1
|
He J, Han Z, Farooq QUA, Li C. Study on functional sites in human multidrug resistance protein 1 (hMRP1). Proteins 2021; 89:659-670. [PMID: 33469960 DOI: 10.1002/prot.26049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/22/2020] [Accepted: 12/27/2020] [Indexed: 01/27/2023]
Abstract
Human multidrug resistance protein 1 (hMRP1) is an important member of the ATP-binding cassette (ABC) transporter superfamily. It can extrude a variety of anticancer drugs and physiological organic anions across the plasma membrane, which is activated by substrate binding, and is accompanied by large-scale cooperative movements between different domains. Currently, it remains unclear completely about how the specific interactions between hMRP1 and its substrate are and which critical residues are responsible for allosteric signal transduction. To the end, we first construct an inward-facing state of hMRP1 using homology modeling method, and then dock substrate proinflammatory agent leukotriene C4 (LTC4) to hMRP1 pocket. The result manifests LTC4 interacts with two parts of hMRP1 pocket, namely the positively charged pocket (P pocket) and hydrophobic pocket (H pocket), similar to its binding mode with bMRP1 (bovine MRP1). Additionally, we use the Gaussian network model (GNM)-based thermodynamic method proposed by us to identify the key residues whose perturbations markedly alter their binding free energy. Here the conventional GNM is improved with covalent/non-covalent interactions and secondary structure information considered (denoted as sscGNM). In the result, sscGNM improves the flexibility prediction, especially for the nucleotide binding domains with rich kinds of secondary structures. The 46 key residue clusters located in different subdomains are identified which are highly consistent with experimental observations. Furtherly, we explore the long-range cooperation within the transporter. This study is helpful for strengthening the understanding of the work mechanism in ABC exporters and can provide important information to scientists in drug design studies.
Collapse
Affiliation(s)
- Junmei He
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qurat Ul Ain Farooq
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| |
Collapse
|
2
|
Deng F, Ghemtio L, Grazhdankin E, Wipf P, Xhaard H, Kidron H. Binding Site Interactions of Modulators of Breast Cancer Resistance Protein, Multidrug Resistance-Associated Protein 2, and P-Glycoprotein Activity. Mol Pharm 2020; 17:2398-2410. [PMID: 32496785 PMCID: PMC7497665 DOI: 10.1021/acs.molpharmaceut.0c00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
ATP-binding cassette (ABC)-transporters
protect tissues by pumping
their substrates out of the cells in many physiological barriers,
such as the blood–brain barrier, intestine, liver, and kidney.
These substrates include various endogenous metabolites, but, in addition,
ABC transporters recognize a wide range of compounds, therefore affecting
the disposition and elimination of clinically used drugs and their
metabolites. Although numerous ABC-transporter inhibitors are known,
the underlying mechanism of inhibition is not well characterized.
The aim of this study is to deepen our understanding of transporter
inhibition by studying the molecular basis of ligand recognition.
In the current work, we compared the effect of 44 compounds on the
active transport mediated by three ABC transporters: breast cancer
resistance protein (BCRP and ABCG2), multidrug-resistance associated
protein (MRP2 and ABCC2), and P-glycoprotein (P-gp and ABCB1). Eight
compounds were strong inhibitors of all three transporters, while
the activity of 36 compounds was transporter-specific. Of the tested
compounds, 39, 25, and 11 were considered as strong inhibitors, while
1, 4, and 11 compounds were inactive against BCRP, MRP2, and P-gp,
respectively. In addition, six transport-enhancing stimulators were
observed for P-gp. In order to understand the observed selectivity,
we compared the surface properties of binding cavities in the transporters
and performed structure–activity analysis and computational
docking of the compounds to known binding sites in the transmembrane
domains and nucleotide-binding domains. Based on the results, the
studied compounds are more likely to interact with the transmembrane
domain than the nucleotide-binding domain. Additionally, the surface
properties of the substrate binding site in the transmembrane domains
of the three transporters were in line with the observed selectivity.
Because of the high activity toward BCRP, we lacked the dynamic range
needed to draw conclusions on favorable interactions; however, we
identified amino acids in both P-gp and MRP2 that appear to be important
for ligand recognition.
Collapse
Affiliation(s)
- Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Leo Ghemtio
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Evgeni Grazhdankin
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Peter Wipf
- Department of Chemistry, The Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| |
Collapse
|
3
|
Conseil G, Arama-Chayoth M, Tsfadia Y, Cole SPC. Structure-guided probing of the leukotriene C 4 binding site in human multidrug resistance protein 1 (MRP1; ABCC1). FASEB J 2019; 33:10692-10704. [PMID: 31268744 DOI: 10.1096/fj.201900140r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human multidrug resistance protein 1 (hMRP1) transporter is implicated in cancer multidrug resistance as well as immune responses involving its physiologic substrate, glutathione (GSH)-conjugated leukotriene C4 (LTC4). LTC4 binds a bipartite site on hMRP1, which a recent cryoelectron microscopy structure of LTC4-bound bovine Mrp1 depicts as composed of a positively charged pocket and a hydrophobic (H) pocket that binds the GSH moiety and surrounds the fatty acid moiety, respectively, of LTC4. Here, we show that single Ala and Leu substitutions of H-pocket hMRP1-Met1093 have no effect on LTC4 binding or transport. Estrone 3-sulfate transport is also unaffected, but both hMRP1-Met1093 mutations eliminate estradiol glucuronide transport, demonstrating that these steroid conjugates have binding sites distinct from each other and from LTC4. To eliminate LTC4 transport by hMRP1, mutation of 3 H-pocket residues was required (W553/M1093/W1246A), indicating that H-pocket amino acids are key to the vastly different affinities of hMRP1 for LTC4 vs. GSH alone. Unlike organic anion transport, hMRP1-mediated drug resistance was more diminished by Ala than Leu substitution of Met1093. Although our findings generally support a structure in which H-pocket residues bind the lipid tail of LTC4, their critical and differential role in the transport of conjugated estrogens and anticancer drugs remains unexplained.-Conseil, G., Arama-Chayoth, M., Tsfadia, Y., Cole, S. P. C. Structure-guided probing of the leukotriene C4 binding site in human multidrug resistance protein 1 (MRP1; ABCC1).
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, , Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | - May Arama-Chayoth
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Tsfadia
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, , Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Hong M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family. Adv Drug Deliv Rev 2017; 116:3-20. [PMID: 27317853 DOI: 10.1016/j.addr.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Human drug transporters often play key roles in determining drug accumulation within cells. Their activities are often directly related to therapeutic efficacy, drug toxicity as well as drug-drug interactions. However, the progress for interpretation of their crystal structures is relatively slow. Hence, conventional biochemical studies together with computer modeling became useful manners to reveal essential structures of these membrane proteins. Over the years, quite a few structure-function relationship information had been obtained for members of the two major transporter families: the ATP-binding cassette family and the solute carrier family. Critical structural features of drug transporters include transmembrane domains, post-translational modification sites and domains for cell surface assembly and protein-protein interactions. Alterations at these important sites may affect protein stability, trafficking to the plasma membrane and/or ability of transporters to interact with substrates.
Collapse
|
6
|
Wu NC, Olson CA, Du Y, Le S, Tran K, Remenyi R, Gong D, Al-Mawsawi LQ, Qi H, Wu TT, Sun R. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality. PLoS Genet 2015; 11:e1005310. [PMID: 26132554 PMCID: PMC4489113 DOI: 10.1371/journal.pgen.1005310] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022] Open
Abstract
Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. The analysis of sequence conservation is a common approach to identify functional residues within a protein. However, not all functional residues are conserved as natural evolution and species diversification permit continuous innovation of protein functionality through the retention of advantageous mutations. Non-conserved functional residues, which are often species-specific, may not be identified by conventional analysis of sequence conservation despite being biologically important. Here we described a novel approach to identify functional residues within a protein by coupling a high-throughput experimental fitness profiling approach with computational protein modeling. Our methodology is independent of sequence conservation and is applicable to any protein where structural information is available. In this study, we systematically mapped the functional residues on the influenza A PA protein and revealed that non-conserved functional residues are prevalent. Our results not only have significant implication on how functionality evolves during natural evolution, but also highlight the caveats when applying conservation-based approaches to identify functional residues within a protein.
