1
|
Drumm SD, Cormican P, Owens RA, Mitchell J, Keane OM. Immunoproteomic analysis of the serum IgG response to cell wall-associated proteins of Staphylococcus aureus strains belonging to CC97 and CC151. Vet Res 2023; 54:79. [PMID: 37723537 PMCID: PMC10506246 DOI: 10.1186/s13567-023-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.
Collapse
Affiliation(s)
- Shauna D Drumm
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Seed Testing Laboratory, DAFM Laboratories, Backweston, Celbridge, Co. Kildare, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jennifer Mitchell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
2
|
Joo H, Wu SM, Soni I, Wang-Crocker C, Matern T, Beck JP, Loc-Carrillo C. Phage and Antibiotic Combinations Reduce Staphylococcus aureus in Static and Dynamic Biofilms Grown on an Implant Material. Viruses 2023; 15:v15020460. [PMID: 36851674 PMCID: PMC9963128 DOI: 10.3390/v15020460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Staphylococcus aureus causes the majority of implant-related infections. These infections present as biofilms, in which bacteria adhere to the surface of foreign materials and form robust communities that are resilient to the human immune system and antibiotic drugs. The heavy use of broad-spectrum antibiotics against these pathogens disturbs the host's microbiome and contributes to the growing problem of antibiotic-resistant infections. The use of bacteriophages as antibacterial agents is a potential alternative therapy. In this study, bioluminescent strains of S. aureus were grown to form 48-h biofilms on polyether ether ketone (PEEK), a material used to manufacture orthopaedic implants, in either static or dynamic growth conditions. Biofilms were treated with vancomycin, staphylococcal phage, or a combination of the two. We showed that vancomycin and staph phages were able to independently reduce the total bacterial load. Most phage-antibiotic combinations produced greater log reductions in surviving bacteria compared to single-agent treatments, suggesting antimicrobial synergism. In addition to demonstrating the efficacy of combining vancomycin and staph phage, our results demonstrate the importance of growth conditions in phage-antibiotic combination studies. Dynamic biofilms were found to have a substantial impact on apparent treatment efficacy, as they were more resilient to combination treatments than static biofilms.
Collapse
Affiliation(s)
- Hyonoo Joo
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| | - Sijia M. Wu
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - Isha Soni
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - Caroline Wang-Crocker
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - Tyson Matern
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - James Peter Beck
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - Catherine Loc-Carrillo
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- Correspondence:
| |
Collapse
|
3
|
Berry KA, Verhoef MTA, Leonard AC, Cox G. Staphylococcus aureus adhesion to the host. Ann N Y Acad Sci 2022; 1515:75-96. [PMID: 35705378 DOI: 10.1111/nyas.14807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is a pathobiont capable of colonizing and infecting most tissues within the human body, resulting in a multitude of different clinical outcomes. Adhesion of S. aureus to the host is crucial for both host colonization and the establishment of infections. Underlying the pathogen's success is a complex and diverse arsenal of adhesins. In this review, we discuss the different classes of adhesins, including a consideration of the various adhesion sites throughout the body and the clinical outcomes of each infection type. The development of therapeutics targeting the S. aureus host-pathogen interaction is a relatively understudied area. Due to the increasing global threat of antimicrobial resistance, it is crucial that innovative and alternative approaches are considered. Neutralizing virulence factors, through the development of antivirulence agents, could reduce bacterial pathogenicity and the ever-increasing burden of S. aureus infections. This review provides insight into potentially efficacious adhesion-associated targets for the development of novel decolonizing and antivirulence strategies.
Collapse
Affiliation(s)
- Kirsten A Berry
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie T A Verhoef
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Palela M, Giol ED, Amzuta A, Ologu OG, Stan RC. Fever temperatures impair hemolysis caused by strains of Escherichia coli and Staphylococcus aureus. Heliyon 2022; 8:e08958. [PMID: 35243078 PMCID: PMC8859000 DOI: 10.1016/j.heliyon.2022.e08958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Hemolysis modulates susceptibility to bacterial infections and predicts poor sepsis outcome. Hemolytic bacteria use hemolysins to induce erythrocyte lysis and obtain the heme that is essential for bacterial growth. Hemolysins are however potent immunogens and infections with hemolytic bacteria may cause a reversible fever response from the host that will aid in pathogen clearance. We hypothesized that fever temperatures impact the growth and infectivity of two hemolytic bacteria that are known to evoke fever in patients. To that end, we used high-sensitivity microcalorimetry to measure the evolution of heat production in fever-inducing strains of Escherichia coli and Staphylococcus aureus, under different temperature conditions. We determined specific bacterial aggregation profiles at temperatures equal to or exceeding 38.5 °C. Two melting temperatures peaks ranged from 38 °C to 43 °C for either species, a feature that we assigned to the formation of hemolysin aggregates of different oligomerization order. In order to measure the role of fever temperatures on hemolysis, we incubated the pathogens on blood agar plates at relevant temperatures, measuring the presence of hemolysis at 37 °C and its absence at 40.5 °C, respectively. We conclude that fever temperatures affect the kinetics of hemolysin pore formation and subsequently the hemolysis of red blood cells in vitro. We reveal the potential of microcalorimetry to monitor heat response from fever inducing bacterial species. Furthermore, these results help establish an additional positive role of febrile temperatures in modulating the immune response to infections, through the abolishment of hemolysis.
Collapse
Affiliation(s)
- Mihaela Palela
- Cantacuzino Military-Medical Research and Development National Institute, Romania
| | - Elena Diana Giol
- Cantacuzino Military-Medical Research and Development National Institute, Romania
| | - Andreia Amzuta
- Cantacuzino Military-Medical Research and Development National Institute, Romania
| | - Oxana G Ologu
- Cantacuzino Military-Medical Research and Development National Institute, Romania
| | - Razvan C Stan
- Cantacuzino Military-Medical Research and Development National Institute, Romania.,Chonnam National University Medical School, South Korea
| |
Collapse
|
5
|
Nasser A, Dallal MMS, Jahanbakhshi S, Azimi T, Nikouei L. Staphylococcus aureus: biofilm formation and strategies against it. Curr Pharm Biotechnol 2021; 23:664-678. [PMID: 34238148 DOI: 10.2174/1389201022666210708171123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
The formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation goes through a series of steps to complete, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors and affect the cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation. If pathogens abort the attachment, the following stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best-known inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These influential factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed. Keywords: Biofilm, Staphylococcus, Biofilm inhibitor, Dispersion, Antibiofilm agent, EPS, PIA.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shiva Jahanbakhshi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Nikouei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Monoclonal Antibodies Targeting Surface-Exposed and Secreted Proteins from Staphylococci. Vaccines (Basel) 2021; 9:vaccines9050459. [PMID: 34064471 PMCID: PMC8147999 DOI: 10.3390/vaccines9050459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Staphylococci (specifically Staphylococcus aureus and Staphylococcus epidermidis) are the causative agents of diseases ranging from superficial skin and soft tissue infections to severe conditions such as fatal pneumonia, bacteremia, sepsis and endocarditis. The widespread and indiscriminate use of antibiotics has led to serious problems of resistance to staphylococcal disease and has generated a renewed interest in alternative therapeutic agents such as vaccines and antibodies. Staphylococci express a large repertoire of surface and secreted virulence factors, which provide mechanisms (adhesion, invasion and biofilm development among others) for both bacterial survival in the host and evasion from innate and adaptive immunity. Consequently, the development of antibodies that target specific antigens would provide an effective protective strategy against staphylococcal infections. In this review, we report an update on efforts to develop anti-staphylococci monoclonal antibodies (and their derivatives: minibodies, antibody–antibiotic conjugates) and the mechanism by which such antibodies can help fight infections. We also provide an overview of mAbs used in clinical trials and highlight their therapeutic potential in various infectious contexts.
