1
|
Wang J, Aceves AJ, Friesenhahn NJ, Mayo SL. CDRxAbs: antibody small-molecule conjugates with computationally designed target-binding synergy. Protein Eng Des Sel 2025; 38:gzaf004. [PMID: 40114302 DOI: 10.1093/protein/gzaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Bioconjugates as therapeutic modalities combine the advantages and offset the disadvantages of their constituent parts to achieve a refined spectrum of action. We combine the concept of bioconjugation with the full atomic simulation capability of computational protein design to define a new class of molecular recognition agents: CDR-extended antibodies, abbreviated as CDRxAbs. A CDRxAb incorporates a covalently attached small molecule into an antibody/target binding interface using computational protein design to create an antibody small-molecule conjugate that binds tighter to the target of the small molecule than the small molecule would alone. CDRxAbs are also expected to increase the target binding specificity of their associated small molecules. In a proof-of-concept study using monomeric streptavidin/biotin pairs at either a nanomolar or micromolar-level initial affinity, we designed nanobody-biotin conjugates that exhibited >20-fold affinity improvement against their protein targets with step-wise optimization of binding kinetics and overall protein stability. The workflow explored through this process promises a novel approach to optimize small-molecule based therapeutics and to explore new chemical and target space for molecular-recognition agents in general.
Collapse
Affiliation(s)
- Jingzhou Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
- Merck Research Laboratories, 213 E Grand Ave, South San Francisco, CA 94080, USA
| | - Aiden J Aceves
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
- Insight Partners, 1114 Avenue of the Americas, 36th Floor, New York, NY 10036, USA
| | - Nicholas J Friesenhahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Stephen L Mayo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
2
|
Zuo C, Wen Y, Chen D, Ouyang J, Li P. Residence time prediction in magnetically controlled biomolecular local rebinding-dissociation kinetics. Anal Chim Acta 2024; 1331:343341. [PMID: 39532424 DOI: 10.1016/j.aca.2024.343341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The residence time of drug-target conjugates is a critical factor in drug screening and efficacy prediction. The local rebinding-dissociation kinetics gives insights into in-vivo drug-target interactions. A magnetic torque system (MTS) is designed to observe rebinding-dissociation kinetics for predicting residence time. The system utilizes an alternating magnetic field (AMF) to manipulate the magnetization motion of magnetically labeled biomolecules and the forces acting upon biomolecular bonds. The motion, sensed by a quartz crystal microbalance (QCM), reflects biomolecular interactions occurring at the particle surface. Meanwhile, the motion facilitates the separation of dissociated molecules from the surface, thereby obviating the necessity for fixed and mobile phases in common kinetics observations. The constant and static solution environment minimizes reagent consumption. The MTS was utilized to observe the local rebinding-dissociation of antibodies (PAB and MAB) to magnetic beads (MB) and to HER2 receptors. The residence times recorded by the MTS were larger than the results obtained via SPR method, due to the occurrences of rebinding-dissociation kinetics. Interaction behaviours can be meticulously regulated for varying affinities by modulating the intensity of magnetic field. A high intensity field (400 Oe) was applied for strong binding between antibody-MB (biotin-streptavidin), and a low intensity field (300 Oe) was applied for weak antigen-antibody interactions. An increase in AMF strength enhanced dissociation, with a shift from 300 Oe to 400 Oe resulting in a 1 ∼ 4-fold reduction in residence time. Overall, the MTS provides an interactive and customizable perspective on kinetics observations.
Collapse
Affiliation(s)
- Can Zuo
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Yumei Wen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Dongyu Chen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Jihai Ouyang
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Ping Li
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| |
Collapse
|
3
|
Adrien V, Reffay M, Taulier N, Verchère A, Monlezun L, Picard M, Ducruix A, Broutin I, Pincet F, Urbach W. Kinetic study of membrane protein interactions: from three to two dimensions. Sci Rep 2024; 14:882. [PMID: 38195620 PMCID: PMC10776792 DOI: 10.1038/s41598-023-50827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
Molecular interactions are contingent upon the system's dimensionality. Notably, comprehending the impact of dimensionality on protein-protein interactions holds paramount importance in foreseeing protein behaviour across diverse scenarios, encompassing both solution and membrane environments. Here, we unravel interactions among membrane proteins across various dimensionalities by quantifying their binding rates through fluorescence recovery experiments. Our findings are presented through the examination of two protein systems: streptavidin-biotin and a protein complex constituting a bacterial efflux pump. We present here an original approach for gauging a two-dimensional binding constant between membrane proteins embedded in two opposite membranes. The quotient of protein binding rates in solution and on the membrane represents a metric denoting the exploration distance of the interacting sites-a novel interpretation.
Collapse
Affiliation(s)
- Vladimir Adrien
- Laboratoire de Physique de l'École normale superieure, École Normale Supérieure, Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
- Department of Infectious Diseases, Avicenne Hospital, AP-HP, Université Sorbonne Paris Nord, Bobigny, France.
- Université Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Paris, France.
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205, Paris Cedex 13, France
| | - Nicolas Taulier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale-LIB, 75006, Paris, France
| | - Alice Verchère
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, 75006, Paris, France
| | - Laura Monlezun
- Université Paris Cité, CNRS, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France
| | - Martin Picard
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 75005, Paris, France
| | - Arnaud Ducruix
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, 75006, Paris, France
| | - Isabelle Broutin
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, 75006, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique de l'École normale superieure, École Normale Supérieure, Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| | - Wladimir Urbach
- Laboratoire de Physique de l'École normale superieure, École Normale Supérieure, Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale-LIB, 75006, Paris, France.
| |
Collapse
|
4
|
Lin Y, Yang M, Huang L, Yang F, Fan J, Qiang Y, Chang Y, Zhou W, Yan L, Xiong J, Ping J, Chen S, Men D, Li F. A bacteria-derived tetramerized protein ameliorates nonalcoholic steatohepatitis in mice via binding and relocating acetyl-coA carboxylase. Cell Rep 2023; 42:113453. [PMID: 37976162 DOI: 10.1016/j.celrep.2023.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/30/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Increased de novo lipogenesis (DNL) is a major feature of nonalcoholic steatohepatitis (NASH). None of the drugs targeting the catalytic activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in the DNL process, have been approved by the FDA. Whether cytosolic ACC1 can be regulated spatially remains to be explored. Herein, we find that streptavidin (SA), which is a bacterium-derived tetrameric protein, forms cytosolic condensates and efficiently induces a spatial re-localization of ACC1 in liver cells, concomitant with inhibited lipid accumulation. Both SA tetrameric structure and multivalent protein interaction are required for condensate formation. Interestingly, the condensates are further characterized as gel-like membraneless organelle (SAGMO) and significantly restrict the cytosolic dispersion of ACC1 and fatty acid synthase. Notably, AAV-mediated delivery of SA partially blocks mouse liver DNL and ameliorates NASH without eliciting hypertriglyceridemia. In summary, our study shows that insulating lipogenesis-related proteins by SAGMO might be effective for NASH treatment.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Huang
- Research Center for Medicine and Structural Biology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Fan Yang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jiachen Fan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yulong Qiang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yuting Chang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Wenjie Zhou
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Leilei Yan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jie Xiong
- Department of Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
| | - Feng Li
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China.
| |
Collapse
|
5
|
Precise and Prompt Analyte Detection via Ordered Orientation of Receptor in WSe2-Based Field Effect Transistor. NANOMATERIALS 2022; 12:nano12081305. [PMID: 35458016 PMCID: PMC9028725 DOI: 10.3390/nano12081305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023]
Abstract
Field-effect transistors (FET) composed of transition metal dichalcogenide (TMDC) materials have gained huge importance as biosensors due to their added advantage of high sensitivity and moderate bandgap. However, the true potential of these biosensors highly depends upon the quality of TMDC material, as well as the orientation of receptors on their surfaces. The uncontrolled orientation of receptors and screening issues due to crossing the Debye screening length while functionalizing TMDC materials is a big challenge in this field. To address these issues, we introduce a combination of high-quality monolayer WSe2 with our designed Pyrene-based receptor moiety for its ordered orientation onto the WSe2 FET biosensor. A monolayer WSe2 sheet is utilized to fabricate an ideal FET for biosensing applications, which is characterized via Raman spectroscopy, atomic force microscopy, and electrical prob station. Our construct can sensitively detect our target protein (streptavidin) with 1 pM limit of detection within a short span of 2 min, through a one-step functionalizing process. In addition to having this ultra-fast response and high sensitivity, our biosensor can be a reliable platform for point-of-care-based diagnosis.
