of HIF-1alpha-injected mice. CONCLUSIONS HIF-1alpha expression in mouse lymphocytes is associated with a reduced IFN-gamma expression and attenuation of experimental atherosclerosis.
Collapse
Affiliation(s)
- Jeremy Ben-Shoshan
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
The Role of Hypoxia and Inflammation in the Expression and Regulation of Proteins Regulating Iron Metabolism. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-77383-4_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Ben-Shoshan J, Maysel-Auslender S, Mor A, Keren G, George J. Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur J Immunol 2008; 38:2412-8. [PMID: 18792019 DOI: 10.1002/eji.200838318] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent data suggest that hypoxia and its principal molecular signature HIF-1 (hypoxia-inducing factor-1) may tune down inflammation by dictating anti-inflammatory programs. We tested the effects of hypoxia and HIF-1alpha on the homeostasis of naturally occurring regulatory T cells (Treg) and their transcriptional activator Foxp3. Hypoxia induced a time-dependent increase in HIF-1alpha in mouse and human T cells. Hypoxia upregulated the expression of Foxp3 in Jurkat T cells, human and murine mononuclear cells. The effects of hypoxia on Foxp3 expression were HIF-1alpha-dependent as they were abolished upon transfection with short-interfering RNAs for HIF-1alpha and promoted by HIF-1alpha overexpression. Hypoxia increased the potency of Treg, as hypoxic CD4(+)CD25(+) lymphocytes were more effective than normoxic cells in suppressing the proliferation of CD4(+)CD25(-) effectors. In vivo expression of HIF-1alpha achieved by hydrodynamic injection of the respective naked DNA similarly induced an increase in Foxp3 expression and an increase in the number of functionally active Foxp3(+)CD4(+)CD25(+) Treg. Thus, hypoxia dictates an anti-inflammatory program by driving expression of HIF-1alpha that acts to increase the number and suppressive properties of naturally occurring CD4(+)CD25(+) Treg.
Collapse
Affiliation(s)
- Jeremy Ben-Shoshan
- The Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
47
|
Liu L, Clipstone NA. Prostaglandin F2alpha induces the normoxic activation of the hypoxia-inducible factor-1 transcription factor in differentiating 3T3-L1 preadipocytes: Potential role in the regulation of adipogenesis. J Cell Biochem 2008; 105:89-98. [PMID: 18461556 PMCID: PMC2634301 DOI: 10.1002/jcb.21801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostaglandin F2alpha (PGF2alpha) is a potent paracrine inhibitor of adipocyte differentiation. Here we show that treatment of differentiating 3T3-L1 preadipocytes with PGF2alpha induces the expression of DEC1, a transcriptional repressor that has previously been implicated in the inhibition of adipogenesis in response to hypoxia as a downstream effector of the hypoxia-inducible factor-1 (HIF-1) transcription factor. Surprisingly, despite performing our experiments under normal ambient oxygen conditions, we find that treatment of differentiating 3T3-L1 preadipocytes with PGF2alpha also results in the marked activation of HIF-1, as measured by an increase in the accumulation of the HIF-1alpha regulatory subunit. However, unlike the effects of hypoxia, this PGF2alpha-induced normoxic increase in HIF-1alpha is not mediated by an increase in the stability of the HIF-1alpha polypeptide, rather we find that PGF2alpha selectively increases the expression of the alternatively spliced HIF-1alpha I.1 mRNA isoform. Significantly, we demonstrate that the shRNA-mediated knockdown of endogenous HIF-1alpha expression attenuates the PGF2alpha-induced expression of DEC1, overcomes the inhibitory effects of PGF2alpha on the expression of proadipogenic transcription factors C/EBPalpha and PPARgamma and partially rescues the PGF2alpha-induced inhibition of adipogenesis. Taken together, these results indicate that PGF2alpha promotes the activation of the HIF-1 transcription factor pathway under normal oxygen conditions, and highlight a potential role for the normoxic activation of the HIF-1/DEC1-pathway in mediating the inhibitory effects of PGF2alpha on adipocyte differentiation.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave. Chicago, Illinois 60611
| | - Neil A. Clipstone
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153
| |
Collapse
|
48
|
Walczak-Drzewiecka A, Ratajewski M, Wagner W, Dastych J. HIF-1alpha is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. THE JOURNAL OF IMMUNOLOGY 2008; 181:1665-72. [PMID: 18641302 DOI: 10.4049/jimmunol.181.3.1665] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells play important roles in many pathological conditions where local hypoxia is observed, including asthma, rheumatic diseases, and certain types of cancer. Here, we investigated how expression of the hypoxia-inducible factor 1, alpha subunit gene (HIF1A), is regulated in mast cells. The product of HIF1A is hypoxia-inducible factor 1alpha (HIF-1alpha), is a major nuclear transcription factor modulating gene expression in response to hypoxic conditions. We observed that under hypoxic conditions, exposure of mast cells to ionomycin and substance P resulted in significant up-regulation of HIF1A expression as compared with resting mast cells incubated under identical conditions. The ionomycin-mediated increase in HIF-1alpha protein levels was sensitive to the transcription inhibitor actinomycin D and to inhibitors of calcineurin, cyclosporin A (CsA), and FK506. The increased HIF-1alpha protein level was paralleled by a severalfold increase in HIF-1alpha mRNA that could be also inhibited with actinomycin D and CsA. The HIF1A promoter activity was significantly increased in ionomycin-activated mast cells, and the promoter activity could be inhibited by CsA and FK506. Furthermore, in situ mutagenesis experiments showed that the ionomycin-mediated HIF1A promoter activity depends on a conservative NFAT-binding site. Thus, accumulation of HIF-1alpha in activated mast cells requires up-regulation of HIF1A gene transcription and depends on the calcineurin-NFAT signaling pathway.