Collapse
|
7
|
Pietrocola G, Pellegrini A, Alfeo MJ, Marchese L, Foster TJ, Speziale P. The iron-regulated surface determinant B (IsdB) protein from Staphylococcus aureus acts as a receptor for the host protein vitronectin. J Biol Chem 2020; 295:10008-10022. [PMID: 32499371 DOI: 10.1074/jbc.ra120.013510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an important bacterial pathogen that can cause a wide spectrum of diseases in humans and other animals. S. aureus expresses a variety of virulence factors that promote infection with this pathogen. These include cell-surface proteins that mediate adherence of the bacterial cells to host extracellular matrix components, such as fibronectin and fibrinogen. Here, using immunoblotting, ELISA, and surface plasmon resonance analysis, we report that the iron-regulated surface determinant B (IsdB) protein, besides being involved in heme transport, plays a novel role as a receptor for the plasma and extracellular matrix protein vitronectin (Vn). Vn-binding activity was expressed by staphylococcal strains grown under iron starvation conditions when Isd proteins are expressed. Recombinant IsdB bound Vn dose dependently and specifically. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound Vn in a saturable manner, with KD values in the range of 16-18 nm Binding of Vn to IsdB was specifically blocked by heparin and reduced at high ionic strength. Furthermore, IsdB-expressing bacterial cells bound significantly higher amounts of Vn from human plasma than did an isdB mutant. Adherence to and invasion of epithelial and endothelial cells by IsdB-expressing S. aureus cells was promoted by Vn, and an αvβ3 integrin-blocking mAb or cilengitide inhibited adherence and invasion by staphylococci, suggesting that Vn acts as a bridge between IsdB and host αvβ3 integrin.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Angelica Pellegrini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Mariangela J Alfeo
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathog 2019; 15:e1007713. [PMID: 31009507 PMCID: PMC6497315 DOI: 10.1371/journal.ppat.1007713] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/02/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus expresses a number of cell wall-anchored proteins that mediate adhesion and invasion of host cells and tissues and promote immune evasion, consequently contributing to the virulence of this organism. The cell wall-anchored protein clumping factor B (ClfB) has previously been shown to facilitate S. aureus nasal colonization through high affinity interactions with the cornified envelope in the anterior nares. However, the role of ClfB during skin and soft tissue infection (SSTI) has never been investigated. This study reveals a novel role for ClfB during SSTIs. ClfB is crucial in determining the abscess structure and bacterial burden early in infection and this is dependent upon a specific interaction with the ligand loricrin which is expressed within the abscess tissue. Targeting ClfB using a model vaccine that induced both protective humoral and cellular responses, leads to protection during S. aureus skin infection. This study therefore identifies ClfB as an important antigen for future SSTI vaccines. Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs), the treatment of which is becoming increasingly difficult due to antibiotic resistance. An anti-S. aureus vaccine offers a potential solution, but a better understanding of how S. aureus causes pathology during SSTI is required to identify effective vaccine targets. Here, we identify an important virulence determinant during S. aureus SSTI. Clumping factor B (ClfB), a surface protein expressed by S. aureus is shown to promote skin abscess formation by binding to the host protein loricrin. Targeting ClfB using a model vaccine conferred significant protection during S. aureus SSTI. In this study, we uncover an entirely novel mechanism by which S. aureus forms abscesses during skin infection, identifying an important therapeutic target for treating S. aureus SSTI.
Collapse
|
9
|
Schneewind O, Missiakas D. Sortases, Surface Proteins, and Their Roles in Staphylococcus aureus Disease and Vaccine Development. Microbiol Spectr 2019; 7:10.1128/microbiolspec.PSIB-0004-2018. [PMID: 30737913 PMCID: PMC6386163 DOI: 10.1128/microbiolspec.psib-0004-2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Sortases cleave short peptide motif sequences at the C-terminal end of secreted surface protein precursors and either attach these polypeptides to the peptidoglycan of Gram-positive bacteria or promote their assembly into pilus structures that are also attached to peptidoglycan. Sortase A, the enzyme first identified in the human pathogen Staphylococcus aureus, binds LPXTG motif sorting signals, cleaves between threonine (T) and glycine (G) residues, and forms an acyl enzyme between its active-site cysteine thiol and the carboxyl group of threonine (T). Sortase A acyl enzyme is relieved by the nucleophilic attack of the cross bridge amino group within lipid II, thereby generating surface protein linked to peptidoglycan precursor. Such products are subsequently incorporated into the cell wall envelope by enzymes of the peptidoglycan synthesis pathway. Surface proteins linked to peptidoglycan may be released from the bacterial envelope to diffuse into host tissues and fulfill specific biological functions. S. aureus sortase A is essential for host colonization and for the pathogenesis of invasive diseases. Staphylococcal sortase-anchored surface proteins fulfill key functions during the infectious process, and vaccine-induced antibodies targeting surface proteins may provide protection against S. aureus. Alternatively, small-molecule inhibitors of sortase may be useful agents for the prevention of S. aureus colonization and invasive disease.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
10
|
Krogh AKH, Haaber J, Bochsen L, Ingmer H, Kristensen AT. Aggregating resistant Staphylococcus aureus induces hypocoagulability, hyperfibrinolysis, phagocytosis, and neutrophil, monocyte, and lymphocyte binding in canine whole blood. Vet Clin Pathol 2018; 47:560-574. [PMID: 30586190 DOI: 10.1111/vcp.12679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 06/07/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic pathogen with the ability to form mobile planktonic aggregates during growth, in vitro. The in vivo pathophysiologic effects of S aureus aggregates on host responses are unknown. Knowledge of these could aid in combating infections. OBJECTIVE This study aimed to investigate the effect of increasing concentrations of two different aggregating S aureus strains on the hemostatic and inflammatory host responses in canine whole blood. The hypothesis was that aggregating bacteria would induce pronounced hemostatic and inflammatory responses. METHODS Citrate-stabilized whole blood from 10 healthy dogs was incubated with two strains of aggregating S aureus at three different concentrations. Each sample was analyzed using tissue factor-thromboelastography (TF-TEG) and the formed clot was investigated with electron microscopy. The plasma activated partial thromboplastin time (aPTT), prothrombin time (PT), fibrinogen, and D-dimer tests were measured. Bacteria-leukocyte binding was evaluated with flow cytometry, and neutrophil phagocytosis was assessed using light and transmission electron microscopy. RESULTS The highest concentration of bacteria resulted in a significantly shortened TF-TEG initiation time, decreased alpha, maximum amplitude, global strength, and increased lysis. In addition, significantly shortened PT, decreased fibrinogen, and increased D-dimers were demonstrated at the highest concentration of bacteria. Lower concentrations of bacteria showed no differences in TF-TEG when compared with controls. The findings were similar for both S aureus strains. Increased concentration-dependent binding of bacteria and leukocytes and neutrophil bacterial phagocytosis was observed. CONCLUSIONS Two strains of S aureus induced alterations of clot formation in concentrations where bacterial aggregates were formed. A concentration-dependent cellular inflammatory response was observed.
Collapse
Affiliation(s)
- Anne K H Krogh
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jakob Haaber
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Louise Bochsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Annemarie T Kristensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front Microbiol 2018; 9:2419. [PMID: 30349525 PMCID: PMC6186810 DOI: 10.3389/fmicb.2018.02419] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/21/2018] [Indexed: 02/02/2023] Open
Abstract
Up to 30% of the human population are asymptomatically and permanently colonized with nasal Staphylococcus aureus. To successfully colonize human nares, S. aureus needs to establish solid interactions with human nasal epithelial cells and overcome host defense mechanisms. However, some factors like bacterial interactions in the human nose can influence S. aureus colonization and sometimes prevent colonization. On the other hand, certain host characteristics and environmental factors can predispose to colonization. Nasal colonization can cause opportunistic and sometimes life-threatening infections such as surgical site infections or other infections in non-surgical patients that increase morbidity, mortality as well as healthcare costs.
Collapse
Affiliation(s)
- Adèle Sakr
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France.,Service de Pharmacologie Clinique et Pharmacovigilance, AP-HM, Pharmacologie Intégrée et Interface Clinique et Industriel, Institut des Neurosciences Timone - UMR AMU-INSERM 1106, Aix-Marseille Université, Marseille, France
| | - Fabienne Brégeon
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Jean-Louis Mège
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Olivier Blin
- Service de Pharmacologie Clinique et Pharmacovigilance, AP-HM, Pharmacologie Intégrée et Interface Clinique et Industriel, Institut des Neurosciences Timone - UMR AMU-INSERM 1106, Aix-Marseille Université, Marseille, France
| |
Collapse
|
12
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
13
|
The Staphylococcus aureus Cell Wall-Anchored Protein Clumping Factor A Is an Important T Cell Antigen. Infect Immun 2017; 85:IAI.00549-17. [PMID: 28947645 PMCID: PMC5695125 DOI: 10.1128/iai.00549-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus has become increasingly resistant to antibiotics, and vaccines offer a potential solution to this epidemic of antimicrobial resistance. Targeting of specific T cell subsets is now considered crucial for next-generation anti-S. aureus vaccines; however, there is a paucity of information regarding T cell antigens of S. aureus. This study highlights the importance of cell wall-anchored proteins as human CD4+ T cell activators capable of driving antigen-specific Th1 and Th17 cell activation. Clumping factor A (ClfA), which contains N1, N2, and N3 binding domains, was found to be a potent human T cell activator. We further investigated which subdomains of ClfA were involved in T cell activation and found that the full-length ClfA N123 and N23 were potent Th1 and Th17 activators. Interestingly, the N1 subdomain was capable of exclusively activating Th1 cells. Furthermore, when these subdomains were used in a model vaccine, N23 and N1 offered Th1- and Th17-mediated systemic protection in mice upon intraperitoneal challenge. Overall, however, full-length ClfA N123 is required for maximal protection both locally and systemically.