Collapse
Affiliation(s)
- Nicholas C. Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - C. Anders Olson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Kevin Tran
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Roland Remenyi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Laith Q. Al-Mawsawi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America,
- AIDS Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wang F, Li G, Gu HM, Zhang DW. Characterization of the role of a highly conserved sequence in ATP binding cassette transporter G (ABCG) family in ABCG1 stability, oligomerization, and trafficking. Biochemistry 2013; 52:9497-509. [PMID: 24320932 PMCID: PMC3880014 DOI: 10.1021/bi401285j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
ATP-binding cassette transporter
G1 (ABCG1) mediates cholesterol
and oxysterol efflux onto lipidated lipoproteins and plays an important
role in macrophage reverse cholesterol transport. Here, we identified
a highly conserved sequence present in the five ABCG transporter family
members. The conserved sequence is located between the nucleotide
binding domain and the transmembrane domain and contains five amino
acid residues from Asn at position 316 to Phe at position 320 in ABCG1
(NPADF). We found that cells expressing mutant ABCG1, in which Asn316,
Pro317, Asp319, and Phe320 in the conserved sequence were replaced
with Ala simultaneously, showed impaired cholesterol efflux activity
compared with wild type ABCG1-expressing cells. A more detailed mutagenesis
study revealed that mutation of Asn316 or Phe 320 to Ala significantly
reduced cellular cholesterol and 7-ketocholesterol efflux conferred
by ABCG1, whereas replacement of Pro317 or Asp319 with Ala had no
detectable effect. To confirm the important role of Asn316 and Phe320,
we mutated Asn316 to Asp (N316D) and Gln (N316Q), and Phe320 to Ile
(F320I) and Tyr (F320Y). The mutant F320Y showed the same phenotype
as wild type ABCG1. However, the efflux of cholesterol and 7-ketocholesterol
was reduced in cells expressing ABCG1 mutant N316D, N316Q, or F320I
compared with wild type ABCG1. Further, mutations N316Q and F320I
impaired ABCG1 trafficking while having no marked effect on the stability
and oligomerization of ABCG1. The mutant N316Q and F320I could not
be transported to the cell surface efficiently. Instead, the mutant
proteins were mainly localized intracellularly. Thus, these findings
indicate that the two highly conserved amino acid residues, Asn and
Phe, play an important role in ABCG1-dependent export of cellular
cholesterol, mainly through the regulation of ABCG1 trafficking.
Collapse
Affiliation(s)
- Faqi Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, ‡Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
8
|
Characterization of palmitoylation of ATP binding cassette transporter G1: effect on protein trafficking and function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1067-78. [PMID: 23388354 DOI: 10.1016/j.bbalip.2013.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/14/2013] [Accepted: 01/25/2013] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette transporter G1 (ABCG1) mediates cholesterol efflux onto lipidated apolipoprotein A-I and HDL and plays a role in various important physiological functions. However, the mechanism by which ABCG1 mediates cholesterol translocation is unclear. Protein palmitoylation regulates many functions of proteins such as ABCA1. Here we investigated if ABCG1 is palmitoylated and the subsequent effects on ABCG1-mediated cholesterol efflux. We demonstrated that ABCG1 is palmitoylated in both human embryonic kidney 293 cells and in mouse macrophage, J774. Five cysteine residues located at positions 26, 150, 311, 390 and 402 in the NH2-terminal cytoplasmic region of ABCG1 were palmitoylated. Removal of palmitoylation at Cys311 by mutating the residue to Ala (C311A) or Ser significantly decreased ABCG1-mediated cholesterol efflux. On the other hand, removal of palmitoylation at sites 26, 150, 390 and 402 had no significant effect. We further demonstrated that mutations of Cys311 affected ABCG1 trafficking from the endoplasmic reticulum. Therefore, our data suggest that palmitoylation plays a critical role in ABCG1-mediated cholesterol efflux through the regulation of trafficking.
Collapse
|
9
|
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2012. [DOI: 10.1016/j.addr.2012.09.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Qin L, Tam SP, Deeley RG. Effect of Multiple Cysteine Substitutions on the Functionality of Human Multidrug Resistance Protein 1 Expressed in Human Embryonic Kidney 293 Cells: Identification of Residues Essential for Function. Drug Metab Dispos 2012; 40:1403-13. [DOI: 10.1124/dmd.112.044867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Identification of an amino acid residue in ATP-binding cassette transport G1 critical for mediating cholesterol efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:552-9. [PMID: 21821149 DOI: 10.1016/j.bbalip.2011.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 01/31/2023]
Abstract
The ATP-binding cassette transporter G1 (ABCG1) mediates free cholesterol efflux onto lipidated apolipoprotein A-I (apoA-I) and plays an important role in macrophage reverse cholesterol transport thereby reducing atherosclerosis. However, how ABCG1 mediates the efflux of cholesterol onto lipidated apoA-I is unclear. Since the crystal structure of ABCG family is not available, other approaches such as site-directed mutagenesis have been widely used to identify amino acid residues important for protein functions. We noticed that ABCG1 contains a single cysteine residue in its putative transmembrane domains. This cysteine residue locates at position 514 (Cys(514)) within the third putative transmembrane domain and is highly conserved. Replacement of Cys(514) with Ala (C514A) essentially abolished ABCG1-mediated cholesterol efflux onto lipidated apoA-I. Substitution of Cys(514) with more conserved amino acid residues, Ser or Thr, also significantly decreased cholesterol efflux. However, mutation C514A had no detectable effect on protein stability and trafficking. Mutation C514A also did not affect the dimerization of ABCG1. Our findings demonstrated that the sulfhydryl group of Cys residue located at position 514 plays a critical role in ABCG1-mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
|
12
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1093] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Chang XB. Molecular mechanism of ATP-dependent solute transport by multidrug resistance-associated protein 1. Methods Mol Biol 2010; 596:223-49. [PMID: 19949927 DOI: 10.1007/978-1-60761-416-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Millions of new cancer patients are diagnosed each year and over half of these patients die from this devastating disease. Thus, cancer causes a major public health problem worldwide. Chemotherapy remains the principal mode to treat many metastatic cancers. However, occurrence of cellular multidrug resistance (MDR) prevents efficient killing of cancer cells, leading to chemotherapeutic treatment failure. Over-expression of ATP-binding cassette transporters, such as P-glycoprotein, breast cancer resistance protein and/or multidrug resistance-associated protein 1 (MRP1), confers an acquired MDR due to their capabilities of transporting a broad range of chemically diverse anticancer drugs across the cell membrane barrier. In this review, the molecular mechanism of ATP-dependent solute transport by MRP1 will be addressed.
Collapse
Affiliation(s)
- Xiu-bao Chang
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
14
|
Kuppens IELM, Breedveld P, Beijnen JH, Schellens JHM. Modulation of Oral Drug Bioavailability: From Preclinical Mechanism to Therapeutic Application. Cancer Invest 2009; 23:443-64. [PMID: 16193644 DOI: 10.1081/cnv-58823] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, more than one fourth of all anticancer drugs are developed as oral formulations, and it is expected that this number will increase substantially in the near future. To enable oral drug therapy, adequate oral bioavailability must be achieved. Factors that have proved to be important in limiting the oral bioavailability are the presence of ATP-binding cassette drug transporters (ABC transporters) and the cytochrome P450 enzymes. We discuss the tissues distribution and physiological function of the ABC transporters in the human body, their expression in tumors, currently known polymorphisms and drugs that are able to inhibit their function as transporter. Furthermore, the role of the ABC transporters and drug-metabolizing enzymes as mechanisms to modulate the pharmacokinetics of anticancer agents, will be reviewed. Finally, some clinical examples of oral drug modulation are discussed. Among these examples are the coadministration of paclitaxel with CsA, a CYP3A4 substrate with P-glycoprotein (P-gp) modulating activity, and topotecan combined with the BCRP/P-gp transport inhibitor elacridar. Both are good examples of improvement of oral drug bioavailability by temporary inhibition of drug transporters in the gut epithelium.
Collapse
Affiliation(s)
- Isa E L M Kuppens
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Peters KM, Schuman JT, Skurray RA, Brown MH, Brennan RG, Schumacher MA. QacR-cation recognition is mediated by a redundancy of residues capable of charge neutralization. Biochemistry 2008; 47:8122-9. [PMID: 18616285 PMCID: PMC2646753 DOI: 10.1021/bi8008246] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The Staphylococcus aureus multidrug binding protein QacR binds to a broad spectrum of structurally dissimilar cationic, lipophilic drugs. Our previous structural analyses suggested that five QacR glutamic acid residues are critical for charge neutralization and specification of certain drugs. For example, E57 and E58 interact with berberine and with one of the positively charged moieties of the bivalent drug dequalinium. Here we report the structural and biochemical effects of substituting E57 and E58 with alanine and glutamine. Unexpectedly, individual substitutions of these residues did not significantly affect QacR drug binding affinity. Structures of QacR(E57Q) and QacR(E58Q) bound to dequalinium indicated that E57 and E58 are redundant for charge neutralization. The most significant finding was that berberine was reoriented in the QacR multidrug binding pocket so that its positive charge was neutralized by side chain oxygen atoms and aromatic residues. Together, these data emphasize the remarkable versatility of the QacR multidrug binding pocket, illustrating that the capacity of QacR to bind myriad cationic drugs is largely governed by the presence in the pocket of a redundancy of polar, charged, and aromatic residues that are capable of electrostatic neutralization.
