1
|
Dobransky A, Root M, Hafner N, Marcum M, Sharifi HJ. CRL4-DCAF1 Ubiquitin Ligase Dependent Functions of HIV Viral Protein R and Viral Protein X. Viruses 2024; 16:1313. [PMID: 39205287 PMCID: PMC11360348 DOI: 10.3390/v16081313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The Human Immunodeficiency Virus (HIV) encodes several proteins that contort the host cell environment to promote viral replication and spread. This is often accomplished through the hijacking of cellular ubiquitin ligases. These reprogrammed complexes initiate or enhance the ubiquitination of cellular proteins that may otherwise act to restrain viral replication. Ubiquitination of target proteins may alter protein function or initiate proteasome-dependent destruction. HIV Viral Protein R (Vpr) and the related HIV-2 Viral Protein X (Vpx), engage the CRL4-DCAF1 ubiquitin ligase complex to target numerous cellular proteins. In this review we describe the CRL4-DCAF1 ubiquitin ligase complex and its interactions with HIV Vpr and Vpx. We additionally summarize the cellular proteins targeted by this association as well as the observed or hypothesized impact on HIV.
Collapse
Affiliation(s)
- Ashley Dobransky
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Mary Root
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Nicholas Hafner
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Matty Marcum
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - H John Sharifi
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
2
|
Wang K, Deshaies RJ, Liu X. Assembly and Regulation of CRL Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:33-46. [DOI: 10.1007/978-981-15-1025-0_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Williams KM, Qie S, Atkison JH, Salazar-Arango S, Alan Diehl J, Olsen SK. Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Nat Commun 2019; 10:3296. [PMID: 31341161 PMCID: PMC6656757 DOI: 10.1038/s41467-019-11061-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin (Ub) signaling requires the sequential interactions and activities of three enzymes, E1, E2, and E3. Cdc34 is an E2 that plays a key role in regulating cell cycle progression and requires unique structural elements to function. The molecular basis by which Cdc34 engages its E1 and the structural mechanisms by which its unique C-terminal extension functions in Cdc34 activity are unknown. Here, we present crystal structures of Cdc34 alone and in complex with E1, and a Cdc34~Ub thioester mimetic that represents the product of Uba1-Cdc34 Ub transthiolation. These structures reveal conformational changes in Uba1 and Cdc34 and a unique binding mode that are required for transthiolation. The Cdc34~Ub structure reveals contacts between the Cdc34 C-terminal extension and Ub that stabilize Cdc34~Ub in a closed conformation and are critical for Ub discharge. Altogether, our structural, biochemical, and cell-based studies provide insights into the molecular mechanisms by which Cdc34 function in cells.
Collapse
Affiliation(s)
- Katelyn M Williams
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shuo Qie
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James H Atkison
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sabrina Salazar-Arango
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - J Alan Diehl
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shaun K Olsen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
4
|
Rojas F, Koszela J, Búa J, Llorente B, Burchmore R, Auer M, Mottram JC, Téllez-Iñón MT. The ubiquitin-conjugating enzyme CDC34 is essential for cytokinesis in contrast to putative subunits of a SCF complex in Trypanosoma brucei. PLoS Negl Trop Dis 2017; 11:e0005626. [PMID: 28609481 PMCID: PMC5507466 DOI: 10.1371/journal.pntd.0005626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/11/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin-proteasome system is a post-translational regulatory pathway for controlling protein stability and activity that underlies many fundamental cellular processes, including cell cycle progression. Target proteins are tagged with ubiquitin molecules through the action of an enzymatic cascade composed of E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. One of the E3 ligases known to be responsible for the ubiquitination of cell cycle regulators in eukaryotes is the SKP1-CUL1-F-box complex (SCFC). In this work, we identified and studied the function of homologue proteins of the SCFC in the life cycle of Trypanosoma brucei, the causal agent of the African sleeping sickness. Depletion of trypanosomal SCFC components TbRBX1, TbSKP1, and TbCDC34 by RNAi resulted in decreased growth rate and contrasting cell cycle abnormalities for both procyclic (PCF) and bloodstream (BSF) forms. Depletion of TbRBX1 in PCF cells interfered with kinetoplast replication, whilst depletion of TbSKP1 arrested PCF and BSF cells in the G1/S transition. Silencing of TbCDC34 in BSF cells resulted in a block in cytokinesis and caused rapid clearance of parasites from infected mice. We also show that TbCDC34 is able to conjugate ubiquitin in vitro and in vivo, and that its activity is necessary for T. brucei infection progression in mice. This study reveals that different components of a putative SCFC have contrasting phenotypes once depleted from the cells, and that TbCDC34 is essential for trypanosome replication, making it a potential target for therapeutic intervention. African sleeping sickness is a neglected tropical disease caused by infection with the protozoan parasite Trypanosoma brucei, which is transmitted to humans by tsetse flies (Glossina genus). Treatment of the disease is complex and relies on limited pharmaceutical options. Understanding how T. brucei regulates cell cycle progression at a molecular level when alternating between the mammalian host and the insect vector could lead to better therapies. In this study, we examined different T. brucei proteins with homology to components of the SKP1-CUL1-F-box ubiquitin ligase complex (SCFC), previously characterized in other eukaryotes as a regulator of cell cycle progression. We found that depletion of the homologues of a putative SCFC cause T. brucei to develop abnormally, generating different phenotypes of the mammalian and insect stages. Interestingly, depletion of the ubiquitin conjugating enzyme TbCDC34 arrest cells in a pre-cytokinesis stage, indicating that this protein is essential for cytokinesis. In addition to improving our fundamental understanding of the molecular regulation underlying the sophisticated life cycle of T. brucei, this work pinpoints a potential target for drug development against trypanosomiasis.
Collapse
Affiliation(s)
- Federico Rojas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Joanna Koszela
- Institute of Quantitative Biology Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Jacqueline Búa
- Instituto Nacional de Parasitología ‘Dr. M. Fatala Chabén’, A.N.L.I.S., ‘Dr. Carlos G. Malbrán’, Buenos Aires, Argentina
| | - Briardo Llorente
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Manfred Auer
- Institute of Quantitative Biology Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Jeremy C. Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - María Teresa Téllez-Iñón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Abstract
Cullin-RING E3 ubiquitin ligases (CRL) control a myriad of biological processes by directing numerous protein substrates for proteasomal degradation. Key to CRL activity is the recruitment of the E2 ubiquitin-conjugating enzyme Cdc34 through electrostatic interactions between E3's cullin conserved basic canyon and the acidic C terminus of the E2 enzyme. This report demonstrates that a small-molecule compound, suramin, can inhibit CRL activity by disrupting its ability to recruit Cdc34. Suramin, an antitrypansomal drug that also possesses antitumor activity, was identified here through a fluorescence-based high-throughput screen as an inhibitor of ubiquitination. Suramin was shown to target cullin 1's conserved basic canyon and to block its binding to Cdc34. Suramin inhibits the activity of a variety of CRL complexes containing cullin 2, 3, and 4A. When introduced into cells, suramin induced accumulation of CRL substrates. These observations help develop a strategy of regulating ubiquitination by targeting an E2-E3 interface through small-molecule modulators.