Collapse
|
14
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
15
|
Nagarajan R, Hendrickx APA, Ponnuraj K. The crystal structure of the ligand-binding region of serine-glutamate repeat containing protein A (SgrA) ofEnterococcus faeciumreveals a new protein fold: functional characterization and insights into its adhesion function. FEBS J 2016; 283:3039-55. [DOI: 10.1111/febs.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Revathi Nagarajan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| | | | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| |
Collapse
|
16
|
Preedy E, Perni S, Nipiĉ D, Bohinc K, Prokopovich P. Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9466-76. [PMID: 25019516 DOI: 10.1021/la501711t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.
Collapse
Affiliation(s)
- Emily Preedy
- Cardiff School of Pharmacy and Pharmaceutical Science and ‡Cardiff School of Engineering, Cardiff University , Cardiff CF10 3XQ, UK
| | | | | | | | | |
Collapse
|
17
|
McCormack N, Foster TJ, Geoghegan JA. A short sequence within subdomain N1 of region A of the Staphylococcus aureus MSCRAMM clumping factor A is required for export and surface display. MICROBIOLOGY-SGM 2014; 160:659-670. [PMID: 24464799 DOI: 10.1099/mic.0.074724-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clumping factor A (ClfA) is the archetypal fibrinogen-binding surface protein of Staphylococcus aureus and a member of the microbial surface component recognizing adhesive matrix molecules (MSCRAMM) family. An N-terminal signal sequence directs export of the MSCRAMM by the Sec pathway and the C-terminal cell wall-anchoring domain allows covalent attachment of ClfA to peptidoglycan by sortase. Region A of ClfA comprises three independently folded subdomains N1, N2 and N3. Subdomains N2N3 comprise IgG-like folds and promote fibrinogen binding. Nothing is known about the structure or function of subdomain N1. Here we demonstrate an unexpected role for N1 in the export and surface localization of ClfA. Attempted expression of a ClfA variant lacking subdomain N1 resulted in impaired growth of S. aureus and accumulation of ClfA protein in the cytoplasm and cytoplasmic membrane. The presence of residues 211-228 of N1 was required to allow display of ClfA on the bacterial surface. The importance of this region was confirmed when a ClfA variant lacking residues 211-220 was also mislocalized to the cytoplasm and cytoplasmic membrane. However, these residues were not required for export of ClfA lacking the Ser-Asp repeats that link region A to the wall-anchoring domain. Similarly, subdomain N1 of a related MSCRAMM fibronectin-binding protein B was required for export and surface display of the full-length protein, but not a derivative lacking fibronectin-binding repeats. In summary, we demonstrate that residues in the N1 subdomain are required for export and cell wall localization of S. aureus MSCRAMM proteins.
Collapse
Affiliation(s)
- Niamh McCormack
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
18
|
Sollid J, Furberg A, Hanssen A, Johannessen M. Staphylococcus aureus: Determinants of human carriage. INFECTION GENETICS AND EVOLUTION 2014; 21:531-41. [DOI: 10.1016/j.meegid.2013.03.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 02/02/2023]
|
19
|
Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J Bacteriol 2013; 195:2675-83. [PMID: 23564165 DOI: 10.1128/jb.02128-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) forms biofilm in vitro that is dependent on the surface-located fibronectin binding proteins A and B (FnBPA, FnBPB). Here we provide new insights into the requirements for FnBP-dependent biofilm formation by MRSA. We show that expression of FnBPs is sustained at high levels throughout the growth cycle in the HA-MRSA strain BH1CC in contrast to laboratory strain SH1000, where expression could be detected only in exponential phase. We found that FnBP-mediated biofilm accumulation required Zn(2+), while the removal of Zn(2+) had no effect on the ability of FnBPA to mediate bacterial adherence to fibrinogen. We also investigated the role of FnBPA expressed on the surface of S. aureus in promoting biofilm formation and bacterial adhesion to fibrinogen. The minimum part of FnBPA required for ligand binding has so far been defined only with recombinant proteins. Here we found that the N1 subdomain was not required for biofilm formation or for FnBPA to promote bacterial adherence to fibrinogen. Residues at the C terminus of subdomain N3 required for FnBPA to bind to ligands using the "dock, lock, and latch" mechanism were necessary for FnBPA to promote bacterial adherence to fibrinogen. However, these residues were not necessary to form biofilm, allowing us to localize the region of FnBPA required for biofilm accumulation to residues 166 to 498. Thus, FnBPA mediates biofilm formation and bacterial adhesion to fibrinogen using two distinct mechanisms. Finally, we identified a hitherto-unrecognized thrombin cleavage site close to the boundary between subdomains N1 and N2 of FnBPA.
Collapse
|
20
|
Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, Foster TJ, McLoughlin RM. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog 2012; 8:e1003092. [PMID: 23300445 PMCID: PMC3531522 DOI: 10.1371/journal.ppat.1003092] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/05/2012] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus asymptomatically colonises the anterior nares, but the host and bacterial factors that facilitate colonisation remain incompletely understood. The S. aureus surface protein ClfB has been shown to mediate adherence to squamous epithelial cells in vitro and to promote nasal colonisation in both mice and humans. Here, we demonstrate that the squamous epithelial cell envelope protein loricrin represents the major target ligand for ClfB during S. aureus nasal colonisation. In vitro adherence assays indicated that bacteria expressing ClfB bound loricrin most likely by the “dock, lock and latch” mechanism. Using surface plasmon resonance we showed that ClfB bound cytokeratin 10 (K10), a structural protein of squamous epithelial cells, and loricrin with similar affinities that were in the low µM range. Loricrin is composed of three separate regions comprising GS-rich omega loops. Each loop was expressed separately and found to bind ClfB, However region 2 bound with highest affinity. To investigate if the specific interaction between ClfB and loricrin was sufficient to facilitate S. aureus nasal colonisation, we compared the ability of ClfB+S. aureus to colonise the nares of wild-type and loricrin-deficient (Lor−/−) mice. In the absence of loricrin, S. aureus nasal colonisation was significantly impaired. Furthermore a ClfB− mutant colonised wild-type mice less efficiently than the parental ClfB+ strain whereas a similar lower level of colonisation was observed with both the parental strain and the ClfB− mutant in the Lor−/− mice. The ability of ClfB to support nasal colonisation by binding loricrin in vivo was confirmed by the ability of Lactococcus lactis expressing ClfB to be retained in the nares of WT mice but not in the Lor−/− mice. By combining in vitro biochemical analysis with animal model studies we have identified the squamous epithelial cell envelope protein loricrin as the target ligand for ClfB during nasal colonisation by S. aureus. Staphylococcus aureus is an important human commensal, present permanently in the noses of about 20% of the population and representing a significant risk factor for infection. The host and bacterial factors that facilitate nasal colonisation remain to be fully characterised. S. aureus adheres to the squamous epithelial cells found in the nose. Proteins expressed on the surface of S. aureus, including clumping factor B (ClfB), are responsible for this interaction. We demonstrate that loricrin, a major component of the squamous epithelial cell envelope, represents the primary ligand for ClfB and that the interaction between ClfB and loricrin is required for efficient nasal colonisation by S. aureus. Using purified proteins we have demonstrated that ClfB binds loricrin and propose a mechanism by which this binding occurs. We have established a murine model of S. aureus nasal colonisation and have demonstrated reduced colonisation in loricrin-deficient mice compared to wild-type mice which is dependent upon ClfB. Using Lactococcus lactis as a surrogate host expressing ClfB, we could show that the interaction between ClfB and loricrin in the nares is sufficient to support nasal colonisation. Cumulatively, these data show that the ClfB-loricrin interaction is crucial for nasal colonisation by S. aureus.
Collapse
Affiliation(s)
- Michelle E. Mulcahy
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joan A. Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ian R. Monk
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kate M. O'Keeffe
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Evelyn J. Walsh
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Timothy J. Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rachel M. McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
21
|
Xiang H, Feng Y, Wang J, Liu B, Chen Y, Liu L, Deng X, Yang M. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog 2012; 8:e1002751. [PMID: 22719251 PMCID: PMC3375286 DOI: 10.1371/journal.ppat.1002751] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/30/2012] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus (S. aureus) pathogenesis is a complex process involving a diverse array of extracellular and cell wall components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and its complexes with fibrinogen α (Fg α) and cytokeratin 10 (CK10) peptides. Structural comparison revealed a conserved glycine-serine-rich (GSR) ClfB binding motif (GSSGXGXXG) within the ligands, which was also found in other human proteins such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg α and ClfB-CK10. The results presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding properties.