Collapse
Affiliation(s)
- Kate M Peters
- School of Biological Sciences, A12, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
16
|
El-Sheikh AAK, van den Heuvel JJMW, Krieger E, Russel FGM, Koenderink JB. Functional role of arginine 375 in transmembrane helix 6 of multidrug resistance protein 4 (MRP4/ABCC4). Mol Pharmacol 2008; 74:964-71. [PMID: 18612080 DOI: 10.1124/mol.107.043661] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance protein (MRP) 4 transports a variety of endogenous and xenobiotic organic anions. MRP4 is widely expressed in the body and specifically localized to the renal apical proximal tubule cell membrane, where it mediates the excretion of these compounds into urine. To characterize the MRP4 substrate-binding site, the amino acids Phe368, Phe369, Glu374, Arg375, and Glu378 of transmembrane helix 6, and Arg998 of helix 12, localized in the intracellular half of the central pore, were mutated into the corresponding amino acids of MRP1 and MRP2. Membrane vesicles isolated from human embryonic kidney 293 cells overexpressing these mutants showed significantly reduced methotrexate (MTX) and cGMP transport activity compared with vesicles that expressed wild-type MRP4. The only exception was substitution of Arg375 with serine, which had no effect on cGMP transport but significantly decreased the affinity of MTX. Substitution of the same amino acid with a positively charged lysine returned the MTX affinity to that of the wild type. Furthermore, MTX inhibition of MRP4-mediated cGMP transport was noncompetitive, and the inhibition constant was increased by introduction of the R375S mutation. A homology model of MRP4 showed that Arg375 and Arg998 face right into the central aqueous pore of MRP4. We conclude that positively charged amino acids in transmembrane helices 6 and 12 contribute to the MRP4 substrate-binding pocket.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Chang XB. A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1. Cancer Metastasis Rev 2007; 26:15-37. [PMID: 17295059 DOI: 10.1007/s10555-007-9041-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over a million new cases of cancers are diagnosed each year in the United States and over half of these patients die from these devastating diseases. Thus, cancers cause a major public health problem in the United States and worldwide. Chemotherapy remains the principal mode to treat many metastatic cancers. However, occurrence of cellular multidrug resistance (MDR) prevents efficient killing of cancer cells, leading to chemotherapeutic treatment failure. Numerous mechanisms of MDR exist in cancer cells, such as intrinsic or acquired MDR. Overexpression of ATP-binding cassette (ABC) drug transporters, such as P-glycoprotein (P-gp or ABCB1), breast cancer resistance protein (BCRP or ABCG2) and/or multidrug resistance-associated protein (MRP1 or ABCC1), confers an acquired MDR due to their capabilities of transporting a broad range of chemically diverse anticancer drugs. In addition to their roles in MDR, there is substantial evidence suggesting that these drug transporters have functions in tissue defense. Basically, these drug transporters are expressed in tissues important for absorption, such as in lung and gut, and for metabolism and elimination, such as in liver and kidney. In addition, these drug transporters play an important role in maintaining the barrier function of many tissues including blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier. Thus, these ATP-dependent drug transporters play an important role in the absorption, disposition and elimination of the structurally diverse array of the endobiotics and xenobiotics. In this review, the molecular mechanism of ATP-dependent solute transport by MRP1 will be addressed.
Collapse
Affiliation(s)
- Xiu-bao Chang
- Mayo Clinic College of Medicine, Scottsdale, AZ 85259, USA.
| |
Collapse
|
18
|
Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86:849-99. [PMID: 16816140 DOI: 10.1152/physrev.00035.2005] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Biochemistry, Queen's University Kingdom, Ontario, Canada.
| | | | | |
Collapse
|
19
|
Abstract
The protein variously named ABCG2/BCRP/MXR/ABCP is a recently described ATP-binding cassette (ABC) transporter originally identified by its ability to confer drug resistance that is independent of Mrp1 (multidrug-resistance protein 1) and Pgp (P-glycoprotein). Unlike Mrp1 and Pgp, ABCG2 is a half-transporter that must homodimerize to acquire transport activity. ABCG2 is found in a variety of stem cells and may protect them from exogenous and endogenous toxins. ABCG2 expression is upregulated under low-oxygen conditions, consistent with its high expression in tissues exposed to low-oxygen environments. ABCG2 interacts with heme and other porphyrins and protects cells and/or tissues from protoporphyrin accumulation under hypoxic conditions. Individuals who carry ABCG2 alleles that have impaired function may be more susceptible to porphyrin-induced toxicity. Abcg2 knock-out models have allowed in vivo studies of Abcg2 function in host and cellular defense. In combination with immunohistochemical analyses, these studies have revealed how ABCG2 influences the absorption, distribution, and excretion of drugs and cytotoxins.
Collapse
Affiliation(s)
- P Krishnamurthy
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
20
|
Zhang DW, Nunoya K, Vasa M, Gu HM, Cole SPC, Deeley RG. Mutational analysis of polar amino acid residues within predicted transmembrane helices 10 and 16 of multidrug resistance protein 1 (ABCC1): effect on substrate specificity. Drug Metab Dispos 2006; 34:539-46. [PMID: 16415113 DOI: 10.1124/dmd.105.007740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) has a total of 17 transmembrane (TM) helices arranged in three membrane-spanning domains, MSD0, MSD1, and MSD2, with a 5 + 6 + 6 TM configuration. Photolabeling studies indicate that TMs 10 and 11 in MSD1 and 16 and 17 in MSD2 contribute to the substrate binding pocket of the protein. Previous mutational analyses of charged and polar amino acids in predicted TM helices 11, 16, and 17 support this suggestion. Mutation of Trp(553) in TM10 also affects substrate specificity. To extend this analysis, we mutated six additional polar residues within TM10 and the remaining uncharacterized polar residue in TM16, Asn(1208). Although mutation of Asn(1208) was without effect, two of six mutations in TM10, T550A and T556A, modulated the drug resistance profile of MRP1 without affecting transport of leukotriene C4, 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), and glutathione. Mutation T550A increased vincristine resistance but decreased doxorubicin resistance, whereas mutation T556A decreased resistance to etoposide (VP-16) and doxorubicin. Although conservative mutation of Tyr(568) in TM10 to Phe or Trp had no apparent effect on substrate specificity, substitution with Ala decreased the affinity of MRP1 for E(2)17betaG without affecting drug resistance or the transport of other substrates tested. These analyses confirm that several amino acids in TM10 selectively alter the substrate specificity of MRP1, suggesting that they interact directly with certain substrates. The location of these and other functionally important residues in TM helices 11, 16, and 17 is discussed in the context of an energy-minimized model of the membrane-spanning domains of MRP1.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Cancer Research Institute, Suite 300, 10 Stuart St. Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Deeley RG, Cole SPC. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 2005; 580:1103-11. [PMID: 16387301 DOI: 10.1016/j.febslet.2005.12.036] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/09/2005] [Accepted: 12/13/2005] [Indexed: 12/16/2022]
Abstract
Multidrug resistance protein (MRP) 1 belongs to the 'C' branch of the ABC transporter superfamily. MRP1 is a high-affinity transporter of the cysteinyl leukotriene C(4) and is responsible for the systemic release of this cytokine in response to an inflammatory stimulus. However, the substrate specificity of MRP1 is extremely broad and includes many organic anion conjugates of structurally unrelated endo- and xenobiotics. In addition, MRP1 transports unmodified hydrophobic compounds, such as natural product type chemotherapeutic agents and mutagens, such as aflatoxin B(1). Transport of several of these compounds has been shown to be dependent on the presence of reduced glutathione (GSH). More recently, GSH has also been shown to stimulate the transport of some conjugated compounds, including sulfates and glucuronides. Here, we summarize current knowledge of the substrate specificity and modes of transport of MRP1 and discuss how the protein may recognize its structurally diverse substrates.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ont., Canada K7L 3N6.
| | | |
Collapse
|
22
|
Erdman AR, Mangravite LM, Urban TJ, Lagpacan LL, Castro RA, de la Cruz M, Chan W, Huang CC, Johns SJ, Kawamoto M, Stryke D, Taylor TR, Carlson EJ, Ferrin TE, Brett CM, Burchard EG, Giacomini KM. The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics. Am J Physiol Renal Physiol 2005; 290:F905-12. [PMID: 16291576 DOI: 10.1152/ajprenal.00272.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The human organic anion transporter, OAT3 (SLC22A8), plays a critical role in renal drug elimination, by mediating the entry of a wide variety of organic anions, including a number of commonly used pharmaceuticals, into the renal proximal tubular cells. To understand the nature and extent of genetic variation in OAT3, and to determine whether such variation affects its function, we identified OAT3 variants in a large, ethnically diverse sample population and studied their transport activities in cellular assays. We identified a total of 10 distinct coding-region variants, which altered the encoded amino acid sequence, in DNA samples from 270 individuals (80 African-Americans, 80 European-Americans, 60 Asian-Americans, and 50 Mexican-Americans). The overall prevalence of these OAT3 variants was relatively low among the screened population, with only three variants having allele frequencies of >1% in a particular ethnic group. Clones of each variant were created by site-directed mutagenesis, expressed in HEK-293 cells, and tested for function using the model substrates, estrone sulfate (ES) and cimetidine (CIM). The results revealed a high degree of functional heterogeneity among OAT3 variants, with three variants (p. Arg149Ser, p. Gln239Stop, and p. Ile260Arg) that resulted in complete loss of function, and several others with significantly reduced function. One of the more common variants (p. Ile305Phe), found in 3.5% of Asian-Americans, appeared to have altered substrate specificity. This variant exhibited a reduced ability to transport ES, but a preserved ability to transport CIM. These data suggest that genetic variation in OAT3 may contribute to variation in the disposition of drugs.