Collapse
|
6
|
Santos MS, Liu H, Schittny V, Vanella R, Nash MA. Correlating single-molecule rupture mechanics with cell population adhesion by yeast display. BIOPHYSICAL REPORTS 2022; 2:None. [PMID: 35284851 PMCID: PMC8904261 DOI: 10.1016/j.bpr.2021.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Mariana Sá Santos
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Systems Biology PhD program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Haipei Liu
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Valentin Schittny
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Rosario Vanella
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Michael A. Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Corresponding author
| |
Collapse
|
7
|
Mohandas N, Kent LM, Raudsepp A, Jameson GB, Williams MAK. Progress toward Plug-and-Play Polymer Strings for Optical Tweezers Experiments: Concatenation of DNA Using Streptavidin Linkers. ACS OMEGA 2022; 7:6427-6435. [PMID: 35224404 PMCID: PMC8867789 DOI: 10.1021/acsomega.2c00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Streptavidin is a tetrameric protein that is renowned for its strong binding to biotin. The robustness and strength of this noncovalent coupling has led to multitudinous applications of the pairing. Within the streptavidin tetramer, each protein monomer has the potential to specifically bind one biotin-bearing moiety. Herein, by separating various streptavidin species that have had differing numbers of their four potential binding sites blocked, several different types of "linking hub" were obtained, each with a different valency. The identification of these species and the study of the plugging process used to block sites during their preparation were carried out using capillary electrophoresis. Subsequently, a specific species, namely, a trans-divalent linker, in which the two open biotin-binding pockets are approximately opposite one another, was used to concatenate two ∼5 kb pieces of biotin-terminated double-stranded DNA. Following the incubation of this DNA with the prepared linker, a fraction of ∼10 kb strings was identified using gel electrophoresis. Finally, these concatenated DNA strings were stretched in an optical tweezer experiment, demonstrating the potential of the methodology for coupling and extending molecules for use in single-molecule biophysical experiments.
Collapse
Affiliation(s)
- Nimisha Mohandas
- School
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Lisa M. Kent
- School
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Allan Raudsepp
- School
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Geoffrey B. Jameson
- School
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- Riddet
Institute, Massey University, Palmerston North 4442, New Zealand
| | - Martin A. K. Williams
- School
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- Riddet
Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
8
|
Minamihata K, Hamada Y, Kagawa G, Ramadhan W, Higuchi A, Moriyama K, Wakabayashi R, Goto M, Kamiya N. Dual-Functionalizable Streptavidin-SpyCatcher-Fused Protein-Polymer Hydrogels as Scaffolds for Cell Culture. ACS APPLIED BIO MATERIALS 2020; 3:7734-7742. [PMID: 35019513 DOI: 10.1021/acsabm.0c00940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrogels possessing the ability to control cell functions have great potential as artificial substrates for cell culture. Herein, we report dual-functionalizable protein-polymer hybrid hydrogels prepared by thiol oxidation catalyzed by horseradish peroxidase and a phenolic molecule. A chimera protein of streptavidin (SA) and the SpyCatcher protein, with a cysteine residue at its N-terminus, (C-SA-SC) was constructed and co-cross-linked with thiol-functionalized four-arm polyethylene glycol (PEG-SH) to obtain hydrogels possessing two orthogonal conjugation moieties. Hydrogel formation using C-SA-SC conjugated with biotinylated or SpyTagged functional molecules (premodification strategy) resulted in the formation of hydrogels with a uniform distribution of the functional molecules. Postmodification of the functional molecules of the C-SA-SC hydrogel with biotin or SpyTag could alter the three-dimensional (3D) spatial distribution of the functional molecules within the hydrogels depending on the mode of conjugation (SA/biotin or SpyCatcher/SpyTag), the size of the functional molecules, and the length of time of the modification. NIH-3T3 cells cultured on a C-SA-SC hydrogel, dual-functionalized with a biotinylated-Arg-Gly-Asp-Ser (RGDS) peptide and a basic fibroblast growth factor (bFGF) with SpyTag, showed cell adhesion to the PEG-SH-based hydrogels and cell morphological changes in response to the immobilized RGDS peptide and the bFGF. Moreover, the cells showed higher proliferation on the dual-functionalized C-SA-SC hydrogel than the cells cultured on hydrogels without either the RGDS peptide or the bFGF, demonstrating the benefits of dual-functionalizable hydrogels. The C-SA-SC hydrogel presented in this study is capable of being orthogonally functionalized by two different functional molecules with different 3D distributions of each molecule within the hydrogel and thus has the potential for use as a cell culturing scaffold for creating artificial cellular microstructures.
Collapse
Affiliation(s)
- Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusei Hamada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Genki Kagawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wahyu Ramadhan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ayato Higuchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kousuke Moriyama
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo College, Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Abstract
There is an increasing interest for low cost, ultrasensitive, time saving yet reliable, point-of-care bioelectronic sensors. Electrolyte gated organic field effect transistors (EGOFETs) are proven compelling transducers for various sensing applications, offering direct electronic, label-free transduction of bio-recognition events along with miniaturization, fast data handling and processing. Given that field effect transistors act as intrinsically signal amplifiers, even a small change of a chemical or biological quantity may significantly alter the output electronic signal. In EGOFETs selectivity can be guaranteed by the immobilization of bioreceptors able to bind specifically a target analyte. The layer of receptors can be linked to one of the electronic active interfaces of the transistor, and the interactions with a target molecule affect the electronic properties of the device. The present chapter discusses main aspects of EGOFETs transducers along with detailed examples of how to tailor the device interfaces with desired functionality. The development of an "electronic tongue" based on an EGOFET device coupled to odorant binding proteins (OBPs) for enantiomers differentiation is presented.
Collapse
|
10
|
Pereira PM, Gustafsson N, Marsh M, Mhlanga MM, Henriques R. Super-beacons: Open-source probes with spontaneous tuneable blinking compatible with live-cell super-resolution microscopy. Traffic 2020; 21:375-385. [PMID: 32170988 PMCID: PMC7643006 DOI: 10.1111/tra.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/28/2022]
Abstract
Localization-based super-resolution microscopy relies on the detection of individual molecules cycling between fluorescent and non-fluorescent states. These transitions are commonly regulated by high-intensity illumination, imposing constrains to imaging hardware and producing sample photodamage. Here, we propose single-molecule self-quenching as a mechanism to generate spontaneous photoswitching. To demonstrate this principle, we developed a new class of DNA-based open-source super-resolution probes named super-beacons, with photoswitching kinetics that can be tuned structurally, thermally and chemically. The potential of these probes for live-cell compatible super-resolution microscopy without high-illumination or toxic imaging buffers is revealed by imaging interferon inducible transmembrane proteins (IFITMs) at sub-100 nm resolutions.