Collapse
Affiliation(s)
- Hua Xiang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Feng
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiawei Wang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yeguang Chen
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lei Liu
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuming Deng
- Department of Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (XD); (MY)
| | - Maojun Yang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (XD); (MY)
| |
Collapse
|
22
|
Abraham NM, Jefferson KK. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. MICROBIOLOGY-SGM 2012; 158:1504-1512. [PMID: 22442307 DOI: 10.1099/mic.0.057018-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is the leading cause of nosocomial infections and a major cause of community-acquired infections. Biofilm formation is a key virulence determinant in certain types of S. aureus infection, especially those involving inserted medical devices. We found in a previous study that the calcium chelators sodium citrate and EGTA inhibit biofilm formation in certain strains of S. aureus but actually augment biofilm formation in other strains. Even two closely related strains, Newman and 10833, exhibited strikingly different biofilm phenotypes in the presence of calcium chelators, in that biofilm formation was inhibited in Newman but augmented in 10833. We also found that the surface protein clumping factor B (ClfB) plays a role in this phenomenon. In this study, we confirm that ClfB is required for biofilm formation under calcium-depleted conditions. We investigated the post-translational regulation of ClfB-mediated biofilm formation and found evidence that both calcium and the protease aureolysin disrupt established ClfB-dependent biofilms. Finally, we investigated the genetic basis for the biofilm-negative phenotype in strain Newman versus the biofilm-positive phenotype in strain 10833 under calcium-depleted conditions and found that strain 10833 contains a deletion that results in a stop codon within the aureolysin gene (aur). When 10833 expressed Newman aur, surface-associated ClfB and the ability to form a biofilm in chelating conditions was lost. Thus, the positive effect of chelating agents on biofilm formation in certain strains can be explained by increased ClfB activity in the absence of calcium and the discrepancy in the response of strains 10833 and Newman can be explained by point mutations in aur. This study reveals a previously unknown, to our knowledge, role for ClfB in biofilm formation and underscores the potential for striking phenotypic variability resulting from minor differences in strain background.
Collapse
Affiliation(s)
- Nabil M Abraham
- Virginia Commonwealth University, Department of Microbiology and Immunology, PO Box 980678, Richmond, VA 23928, USA
| | - Kimberly K Jefferson
- Virginia Commonwealth University, Department of Microbiology and Immunology, PO Box 980678, Richmond, VA 23928, USA
| |
Collapse
|
23
|
Choy HA, Kelley MM, Croda J, Matsunaga J, Babbitt JT, Ko AI, Picardeau M, Haake DA. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans. PLoS One 2011; 6:e16879. [PMID: 21347378 PMCID: PMC3036719 DOI: 10.1371/journal.pone.0016879] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 01/05/2011] [Indexed: 01/10/2023] Open
Abstract
Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9-11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react with the LigB domain, suggesting applications in diagnosis and vaccines that are currently limited by the strain-specific leptospiral lipopolysaccharide coats.
Collapse
Affiliation(s)
- Henry A Choy
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Haim M, Trost A, Maier CJ, Achatz G, Feichtner S, Hintner H, Bauer JW, önder K. Cytokeratin 8 interacts with clumping factor B: a new possible virulence factor target. Microbiology (Reading) 2010; 156:3710-3721. [DOI: 10.1099/mic.0.034413-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a human pathogen of growing clinical significance, owing to its increasing levels of resistance to most antibiotics. Infections range from mild wound infections to severe infections such as endocarditis, osteomyelitis and septic shock. Adherence of S. aureus to human host cells is an important step, leading to colonization and infection. Adherence is mediated by a multiplicity of proteins expressed on the bacterial surface, including clumping factor B. In this study, we aimed to identify new targets of clumping factor B in human keratinocytes by undertaking a genome-wide yeast two-hybrid screen of a human keratinocyte cDNA library. We show that clumping factor B is capable of binding cytokeratin 8 (CK8), a type II cytokeratin. Using a domain-mapping strategy we identified amino acids 437–464 as necessary for this interaction. Recombinantly expressed fragments of both proteins were used in pull-down experiments and confirmed the yeast two-hybrid studies. Analysis with S. aureus strain Newman deficient in clumping factor B showed the clumping factor B-dependence of the interaction with CK8. We postulate that the clumping factor B–CK8 interaction is a novel factor in S. aureus infections.
Collapse
Affiliation(s)
- M. Haim
- Procomcure Biotech GmbH, Hafenstrasse 47-51, A-4020 Linz, Austria
- Division of Molecular Dermatology, Department of Dermatology, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| | - A. Trost
- Division of Molecular Dermatology, Department of Dermatology, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| | - C. J. Maier
- Department of Cell Biology, University of Salzburg, 5020 Salzburg, Austria
- Division of Molecular Dermatology, Department of Dermatology, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| | - G. Achatz
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - S. Feichtner
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - H. Hintner
- Division of Molecular Dermatology, Department of Dermatology, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| | - J. W. Bauer
- Procomcure Biotech GmbH, Hafenstrasse 47-51, A-4020 Linz, Austria
- Division of Molecular Dermatology, Department of Dermatology, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| | - K. önder
- Procomcure Biotech GmbH, Hafenstrasse 47-51, A-4020 Linz, Austria
- Division of Molecular Dermatology, Department of Dermatology, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
25
|
Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol 2010; 126:1184-90.e3. [PMID: 21036388 PMCID: PMC3627960 DOI: 10.1016/j.jaci.2010.09.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 01/09/2023]
Abstract
Background Colonization of the skin by Staphylococcus aureus in individuals with atopic dermatitis exacerbates inflammation. Atopic dermatitis is associated with loss-of-function mutations in the filaggrin (FLG) gene, accompanied by reduced levels of filaggrin breakdown products on the skin. Objective To assess the affect of growth in the presence of the filaggrin breakdown products urocanic acid (UCA) and pyrrolidone carboxylic acid (PCA) on fitness of and protein expression by S aureus. Methods S aureus was grown for 24 hours in the presence of UCA and PCA, and the density of the cultures was monitored by recording OD600 values. Cell wall extracts and secreted proteins of S aureus were isolated and analyzed by SDS-PAGE. Cell wall–associated proteins known to be involved in colonization and immune evasion including clumping factor B, fibronectin binding proteins, protein A, iron-regulated surface determinant A, and the serine-aspartate repeat proteins were examined by Western immunoblotting. Results Acidification of growth media caused by the presence of UCA and PCA resulted in reduced growth rates and reduced final cell density of S aureus. At the lower pH, reduced expression of secreted and cell wall–associated proteins, including proteins involved in colonization (clumping factor B, fibronectin binding protein A) and immune evasion (protein A), was observed. Decreased expression of iron-regulated surface determinant A due to growth with filaggrin breakdown products appeared to be independent of the decreased pH. Conclusion S aureus grown under mildly acidic conditions such as those observed on healthy skin expresses reduced levels of proteins that are known to be involved in immune evasion.
Collapse
Affiliation(s)
- Helen Miajlovic
- Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
26
|
Xiang H, Gao F, Wang D, Liu J, Hu J, Zhang L, Li S, Deng X. Characterization, crystallization and preliminary X-ray analysis of the adhesive domain of SdrE from Staphylococcus aureus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:858-61. [PMID: 20606292 DOI: 10.1107/s1744309110020907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 06/01/2010] [Indexed: 11/10/2022]
Abstract
The adhesive domain of SdrE from Staphylococcus aureus was recombinantly expressed in Escherichia coli. The purified protein was identified by SDS-PAGE and MALDI-TOF MS. The protein was crystallized using the vapour-diffusion method in hanging-drop mode with PEG 8000 as the primary precipitating agent. X-ray diffraction data were collected to 1.8 A resolution from a single crystal of the protein. Preliminary X-ray analysis indicated that the crystal belonged to space group P1, with unit-cell parameters a = 40.714, b = 66.355, c = 80.827 A, alpha = 111.19, beta = 93.99, gamma = 104.39 degrees.
Collapse
Affiliation(s)
- Hua Xiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Foster TJ. Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet Dermatol 2010; 20:456-70. [PMID: 20178484 DOI: 10.1111/j.1365-3164.2009.00825.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The natural habitat of Staphylococcus aureus in humans is the moist squamous epithelium of the anterior nares. Several bacterial surface proteins are implicated in promoting adhesion to desquamated epithelial cells. Clumping factor B (ClfB) and iron-regulated surface determinant A both promote nasal colonization in rodent models, and in the case of ClfB, humans. One of the ligands involved in adhesion is cytokeratin 10. Reduction in nasal colonization can be achieved by active and passive immunization. S. aureus is well endowed with secreted and surface components that compromise innate immune responses, particularly the function of neutrophils. S. aureus secretes proteins that reduce migration of neutrophils from the bloodstream to the site of infection by impeding diapedesis and receptors for chemotactic molecules. Several secreted proteins interfere with complement C3 and C5 convertases, thus reducing the level of C3b opsonin and the chemotactic peptide C5a. Host proteases are recruited to the cell surface to enhance destruction of opsonic C3b and IgG. Surface components ClfA, protein A and polysaccharide capsule compromise the recognition of opsonins on the bacterial cell surface. If engulfed by neutrophils the intracellular bacterium can resist reactive oxygen intermediates, nitric oxide radicals, defensin peptides and bactericidal proteins. A prior infection by S. aureus does not induce complete protective immunity. This could be due to immunosuppression caused by expression of superantigen proteins that disrupt normal activation of T cells and B cells during antigen presentation. By studying the molecular pathogenesis of S. aureus infections markers might be found for investigating S. pseudintermedius infections of dogs.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
28
|
Sillanpää J, Nallapareddy SR, Houston J, Ganesh VK, Bourgogne A, Singh KV, Murray BE, Höök M. A family of fibrinogen-binding MSCRAMMs from Enterococcus faecalis. MICROBIOLOGY-SGM 2009; 155:2390-2400. [PMID: 19389755 DOI: 10.1099/mic.0.027821-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report that three (EF0089, EF2505 and EF1896, renamed here Fss1, Fss2 and Fss3, respectively, for Enterococcus faecalis surface protein) of the recently predicted MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) in E. faecalis strain V583 bind fibrinogen (Fg). Despite an absence of extensive primary sequence homology, the three proteins appear to be related structurally. Within the N-terminal regions of the three enterococcal proteins, we identified pairs of putative IgG-like modules with a high degree of predicted structural similarity to the Fg-binding N2 and N3 domains of the staphylococcal MSCRAMMs ClfA and SdrG. A second N2N3-like segment was predicted in Fss1. Far-UV circular dichroism spectroscopy revealed that all four predicted N2N3-like regions are composed mainly of beta-sheets with only a minor proportion of alpha-helices, which is characteristic of Ig-like folded domains. Three of the four identified enterococcal N2N3-like regions showed potent dose-dependent binding to Fg. However, the specificity of the Fg-binding MSCRAMMs differs, as indicated by far-Western blots, which showed that recombinant segments of the MSCRAMMs bound different Fg polypeptide chains. Enterococci grown in serum-supplemented broth adhere to Fg-coated surfaces, and inactivation in strain OG1RF of the gene encoding Fss2 resulted in reduced adherence, whilst complementation of the mutant restored full Fg adherence. Thus, E. faecalis contains a family of MSCRAMMs that structurally and functionally resemble the Fg-binding MSCRAMMs of staphylococci.