Collapse
Affiliation(s)
- Andrew R Erdman
- Department of Biopharmaceutical Sciences, University of California, San Francisco 94143-0446, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Conseil G, Deeley RG, Cole SPC. Functional importance of three basic residues clustered at the cytosolic interface of transmembrane helix 15 in the multidrug and organic anion transporter MRP1 (ABCC1). J Biol Chem 2005; 281:43-50. [PMID: 16230346 DOI: 10.1074/jbc.m510143200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein 1 (MRP1) mediates drug and organic anion efflux across the plasma membrane. The 17 transmembrane (TM) helices of MRP1 are linked by extracellular and cytoplasmic (CL) loops of various lengths and two cytoplasmic nucleotide binding domains. In this study, three basic residues clustered at the predicted TM15/CL7 interface were investigated for their role in MRP1 expression and activity. Thus, Arg1138, Lys1141, and Arg1142 were replaced with residues of the same or opposite charge, expressed in human embryonic kidney cells, and the properties of the mutant proteins were assessed. Neither Glu nor Lys substitutions of Arg1138 and Arg1142 affected MRP1 expression; however, all four mutants showed a decrease in organic anion transport with a relatively greater decrease in leukotriene C4 and glutathione transport. These mutations also modulated MRP1 ATPase activity as reflected by a decreased vanadate-induced trapping of 8-azido-[32P]ADP. Mutation of Lys1141 to either Glu or Arg reduced MRP1 expression, and routing to the plasma membrane was impaired. However, only the Glu-substituted Lys1141 mutant showed a decrease in organic anion transport, and this was associated with decreased substrate binding and vanadate-induced trapping of 8-azido-ADP. These studies identified a cluster of basic amino acids likely at the TM15/CL7 interface as a region important for both MRP1 expression and activity and demonstrated that each of the three residues plays a distinct role in the substrate specificity and catalytic activity of the transporter.
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
24
|
Boumendjel A, Baubichon-Cortay H, Trompier D, Perrotton T, Di Pietro A. Anticancer multidrug resistance mediated by MRP1: recent advances in the discovery of reversal agents. Med Res Rev 2005; 25:453-72. [PMID: 15834856 DOI: 10.1002/med.20032] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multidrug resistance protein 1 (MRP1) belongs to the ATP-binding cassette (ABC) transporter family. It is able to transport a broad range of anticancer drugs through cellular membranes, thus limiting their antiproliferative action. Since its discovery in 1992, MRP1 has been the most studied among MRP proteins, which now count nine members. Besides the biological work, which targets structure elucidation, binding sites location, and mode of action, most efforts have been focused on finding molecules which act as MRP1 inhibitors. In this review, we attempt to summarize and highlight studies dealing with modulators of MRP1-mediated multidrug resistance (MDR), which have been accomplished in the last 5 years. The reported MRP1 inhibitors are discussed according to their chemical class. Finally, we try to bring information on structure-activity relationship (SAR) aspects and how modulators might interact with MRP1. This study may facilitate the rational design of future modulators of MDR.
Collapse
Affiliation(s)
- Ahcène Boumendjel
- Département de Pharmacochimie Moléculaire, UMR 5063 CNRS/Université Joseph Fourier-Grenoble I, 5 Avenue de Verdun BP 138, 38243 Meylan, France. Ahcène.Boumendjelujf-grenoble.fr
| | | | | | | | | |
Collapse
|
25
|
Leslie EM, Deeley RG, Cole SPC. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204:216-37. [PMID: 15845415 DOI: 10.1016/j.taap.2004.10.012] [Citation(s) in RCA: 1013] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 10/20/2004] [Indexed: 12/21/2022]
Abstract
In tumor cell lines, multidrug resistance is often associated with an ATP-dependent decrease in cellular drug accumulation which is attributed to the overexpression of certain ATP-binding cassette (ABC) transporter proteins. ABC proteins that confer drug resistance include (but are not limited to) P-glycoprotein (gene symbol ABCB1), the multidrug resistance protein 1 (MRP1, gene symbol ABCC1), MRP2 (gene symbol ABCC2), and the breast cancer resistance protein (BCRP, gene symbol ABCG2). In addition to their role in drug resistance, there is substantial evidence that these efflux pumps have overlapping functions in tissue defense. Collectively, these proteins are capable of transporting a vast and chemically diverse array of toxicants including bulky lipophilic cationic, anionic, and neutrally charged drugs and toxins as well as conjugated organic anions that encompass dietary and environmental carcinogens, pesticides, metals, metalloids, and lipid peroxidation products. P-glycoprotein, MRP1, MRP2, and BCRP/ABCG2 are expressed in tissues important for absorption (e.g., lung and gut) and metabolism and elimination (liver and kidney). In addition, these transporters have an important role in maintaining the barrier function of sanctuary site tissues (e.g., blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier or placenta). Thus, these ABC transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, excretion, and toxicity of xenobiotics. In this review, the role of these four ABC transporter proteins in protecting tissues from a variety of toxicants is discussed. Species variations in substrate specificity and tissue distribution of these transporters are also addressed since these properties have implications for in vivo models of toxicity used for drug discovery and development.
Collapse
Affiliation(s)
- Elaine M Leslie
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
26
|
Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol 2005; 204:238-55. [PMID: 15845416 DOI: 10.1016/j.taap.2004.09.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/14/2004] [Indexed: 12/30/2022]
Abstract
The initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process. In particular, five of the 12 members of the MRP/CFTR family appear to mediate GSH export from cells namely, MRP1, MRP2, MRP4, MRP5, and CFTR. Additionally, two members of the OATP family, rat Oatp1 and Oatp2, have been identified as GSH transporters. For the Oatp1 transporter, efflux of GSH may provide the driving force for the uptake of extracellular substrates. In humans, OATP-B and OATP8 do not appear to transport GSH; however, other members of this family have yet to be characterized in regards to GSH transport. In yeast, the ABC proteins Ycf1p and Bpt1p transport GSH from the cytosol into the vacuole, whereas Hgt1p mediates GSH uptake across the plasma membrane. Because transport is a key step in GSH homeostasis and is intimately linked to its biological functions, GSH export proteins are likely to modulate essential cellular functions.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
27
|
Tian Q, Zhang J, Chan E, Duan W, Zhou S. Multidrug resistance proteins (MRPs) and implication in drug development. Drug Dev Res 2005. [DOI: 10.1002/ddr.10427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Moreau C, Gally F, Jacquet-Bouix H, Vivaudou M. The size of a single residue of the sulfonylurea receptor dictates the effectiveness of K ATP channel openers. Mol Pharmacol 2004; 67:1026-33. [PMID: 15615694 DOI: 10.1124/mol.104.008698] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
K(ATP) channel openers are a diverse group of molecules able to activate ATP-sensitive K(+) channels in a tissue-dependent manner by binding to the channel regulatory subunit, the sulfonylurea receptor (SUR), an ATP-binding cassette protein. Residues crucial to this action were previously identified in the last transmembrane helix of SUR, transmembrane helix 17. This study examined the residue at the most important position, 1253 in the muscle isoform SUR2A and the matching 1290 in the pancreatic/neuronal isoform SUR1 (rat numbering). At this position in either isoform, a threonine enables action of openers, whereas a methionine prohibits it. Using single-point mutagenesis, we have examined the physicochemical basis of this phenomenon and discovered that it relied uniquely on side chain volume and not on shape, polarity, or hydrogen-bonding capacity of the residue. Moreover, the aromatic nature of neighboring residues conserved in SUR1 and SUR2A was found necessary for SUR2A to sustain the wild-type levels of channel activation by the openers tested, the cromakalim analog SR47063 [4-(2-cyanimino-1,2-dihydro-1-pyridyl)-2,2-dimethyl-6-nitrochromene] and the pinacidil analog P1075 [N-cyano-N'-(1,1-dimethylpropyl)-N'-3-pyridylguanidine]. These observations suggest that these residues can interact with openers via nonspecific stacking interactions provided that the adjacent 1253/1290 residue does not obstruct access. The smaller Thr1253 of SUR2A would permit activation, whereas the bulky Met1290 of SUR1 would not. This hypothesis is discussed in the context of a simple molecular model of transmembrane helix 17.
Collapse
Affiliation(s)
- Christophe Moreau
- Biophysique Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5090, DRDC-BMC, 17 rue des Martyrs, 38054 Grenoble, France
| | | | | | | |
Collapse
|
29
|
Hambrock A, Kayar T, Stumpp D, Osswald H. Effect of two amino acids in TM17 of Sulfonylurea receptor SUR1 on the binding of ATP-sensitive K+ channel modulators. Diabetes 2004; 53 Suppl 3:S128-34. [PMID: 15561900 DOI: 10.2337/diabetes.53.suppl_3.s128] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sulfonylurea receptor (SUR) is the important regulatory subunit of ATP-sensitive K+ channels. It is an ATP-binding cassette protein comprising 17 transmembrane helices. SUR is endowed with binding sites for channel blockers like the antidiabetic sulfonylurea glibenclamide and for the chemically very heterogeneous channel openers. SUR1, the typical pancreatic SUR isoform, shows much higher affinity for glibenclamide but considerably lower affinity for most openers than SUR2. In radioligand binding assays, we investigated the role of two amino acids, T1285 and M1289, located in transmembrane helix (TM)-17, in opener binding to SUR1. These amino acids were exchanged for the corresponding amino acids of SUR2. In competition experiments using [3H]glibenclamide as radioligand, SUR1(T1285L, M1289T) showed much higher affinity toward the cyanoguanidine openers pinacidil and P1075 than SUR1 wild type. The affinity for the thioformamide aprikalim was also markedly increased. In contrast, the affinity for the benzopyrans rilmakalim and levcromakalim was unaffected; however, the amount of displaced [3H]glibenclamide binding was nearly doubled. The binding properties of the opener diazoxide and the blocker glibenclamide were unchanged. In conclusion, mutation of two amino acids in TM17 of SUR1, especially of M1289, leads to class-specific effects on opener binding by increasing opener affinity or by changing allosteric coupling between opener and glibenclamide binding.