Collapse
Affiliation(s)
- Pedro M. Pereira
- MRC‐Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
- Bacterial Cell BiologyMOSTMICRO, ITQB‐NOVAOeirasPortugal
| | - Nils Gustafsson
- MRC‐Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Department für Physik and CeNSLudwig‐Maximilians‐UniversitätMunichGermany
| | - Mark Marsh
- MRC‐Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Musa M. Mhlanga
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Ricardo Henriques
- MRC‐Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
11
|
L. Mpye K, Gildenhuys S, Mosebi S. The effects of temperature on streptavidin-biotin binding using affinity isothermal titration calorimetry. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
12
|
Darowski D, Kobold S, Jost C, Klein C. Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells. MAbs 2019; 11:621-631. [PMID: 30892136 PMCID: PMC6601549 DOI: 10.1080/19420862.2019.1596511] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have a proven efficacy for the treatment of refractory hematological B cell malignancies. While often accompanied by side effects, CAR-T technology is getting more mature and will become an important treatment option for various tumor indications. In this review, we summarize emerging approaches that aim to further evolve CAR-T cell therapy based on combinations of so-called universal or modular CAR-(modCAR-)T cells, and their respective adaptor molecules (CAR-adaptors), which mediate the crosslinking between target and effector cells. The activity of such modCAR-T cells is entirely dependent on binding of the respective CAR-adaptor to both a tumor antigen and to the CAR-expressing T cell. Contrary to conventional CAR-T cells, where the immunological synapse is established by direct interaction of CAR and membrane-bound target, modCAR-T cells provide a highly flexible and customizable development of the CAR-T cell concept and offer an additional possibility to control T cell activity.
Collapse
Affiliation(s)
- Diana Darowski
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| | - Sebastian Kobold
- b Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV , Klinikum der Universität München, LMU, Member of the German Center for Lung Research (DZL) , Munich , Germany
| | - Christian Jost
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| | - Christian Klein
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| |
Collapse
|
13
|
Delgadillo RF, Mueser TC, Zaleta-Rivera K, Carnes KA, González-Valdez J, Parkhurst LJ. Detailed characterization of the solution kinetics and thermodynamics of biotin, biocytin and HABA binding to avidin and streptavidin. PLoS One 2019; 14:e0204194. [PMID: 30818336 PMCID: PMC6394990 DOI: 10.1371/journal.pone.0204194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
The high affinity (KD ~ 10−15 M) of biotin for avidin and streptavidin is the essential component in a multitude of bioassays with many experiments using biotin modifications to invoke coupling. Equilibration times suggested for these assays assume that the association rate constant (kon) is approximately diffusion limited (109 M-1s-1) but recent single molecule and surface binding studies indicate that they are slower than expected (105 to 107 M-1s-1). In this study, we asked whether these reactions in solution are diffusion controlled, which reaction model and thermodynamic cycle describes the complex formation, and if there are any functional differences between avidin and streptavidin. We have studied the biotin association by two stopped-flow methodologies using labeled and unlabeled probes: I) fluorescent probes attached to biotin and biocytin; and II) unlabeled biotin and HABA, 2-(4’-hydroxyazobenzene)-benzoic acid. Both native avidin and streptavidin are homo-tetrameric and the association data show no cooperativity between the binding sites. The kon values of streptavidin are faster than avidin but slower than expected for a diffusion limited reaction in both complexes. Moreover, the Arrhenius plots of the kon values revealed strong temperature dependence with large activation energies (6–15 kcal/mol) that do not correspond to a diffusion limited process (3–4 kcal/mol). Accordingly, we propose a simple reaction model with a single transition state for non-immobilized reactants whose forward thermodynamic parameters complete the thermodynamic cycle, in agreement with previously reported studies. Our new understanding and description of the kinetics, thermodynamics, and spectroscopic parameters for these complexes will help to improve purification efficiencies, molecule detection, and drug screening assays or find new applications.
Collapse
Affiliation(s)
- Roberto F. Delgadillo
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RFD); (LJP)
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, United States of America
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Katie A. Carnes
- GlaxoSmithKline, Medicinal Science and Technology, R&D, King of Prussia, Pennsylvania, United States of America
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, NL, Monterrey, Mexico
| | - Lawrence J. Parkhurst
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RFD); (LJP)
| |
Collapse
|
14
|
Chua LH, Tan SC, Liew MW. Process intensification of core streptavidin production through high-cell-density cultivation of recombinant E. coli and a temperature-based refolding method. J Biotechnol 2018; 276-277:34-41. [DOI: 10.1016/j.jbiotec.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
15
|
Akhras S, Toda M, Boller K, Himmelsbach K, Elgner F, Biehl M, Scheurer S, Gratz M, Vieths S, Hildt E. Cell-permeable capsids as universal antigen carrier for the induction of an antigen-specific CD8 + T-cell response. Sci Rep 2017; 7:9630. [PMID: 28851900 PMCID: PMC5575276 DOI: 10.1038/s41598-017-08787-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/13/2017] [Indexed: 01/21/2023] Open
Abstract
Vaccine platforms that can be flexibly loaded with antigens can contribute to decrease response time to emerging infections. For many pathogens and chronic infections, induction of a robust cytotoxic T lymphocytes-mediated response is desirable to control infection. Antigen delivery into the cytoplasm of antigen presenting cells favors induction of cytotoxic T cells. By fusion of the cell-permeable translocation motif (TLM)-peptide to the capsid-forming core protein of hepatitis B virus, and by insertion of the strep-tag in the spike tip (a domain that protrudes from the surface of the capsid), cell-permeable carrier capsids were generated that can be flexibly loaded with various antigens. Loading with antigens was demonstrated by electron microscopy, density gradient centrifugation and surface plasmon resonance spectroscopy. Confocal immunofluorescence microscopy showed that cell-permeable carrier capsids mediate transfer of cargo antigen into the cytoplasm. Using cell-permeable carrier capsids loaded with ovalbumin as model antigen, activation of antigen presenting cells and ovalbumin-specific CD8+ T-cells, which correlates with enhanced specific killing activity, was found. This demonstrates the capacity of TLM-carrier-capsids to serve as universal antigen carrier to deliver antigens into the cytoplasm of antigen presenting cells, which leads to enhanced MHC class I-mediated presentation and induction of antigen-specific cytotoxic T lymphocytes response.
Collapse
Affiliation(s)
- Sami Akhras
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Masako Toda
- Department of Allergology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Klaus Boller
- Department of Immunology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | | | - Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Marlene Biehl
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Stephan Scheurer
- Department of Allergology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Meike Gratz
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Stefan Vieths
- Department of Allergology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany. .,German Center for Infection Research (DZIF), 38124, Braunschweig, Germany.
| |
Collapse
|
16
|
Dhandhukia JP, Brill DA, Kouhi A, Pastuszka MK, MacKay JA. Elastin-like polypeptide switches: A design strategy to detect multimeric proteins. Protein Sci 2017. [PMID: 28639381 DOI: 10.1002/pro.3215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elastin-Like Polypeptides (ELPs) reversibly phase separate in response to changes in temperature, pressure, concentration, pH, and ionic species. While powerful triggers, biological microenvironments present a multitude of more specific biological cues, such as antibodies, cytokines, and cell-surface receptors. To develop better biosensors and bioresponsive drug carriers, rational strategies are required to sense and respond to these target proteins. We recently reported that noncovalent association of two ELP fusion proteins to a "chemical inducer of dimerization" small molecule (1.5 kDa) induces phase separation at physiological temperatures. Having detected a small molecule, here we present the first evidence that ELP multimerization can also detect a much larger (60 kDa) protein target. To demonstrate this strategy, ELPs were biotinylated at their amino terminus and mixed with tetrameric streptavidin. At a stoichiometric ratio of [4:1], two to three biotin-ELPs associate with streptavidin into multimeric complexes with an apparent Kd of 5 nM. The increased ELP density around a streptavidin core strongly promotes isothermal phase separation, which was tuned to occur at physiological temperature. This phase separation reverses upon saturation with excess streptavidin, which only favors [1:1] complexes. Together, these findings suggest that ELP association with multimeric biomolecules is a viable strategy to deliberately engineer ELPs that respond to multimeric protein substrates.