Collapse
Affiliation(s)
- Jouko Sillanpää
- Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA.,Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Sreedhar R Nallapareddy
- Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Janeu Houston
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Vannakambadi K Ganesh
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Agathe Bourgogne
- Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Kavindra V Singh
- Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Barbara E Murray
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX, USA.,Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Magnus Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| |
Collapse
|
29
|
Characterization and studies of the cellular interaction of native colonization factor CS6 purified from a clinical isolate of enterotoxigenic Escherichia coli. Infect Immun 2009; 77:2125-35. [PMID: 19237522 DOI: 10.1128/iai.01397-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CS6 is a widely expressed colonization factor of enterotoxigenic Escherichia coli (ETEC). To date, CS6 has not been well characterized in its native state. Here, we purified CS6 for the first time from an ETEC clinical isolate. Purified CS6 was composed of two structural subunits, CssA and CssB, which were present in equal amounts and tightly linked through noncovalent, detergent-stable association. The CssA subunit was poorly immunogenic, whereas CssB was highly immunogenic. Although the predicted molecular mass of CssA is 15 kDa, the purified CssA has an effective molecular mass of 18.5 kDa due to fatty acid modification. When purified CS6 was screened for its ability to bind with different extracellular matrix proteins, fibronectin (Fn) was found to interact with CS6 as well as CssA in a dose-dependent and saturable manner. This interaction was inhibited both by a synthetic peptide corresponding to the C-terminal hydrophilic, surface-exposed region of CssA (positions 112 to 126) and by the antibody derived against this region. Enzyme-linked immunosorbent assay results showed that CssA interacted with the 70-kDa N-terminal domain of Fn. The modifications on CssA probably do not play a role in Fn binding. Preincubation of INT 407 cells with CssA, but not CssB, inhibited ETEC binding to these cells. The results suggested that CS6-expressing ETEC binds to Fn of INT 407 cells through the C-terminal region of CssA. Purified CS6 was found to colocalize with Fn along the junctions of INT 407 cells. Based on the results obtained, we propose that CS6-expressing ETEC binds to the intestinal cells through Fn for colonization.
Collapse
|
30
|
Brown EL, Dumitrescu O, Thomas D, Badiou C, Koers EM, Choudhury P, Vazquez V, Etienne J, Lina G, Vandenesch F, Bowden MG. The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin Microbiol Infect 2008; 15:156-64. [PMID: 19154186 DOI: 10.1111/j.1469-0691.2008.02648.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus is increasingly responsible for staphylococcal infections in the community. A large percentage of the community-acquired methicillin-resistant (CA-MRSA) strains in the USA produce Panton-Valentine leukocidin (PVL), which is associated with severe infections. The virulence of the clinical CA-MRSA strain USA300 was compared to that of its isogenic pvl-deleted mutant, and it was shown that PVL contributes to lung and muscle tissue destruction, respectively, in murine necrotizing pneumonia and skin infection models. Mice infected with the USA300 strain developed a dominant anti-PVL response. The PVL subunits were therefore tested as vaccinogens against this isolate, and their vaccine efficacy correlated with both the route of vaccination and infection. These data suggest that PVL is a virulence factor in murine CA-MRSA infections.
Collapse
Affiliation(s)
- E L Brown
- University of Texas School of Public Health, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pediatric antibody response to community-acquired Staphylococcus aureus infection is directed to Panton-Valentine leukocidin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:139-41. [PMID: 19005019 DOI: 10.1128/cvi.00360-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the antibody responses of pediatric patients infected with community-associated Staphylococcus aureus isolates. The data show that patients infected with Panton-Valentine leukocidin (PVL)-positive strains developed a dominant immunoglobulin G anti-PVL antibody response that correlates with markers of inflammation.
Collapse
|
32
|
Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect Immun 2008; 77:539-48. [PMID: 18955479 DOI: 10.1128/iai.01034-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregation substance proteins encoded by sex pheromone plasmids increase the virulence of Enterococcus faecalis in experimental pathogenesis models, including infectious endocarditis models. These large surface proteins may contain multiple functional domains involved in various interactions with other bacterial cells and with the mammalian host. Aggregation substance Asc10, encoded by plasmid pCF10, is induced during growth in the mammalian bloodstream, and pCF10 carriage gives E. faecalis a significant selective advantage in this environment. We employed a rabbit model to investigate the role of various functional domains of Asc10 in endocarditis. The data suggested that the bacterial load of the infected tissue was the best indicator of virulence. Isogenic strains carrying either no plasmid, wild-type pCF10, a pCF10 derivative with an in-frame deletion of the prgB gene encoding Asc10, or pCF10 derivatives expressing other alleles of prgB were examined in this model. Previously identified aggregation domains contributed to the virulence associated with the wild-type protein, and a strain expressing an Asc10 derivative in which glycine residues in two RGD motifs were changed to alanine residues showed the greatest reduction in virulence. Remarkably, this strain and the strain carrying the pCF10 derivative with the in-frame deletion of prgB were both significantly less virulent than an isogenic plasmid-free strain. The data demonstrate that multiple functional domains are important in Asc10-mediated interactions with the host during the course of experimental endocarditis and that in the absence of a functional prgB gene, pCF10 carriage is actually disadvantageous in vivo.
Collapse
|
33
|
Sillanpää J, Nallapareddy SR, Prakash VP, Qin X, Hook M, Weinstock GM, Murray BE. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. MICROBIOLOGY (READING, ENGLAND) 2008; 154:3199-3211. [PMID: 18832325 PMCID: PMC2677164 DOI: 10.1099/mic.0.2008/017319-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.
Collapse
Affiliation(s)
- Jouko Sillanpää
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
- Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA
| | - Sreedhar R. Nallapareddy
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
- Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA
| | - Vittal P. Prakash
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
- Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Magnus Hook
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - George M. Weinstock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
- Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, TX, USA
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX, USA
| |
Collapse
|
34
|
Walsh EJ, Miajlovic H, Gorkun OV, Foster TJ. Identification of the Staphylococcus aureus MSCRAMM clumping factor B (ClfB) binding site in the alphaC-domain of human fibrinogen. MICROBIOLOGY-SGM 2008; 154:550-558. [PMID: 18227259 PMCID: PMC2885624 DOI: 10.1099/mic.0.2007/010868-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clumping factor B (ClfB) of Staphylococcus aureus binds to cytokeratin 10 and to fibrinogen. In this study the binding site in human fibrinogen was localized to a short region within the C terminus of the Aalpha-chain. ClfB only bound to the Aalpha-chain of fibrinogen in a ligand-affinity blot and in solid-phase assays with purified recombinant fibrinogen chains. A variant of fibrinogen with wild-type Bbeta- and gamma-chains but with a deletion that lacked the C-terminal residues from 252-610 of the Aalpha-chain did not support adherence of S. aureus Newman expressing ClfB. A series of truncated mutants of the recombinant Aalpha-chain were tested for their ability to support adherence of S. aureus Newman ClfB(+), which allowed the binding site to be localized to a short segment of the unfolded flexible repeated sequence within the C terminus of the Aalpha-chain. This was confirmed by two amino acid substititions within repeat 5 of the recombinant Aalpha-chain which did not support adherence of Newman ClfB(+). Lactococcus lactis expressing ClfB mutants with amino acid substitutions (N256 and Q235) located in the putative ligand-binding trench between domains N2 and N3 of the A-domain were defective in adherence to immobilized fibrinogen and cytokeratin 10, suggesting that both ligands bind to the same or overlapping regions.