Collapse
Affiliation(s)
- Annette Hambrock
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| | | | | | | |
Collapse
|
30
|
Abstract
The MRP family is comprised of nine related ABC transporters that are able to transport structurally diverse lipophilic anions and function as drug efflux pumps. Investigations of this family have provided insights not only into cellular resistance mechanisms associated with natural product chemotherapeutic agents, antifolates and nucleotide analogs, but also into factors that influence drug distribution in the body, membrane systems that are involved in the extrusion of reduced folates, cysteinyl leukotrienes and bile acids, and the molecular basis of two hereditary conditions in humans. The review will describe the biochemical properties, drug resistance activities and potential in vivo functions of these unusual pumps.
Collapse
Affiliation(s)
- Gary D Kruh
- Medical Science Division, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
31
|
Zhang DW, Gu HM, Situ D, Haimeur A, Cole SPC, Deeley RG. Functional importance of polar and charged amino acid residues in transmembrane helix 14 of multidrug resistance protein 1 (MRP1/ABCC1): identification of an aspartate residue critical for conversion from a high to low affinity substrate binding state. J Biol Chem 2003; 278:46052-63. [PMID: 12954620 DOI: 10.1074/jbc.m308403200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) confers resistance to many chemotherapeutic agents and transports diverse conjugated organic anions. We previously demonstrated that Glu1089 in transmembrane (TM) 14 is critical for the protein to confer anthracycline resistance. We have now assessed the functional importance of all polar and charged amino acids in this TM helix. Asn1100, Ser1097, and Lys1092, which are all predicted to be on the same face of the helix as to Glu1089, are involved in determining the substrate specificity of the protein. Notably, elimination of the positively charged side chain of Lys1092, increased resistance to the cationic drugs vincristine and doxorubicin, but not the electroneutral drug etoposide (VP-16). In addition, mutations S1097A and N1100A selectively decreased transport of 17beta-estradiol 17-(beta-d-glucuronide) (E217betaG) but not cysteinyl leukotriene 4 (LTC4), demonstrating the importance of multiple residues in this helix in determining substrate specificity. In contrast, mutations of Asp1084 that eliminate the carboxylate side chain markedly decreased resistance to all drugs tested, as well as transport of both E217betaG and LTC4, despite the fact that LTC4 binding was unaffected. We show that these mutations prevent the ATP-dependent transition of the protein from a high to low affinity substrate binding state and drastically diminish ADP trapping at nucleotide binding domain 2. Based on results presented here and crystal structures of prokaryotic ATP binding cassette transporters, Asp1084 may be critical for interaction between the cytoplasmic loop connecting TM13 and TM14 and a region of nucleotide binding domain 2 between the conserved Walker A and ABC signature motifs.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Takayanagi SI, Ishikawa T. Molecular identification and characterization of rat Abcc1 cDNA: existence of two splicing variants and species difference in drug-resistance profile. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2003; 3:136-46. [PMID: 14641820 DOI: 10.1046/j.1359-4117.2003.01089.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human ABCC1 gene, a member of the ATP-binding cassette transporter super-family, plays a critical role in conferring cancer cell resistance to chemotherapeutic drugs. In the present study, we have cloned the full-length cDNA of rat Abcc1 and evaluated its significance in drug resistance. Analysis using the currently available genome database revealed that the rat Abcc1 gene is located on rat chromosome 13 and consists of at least 30 exons. The rat Abcc1 cDNA cloned from the spleen was 4981-bp long, within which two additional splicing variants were discovered. The rat Abcc1 gene is expressed in a wide variety of organs, with the highest expression being observed in the spleen. Human embryonic kidney 293 cells were transfected with the rat Abcc1/pcDNA3.1 vector to stably express rat Abcc1. Overexpression of rat Abcc1 elicited high resistance to etoposide. In contrast to the hitherto known drug-resistance profile of human ABCC1, rat Abcc1 did not significantly confer cellular resistance to anthracyclins or Vinca alkaloids. Our results strongly suggest that there is a significant species difference between human ABCC1 and rat Abcc1 in their contribution to the drug-resistance profile.
Collapse
Affiliation(s)
- Shin-Ichiro Takayanagi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
33
|
Nunoya K, Grant CE, Zhang D, Cole SPC, Deeley RG. Molecular cloning and pharmacological characterization of rat multidrug resistance protein 1 (mrp1). Drug Metab Dispos 2003; 31:1016-26. [PMID: 12867490 DOI: 10.1124/dmd.31.8.1016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) transports a wide range of structurally diverse conjugated and nonconjugated organic anions and some peptides, including oxidized and reduced glutathione (GSH). The protein confers resistance to certain heavy metal oxyanions and a variety of natural product-type chemotherapeutic agents. Elevated levels of MRP1 have been detected in many human tumors, and the protein is a candidate therapeutic target for drug resistance reversing agents. Previously, we have shown that human MRP1 (hMRP1) and murine MRP1 (mMRP1) differ in their substrate specificity despite a high degree of structural conservation. Since rat models are widely used in the drug discovery and development stage, we have cloned and functionally characterized rat MRP1 (rMRP1). Like mMRP1 and in contrast to hMRP1, rMRP1 confers no, or very low, resistance to anthracyclines and transports the two estrogen conjugates, 17beta-estradiol-17-(beta-d-glucuronide) (E217betaG) and estrone 3-sulfate, relatively poorly. Mutational studies combined with vesicle transport assays identified several amino acids conserved between rat and mouse, but not hMRP1, that make major contributions to these differences in substrate specificity. Despite the fact that the rodent proteins transport E217betaG poorly and the GSH-stimulated transport of estrone 3-sulfate is low compared with hMRP1, site-directed mutagenesis studies indicate that different nonconserved amino acids are involved in the low efficiency with which each of the two estrogen conjugates is transported. Our studies also suggest that although rMRP1 and mMRP1 are 95% identical in primary structure, their substrate specificities may be influenced by amino acids that are not conserved between the two rodent proteins.
Collapse
Affiliation(s)
- Kenichi Nunoya
- Department of Xenobiotic and Disposition, Minase Research Institute, Ono Pharmaceutical Co, Ltd, OSaka, Japan
| | | | | | | | | |
Collapse
|
34
|
Konno T, Ebihara T, Hisaeda K, Uchiumi T, Nakamura T, Shirakusa T, Kuwano M, Wada M. Identification of domains participating in the substrate specificity and subcellular localization of the multidrug resistance proteins MRP1 and MRP2. J Biol Chem 2003; 278:22908-17. [PMID: 12682044 DOI: 10.1074/jbc.m302868200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 microm). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells. We examined the kinetic properties of each chimeric protein by measuring LTC4 and methotrexate transport in inside-out membrane vesicles, sensitivity to an anticancer agent, etoposide, and subcellular localization by indirect immunofluorescence methods. The following results were determined in these studies: (i) when the NH2-proximal 108 amino acids of MRP2, including transmembrane (TM) helices 1-3, were exchanged with the corresponding region of MRP1, Km(LTC4) values of the chimera decreased approximately 4-fold and Km(methotrexate) values increased approximately 5-fold relative to those of wild-type MRP2 and MRP1, respectively, whereas resistance to etoposide increased approximately 3-fold; (ii) when the NH2-proximal region up to TM9 of MRP2 was exchanged with the corresponding region of MRP1, a further increase in etoposide resistance was observed, and subcellular localization moved from the apical to the lateral membrane; (iii) when two-thirds of MRP2 at the NH2 terminus were exchanged with the corresponding MRP1 region, the chimeric protein transported LTC4 with an efficiency comparable with that achieved by the wild-type MRP1; and (iv) exchange of the COOH-terminal 51 amino acids between MRP1 and MRP2 did not affect the localization of either of the proteins. These results provide a strong framework for further studies aimed at determining the precise domains of MRP1 and MRP2 with affinity for LTC4 and anticancer agents.