Collapse
Affiliation(s)
- Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Dab A Brill
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Aida Kouhi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Martha K Pastuszka
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089-9121
| |
Collapse
|
17
|
Lakowitz A, Godard T, Biedendieck R, Krull R. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. Eur J Pharm Biopharm 2017; 126:27-39. [PMID: 28606596 DOI: 10.1016/j.ejpb.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023]
Abstract
Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production.
Collapse
Affiliation(s)
- Antonia Lakowitz
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Thibault Godard
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany.
| |
Collapse
|
18
|
Wu SC, Wang C, Hansen D, Wong SL. A simple approach for preparation of affinity matrices: Simultaneous purification and reversible immobilization of a streptavidin mutein to agarose matrix. Sci Rep 2017; 7:42849. [PMID: 28220817 PMCID: PMC5318860 DOI: 10.1038/srep42849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022] Open
Abstract
SAVSBPM18 is an engineered streptavidin for affinity purification of both biotinylated biomolecules and recombinant proteins tagged with streptavidin binding peptide (SBP) tags. To develop a user-friendly approach for the preparation of the SAVSBPM18-based affinity matrices, a designer fusion protein containing SAVSBPM18 and a galactose binding domain was engineered. The galactose binding domain derived from the earthworm lectin EW29 was genetically modified to eliminate a proteolytic cleavage site located at the beginning of the domain. This domain was fused to the C-terminal end of SAVSBPM18. It allows the SAVSBPM18 fusions to bind reversibly to agarose and can serve as an affinity handle for purification of the fusion. Fluorescently labeled SAVSBPM18 fusions were found to be stably immobilized on Sepharose 6B-CL. The enhanced immobilization capability of the fusion to the agarose beads results from the avidity effect mediated by the tetrameric nature of SAVSBPM18. This approach allows the consolidation of purification and immobilization of SAVSBPM18 fusions to Sepharose 6B-CL in one step for affinity matrix preparation. The resulting affinity matrix has been successfully applied to purify both SBP tagged β-lactamase and biotinylated proteins. No significant reduction in binding capacity of the column was observed for at least six months.
Collapse
Affiliation(s)
- Sau-Ching Wu
- Department of Biological Sciences, University of Calgary, 2500 University Dr., N.W. Calgary, Alberta, T2N 1N4, Canada
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, 2500 University Dr., N.W. Calgary, Alberta, T2N 1N4, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Dr., N.W. Calgary, Alberta, T2N 1N4, Canada
| | - Sui-Lam Wong
- Department of Biological Sciences, University of Calgary, 2500 University Dr., N.W. Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
19
|
Salehi N, Peng CA. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography. Biotechnol Prog 2016; 32:949-58. [PMID: 27110670 DOI: 10.1002/btpr.2293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/22/2016] [Indexed: 11/07/2022]
Abstract
CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016.
Collapse
Affiliation(s)
- Nasrin Salehi
- Biochemistry and Molecular Biology Program, Michigan Technological University, Houghton, MI, 49931
| | - Ching-An Peng
- Dept. of Biological Engineering, University of Idaho, Moscow, ID, 83844
| |
Collapse
|
20
|
Quevedo PD, Behnke T, Resch-Genger U. Streptavidin conjugation and quantification-a method evaluation for nanoparticles. Anal Bioanal Chem 2016; 408:4133-49. [PMID: 27038055 DOI: 10.1007/s00216-016-9510-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Aiming at the development of validated protocols for protein conjugation of nanomaterials and the determination of protein labeling densities, we systematically assessed the conjugation of the model protein streptavidin (SAv) to 100-, 500-, and 1000-nm-sized polystyrene and silica nanoparticles and dye-encoded polymer particles with two established conjugation chemistries, based upon achievable coupling efficiencies and labeling densities. Bioconjugation reactions compared included EDC/sulfo NHS ester chemistry for direct binding of the SAv to carboxyl groups at the particle surface and maleimide-thiol chemistry in conjunction with heterobifunctional PEG linkers and aminated nanoparticles (NPs). Quantification of the total and functional amounts of SAv on these nanomaterials and unreacted SAv in solution was performed with the BCA assay and the biotin-FITC (BF) titration, relying on different signal generation principles, which are thus prone to different interferences. Our results revealed a clear influence of the conjugation chemistry on the amount of NP crosslinking, yet under optimized reaction conditions, EDC/sulfo NHS ester chemistry and the attachment via heterobifunctional PEG linkers led to comparably efficient SAv coupling and good labeling densities. Particle size can obviously affect protein labeling densities and particularly protein functionality, especially for larger particles. For unstained nanoparticles, direct bioconjugation seems to be the most efficient strategy, whereas for dye-encoded nanoparticles, PEG linkers are to be favored for the prevention of dye-protein interactions which can affect protein functionality specifically in the case of direct SAv binding. Moreover, an influence of particle size on achievable protein labeling densities and protein functionality could be demonstrated.
Collapse
Affiliation(s)
- Pablo Darío Quevedo
- Department 1, Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstaetter Strasse 11, 12489, Berlin, Germany
| | - Thomas Behnke
- Department 1, Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstaetter Strasse 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Department 1, Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstaetter Strasse 11, 12489, Berlin, Germany.
| |
Collapse
|
21
|
Diao Y, Liu J, Ma Y, Su M, Zhang H, Hao X. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo. Cancer Biol Ther 2016; 17:498-506. [PMID: 26954374 DOI: 10.1080/15384047.2016.1156266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA(+) tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy.