Collapse
|
6
|
Sandoval D, Hill S, Ziemba A, Lewis S, Kuhlman B, Kleiger G. Ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase Skp1-cullin-F-box ligase (SCF) interact through multiple conformations. J Biol Chem 2014; 290:1106-18. [PMID: 25425648 DOI: 10.1074/jbc.m114.615559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the ubiquitin-proteasome system, protein substrates are degraded via covalent modification by a polyubiquitin chain. The polyubiquitin chain must be assembled rapidly in cells, because a chain of at least four ubiquitins is required to signal for degradation, and chain-editing enzymes in the cell may cleave premature polyubiquitin chains before achieving this critical length. The ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase SCF are capable of building polyubiquitin chains onto protein substrates both rapidly and processively; this may be explained at least in part by the atypically fast rate of Cdc34 and SCF association. This rapid association has been attributed to electrostatic interactions between the acidic C-terminal tail of Cdc34 and a feature on SCF called the basic canyon. However, the structural aspects of the Cdc34-SCF interaction and how they permit rapid complex formation remain elusive. Here, we use protein cross-linking to demonstrate that the Cdc34-SCF interaction occurs in multiple conformations, where several residues from the Cdc34 acidic tail are capable of contacting a broad region of the SCF basic canyon. Similar patterns of cross-linking are also observed between Cdc34 and the Cul1 paralog Cul2, implicating the same mechanism for the Cdc34-SCF interaction in other members of the cullin-RING ubiquitin ligases. We discuss how these results can explain the rapid association of Cdc34 and SCF.
Collapse
Affiliation(s)
- Daniella Sandoval
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Spencer Hill
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Amy Ziemba
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Steven Lewis
- the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Brian Kuhlman
- the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Gary Kleiger
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| |
Collapse
|
7
|
Kovacev J, Wu K, Spratt DE, Chong RA, Lee C, Nayak J, Shaw GS, Pan ZQ. A snapshot of ubiquitin chain elongation: lysine 48-tetra-ubiquitin slows down ubiquitination. J Biol Chem 2014; 289:7068-7081. [PMID: 24464578 DOI: 10.1074/jbc.m113.530576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have explored the mechanisms of polyubiquitin chain assembly with reconstituted ubiquitination of IκBα and β-catenin by the Skp1-cullin 1-βTrCP F-box protein (SCF(βTrCP)) E3 ubiquitin (Ub) ligase complex. Competition experiments revealed that SCF(βTrCP) formed a complex with IκBα and that the Nedd8 modified E3-substrate platform engaged in dynamic interactions with the Cdc34 E2 Ub conjugating enzyme for chain elongation. Using "elongation intermediates" containing β-catenin linked with Ub chains of defined length, it was observed that a Lys-48-Ub chain of a length greater than four, but not its Lys-63 linkage counterparts, slowed the rate of additional Ub conjugation. Thus, the Ub chain length and linkage impact kinetic rates of chain elongation. Given that Lys-48-tetra-Ub is packed into compact conformations due to extensive intrachain interactions between Ub subunits, this topology may limit the accessibility of SCF(βTrCP)/Cdc34 to the distal Ub Lys-48 and result in slowed elongation.
Collapse
Affiliation(s)
- Jordan Kovacev
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Donald E Spratt
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Robert A Chong
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Chan Lee
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Jaladhi Nayak
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574; Xuzhou Medical College, Jiangsu Key Laboratory of Biological Cancer Therapy, Jiangsu 221002, China.
| |
Collapse
|
8
|
Ziemba A, Hill S, Sandoval D, Webb K, Bennett EJ, Kleiger G. Multimodal mechanism of action for the Cdc34 acidic loop: a case study for why ubiquitin-conjugating enzymes have loops and tails. J Biol Chem 2013; 288:34882-96. [PMID: 24129577 DOI: 10.1074/jbc.m113.509190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Together with ubiquitin ligases (E3), ubiquitin-conjugating enzymes (E2) are charged with the essential task of synthesizing ubiquitin chains onto protein substrates. Some 75% of the known E2s in the human proteome contain unique insertions in their primary sequences, yet it is largely unclear what effect these insertions impart on the ubiquitination reaction. Cdc34 is an important E2 with prominent roles in cell cycle regulation and signal transduction. The amino acid sequence of Cdc34 contains an insertion distal to the active site that is absent in most other E2s, yet this acidic loop (named for its four invariably conserved acidic residues) is critical for Cdc34 function both in vitro and in vivo. Here we have investigated how the acidic loop in human Cdc34 promotes ubiquitination, identifying two key molecular events during which the acidic loop exerts its influence. First, the acidic loop promotes the interaction between Cdc34 and its ubiquitin ligase partner, SCF. Second, two glutamic acid residues located on the distal side of the loop collaborate with an invariably conserved histidine on the proximal side of the loop to suppress the pKa of an ionizing species on ubiquitin or Cdc34 which greatly contributes to Cdc34 catalysis. These results demonstrate that insertions can guide E2s to their physiologically relevant ubiquitin ligases as well as provide essential modalities that promote catalysis.