Collapse
Affiliation(s)
- Toshikazu Konno
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mason DL, Mallampalli MP, Huyer G, Michaelis S. A region within a lumenal loop of Saccharomyces cerevisiae Ycf1p directs proteolytic processing and substrate specificity. EUKARYOTIC CELL 2003; 2:588-98. [PMID: 12796304 PMCID: PMC161439 DOI: 10.1128/ec.2.3.588-598.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 02/14/2003] [Indexed: 11/20/2022]
Abstract
Ycf1p, a member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette proteins, is a vacuolar membrane transporter that confers resistance to a variety of toxic substances such as cadmium and arsenite. Ycf1p undergoes a PEP4-dependent processing event to yield N- and C-terminal cleavage products that remain associated with one another. In the present study, we sought to determine whether proteolytic cleavage is required for Ycf1p activity. We have identified a unique region within lumenal loop 6 of Ycf1p, designated the loop 6 insertion (L6(ins)), which appears to be necessary and sufficient for proteolytic cleavage, since L6(ins) can promote processing when moved to new locations in Ycf1p or into a related transporter, Bpt1p. Surprisingly, mutational results indicate that proteolytic processing is not essential for Ycf1p transport activity. Instead, the L6(ins) appears to regulate substrate specificity of Ycf1p, since certain mutations in this region lower cellular cadmium resistance with a concomitant gain in arsenite resistance. Although some of these L6(ins) mutations block processing, there is no correlation between processing and substrate specificity. The activity profiles of the Ycf1p L6(ins) mutants are dramatically affected by the strain background in which they are expressed, raising the possibility that another cellular component may functionally impact Ycf1p activity. A candidate component may be a new full-length MRP-type transporter (NFT1), reported in the Saccharomyces Genome Database as two adjacent open reading frames, YKR103w and YKR104w, but which we show here is present in most Saccharomyces strains as a single open reading frame.
Collapse
Affiliation(s)
- Deborah L Mason
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
36
|
Alqawi O, Georges E. The multidrug resistance protein ABCC1 drug-binding domains show selective sensitivity to mild detergents. Biochem Biophys Res Commun 2003; 303:1135-41. [PMID: 12684054 DOI: 10.1016/s0006-291x(03)00492-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The multidrug resistance protein (ABCC1 or MRP1) causes resistance to multiple drugs through reduced drug accumulation. We have previously demonstrated direct interaction between MRP1 and unmodified drugs using photoreactive drug analogues. In this study, we describe the use of [125I]iodoaryl azido-rhodamine123 (IAARh123)-a photoactive drug analogue of rhodamine 123, to study the effects of mild detergents and denaturing agents on MRP1-drug binding in membrane vesicles prepared from HeLa cells transfected with the MRP1 cDNA. Our results show that the zwitterionic detergent CHAPS and a nonionic detergent Brij35 inhibited the photolabeling of MRP1 with IAARh123. Sodium deoxycholate (SDC) and octyl-beta-glucoside (OG), structurally similar to CHAPS and Brij35 and disrupting the lipid bilayer, showed a modest increase of MRP1 photolabeling with IAARh123. Proteolytic digestion of IAARh123 photolabeled MRP1 labeled in the presence or absence of various detergents (CHAPS, SDC, or OG) revealed identical photolabeled peptides. Consistent with the drug-binding results, non-toxic concentrations of CHAPS and Brij35 reversed vincristine and etoposide (VP16) toxicity in MRP1 expressing cells. Taken together, the results of this study show that MRP1-drug interaction can occur outside the lipid bilayer environment. However, this interaction is inhibited with certain mild detergents.
Collapse
Affiliation(s)
- Omar Alqawi
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste Anne de Bellevue, Que., Canada H9X 3V9
| | | |
Collapse
|
37
|
Oleschuk CJ, Deeley RG, Cole SPC. Substitution of Trp1242 of TM17 alters substrate specificity of human multidrug resistance protein 3. Am J Physiol Gastrointest Liver Physiol 2003; 284:G280-9. [PMID: 12388190 DOI: 10.1152/ajpgi.00331.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multidrug resistance protein 3 (MRP3) is an ATP-dependent transporter of 17beta-estradiol 17beta(d-glucuronide) (E(2)17betaG), leukotriene C(4) (LTC(4)), methotrexate, and the bile salts taurocholate and glycocholate. In the present study, the role of a highly conserved Trp residue at position 1242 on MRP3 transport function was examined by expressing wild-type MRP3 and Ala-, Cys-, Phe-, Tyr-, and Pro-substituted mutants in human embryonic kidney 293T cells. Four MRP3-Trp(1242) mutants showed significantly increased E(2)17betaG uptake, whereas transport by the Pro mutant was undetectable. Similarly, the Pro mutant did not transport LTC(4). By comparison, LTC(4) transport by the Ala, Cys, Phe, and Tyr mutants was reduced by approximately 35%. The Ala, Cys, Phe, and Tyr mutants all showed greatly reduced methotrexate and leucovorin transport, except the Tyr mutant, which transported leucovorin at levels comparable with wild-type MRP3. In contrast, the MRP3-Trp(1242) substitutions did not significantly affect taurocholate transport or taurocholate and glycocholate inhibition of E(2)17betaG uptake. Thus Trp(1242) substitutions markedly alter the substrate specificity of MRP3 but leave bile salt binding and transport intact.
Collapse
Affiliation(s)
- Curtis J Oleschuk
- Department of Pharmacology and Toxicology and Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
38
|
Manciu L, Chang XB, Buyse F, Hou YX, Gustot A, Riordan JR, Ruysschaert JM. Intermediate structural states involved in MRP1-mediated drug transport. Role of glutathione. J Biol Chem 2003; 278:3347-56. [PMID: 12424247 DOI: 10.1074/jbc.m207963200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette transporter family and transports chemotherapeutic drugs as well as diverse organic anions such as leukotriene LTC(4). The transport of chemotherapeutic drugs requires the presence of reduced GSH. By using hydrogen/deuterium exchange kinetics and limited trypsin digestion, the structural changes associated with each step of the drug transport process are analyzed. Purified MRP1 is reconstituted into lipid vesicles with an inside-out orientation, exposing its cytoplasmic region to the external medium. The resulting proteoliposomes have been shown previously to exhibit both ATP-dependent drug transport and drug-stimulated ATPase activity. Our results show that during GSH-dependent drug transport, MRP1 does not undergo secondary structure changes but only modifications in its accessibility toward the external environment. Drug binding induces a restructuring of MRP1 membrane-embedded domains that does not affect the cytosolic domains, including the nucleotide binding domains, responsible for ATP hydrolysis. This demonstrates that drug binding to MRP1 is not sufficient to propagate an allosteric signal between the membrane and the cytosolic domains. On the other hand, GSH binding induces a conformational change that affects the structural organization of the cytosolic domains and enhances ATP binding and/or hydrolysis suggesting that GSH-mediated conformational changes are required for the coupling between drug transport and ATP hydrolysis. Following ATP binding, the protein adopts a conformation characterized by a decreased stability and/or an increased accessibility toward the aqueous medium. No additional change in the accessibility toward the solvent and/or the stability of this specific conformational state and no change of the transmembrane helices orientation are observed upon ATP hydrolysis. Binding of a non-transported drug affects the dynamic changes occurring during ATP binding and hydrolysis and restricts the movement of the drug and its release.
Collapse
Affiliation(s)
- Liliana Manciu
- Structure and Function of Biological Membranes-Center of Structural Biology and Bioinformatics, Free University of Brussels, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
39
|
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003; 55:3-29. [PMID: 12535572 DOI: 10.1016/s0169-409x(02)00169-2] [Citation(s) in RCA: 1037] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Active drug efflux transporters of the ATP binding cassette (ABC)-containing family of proteins have a major impact on the pharmacological behavior of most of the drugs in use today. Pharmacological properties affected by ABC transporters include the oral bioavailability, hepatobiliary, direct intestinal, and urinary excretion of drugs and drug-metabolites and -conjugates. Moreover, the penetration of drugs into a range of important pharmacological sanctuaries, such as brain, testis, and fetus, and the penetration into specific cell- and tissue compartments can be extensively limited by ABC transporters. These interactions with ABC transporters determine to a large extent the clinical usefulness, side effects and toxicity risks of drugs. Many other xenotoxins, (pre-)carcinogens and endogenous compounds are also influenced by the ABC transporters, with corresponding consequences for the well-being of the individual. We aim to provide an overview of properties of the mammalian ABC transporters known to mediate significant transport of clinically relevant drugs.
Collapse
Affiliation(s)
- Alfred H Schinkel
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
40
|
Koike K, Oleschuk CJ, Haimeur A, Olsen SL, Deeley RG, Cole SPC. Multiple membrane-associated tryptophan residues contribute to the transport activity and substrate specificity of the human multidrug resistance protein, MRP1. J Biol Chem 2002; 277:49495-503. [PMID: 12388549 DOI: 10.1074/jbc.m206896200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein, MRP1, is a clinically important ATP-binding cassette transporter in which the three membrane-spanning domains (MSDs), which contain up to 17 transmembrane (TM) helices, and two nucleotide binding domains (NBDs) are configured MSD1-MSD2-NBD1-MSD3-NBD2. In tumor cells, MRP1 confers resistance to a broad spectrum of drugs, but in normal cells, it functions as a primary active transporter of organic anions such as leukotriene C(4) and 17beta-estradiol 17beta-(D-glucuronide). We have previously shown that mutation of TM17-Trp(1246) eliminates 17beta-estradiol 17beta-(D-glucuronide) transport and drug resistance conferred by MRP1 while leaving leukotriene C(4) transport intact. By mutating the 11 remaining Trp residues that are in predicted TM segments of MRP1, we have now determined that five of them are also major determinants of MRP1 function. Ala substitution of three of these residues, Trp(445) (TM8), Trp(553) (TM10), and Trp(1198) (TM16), eliminated or substantially reduced transport levels of five organic anion substrates of MRP1. In contrast, Ala substitutions of Trp(361) (TM7) and Trp(459) (TM9) caused a more moderate and substrate-selective reduction in MRP1 function. More conservative substitutions (Tyr and Phe) of the Trp(445), Trp(553), and Trp(1198) mutants resulted in substrate selective retention of transport in some cases (Trp(445) and Trp(1198)) but not others (Trp(553)). Our findings suggest that the bulky polar aromatic indole side chain of each of these five Trp residues contributes significantly to the transport activity and substrate specificity of MRP1.