Collapse
Affiliation(s)
- Yanjun Diao
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China.,b Public Health England Clinical Microbiology & Public Health Laboratory Cambridge, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital , UK
| | - Jiayun Liu
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Yueyun Ma
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Mingquan Su
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Hongyi Zhang
- b Public Health England Clinical Microbiology & Public Health Laboratory Cambridge, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital , UK
| | - Xiaoke Hao
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| |
Collapse
|
22
|
Fogen D, Wu SC, Ng KKS, Wong SL. Engineering Streptavidin and a Streptavidin-Binding Peptide with Infinite Binding Affinity and Reversible Binding Capability: Purification of a Tagged Recombinant Protein to High Purity via Affinity-Driven Thiol Coupling. PLoS One 2015; 10:e0139137. [PMID: 26406477 PMCID: PMC4583386 DOI: 10.1371/journal.pone.0139137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
To extend and improve the utility of the streptavidin-binding peptide tag (SBP-tag) in applications ranging from affinity purification to the reversible immobilization of recombinant proteins, a cysteine residue was introduced to the streptavidin mutein SAVSBPM18 and the SBP-tag to generate SAVSBPM32 and SBP(A18C), respectively. This pair of derivatives is capable of forming a disulfide bond through the newly introduced cysteine residues. SAVSBPM32 binds SBP-tag and biotin with binding affinities (Kd ~ 10-8M) that are similar to SAVSBPM18. Although SBP(A18C) binds to SAVSBPM32 more weakly than SBP-tag, the binding affinity is sufficient to bring the two binding partners together efficiently before they are locked together via disulfide bond formation–a phenomenon we have named affinity-driven thiol coupling. Under the condition with SBP(A18C) tags in excess, two SBP(A18C) tags can be captured by a tetrameric SAVSBPM32. The stoichiometry of the disulfide-bonded SAVSBPM32-SBP(A18C) complex was determined using a novel two-dimensional electrophoresis method which has general applications for analyzing the composition of disulfide-bonded protein complexes. To illustrate the application of this reversible immobilization technology, optimized conditions were established to use the SAVSBPM32-affinity matrix for the purification of a SBP(A18C)-tagged reporter protein to high purity. Furthermore, we show that the SAVSBPM32-affinity matrix can also be applied to purify a biotinylated protein and a reporter protein tagged with the unmodified SBP-tag. The dual (covalent and non-covalent) binding modes possible in this system offer great flexibility to many different applications which need reversible immobilization capability.
Collapse
Affiliation(s)
- Dawson Fogen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sau-Ching Wu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kenneth Kai-Sing Ng
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sui-Lam Wong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
23
|
Abstract
This work highlights a novel method of coupling of nucleic acids through formation of an extraordinary stable, specific and fully reversible quadruplex-and-Mg(2+) connection (QMC). QMC employs the monomolecular tetrahelical architecture of DNA and has two key components: (i) shape complementarity between QMC partners, which is introduced by specific modifications of the quadruplexes, and (ii) Mg(2+) ions. The on-rate of QMC formation is between 10(5)-10(6) M(-1) s(-1), while the off-rate is undetectable even at 80 °C. However, QMC dissociates rapidly upon removal of Mg(2+) ions (i.e., by EDTA). QMC is characterized by high specificity, as even a single-nucleotide modification of one of the connectors inhibits complex-formation. QMC has the potential to revolutionize biotechnology by introducing a new class of capture molecules with major advantages over traditional systems such as streptavidin-biotin. The advantages include reversibility, multiplexing, higher stability and specificity, longer shelf life and low cost.
Collapse
|
24
|
Yamamoto T, Aoki K, Sugiyama A, Doi H, Kodama T, Shimizu Y, Kanai M. Design and synthesis of biotin analogues reversibly binding with streptavidin. Chem Asian J 2015; 10:1071-8. [PMID: 25691069 DOI: 10.1002/asia.201500120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 11/06/2022]
Abstract
Two new biotin analogues, biotin carbonate 5 and biotin carbamate 6, have been synthesized. These molecules were designed to reversibly bind with streptavidin by replacing the hydrogen-bond donor NH group(s) of biotin's cyclic urea moiety with oxygen. Biotin carbonate 5 was synthesized from L-arabinose (7), which furnishes the desired stereochemistry at the 3,4-cis-dihydroxy groups, in 11% overall yield (over 10 steps). Synthesis of biotin carbamate 6 was accomplished from L-cysteine-derived chiral aldehyde 33 in 11% overall yield (over 7 steps). Surface plasmon resonance analysis of water-soluble biotin carbonate analogue 46 and biotin carbamate analogue 47 revealed that KD values of these compounds for binding to streptavidin were 6.7×10(-6) M and 1.7×10(-10) M, respectively. These values were remarkably greater than that of biotin (KD =10(-15) M), and thus indicate the importance of the nitrogen atoms for the strong binding between biotin and streptavidin.
Collapse
Affiliation(s)
- Tomohiro Yamamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
| | | | | | | | | | | | | |
Collapse
|
25
|
Koussa MA, Halvorsen K, Ward A, Wong WP. DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis. Nat Methods 2015; 12:123-126. [PMID: 25486062 PMCID: PMC4336243 DOI: 10.1038/nmeth.3209] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/17/2014] [Indexed: 11/16/2022]
Abstract
We introduce a nanoscale experimental platform that enables kinetic and equilibrium measurements of a wide range of molecular interactions using a gel electrophoresis readout. Programmable, self-assembled DNA nanoswitches serve both as templates for positioning molecules and as sensitive, quantitative reporters of molecular association and dissociation. We demonstrated this low-cost, versatile, 'lab-on-a-molecule' system by characterizing ten different interactions, including a complex four-body interaction with five discernible states.
Collapse
Affiliation(s)
- Mounir A Koussa
- Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Ken Halvorsen
- The RNA Institute, University at Albany, Albany, NY, United States
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Andrew Ward
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
26
|
Taskinen B, Zauner D, Lehtonen SI, Koskinen M, Thomson C, Kähkönen N, Kukkurainen S, Määttä JAE, Ihalainen TO, Kulomaa MS, Gruber HJ, Hytönen VP. Switchavidin: Reversible Biotin–Avidin–Biotin Bridges with High Affinity and Specificity. Bioconjug Chem 2014; 25:2233-43. [DOI: 10.1021/bc500462w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Barbara Taskinen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Dominik Zauner
- Institute
of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | - Soili I. Lehtonen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Masi Koskinen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Chloe Thomson
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Niklas Kähkönen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Sampo Kukkurainen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Juha A. E. Määttä
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Teemu O. Ihalainen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
| | - Markku S. Kulomaa
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Hermann J. Gruber
- Institute
of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | - Vesa P. Hytönen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| |
Collapse
|
27
|
Sun X, Montiel D, Li H, Yang H. “Plug-and-Go” Strategy To Manipulate Streptavidin Valencies. Bioconjug Chem 2014; 25:1375-80. [DOI: 10.1021/bc500296p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xun Sun
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel Montiel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hao Li
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Huang M, Galarreta BC, Cetin AE, Altug H. Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. LAB ON A CHIP 2013; 13:4841-7. [PMID: 24170146 DOI: 10.1039/c3lc50814e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective analyte delivery is essential to achieve rapid and sensitive biodetection systems. In this article, we present an actively controlled fluidic system integrated with a suspended plasmonic nanohole sensor to achieve superior analyte delivery efficiency and ultrafast sensor response, as compared to conventional fluidic systems. 70 nm sized virus like analyte solution is used to experimentally demonstrate the system performance improvements. Sensor response time is reduced by one order of magnitude as compared to the conventional methods. A seven orders of magnitude dynamic concentration range from 10(3) to 10(9) particles mL(-1) is quantified, corresponding to a concentration window relevant to clinical diagnosis and drug screening. Our non-destructive detection system, by enabling efficient analyte delivery, fast sensing response and minimal sample volume, opens up opportunities for sensitive, rapid and real-time virus detection in infectious disease control and point-of-care applications.