Collapse
Affiliation(s)
- Amy Ziemba
- From the Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | | | | | | | | | | |
Collapse
|
9
|
Spratt DE, Wu K, Kovacev J, Pan ZQ, Shaw GS. Selective recruitment of an E2~ubiquitin complex by an E3 ubiquitin ligase. J Biol Chem 2012; 287:17374-17385. [PMID: 22433864 PMCID: PMC3366790 DOI: 10.1074/jbc.m112.353748] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34. The solution structure of Rbx1/ROC1 revealed a globular RING domain (residues 40–108) stabilized by three structural zinc ions (root mean square deviation 0.30 ± 0.04 Å) along with a disordered N terminus (residues 12–39). Titration data showed that Rbx1/ROC1 preferentially recruits CDC34 in its ubiquitin-conjugated form and favors this interaction by 50-fold compared with unconjugated CDC34. Furthermore, NMR and biochemical assays identified residues in helix α2 of Rbx1/ROC1 that are essential for binding and activating CDC34∼ubiquitin for ubiquitylation. Taken together, this work provides the first direct structural and biochemical evidence showing that polyubiquitylation by the RING E3 ligase Rbx1/ROC1 requires the preferential recruitment of an E2∼ubiquitin complex and subsequent release of the unconjugated E2 protein upon ubiquitin transfer to a substrate or ubiquitin chain.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kenneth Wu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029-6574
| | - Jordan Kovacev
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029-6574
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029-6574
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
10
|
Kong BW, Song JJ, Lee JY, Hargis BM, Wing T, Lassiter K, Bottje W. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult Sci 2011; 90:2535-47. [PMID: 22010239 DOI: 10.3382/ps.2011-01435] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Global RNA expression in breast muscle obtained from a male broiler line phenotyped for high or low feed efficiency (FE) was investigated. Pooled RNA samples (n = 6/phenotype) labeled with cyanine 3 or cyanine 5 fluorescent dyes to generate cRNA probes were hybridized on a 4 × 44K chicken oligo microarray. Local polynomial regression normalization was applied to background-corrected red and green intensities with a moderated t-statistic. Corresponding P-values were computed and adjusted for multiple testing by false discovery rate to identify differentially expressed genes. Microarray validation was carried out by comparing findings with quantitative reverse-transcription PCR. A 1.3-fold difference in gene expression was set as a cutoff value, which encompassed 20% (782 of 4,011) of the total number of genes that were differentially expressed between FE phenotypes. Using an online software program (Ingenuity Pathway Analysis), the top 10 upregulated genes identified by Ingenuity Pathway Analysis in the high-FE group were generally associated with anabolic processes. In contrast, 7 of the top 10 downregulated genes in the high-FE phenotype (upregulated in the low-FE phenotype) were associated with muscle fiber development, muscle function, and cytoskeletal organization, with the remaining 3 genes associated with self-recognition or stress-responding genes. The results from this study focusing on only the top differentially expressed genes suggest that the high-FE broiler phenotype is derived from the upregulation of genes associated with anabolic processes as well as a downregulation of genes associated with muscle fiber development, muscle function, cytoskeletal organization, and stress response.
Collapse
Affiliation(s)
- B-W Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Choo YY, Boh BK, Lou JJW, Eng J, Leck YC, Anders B, Smith PG, Hagen T. Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity. Mol Biol Cell 2011; 22:4706-15. [PMID: 22013077 PMCID: PMC3237615 DOI: 10.1091/mbc.e11-03-0251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cullin RING ligases (CRLs) are the largest family of cellular E3 ubiquitin ligases and mediate polyubiquitination of a number of cellular substrates. CRLs are activated via the covalent modification of the cullin protein with the ubiquitin-like protein Nedd8. This results in a conformational change in the cullin carboxy terminus that facilitates the ubiquitin transfer onto the substrate. COP9 signalosome (CSN)-mediated cullin deneddylation is essential for CRL activity in vivo. However, the mechanism through which CSN promotes CRL activity in vivo is currently unclear. In this paper, we provide evidence that cullin deneddylation is not intrinsically coupled to substrate polyubiquitination as part of the CRL activation cycle. Furthermore, inhibiting substrate-receptor autoubiquitination is unlikely to account for the major mechanism through which CSN regulates CRL activity. CSN also did not affect recruitment of the substrate-receptor SPOP to Cul3, suggesting it may not function to facilitate the exchange of Cul3 substrate receptors. Our results indicate that CSN binds preferentially to CRLs in the neddylation-induced, active conformation. Binding of the CSN complex to active CRLs may recruit CSN-associated proteins important for CRL regulation. The deneddylating activity of CSN would subsequently promote its own dissociation to allow progression through the CRL activation cycle.
Collapse
Affiliation(s)
- Yin Yin Choo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Boh BK, Ng MY, Leck YC, Shaw B, Long J, Sun GW, Gan YH, Searle MS, Layfield R, Hagen T. Inhibition of Cullin RING Ligases by Cycle Inhibiting Factor: Evidence for Interference with Nedd8-Induced Conformational Control. J Mol Biol 2011; 413:430-7. [DOI: 10.1016/j.jmb.2011.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/27/2022]
|
13
|
Wu K, Yan H, Fang L, Wang X, Pfleger C, Jiang X, Huang L, Pan ZQ. Mono-ubiquitination drives nuclear export of the human DCN1-like protein hDCNL1. J Biol Chem 2011; 286:34060-70. [PMID: 21813641 DOI: 10.1074/jbc.m111.273045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conjugation of Nedd8 to a cullin protein, termed neddylation, is an evolutionarily conserved process that functions to activate the cullin-RING family E3 ubiquitin ligases, leading to increased proteasomal degradation of a wide range of substrate proteins. Recent emerging evidence demonstrates that cellular neddylation requires the action of Dcn1, which, in humans, consists of five homologues designated as hDCNL1-5. Here we revealed a previously unknown mechanism that regulates hDCNL1. In cultured mammalian cells ectopically expressed hDCNL1 was mono-ubiquitinated predominantly at K143, K149, and K171. Using a classical chromatographic purification strategy, we identified Nedd4-1 as an E3 ligase that can catalyze mono-ubiquitination of hDCNL1 in a reconstituted ubiquitination system. In addition, the hDCNL1 N-terminal ubiquitin-binding domain is necessary and sufficient to mediate mono-ubiquitination. Finally, fluorescence microscopic and subcellular fractionation analyses revealed a role for mono-ubiquitination in driving nuclear export of hDCNL1. Taken together, these results suggest a mono-ubiquitination-mediated mechanism that governs nuclear-cytoplasmic trafficking of hDCNL1, thereby regulating hDCNL1-dependent activation of the cullin-RING E3 ubiquitin ligases in selected cellular compartments.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Girdwood D, Xirodimas DP, Gordon C. The essential functions of NEDD8 are mediated via distinct surface regions, and not by polyneddylation in Schizosaccharomyces pombe. PLoS One 2011; 6:e20089. [PMID: 21655279 PMCID: PMC3105002 DOI: 10.1371/journal.pone.0020089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/15/2011] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-like protein NEDD8 is highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. NEDD8 conjugation to cullin proteins is a prerequisite for cullin based E3 ubiquitin ligase activity, and essential for S. pombe viability. Here, we have performed alanine scanning mutagenesis of all conserved surface residues and show that the majority of essential residues were located around the hydrophobic patch and the C-terminus. However, we further identified essential residues not previously reported to be involved in ubiquitin ligase regulation that importantly do not prevent Ned8p conjugation. We also find that mutation of all conserved lysine residues in Ned8p, did not affect yeast viability, suggesting that mono-neddylation is sufficient for yeast viability under most conditions.