Collapse
Affiliation(s)
- Koji Koike
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Yang Y, Chen Q, Zhang JT. Structural and functional consequences of mutating cysteine residues in the amino terminus of human multidrug resistance-associated protein 1. J Biol Chem 2002; 277:44268-77. [PMID: 12235150 DOI: 10.1074/jbc.m207003200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance-associated protein 1 (MRP1) is a member of the ATP-binding cassette membrane transport superfamily and is responsible for multidrug resistance in cancer cells. Currently, there are nine known human MRPs. Distinct from many other members of the ATP-binding cassette superfamily, human MRP1 and four other MRPs have an additional membrane-spanning domain (MSD) with a putative extracellular amino terminus. The functional significance of this additional MSD (MSD1) is currently unknown. To understand the role of MSD1 in human MRP1 structure and function, we studied the amino-terminal 33 amino acids. We found that the amino terminus of human MRP1 has two cysteine residues (Cys(7) and Cys(32)) that are conserved among the five human MRPs that have MSD1. Mutation analyses of the two cysteines in human MRP1 revealed that the Cys(7) residue is critical for the MRP1-mediated drug resistance and leukotriene C(4) transport activity. On the other hand, mutation of Cys(32) reduced only moderately the MRP1 function. The effect of Cys(7) mutation on MRP1 activity appears to be due to the 5-7-fold decrease in the maximal transport rate V(max). We also found that mutation of Cys(7) changed the amino-terminal conformation of MRP1. This conformational change is likely responsible for the decrease in V(max) of LTC(4) transport mediated by the mutant MRP1. Based on these studies, we conclude that the amino terminus of human MRP1 is important and that the Cys(7) residue plays a critical role in maintaining the proper structure and function of human MRP1.
Collapse
Affiliation(s)
- Youyun Yang
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and the Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
42
|
Haimeur A, Deeley RG, Cole SPC. Charged amino acids in the sixth transmembrane helix of multidrug resistance protein 1 (MRP1/ABCC1) are critical determinants of transport activity. J Biol Chem 2002; 277:41326-33. [PMID: 12186871 DOI: 10.1074/jbc.m206228200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein, MRP1 (ABCC1), is an ATP-binding cassette transporter that confers resistance to chemotherapeutic agents. MRP1 also mediates transport of organic anions such as leukotriene C(4) (LTC(4)), 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), estrone 3-sulfate, methotrexate (MTX), and GSH. We replaced three charged amino acids, Lys(332), His(335), and Asp(336), predicted to be in the sixth transmembrane (TM6) helix of MRP1 with neutral and oppositely charged amino acids and determined the effect on substrate specificity and transport activity. All mutants were expressed in transfected human embryonic kidney cells at levels comparable with wild-type MRP1, and confocal microscopy showed that they were correctly routed to the plasma membrane. Vesicular transport studies revealed that the MRP1-Lys(332) mutants had lost the ability to transport LTC(4), and GSH transport was reduced; whereas E(2)17betaG, estrone 3-sulfate, and MTX transport were unaffected. E(2)17betaG transport was not inhibited by LTC(4) and could not be photolabeled with [(3)H]LTC(4), indicating that the MRP1-Lys(332) mutants no longer bound this substrate. Substitutions of MRP1-His(335) also selectively diminished LTC(4) transport and photolabeling but to a lesser extent. Kinetic analyses showed that V(max) (LTC(4)) of these mutants was decreased but K(m) was unchanged. In contrast to the selective loss of LTC(4) transport in the Lys(332) and His(335) mutants, the MRP1-Asp(336) mutants no longer transported LTC(4), E(2)17betaG, estrone 3-sulfate, or GSH, and transport of MTX was reduced by >50%. Lys(332), His(335), and Asp(336) of TM6 are predicted to be in the outer leaflet of the membrane and are all capable of forming intrahelical and interhelical ion pairs and hydrogen bonds. The importance of Lys(332) and His(335) in determining substrate specificity and of Asp(336) in overall transport activity suggests that such interactions are critical for the binding and transport of LTC(4) and other substrates of MRP1.
Collapse
Affiliation(s)
- Anass Haimeur
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
43
|
Qian YM, Grant CE, Westlake CJ, Zhang DW, Lander PA, Shepard RL, Dantzig AH, Cole SPC, Deeley RG. Photolabeling of human and murine multidrug resistance protein 1 with the high affinity inhibitor [125I]LY475776 and azidophenacyl-[35S]glutathione. J Biol Chem 2002; 277:35225-31. [PMID: 12138119 DOI: 10.1074/jbc.m206058200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent transporter of structurally diverse organic anion conjugates. The protein also actively transports a number of non-conjugated chemotherapeutic drugs and certain anionic conjugates by a presently poorly understood GSH-dependent mechanism. LY475776is a newly developed (125)I-labeled azido tricyclic isoxazole that binds toMRP1 with high affinity and specificity in a GSH-dependent manner. The compound has also been shown to photolabel a site in the COOH-proximal region of MRP1's third membrane spanning domain (MSD). It is presently not known where GSH interacts with the protein. Here, we demonstrate that the photactivateable GSH derivative azidophenacyl-GSH can substitute functionally for GSH in supporting the photolabeling of MRP1 by LY475776 and the transport of another GSH-dependent substrate, estrone 3-sulfate. In contrast to LY475776, azidophenacyl-[(35)S] photolabels both halves of the protein. Photolabeling of the COOH-proximal site can be markedly stimulated by low concentrations of estrone 3-sulfate, suggestive of cooperativity between the binding of these two compounds. We show that photolabeling of the COOH-proximal site by LY475776 and the labeling of both NH(2)- and COOH- proximal sites by azidophenacyl-GSH requires the cytoplasmic linker (CL3) region connecting the first and second MSDs of the protein, but not the first MSD itself. Although required for binding, CL3 is not photolabeled by azidophenacyl-GSH. Finally, we identify non-conserved amino acids in the third MSD that contribute to the high affinity with which LY475776 binds to MRP1.
Collapse
Affiliation(s)
- Yue-Ming Qian
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mao Q, Qiu W, Weigl KE, Lander PA, Tabas LB, Shepard RL, Dantzig AH, Deeley RG, Cole SPC. GSH-dependent photolabeling of multidrug resistance protein MRP1 (ABCC1) by [125I]LY475776. Evidence of a major binding site in the COOH-proximal membrane spanning domain. J Biol Chem 2002; 277:28690-9. [PMID: 12034727 DOI: 10.1074/jbc.m202182200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates transported by the 190-kDa multidrug resistance protein 1 (MRP1) (ABCC1) include endogenous organic anions such as the cysteinyl leukotriene C(4). In addition, MRP1 confers resistance against various anticancer drugs by reducing intracellular accumulation by co-export of drug with reduced GSH. We have examined the properties of LY475776, an intrinsically photoactivable MRP1-specific tricyclic isoxazole modulator that inhibits leukotriene C(4) transport by this protein in a GSH-dependent manner. We show that [125I]LY475776 photolabeling of MRP1 requires GSH but is also supported by several non-reducing GSH derivatives and peptide analogs. Limited proteolysis revealed that [(125)I]LY475776 labeling was confined to the 75-kDa COOH-proximal half of MRP1. More extensive proteolysis generated two major 125I-labeled fragments of approximately 56 and approximately 41 kDa, and immunoblotting with regionally directed antibodies showed that these fragments correspond to amino acids approximately 1045-1531 and approximately 1150-1531, respectively. However, an approximately 33-kDa COOH-terminal immunoreactive fragment was not labeled, inferring that the major [125I]LY475776-labeling site resides approximately between amino acids 1150-1250. This region encompasses transmembrane (TM) segments 16 and 17 at the COOH-proximal end of the third membrane spanning domain of the protein. [125I]LY475776 labeling of mutant MRP1 molecules with substitutions of Trp(1246) in TM17 were reduced >80% compared with wild-type MRP1, confirming that TM17 is important for LY475776 binding. Finally, vanadate-induced trapping of ADP inhibited [125I]LY475776 labeling, suggesting that ATP hydrolysis causes a conformational change in MRP1 that reduces the affinity of the protein for this inhibitor.