Collapse
Affiliation(s)
- Min Huang
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | | | | | | |
Collapse
|
29
|
Tamavidin 2-HOT, a highly thermostable biotin-binding protein. J Biotechnol 2013; 169:1-8. [PMID: 24211408 DOI: 10.1016/j.jbiotec.2013.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/17/2013] [Accepted: 10/25/2013] [Indexed: 11/22/2022]
Abstract
Tamavidin 2 is a fungal tetrameric protein that binds with high affinity to biotin, like avidin and streptavidin. We replaced asparagine-115, which lies in a subunit-subunit interface of tamavidin 2, with cysteine to generate the novel, highly thermostable protein tamavidin 2-HOT. Tamavidin 2-HOT retained more than 80% of its biotin-binding activity even after incubation at 99.9°C for 60min and was fully active in 70% dimethylsulfoxide for 30min, whereas in these harsh conditions, avidin, streptavidin, and tamavidin 2 lost their activities (less than 20% of their biotin-binding activities). The Tm in which the biotin-binding activity becomes half of tamavidin 2-HOT was 105°C, at least 20°C higher than those of avidin, streptavidin, and tamavidin 2. Because a reducing agent removed the thermal stability of tamavidin 2-HOT, the N115C mutation likely created disulfide bridges that stabilized inter-subunit associations. Tamavidin 2-HOT is efficiently produced in the soluble form by Escherichia coli for practical use. The isoelectric point of tamavidin 2-HOT (7.4) is sufficiently low to reduce the chance for non-specific binding of non-target molecules due to high positive charges. Therefore, tamavidin 2-HOT may be useful in diverse novel applications that take advantage of its high biotin-binding capability that can withstand harsh conditions.
Collapse
|
30
|
Fukunaga A, Tsumoto K. Improving the affinity of an antibody for its antigen via long-range electrostatic interactions. Protein Eng Des Sel 2013; 26:773-80. [DOI: 10.1093/protein/gzt053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Taskinen B, Zmurko J, Ojanen M, Kukkurainen S, Parthiban M, Määttä JAE, Leppiniemi J, Jänis J, Parikka M, Turpeinen H, Rämet M, Pesu M, Johnson MS, Kulomaa MS, Airenne TT, Hytönen VP. Zebavidin--an avidin-like protein from zebrafish. PLoS One 2013; 8:e77207. [PMID: 24204770 PMCID: PMC3811995 DOI: 10.1371/journal.pone.0077207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/06/2013] [Indexed: 01/27/2023] Open
Abstract
The avidin protein family members are well known for their high affinity towards D-biotin and high structural stability. These properties make avidins valuable tools for a wide range of biotechnology applications. We have identified a new member of the avidin family in the zebrafish (Danio rerio) genome, hereafter called zebavidin. The protein is highly expressed in the gonads of both male and female zebrafish and in the gills of male fish, but our data suggest that zebavidin is not crucial for the developing embryo. Biophysical and structural characterisation of zebavidin revealed distinct properties not found in any previously characterised avidins. Gel filtration chromatography and native mass spectrometry suggest that the protein forms dimers in the absence of biotin at low ionic strength, but assembles into tetramers upon binding biotin. Ligand binding was analysed using radioactive and fluorescently labelled biotin and isothermal titration calorimetry. Moreover, the crystal structure of zebavidin in complex with biotin was solved at 2.4 Å resolution and unveiled unique ligand binding and subunit interface architectures; the atomic-level details support our physicochemical observations.
Collapse
Affiliation(s)
- Barbara Taskinen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Joanna Zmurko
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Markus Ojanen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
| | - Sampo Kukkurainen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Marimuthu Parthiban
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Juha A. E. Määttä
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jenni Leppiniemi
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Mataleena Parikka
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
| | - Hannu Turpeinen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
| | - Mika Rämet
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Marko Pesu
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Mark S. Johnson
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Markku S. Kulomaa
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Tomi T. Airenne
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Vesa P. Hytönen
- Institute of Biomedical Technology, University of Tampere, BioMediTech, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
- * E-mail:
| |
Collapse
|
32
|
Rebhan MAE, Brunschweiger A, Hall J. Measurement by SPR of Very Low Dissociation Rates: Oxidation-Mediated Loss of Biotin-Streptavidin Affinity. Chembiochem 2013; 14:2091-4. [DOI: 10.1002/cbic.201300468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Indexed: 12/17/2022]
|
33
|
Wu SC, Wong SL. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins. PLoS One 2013; 8:e69530. [PMID: 23874971 PMCID: PMC3712923 DOI: 10.1371/journal.pone.0069530] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/13/2013] [Indexed: 12/13/2022] Open
Abstract
Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4 × 10(-14) M to 4.45 × 10(-10) M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for various blots are possible.
Collapse
Affiliation(s)
- Sau-Ching Wu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sui-Lam Wong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Barrette-Ng IH, Wu SC, Tjia WM, Wong SL, Ng KKS. The structure of the SBP-Tag-streptavidin complex reveals a novel helical scaffold bridging binding pockets on separate subunits. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:879-87. [PMID: 23633599 PMCID: PMC3640474 DOI: 10.1107/s0907444913002576] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/25/2013] [Indexed: 11/10/2022]
Abstract
The 38-residue SBP-Tag binds to streptavidin more tightly (K(d) -/= 2.5-4.9 nM) than most if not all other known peptide sequences. Crystallographic analysis at 1.75 Å resolution shows that the SBP-Tag binds to streptavidin in an unprecedented manner by simultaneously interacting with biotin-binding pockets from two separate subunits. An N-terminal HVV peptide sequence (residues 12-14) and a C-terminal HPQ sequence (residues 31-33) form the bulk of the direct interactions between the SBP-Tag and the two biotin-binding pockets. Surprisingly, most of the peptide spanning these two sites (residues 17-28) adopts a regular α-helical structure that projects three leucine side chains into a groove formed at the interface between two streptavidin protomers. The crystal structure shows that residues 1-10 and 35-38 of the original SBP-Tag identified through in vitro selection and deletion analysis do not appear to contact streptavidin and thus may not be important for binding. A 25-residue peptide comprising residues 11-34 (SBP-Tag2) was synthesized and shown using surface plasmon resonance to bind streptavidin with very similar affinity and kinetics when compared with the SBP-Tag. The SBP-Tag2 was also added to the C-terminus of β-lactamase and was shown to be just as effective as the full-length SBP-Tag in affinity purification. These results validate the molecular structure of the SBP-Tag-streptavidin complex and establish a minimal bivalent streptavidin-binding tag from which further rational design and optimization can proceed.
Collapse
Affiliation(s)
- Isabelle H. Barrette-Ng
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Sau-Ching Wu
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Wai-Mui Tjia
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Sui-Lam Wong
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Kenneth K. S. Ng
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
35
|
Takakura Y, Sofuku K, Tsunashima M. Tamavidin 2-REV: An engineered tamavidin with reversible biotin-binding capability. J Biotechnol 2013; 164:19-25. [DOI: 10.1016/j.jbiotec.2013.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/28/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
|
36
|
Encell LP, Friedman Ohana R, Zimmerman K, Otto P, Vidugiris G, Wood MG, Los GV, McDougall MG, Zimprich C, Karassina N, Learish RD, Hurst R, Hartnett J, Wheeler S, Stecha P, English J, Zhao K, Mendez J, Benink HA, Murphy N, Daniels DL, Slater MR, Urh M, Darzins A, Klaubert DH, Bulleit RF, Wood KV. Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands. CURRENT CHEMICAL GENOMICS 2012; 6:55-71. [PMID: 23248739 PMCID: PMC3520037 DOI: 10.2174/1875397301206010055] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/04/2012] [Accepted: 04/16/2012] [Indexed: 11/22/2022]
Abstract
Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins.
Collapse
|
37
|
Development of a tetrameric streptavidin mutein with reversible biotin binding capability: engineering a mobile loop as an exit door for biotin. PLoS One 2012; 7:e35203. [PMID: 22536357 PMCID: PMC3334968 DOI: 10.1371/journal.pone.0035203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/10/2012] [Indexed: 12/01/2022] Open
Abstract
A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible.