Collapse
Affiliation(s)
- Evelyn J Walsh
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Helen Miajlovic
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Oleg V Gorkun
- Department of Pathology and Laboratory Medicine, CB #7525, Brinkhous-Bullitt Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
35
|
Bowden MG, Heuck AP, Ponnuraj K, Kolosova E, Choe D, Gurusiddappa S, Narayana SVL, Johnson AE, Höök M. Evidence for the "dock, lock, and latch" ligand binding mechanism of the staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J Biol Chem 2007; 283:638-647. [PMID: 17991749 DOI: 10.1074/jbc.m706252200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen and a major cause of foreign body infections. The S. epidermidis fibrinogen (Fg)-binding adhesin SdrG is necessary and sufficient for the attachment of this pathogen to Fg-coated materials. Based largely on structural analyses of the ligand binding domain of SdrG as an apo-protein and in complex with a Fg-like peptide, we proposed that SdrG follows a "dock, lock, and latch" mechanism to bind to Fg. This binding mechanism involves the docking of the ligand in a pocket formed between two SdrG subdomains followed by the movement of a C-terminal extension of one subdomain to cover the ligand and to insert and complement a beta-sheet in a neighboring subdomain. These proposed events result in a greatly stabilized closed conformation of the MSCRAMM-ligand complex. In this report, we describe a biochemical analysis of the proposed conformational changes that SdrG undergoes upon binding to its ligand. We have introduced disulfide bonds into SdrG to stabilize the open and closed forms of the apo-form of the MSCRAMM. We show that the stabilized closed form does not bind to the ligand and that binding can be restored in the presence of reducing agents such as dithiothreitol. We have also used Förster resonance energy transfer to dynamically show the conformational changes of SdrG upon binding to its ligand. Finally, we have used isothermic calorimetry to determine that hydrophobic interactions between the ligand and the protein are responsible for re-directing the C-terminal extension of the second subdomain required for triggering the beta-strand complementation event.
Collapse
Affiliation(s)
- M Gabriela Bowden
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030.
| | - Alejandro P Heuck
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003; Department of Molecular and Cellular Medicine, School of Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843
| | - Karthe Ponnuraj
- Center for Biophysical Sciences and Engineering, University of Alabama, Birmingham, Alabama 35294; Center of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Elena Kolosova
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030
| | - Damon Choe
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030
| | - Sivashankarappa Gurusiddappa
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030
| | - Sthanam V L Narayana
- Center for Biophysical Sciences and Engineering, University of Alabama, Birmingham, Alabama 35294
| | - Arthur E Johnson
- Department of Molecular and Cellular Medicine, School of Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843
| | - Magnus Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030
| |
Collapse
|
36
|
Miajlovic H, Loughman A, Brennan M, Cox D, Foster TJ. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007; 75:3335-43. [PMID: 17438032 PMCID: PMC1932920 DOI: 10.1128/iai.01993-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus can stimulate activation and aggregation of platelets, which are thought to be factors in the development of infective endocarditis. Previous studies have identified clumping factor A (ClfA) and fibronectin binding proteins A and B (FnBPA and FnBPB) as potent platelet aggregators. These proteins are able to stimulate rapid platelet aggregation by either a fibrinogen- or a fibronectin-dependent process which also requires antibodies specific to each protein. Slower aggregation has been seen in other systems where specific fibrinogen binding ligands are absent and platelet aggregation is mediated by complement and specific antibodies. Bacteria expressing ClfB aggregate platelets with a longer lag time than ClfA or FnBPA and FnBPB. In order to investigate whether ClfB causes platelet aggregation in a complement- or fibrinogen-dependent manner, a non-fibrinogen-binding mutant of ClfB (ClfB Q235A) was constructed. Lactococcus lactis expressing ClfB Q235A was able to stimulate platelet aggregation in platelet-rich plasma without a significant increase in lag time. The requirements for platelet aggregation were investigated using gel-filtered platelets. Fibrinogen and specific anti-ClfB antibodies were found to be sufficient to allow platelet aggregation mediated by the wild-type ClfB protein. It seems that ClfB causes platelet aggregation by a fibrinogen-dependent mechanism. The non-fibrinogen-binding ClfB mutant was unable to stimulate platelet aggregation under these conditions. However, bacteria expressing ClfB Q235A caused platelet aggregation in a complement-dependent manner which required specific anti-ClfB antibodies.
Collapse
Affiliation(s)
- Helen Miajlovic
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
37
|
de O Ferreira E, Araújo Lobo L, Barreiros Petrópolis D, dos S Avelar KE, Ferreira MC, e Silva Filho FC, Domingues RMCP. A Bacteroides fragilis surface glycoprotein mediates the interaction between the bacterium and the extracellular matrix component laminin-1. Res Microbiol 2006; 157:960-6. [PMID: 17125972 DOI: 10.1016/j.resmic.2006.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 08/17/2006] [Accepted: 09/14/2006] [Indexed: 11/28/2022]
Abstract
The adherence of Bacteroides fragilis strains to immobilized laminin-1 (LMN-1) was investigated using this protein adsorbed onto glass. Among the 27 strains isolated from infectious processes and assayed, 13 presented strong adherence to LMN-1. Among them, two strains, MC2 and 1081, showed the strongest association, and for that reason they were selected for further studies in which adherence to this protein was confronted with both physical-chemical and enzymatic treatments, along with concurrence assays with the LMN-1 molecule itself and the LMN-1-residing amino acid sequences (RGD, IKVAV, YIGSR, AG73, A13 and C16). The chemical and enzymatic treatments resulted in sharp decreases in binding rates of those strains, and competition experiments with LMN-1- residing amino acids revealed that, except for RGD and A13, all the others were effective at reducing bacterial binding of the bacteria. The outer membrane proteins (OMPs) of B. fragilis were extracted and assayed onto dot-blotted LMN-1, and when the extracts were chemically treated, especially with metasodium periodate, a drastic reduction in bacterial binding occurred. Results of the latter assays clearly indicate that bacterial molecules involved in both recognition and binding of B. fragilis to LMN-1 are present in OMP extracts. Taken together, our results strongly indicate that a B. fragilis surface glycoprotein may play a key role in bacterial association with LMN-1.
Collapse
Affiliation(s)
- Eliane de O Ferreira
- Departamento de Microbiologia Médica, UFRJ, Instituto de Microbiologia Prof Paulo de Góes, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Infection is the second most common cause of prosthetic joint failure. Signs and symptoms associated with prosthetic joint infection may develop weeks or even years following arthroplasty. While some patients with prosthetic joint infection present with findings consistent with acute septic arthritis, many present with pain alone. Morbidity and cost associated with repeat surgery, prolonged medical treatment and joint immobilization render importance to the accurate and timely diagnosis, and appropriate treatment of prosthetic joint infection. No consensus exists, however, in terms of the most cost-effective diagnostic methods or the ideal medical and/or surgical interventions. This review describes diagnostic tests and available treatment for prosthetic joint infection and gives a practical approach to this challenging clinical entity.
Collapse
Affiliation(s)
- Paloma Anguita-Alonso
- Infectious Diseases Research Laboratory, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
39
|
Schaffer AC, Solinga RM, Cocchiaro J, Portoles M, Kiser KB, Risley A, Randall SM, Valtulina V, Speziale P, Walsh E, Foster T, Lee JC. Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect Immun 2006; 74:2145-53. [PMID: 16552044 PMCID: PMC1418917 DOI: 10.1128/iai.74.4.2145-2153.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus is responsible for a wide range of infections, including soft tissue infections and potentially fatal bacteremias. The primary niche for S. aureus in humans is the nares, and nasal carriage is a documented risk factor for staphylococcal infection. Previous studies with rodent models of nasal colonization have implicated capsule and teichoic acid as staphylococcal surface factors that promote colonization. In this study, a mouse model of nasal colonization was utilized to demonstrate that S. aureus mutants that lack clumping factor A, collagen binding protein, fibronectin binding proteins A and B, polysaccharide intercellular adhesin, or the accessory gene regulator colonized as well as wild-type strains colonized. In contrast, mutants deficient in sortase A or clumping factor B (ClfB) showed reduced nasal colonization. Mice immunized intranasally with killed S. aureus cells showed reduced nasal colonization compared with control animals. Likewise, mice that were immunized systemically or intranasally with a recombinant vaccine composed of domain A of ClfB exhibited lower levels of colonization than control animals exhibited. A ClfB monoclonal antibody (MAb) inhibited S. aureus binding to mouse cytokeratin 10. Passive immunization of mice with this MAb resulted in reduced nasal colonization compared with the colonization observed after immunization with an isotype-matched control antibody. The mouse immunization studies demonstrate that ClfB is an attractive component for inclusion in a vaccine to reduce S. aureus nasal colonization in humans, which in turn may diminish the risk of staphylococcal infection. As targets for vaccine development and antimicrobial intervention are assessed, rodent nasal colonization models may be invaluable.