Collapse
|
49
|
Lee KS, Kim SR, Park SJ, Min KH, Lee KY, Choe YH, Park SY, Chai OH, Zhang X, Song CH, Lee YC. Mast cells can mediate vascular permeability through regulation of the PI3K-HIF-1alpha-VEGF axis. Am J Respir Crit Care Med 2008; 178:787-97. [PMID: 18669818 DOI: 10.1164/rccm.200801-008oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Bronchial inflammation is usually accompanied by increased vascular permeability. Mast cells release a number of mediators that act directly on the vasculature, resulting in vasodilatation, increased permeability, and subsequent plasma protein extravasation. Vascular endothelial growth factor (VEGF) has been implicated to contribute to asthmatic tissue edema through its effect on vascular permeability. However, the effects of mast cells on VEGF-mediated signaling in allergic airway disease are not clearly understood. OBJECTIVES An aim of the present study was to investigate the role of mast cells on VEGF-mediated signal transduction in allergic airway disease. METHODS We used genetically mast cell-deficient WBB6F(1)-Kit(W)/Kit(W-v) (W/W(v)) mice and the congenic normal WBB6F(1)(+/+) mouse model for allergic airway disease to investigate the role of mast cells on VEGF-mediated signal transduction in allergic airway disease, more specifically in vascular permeability. MEASUREMENTS AND MAIN RESULTS Our present study, with ovalbumin (OVA)-sensitized without adjuvant and OVA-challenged mice, revealed the following typical pathophysiologic features of allergic airway diseases: increased inflammatory cells of the airways, airway hyperresponsiveness, increased vascular permeability, and increased levels of VEGF. However, levels of VEGF and plasma exudation in W/W(v) mice after OVA inhalation were significantly lower than levels in WBB6F(1)(+/+) mice. Moreover, mast cell-reconstituted W/W(v) mice restored vascular permeability and VEGF levels similar to those of the WBB6F(1)(+/+) mice. Our data also showed that VEGF expression was regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) activation through the phosphatidylinositol 3-kinase (PI3K)-HIF-1alpha pathway in allergic airway disease. CONCLUSIONS These results suggest that mast cells modulate vascular permeability by the regulation of the PI3K-HIF-1alpha-VEGF axis.
Collapse
Affiliation(s)
- Kyung Sun Lee
- Department of Internal Medicine, Chonbuk National University Medical School, San 2-20, Geumam-dong, Deokjin-gu, Jeonju, 561-180, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lukashev D, Sitkovsky M. Preferential expression of the novel alternative isoform I.3 of hypoxia-inducible factor 1alpha in activated human T lymphocytes. Hum Immunol 2008; 69:421-5. [PMID: 18638657 DOI: 10.1016/j.humimm.2008.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/30/2008] [Accepted: 05/14/2008] [Indexed: 11/28/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is critical not only in the regulation of oxygen homeostasis but also in the regulation of innate and adaptive immune systems. We previously reported that T-cell receptor-mediated activation of T cells in mice leads to the expression of an alternative isoform of HIF-1alpha that inhibits activated T cells in a delayed negative feed-back manner. In this paper, we describe a novel mRNA isoform of human HIF-1alpha that is upregulated in peripheral T lymphocytes after T-cell receptor stimulation. This activation- inducible isoform is expressed using the alternative first exon I.3, and it encodes a protein that is 24 amino acids longer than the ubiquitous HIF-1alpha isoform. This mRNA isoform I.3 of HIF-1alpha is expressed in a tissue-specific manner with the highest expression found in peripheral blood leukocytes and the thymus.
Collapse
Affiliation(s)
- Dmitriy Lukashev
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA.
| | | |
Collapse
|