Collapse
|
38
|
Chang L, Rissin DM, Fournier DR, Piech T, Patel PP, Wilson DH, Duffy DC. Single molecule enzyme-linked immunosorbent assays: theoretical considerations. J Immunol Methods 2012; 378:102-15. [PMID: 22370429 DOI: 10.1016/j.jim.2012.02.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/10/2012] [Indexed: 11/25/2022]
Abstract
We have developed a highly sensitive immunoassay-called digital ELISA-that is based on the detection of single enzyme-linked immunocomplexes on beads that are sealed in arrays of femtoliter wells. Digital ELISA was designed to be highly efficient in the capturing of target proteins, labeling of these proteins, and their detection in single molecule arrays (SiMoA); in essence, the goal of the assay is to "capture every molecule, detect every molecule". Here we provide the theoretical basis for the design of this assay derived from simple equations based on bimolecular interactions. Using these equations and knowledge of the concentrations of reagents, the times of interactions, and the on- and off-rates of the molecular interactions for each step of the assay, it is possible to predict the number of immunocomplexes that are formed and detected by SiMoA. The unique ability of SiMoA to count single immunocomplexes and determine an average number of enzymes per bead (AEB), makes it possible to directly compare the number of molecules detected experimentally to those predicted by theory. These predictions compare favorably to experimental data generated for a digital ELISA for prostate specific antigen (PSA). The digital ELISA process is efficient across a range of antibody affinities (K(D)~10(-11) -10(-9) M), and antibodies with high on-rates (k(on)>10(5) M(-1) s(-1)) are predicted to perform best. The high efficiency of digital ELISA and sensitivity of SiMoA to enzyme label also makes it possible to reduce the concentration of labeling reagent, reduce backgrounds, and increasing the specificity of the approach. Strategies for dealing with the dissociation of antibody complexes over time that can affect the signals in an assay are also described.
Collapse
Affiliation(s)
- Lei Chang
- Quanterix Corporation, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Nanobody-coupled microbubbles as novel molecular tracer. J Control Release 2011; 158:346-53. [PMID: 22197777 DOI: 10.1016/j.jconrel.2011.12.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
Abstract
Camelid-derived single-domain antibody-fragments (~15kDa), called nanobodies, are a new class of molecular tracers that are routinely identified with nanomolar affinity for their target and that are easily tailored for molecular imaging and drug delivery applications. We hypothesized that they are well-suited for the design of targeted microbubbles (μBs) and aimed to develop and characterize eGFP- and VCAM-1-targeted μBs. Anti-eGFP (cAbGFP4) and anti-VCAM-1 (cAbVCAM1-5) nanobodies were site-specifically biotinylated in bacteria. This metabolic biotinylation method yielded functional nanobodies with one biotin located at a distant site of the antigen-binding region of the molecule. The biotinylated nanobodies were coupled to biotinylated lipid μBs via streptavidin-biotin bridging. The ability of μB-cAbGFP4 to recognize eGFP was tested as proof-of-principle by fluorescent microscopy and confirmed the specific binding of eGFP to μB-cAbGFP4. Dynamic flow chamber studies demonstrated the ability of μB-cAbVCAM1-5 to bind VCAM-1 in fast flow (up to 5 dynes/cm(2)). In vivo targeting studies were performed in MC38 tumor-bearing mice (n=4). μB-cAbVCAM1-5 or control μB-cAbGFP4 were injected intravenously and imaged using a contrast-specific ultrasound imaging mode. The echo intensity in the tumor was measured 10min post-injection. μB-cAbVCAM1-5 showed an enhanced signal compared to control μBs (p<0.05). Using metabolic and site-specific biotinylation of nanobodies, a method to develop nanobody-coupled μBs was described. The application of VCAM-1-targeted μBs as novel molecular ultrasound contrast agent was demonstrated both in vitro and in vivo.
Collapse
|
40
|
Yoo SK, Kim YM, Yoon SY, Kwon HS, Lee JH, Yang S. Bead packing and release using flexible polydimethylsiloxane membrane for semi-continuous biosensing. Artif Organs 2011; 35:E136-44. [PMID: 21658079 DOI: 10.1111/j.1525-1594.2011.01240.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The continuous or semi-continuous biosensing of systemic inflammatory responses is important both during and after cardiopulmonary bypass (CPB) procedures. A bead packing and release method, which is able repetitively to capture and release receptor-coated beads within microfluidic channels, is herein advanced for use in semi-continuous biosensing. The receptor-coated beads are compacted and concentrated at specific locations in the device using an elastomeric valve. This concentration creates a localized bioreactor in which the binding of the antigen with the functionalized beads can be made more effective. After the reaction and detection have taken place, the beads can be released and a new assay carried out. We demonstrated the operation of our device using streptavidin-coated beads and biotin-4-fluorescein (B4F). The high sensitivity of the device allows it to detect a B4F concentration of 50 pg/mL after an incubation time of 5 min. We also tested our device in the semi-continuous immunoassay of interleukin (IL)-6, which is one of the proinflammatory cytokines. The assay demonstrated the linear dependence of the intensity of fluorescence at concentrations of IL-6 from 10 to 250 pg/mL, which is a physiologically important range for CPB procedures.
Collapse
Affiliation(s)
- Sung Keun Yoo
- School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Magalhães MLB, Czekster CM, Guan R, Malashkevich VN, Almo SC, Levy M. Evolved streptavidin mutants reveal key role of loop residue in high-affinity binding. Protein Sci 2011; 20:1145-54. [PMID: 21520321 DOI: 10.1002/pro.642] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/07/2022]
Abstract
We have performed a detailed analysis of streptavidin variants with altered specificity towards desthiobiotin. In addition to changes in key residues which widen the ligand binding pocket and accommodate the more structurally flexible desthiobiotin, the data revealed the role of a key, non-active site mutation at the base of the flexible loop (S52G) which slows dissociation of this ligand by approximately sevenfold. Our data suggest that this mutation results in the loss of a stabilizing contact which keeps this loop open and accessible in the absence of ligand. When this mutation was introduced into the wild-type protein, destabilization of the opened loop conferred a ∼10-fold decrease in both the on-rate and off-rate for the ligand biotin-4-fluoroscein. A similar effect was observed when this mutation was added to a monomeric form of this protein. Our results provide key insight into the role of the streptavidin flexible loop in ligand binding and maintaining high affinity interactions.
Collapse
Affiliation(s)
- Maria L B Magalhães
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
42
|
A nanomechanical interface to rapid single-molecule interactions. Nat Commun 2011; 2:247. [DOI: 10.1038/ncomms1246] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/21/2011] [Indexed: 01/14/2023] Open
|
43
|
Chivers CE, Crozat E, Chu C, Moy VT, Sherratt DJ, Howarth M. A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat Methods 2010; 7:391-3. [PMID: 20383133 PMCID: PMC2862113 DOI: 10.1038/nmeth.1450] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/05/2010] [Indexed: 11/09/2022]
Abstract
Streptavidin binds biotin conjugates with exceptional stability but dissociation does occur, limiting its use in imaging, DNA amplification and nanotechnology. We identified a mutant streptavidin, traptavidin, with more than tenfold slower biotin dissociation, increased mechanical strength and improved thermostability; this resilience should enable diverse applications. FtsK, a motor protein important in chromosome segregation, rapidly displaced streptavidin from biotinylated DNA, whereas traptavidin resisted displacement, indicating the force generated by Ftsk translocation.