Collapse
Affiliation(s)
- Qingcheng Mao
- Cancer Research Laboratories and Department of Pathology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cool RH, Veenstra MK, van Klompenburg W, Heyne RIR, Müller M, de Vries EGE, van Veen HW, Konings WN. S-decyl-glutathione nonspecifically stimulates the ATPase activity of the nucleotide-binding domains of the human multidrug resistance-associated protein, MRP1 (ABCC1). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3470-8. [PMID: 12135486 DOI: 10.1046/j.1432-1033.2002.03028.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human multidrug resistance-associated protein(MRP1) is an ATP-dependent efflux pump that transports anionic conjugates, and hydrophobic compounds in a glutathione dependent manner. Similar to the other, well-characterized multidrug transporter P-gp, MRP1 comprises two nucleotide-binding domains (NBDs) in addition to transmembrane domains. However, whereas the NBDs of P-gp have been shown to be functionally equivalent, those of MRP1 differ significantly. The isolated NBDs of MRP1 have been characterized in Escherichia coli as fusions with either the glutathione-S-transferase (GST) or the maltose-binding domain (MBP). The nonfused NBD1 was obtained by cleavage of the fusion protein with thrombin. The GST-fused forms of NBD1 and NBD2 hydrolyzed ATP with an apparent K(m) of 340 microm and a V(max) of 6.0 nmol P(I) x mg-1 x min-1, and a K(m) of 910 microm ATP and a V(max) of 7.5 nmol P(I) x mg-1 x min-1, respectively. Remarkably, S-decyl-glutathione, a conjugate specifically transported by MRP1 and MRP2, was able to stimulate the ATPase activities of the isolated NBDs more than 2-fold in a concentration-dependent manner. However,the stimulation of the ATPase activity was found to coincide with the formation of micelles by S-decyl-glutathione. Equivalent stimulation of ATPase activity could be obtained by surfactants with similar critical micelle concentrations.
Collapse
Affiliation(s)
- Robbert H Cool
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Zhang DW, Cole SPC, Deeley RG. Determinants of the substrate specificity of multidrug resistance protein 1: role of amino acid residues with hydrogen bonding potential in predicted transmembrane helix 17. J Biol Chem 2002; 277:20934-41. [PMID: 11925441 DOI: 10.1074/jbc.m201311200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) confers resistance to many natural product chemotherapeutic agents and actively transports structurally diverse organic anion conjugates. We previously demonstrated that two hydrogen-bonding amino acid residues in the predicted transmembrane 17 (TM17) of MRP1, Thr(1242) and Trp(1246), were important for drug resistance and 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) transport. To determine whether other residues with hydrogen bonding potential within TM17 influence substrate specificity, we replaced Ser(1233), Ser(1235), Ser(1237), Gln(1239), Thr(1241), and Asn(1245) with Ala and Tyr(1236) and Tyr(1243) with Phe. Mutations S1233A, S1235A, S1237A, and Q1239A had no effect on any substrate tested. In contrast, mutations Y1236F and T1241A decreased resistance to vincristine but not to VP-16, doxorubicin, and epirubicin. Mutation Y1243F reduced resistance to all drugs tested by 2-3-fold. Replacement of Asn(1245) with Ala also decreased resistance to VP-16, doxorubicin, and epirubicin but increased resistance to vincristine. This mutation also decreased E(2)17betaG transport approximately 5-fold. Only mutation Y1243F altered the ability of MRP1 to transport both leukotriene 4 and E(2)17betaG. Together with our previous results, these findings suggest that residues with side chain hydrogen bonding potential, clustered in the cytoplasmic half of TM17, participate in the formation of a substrate binding site.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Cancer Research Laboratories and Department of Pathology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
48
|
Conrad S, Kauffmann HM, Ito KI, Leslie EM, Deeley RG, Schrenk D, Cole SPC. A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. PHARMACOGENETICS 2002; 12:321-30. [PMID: 12042670 DOI: 10.1097/00008571-200206000-00008] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human 190 kDa multidrug resistance protein, MRP1, is a polytopic membrane glycoprotein that confers resistance to a wide range of chemotherapeutic agents. It also transports structurally diverse conjugated organic anions, as well as certain unconjugated and conjugated compounds, in a reduced glutathione-stimulated manner. In this study, we characterized a low-frequency (<1%) naturally occurring mutation in MRP1 expected to cause the substitution of a conserved arginine with serine at position 433 in a predicted cytoplasmic loop of the protein. Transport experiments with membrane vesicles prepared from transfected human embryonic kidney cells and HeLa cells revealed a two-fold reduction in the ATP-dependent transport of the MRP1 substrates, leukotriene C4 (LTC4) and oestrone sulphate. Kinetic analysis showed that this reduction was due to a decrease in Vmax for both substrates but Km was unchanged. In contrast, 17beta-oestradiol-17beta-(D-glucuronide) transport by the Arg433Ser mutant MRP1 was similar to that by wild-type MRP1. Fluorescence confocal microscopy showed that the mutant MRP1 was routed correctly to the plasma membrane. In contrast to the reduced LTC4 and oestrone sulphate transport, stably transfected HeLa cells expressing Arg433Ser mutant MRP1 were 2.1-fold more resistant to doxorubicin than cells expressing wild-type MRP1, while resistance to VP-16 and vincristine was unchanged. These results provide the first example of a naturally occurring mutation predicted to result in an amino acid substitution in a cytoplasmic region of MRP1 that shows an altered phenotype with respect to both conjugated organic anion transport and drug resistance.
Collapse
Affiliation(s)
- Silke Conrad
- Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Yang Z, Li CSW, Shen DD, Ho RJY. Cloning and characterization of the rat multidrug resistance-associated protein 1. AAPS PHARMSCI 2002; 4:E15. [PMID: 12423064 PMCID: PMC2751354 DOI: 10.1208/ps040315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2001] [Accepted: 04/08/2002] [Indexed: 12/29/2022]
Abstract
Multidrug resistance-associated protein 1 (MRP1) was originally shown to confer resistance of human tumor cells to a broad range of natural product anticancer drugs. MRP1 has also been shown to mediate efflux transport of glutathione and glucuronide conjugates of drugs and endogenous substrates. An ortholog of MRP1 in the mouse has been cloned and characterized. Significant functional differences between murine and human MRP1 have been noted. Since drug disposition and pharmacology studies often are conducted in rats, there is a need to clone and characterize the rat ortholog of MRP1. We isolated a rat MRP1 (rMRP1) cDNA from rat brain astrocytes, characterized its coding sequences, and verified the transport activity of the protein expressed in MRP1 cDNA-transfected Madin-Darby canine kidney (MDCK) cells. Our results showed that rMRP1 has a coding sequence of 4599 bp, which predicts a polypeptide of 1533 amino acids with an apparent molecular weight of 190 kd by Western immunoblot analysis. rMRP1-transfected MDCK cells are capable of efflux transport of a fluorescent MRP1 marker - calcein - that is inhibitable by known MRP1 inhibitors, indomethacin, and MK571. Sequence analysis indicates that rMRP1 is more closely related to mouse MRP1 than human MRP1.
Collapse
Affiliation(s)
- Ziping Yang
- Department of Pharmaceutics, University of Washington, Seattle, WA
- Department of Pharmacy, University of Washington, Seattle, WA
| | - Cheryl S. W. Li
- Department of Pharmaceutics, University of Washington, Seattle, WA
- Department of Pharmacy, University of Washington, Seattle, WA
| | - Danny D. Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA
- Department of Pharmacy, University of Washington, Seattle, WA
| | - Rodney J. Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA
- Department of Pharmacy, University of Washington, Seattle, WA
| |
Collapse
|
50
|
Qian YM, Qiu W, Gao M, Westlake CJ, Cole SP, Deeley RG. Characterization of binding of leukotriene C4 by human multidrug resistance protein 1: evidence of differential interactions with NH2- and COOH-proximal halves of the protein. J Biol Chem 2001; 276:38636-44. [PMID: 11507101 DOI: 10.1074/jbc.m107025200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) is capable of actively transporting a wide range of conjugated and unconjugated organic anions. The protein can also transport additional conjugated and unconjugated compounds in a GSH- or S-methyl GSH-stimulated manner. How MRP1 binds and transports such structurally diverse substrates is not known. We have used [(3)H]leukotriene C(4) (LTC(4)), a high affinity glutathione-conjugated physiological substrate, to photolabel intact MRP1, as well as fragments of the protein expressed in insect cells. These studies revealed that: (i) LTC(4) labels sites in the NH(2)- and COOH-proximal halves of MRP1, (ii) labeling of the NH(2)-half of MRP1 is localized to a region encompassing membrane-spanning domain (MSD) 2 and nucleotide binding domain (NBD) 1, (iii) labeling of this region is dependent on the presence of all or part of the cytoplasmic loop (CL3) linking MSD1 and MSD2, but not on the presence of MSD1, (iv) labeling of the NH(2)-proximal site is preferentially inhibited by S-methyl GSH, (v) labeling of the COOH-proximal half of the protein occurs in a region encompassing transmembrane helices 14-17 and appears not to require NBD2 or the cytoplasmic COOH-terminal region of the protein, (vi) labeling of intact MRP1 by LTC(4) is strongly attenuated in the presence of ATP and vanadate, and this decrease in labeling is attributable to a marked reduction in LTC(4) binding to the NH(2)-proximal site, and (vii) the attenuation of LTC(4) binding to the NH(2)-proximal site is a consequence of ATP hydrolysis and trapping of Vi-ADP exclusively at NBD2. These data suggest that MRP1-mediated transport involves a conformational change, driven by ATP hydrolysis at NBD2, that alters the affinity with which LTC(4) binds to one of two sites composed, at least in part, of elements in the NH(2)-proximal half of the protein.
Collapse
Affiliation(s)
- Y M Qian
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|