Collapse
Affiliation(s)
- David Girdwood
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
15
|
Selective ubiquitylation of p21 and Cdt1 by UBCH8 and UBE2G ubiquitin-conjugating enzymes via the CRL4Cdt2 ubiquitin ligase complex. Mol Cell Biol 2011; 31:3136-45. [PMID: 21628527 DOI: 10.1128/mcb.05496-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CRL4(Cdt2) is a cullin-based E3 ubiquitin ligase that promotes the ubiquitin-dependent proteolysis of various substrates implicated in the control of cell cycle and various DNA metabolic processes such as DNA replication and repair. Substrates for CRL4(Cdt2) E3 ubiquitin ligase include the replication licensing factor Cdt1 and the cyclin-dependent kinase (Cdk) inhibitor p21. Inhibition of this E3 ligase leads to serious abnormalities of the cell cycle and cell death. The ubiquitin-conjugating enzyme (UBC) involved in this important pathway, however, remains unknown. By a proteomic analysis of Cdt2-associated proteins and an RNA interference-based screening approach, we show that CRL4(Cdt2) utilizes two different UBCs to target different substrates. UBCH8, a member of the UBE2E family of UBCs, ubiquitylates and promotes the degradation of p21, both during the normal cell cycle and in UV-irradiated cells. Importantly, depletion of UBCH8 by small interfering RNA (siRNA) increases p21 protein level, delays entry into S phase of the cell cycle, and suppresses the DNA damage response after UV irradiation. On the other hand, members of the UBE2G family of UBCs (UBE2G1 and UBE2G2) cooperate with CRL4(Cdt2) to polyubiquitylate and degrade Cdt1 postradiation, an activity that is critical for preventing origin licensing in DNA-damaged cells. Finally, we show that UBCH8, but not UBE2G1 or UBE2G2, is required for CRL4(Cdt2)-mediated ubiquitylation and degradation of the histone H4 lysine 20 monomethyltransferase Set8, a previously identified CRL4(Cdt2) substrate, as well as for CRL4(Cdt2)-dependent monoubiquitylation of PCNA in unstressed cells. These findings identify the UBCs required for the activity of CRL4(Cdt2) on multiple substrates and demonstrate that different UBCs are involved in the selective ubiquitylation of different substrates by the same E3 complex.
Collapse
|
16
|
Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin. J Mol Biol 2011; 407:425-38. [PMID: 21296085 DOI: 10.1016/j.jmb.2011.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 11/24/2022]
Abstract
Cell division cycle protein 34 (CDC34) is a key E2 ubiquitin (Ub)-conjugating enzyme responsible for the polyubiquitination of proteins controlling the G1/S stages of cell division. The acidic C-terminus of the enzyme is required for this function, although there is little structural information providing details for a mechanism. One logical time point involving the C-terminus is the CDC34-Ub thiolester complex that precedes Ub transfer to a substrate. To examine this, we used a CDC34-Ub disulfide complex that structurally mimics the thiolester intermediate. NMR spectroscopy was used to show that the CDC34 C-terminus is disordered but can intramolecularly interact with the catalytically bound Ub. Using chemical shift perturbation analysis, we mapped two interacting regions on the surface of Ub in the CDC34-Ub complex. The first site comprises a hydrophobic patch (typical of other Ub complexes) that associates with the CDC34 catalytic domain. A novel second site, dependent on the C-terminus of CDC34, comprises a lysine-rich surface (K6, K11, K29, and K33) on the opposite face of Ub. Further, NMR experiments show that this interaction is described by two slowly exchanging states-a compact conformation where the C-terminus of CDC34 interacts with bound Ub and an extended structure where the C-terminus is released. This work provides the first structural details that show how the C-terminus of CDC34 might direct a thiolester-bound Ub to control polyubiquitin chain formation.
Collapse
|
17
|
Huang G, Kaufman AJ, Ramanathan Y, Singh B. SCCRO (DCUN1D1) promotes nuclear translocation and assembly of the neddylation E3 complex. J Biol Chem 2011; 286:10297-304. [PMID: 21247897 DOI: 10.1074/jbc.m110.203729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCCRO/DCUN1D1/DCN1 (squamous cell carcinoma-related oncogene/defective in cullin neddylation 1 domain containing 1/defective in cullin neddylation) serves as an accessory E3 in neddylation by binding to cullin and Ubc12 to allow efficient transfer of Nedd8. In this work we show that SCCRO has broader, pleiotropic effects that are essential for cullin neddylation in vivo. Reduced primary nuclear localization of Cul1 accompanying decreased neddylation and proliferation in SCCRO(-/-) mouse embryonic fibroblasts led us to investigate whether compartmentalization plays a regulatory role. Decreased nuclear localization, neddylation, and defective proliferation in SCCRO(-/-) mouse embryonic fibroblasts were rescued by transgenic expression of SCCRO. Expression of reciprocal SCCRO and Cul1-binding mutants confirmed the requirement for SCCRO in nuclear translocation and neddylation of cullins in vivo. Nuclear translocation of Cul1 by tagging with a nuclear localization sequence allowed neddylation independent of SCCRO, but at a lower level. We found that in the nucleus, SCCRO enhances recruitment of Ubc12 to Cul1 to promote neddylation. These findings suggest that SCCRO has an essential role in neddylation in vivo involving nuclear localization of neddylation components and recruitment and proper positioning of Ubc12.
Collapse
Affiliation(s)
- Guochang Huang
- Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | |
Collapse
|
18
|
Trempe JF, Brown NR, Noble MEM, Endicott JA. A new crystal form of Lys48-linked diubiquitin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:994-8. [PMID: 20823512 PMCID: PMC2935213 DOI: 10.1107/s1744309110027600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/12/2010] [Indexed: 11/12/2022]
Abstract
A new crystal form of Lys48-linked diubiquitin was obtained and its structure was determined by X-ray crystallography to 1.6 Å resolution. Lys48-linked polyubiquitin chains are recognized by the proteasome as a tag for the degradation of the attached substrates. Here, a new crystal form of Lys48-linked diubiquitin (Ub2) was obtained and the crystal structure was refined to 1.6 Å resolution. The structure reveals an ordered isopeptide bond in a trans configuration. All three molecules in the asymmetric unit were in the same closed conformation, in which the hydrophobic patches of both the distal and the proximal moieties interact with each other. Despite the different crystallization conditions and different crystal packing, the new crystal structure of Ub2 is similar to the previously published structure of diubiquitin, but differences are observed in the conformation of the flexible isopeptide linkage.