Collapse
|
44
|
Enhanced internalization and endosomal escape of dual-functionalized poly(ethyleneimine)s polyplex with diphtheria toxin T and R domains. Biomed Pharmacother 2010; 64:296-301. [DOI: 10.1016/j.biopha.2009.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 06/07/2009] [Indexed: 11/22/2022] Open
|
45
|
Abstract
The study of protein folding requires a method to drive unfolding, which is typically accomplished by altering solution conditions to favor the denatured state. This has the undesirable consequence that the molecular forces responsible for configuring the polypeptide chain are also changed. It would therefore be useful to develop methods that can drive unfolding without the need for destabilizing solvent conditions. Here we introduce a new method to accomplish this goal, which we call steric trapping. In the steric trap method, the target protein is labeled with two biotin tags placed close in space so that both biotin tags can only be bound by streptavidin when the protein unfolds. Thus, binding of the second streptavidin is energetically coupled to unfolding of the target protein. Testing the method on a model protein, dihydrofolate reductase (DHFR), we find that streptavidin binding can drive unfolding and that the apparent binding affinity reports on changes in DHFR stability. Finally, by employing the slow off-rate of wild-type streptavidin, we find that DHFR can be locked in the unfolded state. The steric trap method provides a simple method for studying aspects of protein folding and stability in native solvent conditions, could be used to specifically unfold selected domains, and could be applicable to membrane proteins.
Collapse
Affiliation(s)
- Tracy M Blois
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
46
|
Wu SC, Ng KKS, Wong SL. Engineering monomeric streptavidin and its ligands with infinite affinity in binding but reversibility in interaction. Proteins 2009; 77:404-12. [PMID: 19425108 DOI: 10.1002/prot.22446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Natural tetrameric streptavidin captures and immobilizes biotinylated molecules with ultra-tight binding (K(d) approximately 10(-13) to 10(-14) M). In contrast, engineered monomeric streptavidin offers reversible binding (K(d) approximately 10(-7) M). To develop an ideal engineered streptavidin which possesses both the immobilization capability of the natural streptavidin and the reversible interaction reactivity of the monomeric streptavidin, a pair of engineered biomaterials was designed through molecular modeling. This system consists of two recombinant components: an engineered monomeric streptavidin M6, which has a cysteine residue (C118) near the biotin binding site, and a cysteine containing biotinylation tag. Interactions between M6 and the biotinylated peptide tag go through a two-stage process (capture and immobilization) to generate a covalently linked complex. Biotinylation is essential in the capture stage. Once the biotin moiety in the biotinylated tag is captured by M6, the biotinylated tag can fold back and rotate on the surface of the complex with the biotinylated lysine in the peptide tag as the axis until the formationof a disulfide bond. Consequently, cysteine residue in different positions flanking the biotin residue in the biotinylation tag can successfully form a disulfide bond with M6. Intermolecular disulfide bond formation between M6 and the tag containing protein offers the immobilization capability to M6. In the presence of reducing agent and biotin, bound ligands can be dissociated. This system has the potential to extend the biotin-streptavidin technology to develop reusable biosensor/protein chips and bioreactors.
Collapse
Affiliation(s)
- Sau-Ching Wu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
47
|
Guo S, Lad N, Ray C, Akhremitchev BB. Association kinetics from single molecule force spectroscopy measurements. Biophys J 2009; 96:3412-22. [PMID: 19383484 DOI: 10.1016/j.bpj.2009.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/29/2008] [Accepted: 01/22/2009] [Indexed: 01/12/2023] Open
Abstract
Single molecule force spectroscopy is often used to study the dissociation of single molecules by applying mechanical force to the intermolecular bond. These measurements provide the kinetic parameters of dissociation. We present what to our knowledge is a new atomic force microscopy-based approach to obtain the activation energy of the association reaction and approximate grafting density of reactive receptors using the dependence of the probability to form molecular bonds on probe velocity when one of the interacting molecules is tethered by a flexible polymeric linker to the atomic force microscopy probe. Possible errors in the activation energy measured with this approach are considered and resulting corrections are included in the data analysis. This new approach uses the same experimental setup as traditional force spectroscopy measurements that quantify dissociation kinetics. We apply the developed methodology to measure the activation energy of biotin-streptavidin association (including a contribution from the steric factor) and obtain a value of 8 +/- 1 kT. This value is consistent with the association rate measured previously in solution. Comparison with the solution-derived activation energy indicates that kinetics of biotin-streptavidin binding is mainly controlled by the reaction step.
Collapse
Affiliation(s)
- Senli Guo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
48
|
Takakura Y, Tsunashima M, Suzuki J, Usami S, Kakuta Y, Okino N, Ito M, Yamamoto T. Tamavidins--novel avidin-like biotin-binding proteins from the Tamogitake mushroom. FEBS J 2009; 276:1383-97. [PMID: 19187241 DOI: 10.1111/j.1742-4658.2009.06879.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Novel biotin-binding proteins, referred to herein as tamavidin 1 and tamavidin 2, were found in a basidiomycete fungus, Pleurotus cornucopiae, known as the Tamogitake mushroom. These are the first avidin-like proteins to be discovered in organisms other than birds and bacteria. Tamavidin 1 and tamavidin 2 have amino acid sequences with 31% and 36% identity, respectively, to avidin, and 47% and 48% identity, respectively, to streptavidin. Unlike any other biotin-binding proteins, tamavidin 1 and tamavidin 2 are expressed as soluble proteins at a high level in Escherichia coli. Recombinant tamavidin 2 was purified as a tetrameric protein in a single step by 2-iminobiotin affinity chromatography, with a yield of 5 mg per 100 mL culture of E. coli. The kinetic parameters measured by a BIAcore biosensor indicated that recombinant tamavidin 2 binds biotin with high affinity, in a similar manner to binding by avidin and streptavidin. The overall crystal structure of recombinant tamavidin 2 is similar to that of avidin and streptavidin. However, recombinant tamavidin 2 is immunologically distinct from avidin and streptavidin. Tamavidin 2 and streptavidin are very similar in terms of the arrangement of the residues interacting with biotin, but different with regard to the number of hydrogen bonds to biotin carboxylate. Recombinant tamavidin 2 is more stable than avidin and streptavidin at high temperature, and nonspecific binding to DNA and human serum by recombinant tamavidin 2 is lower than that for avidin. These findings highlight tamavidin 2 as a probable powerful tool, in addition to avidin and streptavidin, in numerous applications of biotin-binding proteins.
Collapse
|
49
|
Aulasevich A, Roskamp RF, Jonas U, Menges B, Dostálek J, Knoll W. Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films. Macromol Rapid Commun 2009; 30:872-7. [PMID: 21706671 DOI: 10.1002/marc.200800747] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/03/2009] [Accepted: 02/06/2009] [Indexed: 11/06/2022]
Abstract
This article reports the implementation of optical waveguide spectroscopy (OWS) for the quantitative time-resolved observation of changes in the swelling behavior and mass density of protein-functionalized hydrogel films. In the experiment, a thin film of an N-isopropylacrylamide (NIPAAm)-based polymer that supported optical waveguide modes is attached to a metallic sensor surface. IgG molecules are in situ immobilized in this gel by using novel coupling chemistry with a charge-attraction scheme based on a tetrafluorophenol sulfonate active ester. The anti-fouling properties of the functionalized hydrogel network and the kinetics of the affinity binding of protein molecules in the gel are investigated.
Collapse
Affiliation(s)
- Alena Aulasevich
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Encarnação JM, Baltazar R, Stallinga P, Ferreira GNM. Piezoelectric biosensors assisted with electroacoustic impedance spectroscopy: a tool for accurate quantitative molecular recognition analysis. J Mol Recognit 2009; 22:129-37. [DOI: 10.1002/jmr.907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|