Collapse
MESH Headings
- Adhesins, Bacterial/administration & dosage
- Adhesins, Bacterial/immunology
- Administration, Intranasal
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Disease Models, Animal
- Female
- Growth Inhibitors/administration & dosage
- Growth Inhibitors/immunology
- Keratins/metabolism
- Male
- Mice
- Mice, Inbred ICR
- Nasal Mucosa/immunology
- Nasal Mucosa/microbiology
- Rats
- Rats, Wistar
- Staphylococcal Infections/immunology
- Staphylococcal Infections/prevention & control
- Staphylococcal Vaccines/administration & dosage
- Staphylococcal Vaccines/immunology
- Staphylococcus aureus/growth & development
- Staphylococcus aureus/immunology
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Adam C Schaffer
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Marraffini LA, Dedent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 2006; 70:192-221. [PMID: 16524923 PMCID: PMC1393253 DOI: 10.1128/mmbr.70.1.192-221.2006] [Citation(s) in RCA: 498] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Luciano A Marraffini
- Department of Microbiology, Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
41
|
Abstract
An important facet in the interaction between Staphylococcus aureus and its host is the ability of the bacterium to adhere to human extracellular matrix components and serum proteins. In order to colonise the host and disseminate, it uses a wide range of strategies, the molecular and genetic basis of which are multifactorial, with extensive functional overlap between adhesins. Here, we describe the current knowledge of the molecular features of the adhesive components of S. aureus, mechanisms of adhesion and the impact that these have on host-pathogen interaction.
Collapse
Affiliation(s)
- Simon R Clarke
- Department of Molecular Biology & Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|
42
|
Zong Y, Xu Y, Liang X, Keene DR, Höök A, Gurusiddappa S, Höök M, Narayana SVL. A 'Collagen Hug' model for Staphylococcus aureus CNA binding to collagen. EMBO J 2005; 24:4224-36. [PMID: 16362049 PMCID: PMC1356329 DOI: 10.1038/sj.emboj.7600888] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 11/04/2005] [Indexed: 11/09/2022] Open
Abstract
The structural basis for the association of eukaryotic and prokaryotic protein receptors and their triple-helical collagen ligand remains poorly understood. Here, we present the crystal structures of a high affinity subsegment of the Staphylococcus aureus collagen-binding CNA as an apo-protein and in complex with a synthetic collagen-like triple helical peptide. The apo-protein structure is composed of two subdomains (N1 and N2), each adopting a variant IgG-fold, and a long linker that connects N1 and N2. The structure is stabilized by hydrophobic inter-domain interactions and by the N2 C-terminal extension that complements a beta-sheet on N1. In the ligand complex, the collagen-like peptide penetrates through a spherical hole formed by the two subdomains and the N1-N2 linker. Based on these two structures we propose a dynamic, multistep binding model, called the 'Collagen Hug' that is uniquely designed to allow multidomain collagen binding proteins to bind their extended rope-like ligand.
Collapse
Affiliation(s)
- Yinong Zong
- School of Optometry and Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yi Xu
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiaowen Liang
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | | | - Agneta Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Shivasankarappa Gurusiddappa
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Magnus Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030-3303, USA. Tel.: +1 713 677 7552; Fax: +1 713 677 7576; E-mail:
| | - Sthanam V L Narayana
- School of Optometry and Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA. Tel.: +1 205 934 0119; Fax: +1 205 975 0538; E-mail:
| |
Collapse
|
43
|
van Leeuwen WB, Melles DC, Alaidan A, Al-Ahdal M, Boelens HAM, Snijders SV, Wertheim H, van Duijkeren E, Peeters JK, van der Spek PJ, Gorkink R, Simons G, Verbrugh HA, van Belkum A. Host- and tissue-specific pathogenic traits of Staphylococcus aureus. J Bacteriol 2005; 187:4584-91. [PMID: 15968069 PMCID: PMC1151784 DOI: 10.1128/jb.187.13.4584-4591.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative genomics were used to assess genetic differences between Staphylococcus aureus strains derived from infected animals versus colonized or infected humans. A total of 77 veterinary isolates were genetically characterized by high-throughput amplified fragment length polymorphism (AFLP). Bacterial genotypes were introduced in a large AFLP database containing similar information for 1,056 human S. aureus strains. All S. aureus strains isolated from animals in close contact with humans (e.g., pet animals) were predominantly classified in one of the five main clusters of the AFLP database (cluster I). In essence, mastitis-associated strains from animals were categorized separately (cluster IVa) and cosegregated with bacteremia-associated strains from humans. Distribution of only 2 out of 10 different virulence genes differed across the clusters. The gene encoding the toxic shock syndrome protein (tst) was more often encountered among veterinary strains (P < 0.0001) and even more in the mastitis-related strains (P<0.0001) compared to human isolate results. The gene encoding the collagen binding protein (cna) was rarely detected among invasive human strains. The virulence potential, as indicated by the number of virulence genes per strain, did not differ significantly between the human- and animal-related strains. Our data show that invasive infections in pets and humans are usually due to S. aureus strains with the same genetic background. Mastitis-associated S. aureus isolated in diverse farm animal species form a distinct genetic cluster, characterized by an overrepresentation of the toxic shock syndrome toxin superantigen-encoding gene.
Collapse
Affiliation(s)
- Willem B van Leeuwen
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guyard C, Chester EM, Raffel SJ, Schrumpf ME, Policastro PF, Porcella SF, Leong JM, Schwan TG. Relapsing fever spirochetes contain chromosomal genes with unique direct tandemly repeated sequences. Infect Immun 2005; 73:3025-37. [PMID: 15845510 PMCID: PMC1087331 DOI: 10.1128/iai.73.5.3025-3037.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome sequencing of the relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae identified three open reading frames (ORFs) on the chromosomes that contained internal, tandemly repeated amino acid sequences that were absent in the Lyme disease spirochete Borrelia burgdorferi. The predicted amino acid sequences of these genes (BH0209, BH0512, and BH0553) have hydrophobic N termini, indicating that these proteins may be secreted. B. hermsii transcribed the three ORFs in vitro, and the BH0512- and BH0553-encoded proteins (PBH-512 and PBH-553) were produced in vitro and in experimentally infected mice. PBH-512 and PBH-553 were on the spirochete's outer surface, and antiserum to these proteins reduced the adherence of B. hermsii to red blood cells. PCR analyses of 28 isolates of B. hermsii and 8 isolates of B. turicatae demonstrated polymorphism in each gene correlated with the number of repeats. Serum samples from relapsing fever patients reacted with recombinant PBH-512 and PBH-553, suggesting that these proteins are produced during human infection. These polymorphic proteins may be involved in the pathogenicity of these relapsing fever spirochetes and provide a mechanism for antigenic heterogeneity within their populations.
Collapse
Affiliation(s)
- Cyril Guyard
- Rocky Mountain Laboratories, 903 S. Fourth St., Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bowden MG, Chen W, Singvall J, Xu Y, Peacock SJ, Valtulina V, Speziale P, Höök M. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology (Reading) 2005; 151:1453-1464. [PMID: 15870455 DOI: 10.1099/mic.0.27534-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus epidermidis is a ubiquitous human skin commensal that has emerged as a major cause of foreign-body infections. Eleven genes encoding putative cell-wall-anchored proteins were identified by computer analysis of the publicly available S. epidermidis unfinished genomic sequence. Four genes encode previously described proteins (Aap, Bhp, SdrF and SdrG), while the remaining seven have not been characterized. Analysis of primary sequences of the
Staphylococcus epidermidis
surface (Ses) proteins indicates that they have a structural organization similar to the previously described cell-wall-anchored proteins from S. aureus and other Gram-positive cocci. However, not all of the Ses proteins are direct homologues of the S. aureus proteins. Secondary and tertiary structure predictions suggest that most of the Ses proteins are composed of several contiguous subdomains, and that the majority of these predicted subdomains are folded into β-rich structures. PCR analysis indicates that certain genes may be found more frequently in disease isolates compared to strains isolated from healthy skin. Patients recovering from S. epidermidis infections had higher antibody titres against some Ses proteins, implying that these proteins are expressed during human infection. Western blot analyses of early-logarithmic and late-stationary in vitro cultures suggest that different regulatory mechanisms control the expression of the Ses proteins.
Collapse
Affiliation(s)
- M Gabriela Bowden
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Wei Chen
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Jenny Singvall
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Yi Xu
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Sharon J Peacock
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Pietro Speziale
- Department of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Magnus Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| |
Collapse
|
46
|
Nilsson M, Bjerketorp J, Guss B, Frykberg L. A fibrinogen-binding protein ofStaphylococcus lugdunensis. FEMS Microbiol Lett 2004; 241:87-93. [PMID: 15556714 DOI: 10.1016/j.femsle.2004.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 10/06/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022] Open
Abstract
A gene called fbl, encoding a Staphylococcus lugdunensis fibrinogen-binding protein, was identified by phage display. The encoded protein, Fbl, is a member of the Sdr-family, a group of staphylococcal cell surface proteins containing a characteristic serine-aspartate repeat region. The fibrinogen-binding domain was mapped to 313 amino acids, and shows 62% identity to the corresponding region in clumping factor (ClfA) from Staphylococcus aureus. Anti-serum against ClfA cross-reacted with Fbl, and blocked S. lugdunensis adherence to fibrinogen. Twelve clinical isolates of S. lugdunensis analysed by Southern blot all had an fbl-like gene.