Collapse
Affiliation(s)
- Jean François Trempe
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Québec H3G 0B1, Canada.
| | | | | | | |
Collapse
|
19
|
Kim SH, Kim HJ, Kim S, Yim J. Drosophila Cand1 regulates Cullin3-dependent E3 ligases by affecting the neddylation of Cullin3 and by controlling the stability of Cullin3 and adaptor protein. Dev Biol 2010; 346:247-57. [PMID: 20691177 DOI: 10.1016/j.ydbio.2010.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/22/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs), which comprise the largest class of E3 ligases, regulate diverse cellular processes by targeting numerous proteins. Conjugation of the ubiquitin-like protein Nedd8 with Cullin activates CRLs. Cullin-associated and neddylation-dissociated 1 (Cand1) is known to negatively regulate CRL activity by sequestering unneddylated Cullin1 (Cul1) in biochemical studies. However, genetic studies of Arabidopsis have shown that Cand1 is required for optimal CRL activity. To elucidate the regulation of CRLs by Cand1, we analyzed a Cand1 mutant in Drosophila. Loss of Cand1 causes accumulation of neddylated Cullin3 (Cul3) and stabilizes the Cul3 adaptor protein HIB. In addition, the Cand1 mutation stimulates protein degradation of Cubitus interruptus (Ci), suggesting that Cul3-RING ligase activity is enhanced by the loss of Cand1. However, the loss of Cand1 fails to repress the accumulation of Ci in Nedd8(AN015) or CSN5(null) mutant clones. Although Cand1 is able to bind both Cul1 and Cul3, mutation of Cand1 suppresses only the accumulation of Cul3 induced by the dAPP-BP1 mutation defective in the neddylation pathway, and this effect is attenuated by inhibition of proteasome function. Furthermore, overexpression of Cand1 stabilizes the Cul3 protein when the neddylation pathway is partially suppressed. These data indicate that Cand1 stabilizes unneddylated Cul3 by preventing proteasomal degradation. Here, we propose that binding of Cand1 to unneddylated Cul3 causes a shift in the equilibrium away from the neddylation of Cul3 that is required for the degradation of substrate by CRLs, and protects unneddylated Cul3 from proteasomal degradation. Cand1 regulates Cul3-mediated E3 ligase activity not only by acting on the neddylation of Cul3, but also by controlling the stability of the adaptor protein and unneddylated Cul3.
Collapse
Affiliation(s)
- Song-Hee Kim
- School of Biological Science, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, Paine MG, Wooten MC. Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62's role in neurodegenerative disease. J Biomed Biotechnol 2010; 2006:62079. [PMID: 17047309 PMCID: PMC1559922 DOI: 10.1155/jbb/2006/62079] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aggregated misfolded proteins are hallmarks of most neurodegenerative diseases. In a chronic disease state, including pathologic
situations of oxidative stress, these proteins are sequestered into inclusions. Accumulation of aggregated proteins can be
prevented by chaperones, or by targeting their degradation to the UPS. If the accumulation of these proteins exceeds their
degradation, they may impair the function of the proteasome. Alternatively, the function of the proteasome may be preserved
by directing aggregated proteins to the autophagy-lysosome pathway for degradation. Sequestosome 1/p62 has recently been
shown to interact with polyubiquitinated proteins through its UBA domain and may direct proteins to either the UPS or autophagosome.
P62 is present in neuronal inclusions of individuals with Alzheimer's disease and other neurodegenerative diseases.
Herein, we review p62's role in signaling, aggregation, and inclusion formation, and specifically as a possible contributor
to Alzheimer's disease. The use of p62 as a potential target for the development of therapeutics and as a disease biomarker is also discussed.
Collapse
Affiliation(s)
- Marie W. Wooten
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiao Hu
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - J. Ramesh Babu
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - M. Lamar Seibenhener
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- *M. Lamar Seibenhener:
| | - Thangiah Geetha
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael G. Paine
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael C. Wooten
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
21
|
Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 2010; 37:784-96. [PMID: 20347421 DOI: 10.1016/j.molcel.2010.02.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 12/02/2009] [Accepted: 02/08/2010] [Indexed: 01/17/2023]
Abstract
We describe a mechanistic model of polyubiquitination by the SCF(beta TrCP2) E3 ubiquitin (Ub) ligase using human I kappaB alpha as a substrate. Biochemical reconstitution experiments revealed that the polyubiquitination of I kappaB alpha began with the action of the UbcH5 E2 Ub-conjugating enzyme, transferring a single Ub to I kappaB alpha K21/K22 rapidly and efficiently. Subsequently, the Cdc34 E2 functioned in the formation of polyubiquitin chains. It was determined that a Ub fused at I kappaB alpha K21 acts as a receptor, directing Cdc34 for rapid and efficient K48-linked Ub chain synthesis that depends on SCF(beta TrCP2) and the substrate's N terminus. The I kappaB alpha-linked fusion Ub appears to mediate direct contacts with Cdc34 and the SCF's RING subcomplex. Taken together, these results suggest a role for the multifaceted interactions between the I kappaB alpha K21/K22-linked receptor Ub, the SCF's RING complex, and Cdc34 approximately S approximately Ub in establishing the optimal orientation of the receptor Ub to drive conjugation.
Collapse
|
22
|
Fernandez-Sanchez ME, Sechet E, Margottin-Goguet F, Rogge L, Bianchi E. The human COP9 signalosome protects ubiquitin-conjugating enzyme 3 (UBC3/Cdc34) from beta-transducin repeat-containing protein (betaTrCP)-mediated degradation. J Biol Chem 2010; 285:17390-7. [PMID: 20378537 DOI: 10.1074/jbc.m109.076661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COP9 signalosome (CSN) is an essential multisubunit complex that regulates the activity of cullin-RING ubiquitin ligases by removing the ubiquitin-like peptide NEDD8 from cullins. Here, we demonstrate that the CSN can affect other components of the ubiquitination cascade. Down-regulation of human CSN4 or CSN5 induced proteasome-mediated degradation of the ubiquitin-conjugating enzyme UBC3/Cdc34. UBC3 was targeted for ubiquitination by the cullin-RING ubiquitin ligase SCF(betaTrCP). This interaction required the acidic C-terminal extension of UBC3, which is absent in ubiquitin-conjugating enzymes of the UBCH5 family. Conversely, the UBC3 acidic domain was sufficient to impart sensitivity to SCF(betaTrCP)-mediated ubiquitination to UBCH5 enzymes. Our work indicates that the CSN is necessary to ensure the stability of selected ubiquitin-conjugating enzymes and uncovers a novel pathway of regulation of ubiquitination processes.
Collapse
|
23
|
Choi YS, Wu K, Jeong K, Lee D, Jeon YH, Choi BS, Pan ZQ, Ryu KS, Cheong C. The human Cdc34 carboxyl terminus contains a non-covalent ubiquitin binding activity that contributes to SCF-dependent ubiquitination. J Biol Chem 2010; 285:17754-62. [PMID: 20353940 DOI: 10.1074/jbc.m109.090621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc34 is an E2 ubiquitin-conjugating enzyme that functions in conjunction with SCF (Skp1.Cullin 1.F-box) E3 ubiquitin ligase to catalyze covalent attachment of polyubiquitin chains to a target protein. Here we identified direct interactions between the human Cdc34 C terminus and ubiquitin using NMR chemical shift perturbation assays. The ubiquitin binding activity was mapped to two separate Cdc34 C-terminal motifs (UBS1 and UBS2) that comprise residues 206-215 and 216-225, respectively. UBS1 and UBS2 bind to ubiquitin in the proximity of ubiquitin Lys(48) and C-terminal tail, both of which are key sites for conjugation. When bound to ubiquitin in one orientation, the Cdc34 UBS1 aromatic residues (Phe(206), Tyr(207), Tyr(210), and Tyr(211)) are probably positioned in the vicinity of ubiquitin C-terminal residue Val(70). Replacement of UBS1 aromatic residues by glycine or of ubiquitin Val(70) by alanine decreased UBS1-ubiquitin affinity interactions. UBS1 appeared to support the function of Cdc34 in vivo because human Cdc34(1-215) but not Cdc34(1-200) was able to complement the growth defect by yeast Cdc34 mutant strain. Finally, reconstituted IkappaBalpha ubiquitination analysis revealed a role for each adjacent pair of UBS1 aromatic residues (Phe(206)/Tyr(207), Tyr(210)/Tyr(211)) in conjugation, with Tyr(210) exhibiting the most pronounced catalytic function. Intriguingly, Cdc34 Tyr(210) was required for the transfer of the donor ubiquitin to a receptor lysine on either IkappaBalpha or a ubiquitin in a manner that depended on the neddylated RING sub-complex of the SCF. Taken together, our results identified a new ubiquitin binding activity within the human Cdc34 C terminus that contributes to SCF-dependent ubiquitination.
Collapse
Affiliation(s)
- Yun-Seok Choi
- Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kleiger G, Hao B, Mohl DA, Deshaies RJ. The acidic tail of the Cdc34 ubiquitin-conjugating enzyme functions in both binding to and catalysis with ubiquitin ligase SCFCdc4. J Biol Chem 2009; 284:36012-36023. [PMID: 19875449 PMCID: PMC2794717 DOI: 10.1074/jbc.m109.058529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/22/2009] [Indexed: 12/15/2022] Open
Abstract
Ubiquitin ligases, together with their cognate ubiquitin-conjugating enzymes, are responsible for the ubiquitylation of proteins, a process that regulates a myriad of eukaryotic cellular functions. The first cullin-RING ligase discovered, yeast SCF(Cdc4), functions with the conjugating enzyme Cdc34 to regulate the cell cycle. Cdc34 orthologs are notable for their highly acidic C-terminal extension. Here we confirm that the Cdc34 acidic C-terminal tail has a role in Cdc34 binding to SCF(Cdc4) and makes a major contribution to the submicromolar K(m) of Cdc34 for SCF(Cdc4). Moreover, we demonstrate that a key functional property of the tail is its acidity. Our analysis also uncovers an unexpected new function for the acidic tail in promoting catalysis. We demonstrate that SCF is functional when Cdc34 is fused to the C terminus of Cul1 and that this fusion retains partial function even when the acidic tail has been deleted. The Cdc34-SCF fusion proteins that lack the acidic tail must interact in a fundamentally different manner than unfused SCF and wild type Cdc34, demonstrating that distinct mechanisms of E2 recruitment to E3, as is seen in nature, can sustain substrate ubiquitylation. Finally, a search of the yeast proteome uncovered scores of proteins containing highly acidic stretches of amino acids, hinting that electrostatic interactions may be a common mechanism for facilitating protein assembly.
Collapse
Affiliation(s)
- Gary Kleiger
- Howard Hughes Medical Institute and the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Bing Hao
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Dane A Mohl
- Howard Hughes Medical Institute and the Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Raymond J Deshaies
- Howard Hughes Medical Institute and the Division of Biology, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
25
|
60th residues of ubiquitin and Nedd8 are located out of E2-binding surfaces, but are important for K48 ubiquitin-linkage. FEBS Lett 2009; 583:3323-8. [PMID: 19782077 DOI: 10.1016/j.febslet.2009.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/13/2009] [Accepted: 09/16/2009] [Indexed: 11/20/2022]
Abstract
Nedd8, a ubiquitin-like modifier, is covalently attached to various proteins. Although Nedd8 has higher sequence identity (57%) with ubiquitin, its conserved K48 residue cannot form covalent linkage with ubiquitin. To decipher the reason why Nedd8 cannot be an effective ubiquitin-acceptor, we compared the non-covalent interaction between Nedd8 and ubiquitin for various E2s using cross-saturation NMR technique. However, both Nedd8 and ubiquitin displayed almost identical non-covalent E2-binding properties. The K60 of Nedd8 was not present at the E2-binding surface, but its mutation to Asn converted Nedd8 into a ubiquitin-acceptor. The N60 ubiquitin mutants also displayed a decreased ubiquitin-accepting activity. These results suggest the presence of an uncharacterized determinant for the K48 ubiquitin-linkage that is not related to non-covalent E2-bindings.
Collapse
|
26
|
Das R, Mariano J, Tsai YC, Kalathur RC, Kostova Z, Li J, Tarasov SG, McFeeters RL, Altieri AS, Ji X, Byrd RA, Weissman AM. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol Cell 2009; 34:674-85. [PMID: 19560420 DOI: 10.1016/j.molcel.2009.05.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/12/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.
Collapse
Affiliation(s)
- Ranabir Das
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ryu KS, Choi YS, Ko J, Kim SO, Kim HJ, Cheong HK, Jeon YH, Choi BS, Cheong C. Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system. BMB Rep 2009; 41:852-7. [PMID: 19123975 DOI: 10.5483/bmbrep.2008.41.12.852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little attention has been paid to the specificity between E2 and the target protein during ubiquitination, although RING-E3 induces a potential intra-molecular reaction by mediating the direct transfer of ubiquitin from E2 to the target protein. We have constructed artificial E2 fusion proteins in which a target protein (p27) is tethered to one of six E2s via a flexible linker. Interestingly, only three E2s (UbcH5b, hHR6b, and Cdc34) are able to ubiquitinate p27 via an intra-molecular reaction in this system. Although the first ubiquitination of p27 (p27-Ub) by Cdc34 is less efficient than that of UbcH5b and hHR6b, the additional ubiquitin attachment to p27-Ub by Cdc34 is highly efficient. The E2 core of Cdc34 provides specificity to p27, and the residues 184-196 are required for possessive ubiquitination by Cdc34. We demonstrate direct E2 specificity for p27 and also show that differential ubiquitin linkages can be dependent on E2 alone.