Collapse
Affiliation(s)
- Martin Nilsson
- Department of Microbiology, Swedish University of Agricultural Sciences, SLU, P.O. Box 7025, SE-750 07 Uppsala, Sweden
| | | | | | | |
Collapse
|
47
|
Walsh EJ, O'Brien LM, Liang X, Hook M, Foster TJ. Clumping factor B, a fibrinogen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) adhesin of Staphylococcus aureus, also binds to the tail region of type I cytokeratin 10. J Biol Chem 2004; 279:50691-9. [PMID: 15385531 DOI: 10.1074/jbc.m408713200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The primary habitat of Staphylococcus aureus in humans is the moist squamous epithelium of the anterior nares. We showed previously that S. aureus adheres to desquamated epithelial cells and that clumping factor B (ClfB), a surface-located MSCRAMM (microbial surface components recognizing adhesive matrix molecules) known for its ability to bind to the alpha-chain of fibrinogen, is partly responsible (O'Brien, L. M., Walsh, E. J., Massey, R. C., Peacock, S. J., and Foster, T. J. (2002) Cell. Microbiol. 4, 759-770). We identified cytokeratin 10 (K10) as the ligand recognized by ClfB. Here we have shown that purified recombinant human and murine K10 immobilized on a plastic surface supports adherence of S. aureus in a ClfB-dependent manner. Furthermore, the recombinant A domain of ClfB (rClfB 45-542) bound to immobilized K10 dose-dependently and saturably. Subdomains of human and murine K10 were expressed and purified. The N-terminal head domain (residues 1-145) did not support the binding of rClfB or adherence of S. aureus ClfB+. In contrast, the C-terminal tail domains (human rHK10 452-593, mouse rMK10 454-570) promoted avid binding and adherence. Isothermal titration microcalorimetry and intrinsic tryptophan fluorescence experiments gave dissociation constants for rClfB 45-542 binding to rMK10 454-570 of 1.4 and 1.7 microM, respectively. The tail region of K10 is composed largely of quasi-repeats of Tyr-(Gly/Ser)n. A synthetic peptide corresponding to a typical glycine loop (YGGGSSGGGSSGGY; Y-Y loop peptide) inhibited the adherence of S. aureus ClfB+ to immobilized MK10 to a level of 80%, whereas control peptides had no effect. The KD of rClfB 45-542 for the Y-Y loop peptide was 5.3 microm by intrinsic tryptophan fluorescence. Thus ClfB binds to the glycine loop region of the tail domain of keratin 10 where there are probably multiple binding sites. Binding is discussed in the context of the dock-lock-latch model for MSCRAMM-ligand interactions. We provide an explanation for the molecular basis for S. aureus adherence to the squamous epithelium and suggest that nasal colonization might be prevented by reagents that inhibit this interaction.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/physiology
- Amino Acid Sequence
- Animals
- Bacterial Adhesion
- Binding Sites
- Blotting, Western
- Calorimetry
- Cloning, Molecular
- DNA Primers/chemistry
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/metabolism
- Escherichia coli/metabolism
- Glycine/chemistry
- Humans
- Keratins/chemistry
- Ligands
- Mice
- Molecular Sequence Data
- Peptides/chemistry
- Polymerase Chain Reaction
- Protein Binding
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Staphylococcus aureus/metabolism
- Tryptophan/chemistry
Collapse
Affiliation(s)
- Evelyn J Walsh
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
48
|
Sillanpää J, Xu Y, Nallapareddy SR, Murray BE, Höök M. A family of putative MSCRAMMs from Enterococcus faecalis. Microbiology (Reading) 2004; 150:2069-2078. [PMID: 15256550 DOI: 10.1099/mic.0.27074-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently published Enterococcus faecalis genome [Paulsen, I. T., Banerjei, L., Myers, G. S. & 29 other authors (2003). Science 299, 2071-2074)] was examined and 41 putative cell-wall-anchored proteins were identified. Seventeen of these proteins are predicted to contain tandemly repeated immunoglobulin-like folds characteristic of the structural organization of staphylococcal adhesins of the MSCRAMM (microbial surface component recognizing adhesive matrix molecules) type. Two of the nine proteins selected for further study appear to represent cell-wall-anchored enzymes. It is proposed that the remaining seven proteins constitute a family of structurally related proteins potentially interacting with proteins of the host. This family includes the previously identified collagen/laminin-binding MSCRAMM ACE [Rich, R. L., Kreikemeyer, B., Owens, R. T., LaBrenz, S., Narayana, S. V., Weinstock, G. M., Murray, B. E. & Hook, M. (1999). J Biol Chem 274, 26939-26945]. It is further demonstrated that genes encoding the seven putative MSCRAMMs are present in all E. faecalis strains tested and these proteins appear to be expressed during infection in humans, since sera from infected individuals contain antibodies reacting with recombinant versions of the enterococcal proteins.
Collapse
Affiliation(s)
- Jouko Sillanpää
- Texas A&M University System Health Science Center, Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, Houston, TX 77030, USA
| | - Yi Xu
- Texas A&M University System Health Science Center, Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, Houston, TX 77030, USA
| | - Sreedhar R Nallapareddy
- University of Texas Medical School, Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Molecular Genetics, Center for the Study of Emerging and Re-emerging Pathogens (CERP), Houston, TX 77030, USA
| | - Barbara E Murray
- University of Texas Medical School, Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Molecular Genetics, Center for the Study of Emerging and Re-emerging Pathogens (CERP), Houston, TX 77030, USA
| | - Magnus Höök
- Texas A&M University System Health Science Center, Institute of Biosciences and Technology, Center for Extracellular Matrix Biology, Houston, TX 77030, USA
| |
Collapse
|
49
|
Roche FM, Meehan M, Foster TJ. The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. MICROBIOLOGY-SGM 2003; 149:2759-2767. [PMID: 14523109 DOI: 10.1099/mic.0.26412-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus binds to human desquamated nasal epithelial cells, a phenomenon likely to be important in nasal colonization. ClfB was identified previously as one staphylococcal adhesin that promoted binding to nasal epithelia. In this study, it is shown that the S. aureus surface protein SasG, identified previously by in silico analysis of genome sequences, and two homologous proteins, Pls of S. aureus and AAP of Staphylococcus epidermidis, also promote bacterial adherence to nasal epithelial cells. Conditions for in vitro expression of SasG by S. aureus were not found. Adherence assays were therefore performed with S. aureus and Lactococcus lactis expressing SasG from an expression plasmid. These studies showed that SasG did not bind several ligands typically bound by S. aureus. Significantly, SasG and Pls did promote bacterial adherence to nasal epithelial cells. Furthermore, pre-incubation of epithelial cells with purified recombinant proteins revealed that the N-terminal A regions of SasG, Pls and AAP, but not the B repeats of SasG, inhibited adherence of L. lactis expressing SasG in a dose-dependent fashion. These results suggest that SasG, Pls and AAP bind to the same as-yet-unidentified receptor on the surface of nasal epithelial cells. In addition, expression of SasG, like Pls, reduced adherence of S. aureus to fibronectin and fibrinogen.
Collapse
Affiliation(s)
- Fiona M Roche
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Mary Meehan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
50
|
Ponnuraj K, Bowden MG, Davis S, Gurusiddappa S, Moore D, Choe D, Xu Y, Hook M, Narayana SVL. A "dock, lock, and latch" structural model for a staphylococcal adhesin binding to fibrinogen. Cell 2003; 115:217-28. [PMID: 14567919 DOI: 10.1016/s0092-8674(03)00809-2] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gram-positive pathogens such as staphylococci contain multiple cell wall-anchored proteins that serve as an interface between the microbe and its environment. Some of these proteins act as adhesins and mediate bacterial attachment to host tissues. SdrG is a cell wall-anchored adhesin from Staphylococcus epidermidis that binds to the Bbeta chain of human fibrinogen (Fg) and is necessary and sufficient for bacterial attachment to Fg-coated biomaterials. Here, we present the crystal structures of the ligand binding region of SdrG as an apoprotein and in complex with a synthetic peptide analogous to its binding site in Fg. Analysis of the crystal structures, along with mutational studies of both the protein and of the peptide, reveals that SdrG binds to its ligand with a dynamic "dock, lock, and latch" mechanism. We propose that this mechanism represents a general mode of ligand binding for structurally related cell wall-anchored proteins of gram-positive bacteria.
Collapse
Affiliation(s)
- Karthe Ponnuraj
- School of Optometry and Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|