Collapse
|
28
|
Summers MK, Jackson PK. Biochemical analysis of the Anaphase Promoting Complex: activities of E2 enzymes and substrate competitive (pseudosubstrate) inhibitors. Methods Mol Biol 2009; 545:313-330. [PMID: 19475398 DOI: 10.1007/978-1-60327-993-2_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Anaphase Promoting Complex (APC) ubiquitin ligase is critical for multiple processes including cell cycle, development, meiosis, and senescence. The importance of regulation of the APC by substrate competitive (pseudosubstrate) inhibitors, such as Emi1 and BubR1, has recently been demonstrated. Substrate competitive inhibitors typically bind to enzymes via the same site as substrates, but by having any combination of increased enzyme affinity and low turnover numbers, are able to "clog" the ability of the enzyme to bind and turnover substrates. For the APC, these pseudosubstrates can both position and block the APC and have been well validated as critical regulators for the APC enzymes.We have found that the substrate competitive mechanism of inhibition is sensitive to the E2 activity driving APC catalyzed ubiquitination events. This chapter provides detailed protocols for multiple in vitro ubiquitination assays of increasing complexity and the use of pseudosubstrate inhibitors in these assays. These assays are instrumental in examining the use of E2 enzymes by the APC and the intimate relationship this has with pseudosubstrate inhibition.
Collapse
Affiliation(s)
- Matthew K Summers
- Department of Cellular Regulation, Genentech Inc., South San Francisco, CA, USA
| | | |
Collapse
|
29
|
Saha A, Deshaies RJ. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell 2008; 32:21-31. [PMID: 18851830 DOI: 10.1016/j.molcel.2008.08.021] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/30/2008] [Accepted: 08/18/2008] [Indexed: 12/31/2022]
Abstract
Conjugation of ubiquitin-like protein Nedd8 to cullins (neddylation) is essential for the function of cullin-RING ubiquitin ligases (CRLs). Here, we show that neddylation stimulates CRL activity by multiple mechanisms. For the initiator ubiquitin, the major effect is to bridge the approximately 50 A gap between naked substrate and E2 approximately Ub bound to SCF. The gap between the acceptor lysine of ubiquitinated substrate and E2 approximately Ub is much smaller, and, consequentially, the impact of neddylation on transfer of subsequent ubiquitins by Cdc34 arises primarily from improved E2 recruitment and enhanced amide bond formation in the E2 active site. The combined effects of neddylation greatly enhance the probability that a substrate molecule acquires >or= 4 ubiquitins in a single encounter with a CRL. The surprisingly diverse effects of Nedd8 conjugation underscore the complexity of CRL regulation and suggest that modification of other ubiquitin ligases with ubiquitin or ubiquitin-like proteins may likewise have major functional consequences.
Collapse
Affiliation(s)
- Anjanabha Saha
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
30
|
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 2008; 134:995-1006. [PMID: 18805092 PMCID: PMC2628631 DOI: 10.1016/j.cell.2008.07.022] [Citation(s) in RCA: 621] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/23/2008] [Accepted: 07/15/2008] [Indexed: 01/07/2023]
Abstract
Cullin-RING ligases (CRLs) comprise the largest ubiquitin E3 subclass, in which a central cullin subunit links a substrate-binding adaptor with an E2-binding RING. Covalent attachment of the ubiquitin-like protein NEDD8 to a conserved C-terminal domain (ctd) lysine stimulates CRL ubiquitination activity and prevents binding of the inhibitor CAND1. Here we report striking conformational rearrangements in the crystal structure of NEDD8~Cul5(ctd)-Rbx1 and SAXS analysis of NEDD8~Cul1(ctd)-Rbx1 relative to their unmodified counterparts. In NEDD8ylated CRL structures, the cullin WHB and Rbx1 RING subdomains are dramatically reoriented, eliminating a CAND1-binding site and imparting multiple potential catalytic geometries to an associated E2. Biochemical analyses indicate that the structural malleability is important for both CRL NEDD8ylation and subsequent ubiquitination activities. Thus, our results point to a conformational control of CRL activity, with ligation of NEDD8 shifting equilibria to disfavor inactive CAND1-bound closed architectures, and favor dynamic, open forms that promote polyubiquitination.
Collapse
Affiliation(s)
- David M. Duda
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Laura A. Borg
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Daniel C. Scott
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Harold W. Hunt
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Brenda A. Schulman
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Correspondence: St. Jude Children’s Research Hospital, MS #311, Memphis, TN 38105, Phone: 901-495-5147, e-mail:
| |
Collapse
|
31
|
Abstract
The ubiquitin/26S proteasome pathway largely mediates selective proteolysis in the nucleus and cytosol. This pathway catalyzes covalent attachment of ubiquitin (UBQ) to substrate proteins in an E1-E2-E3 cascade. Ubiquitin E3 ligases interact with substrates to catalyze UBQ transfer from E2 to substrate. Within the E3 ligase superfamily, cullin RING ligases (CRLs) are significant in plants because they are linked to hormonal signaling, developmental programs, and environmental responses. Thus, knowledge of CRL regulation is required for a complete understanding of these processes. A major mechanism modulating CRL activity is modification of the cullin subunit by RUB (RELATED TO UBIQUITIN), a ubiquitin-like protein, and demodification by the COP9 signalosome (CSN). CULLIN-ASSOCIATED NEDD8-DISSOCIATED 1 (CAND1) interacts with CRLs, affecting both rubylation and derubylation. Described here are the pathways, regulation, and biological function of rubylation and derubylation, as well as future directions and outstanding questions.
Collapse
Affiliation(s)
- Sara K Hotton
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
32
|
Kumar KGS, Barriere H, Carbone CJ, Liu J, Swaminathan G, Xu P, Li Y, Baker DP, Peng J, Lukacs GL, Fuchs SY. Site-specific ubiquitination exposes a linear motif to promote interferon-alpha receptor endocytosis. ACTA ACUST UNITED AC 2007; 179:935-50. [PMID: 18056411 PMCID: PMC2099190 DOI: 10.1083/jcb.200706034] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ligand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)–clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-α/β receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains. The SCFβTrcp (Skp1–Cullin1–F-box complex) E3 ubiquitin ligase that mediates IFNAR1 ubiquitination and degradation in cells can conjugate both types of chains in vitro. Although either polyubiquitin linkage suffices for postinternalization sorting, both types of chains are necessary but not sufficient for robust IFNAR1 turnover and internalization. These processes also depend on the proximity of ubiquitin-acceptor lysines to a linear endocytic motif and on its integrity. Furthermore, ubiquitination of IFNAR1 promotes its interaction with the AP2 adaptin complex that is required for the robust internalization of IFNAR1, implicating cooperation between site-specific ubiquitination and the linear endocytic motif in regulating this process.
Collapse
Affiliation(s)
- K G Suresh Kumar
- Department of Animal Biology and 2Mari Lowe Center for Comparative Oncology Research, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gazdoiu S, Yamoah K, Wu K, Pan ZQ. Human Cdc34 employs distinct sites to coordinate attachment of ubiquitin to a substrate and assembly of polyubiquitin chains. Mol Cell Biol 2007; 27:7041-52. [PMID: 17698585 PMCID: PMC2168909 DOI: 10.1128/mcb.00812-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cdc34 E2 ubiquitin (Ub) conjugating enzyme catalyzes polyubiquitination of a substrate recruited by the Skp1-Cullin 1-F-box protein-ROC1 E3 Ub ligase. Using mutagenesis studies, we now show that human Cdc34 employs distinct sites to coordinate the transfer of Ub to a substrate and the assembly of polyubiquitin chains. Mutational disruption of the conserved charged stretch (residues 143 to 153) or the acidic loop residues D102 and D103 led to accumulation of monoubiquitinated IkappaBalpha while failing to yield polyubiquitin chains, due to a catalytic defect in Ub-Ub ligation. These results suggest an ability of human Cdc34 to position the attacking Ub for assembly of polyubiquitin chains. Analysis of Cdc34N85Q and Cdc34S138A revealed severe defects of these mutants in both poly- and monoubiquitination of IkappaBalpha, supporting a role for N85 in stabilizing the oxyanion and in coordinating, along with S138, the attacking lysine for catalysis. Finally, Cdc34S95D and Cdc34(E108A/E112A) abolished both poly- and monoubiquitination of IkappaBalpha. Unexpectedly, the catalytic defects of these mutants in di-Ub synthesis can be rescued by fusion of a glutathione S-transferase moiety at E2's N terminus. These findings support the hypothesis that human Cdc34 S95 and E108/E112 are required to position the donor Ub optimally for catalysis, in a manner that might depend on E2 dimerization.
Collapse
Affiliation(s)
- Stefan Gazdoiu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
34
|
Kim HT, Kim KP, Lledias F, Kisselev AF, Scaglione KM, Skowyra D, Gygi SP, Goldberg AL. Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages. J Biol Chem 2007; 282:17375-86. [PMID: 17426036 DOI: 10.1074/jbc.m609659200] [Citation(s) in RCA: 341] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally assumed that a specific ubiquitin ligase (E3) links protein substrates to polyubiquitin chains containing a single type of isopeptide linkage, and that chains composed of linkages through Lys(48), but not through Lys(63), target proteins for proteasomal degradation. However, when we carried out a systematic analysis of the types of ubiquitin (Ub) chains formed by different purified E3s and Ub-conjugating enzymes (E2s), we found, using Ub mutants and mass spectrometry, that the U-box E3, CHIP, and Ring finger E3s, MuRF1 and Mdm2, with the E2, UbcH5, form a novel type of Ub chain that contains all seven possible linkages, but predominantly Lys(48), Lys(63), and Lys(11) linkages. Also, these heterogeneous chains contain forks (bifurcations), where two Ub molecules are linked to the adjacent lysines at Lys(6) + Lys(11), Lys(27) + Lys(29), or Lys(29) + Lys(33) on the preceding Ub molecule. However, the HECT domain E3s, E6AP and Nedd4, with the same E2, UbcH5, form homogeneous chains exclusively, either Lys(48) chains (E6AP) or Lys(63) chains (Nedd4). Furthermore, with other families of E2s, CHIP and MuRF1 synthesize homogeneous Ub chains on the substrates. Using the dimeric E2, UbcH13/Uev1a, they attach Lys(63) chains, but with UbcH1 (E2-25K), MuRF1 synthesizes Lys(48) chains on the substrate. We then compared the capacity of the forked heterogeneous chains and homogeneous chains to support proteasomal degradation. When troponin I was linked by MuRF1 to a Lys(48)-Ub chain or, surprisingly, to a Lys(63)-Ub chain, troponin I was degraded rapidly by pure 26S proteasomes. However, when linked to the mixed forked chains, troponin I was degraded quite poorly, and its polyUb chain, especially the forked linkages, was disassembled slowly by proteasome-associated isopeptidases. Because these Ring finger and U-box E3s with UbcH5 target proteins for degradation in vivo, but Lys(63) chains do not, cells probably contain additional factors that prevent formation of such nondegradable Ub-conjugates and that protect proteins linked to Lys(63)-Ub chains from proteasomal degradation.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chew EH, Poobalasingam T, Hawkey CJ, Hagen T. Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells — Evidence for cullin dimerization. Cell Signal 2007; 19:1071-80. [PMID: 17254749 DOI: 10.1016/j.cellsig.2006.12.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 12/04/2006] [Accepted: 12/04/2006] [Indexed: 11/22/2022]
Abstract
Cullin-based E3 ligases are a large family of ubiquitin ligases with diverse cellular functions. They are composed of one of six mammalian cullin homologues, the Ring finger containing protein Roc1/Rbx1 and cullin homologue-specific adapter and substrate recognition subunits. To be active, cullin-based ligases require the covalent modification of a conserved lysine residue in the cullin protein with the ubiquitin-like protein Nedd8. To characterize this family of E3 ligases in intact cells, we generated a cell line with tetracycline-inducible expression of a dominant-negative mutant of the Nedd8-conjugating enzyme Ubc12, a reported inhibitor of cullin neddylation. Using this cell line, we demonstrate that the substrate recognition subunit Skp2 and the adaptor protein Skp1 are subject to Ubc12-dependent autoubiquitination and degradation. In contrast, cullin protein stability is not regulated by neddylation in mammalian cells. We also provide evidence that Cul1 and Cul3, as well as their associated substrate recognition subunits Skp2 and Keap1, respectively, homooligomerize in intact cells, suggesting that cullin-based ligases are dimeric. Cul3, but not Cul1 homooligomerization is dependent on substrate recognition subunit dimer formation. As shown for other E3 ubiquitin ligases, dimerization may play a role in regulating the activity of cullin-based E3 ligases.
Collapse
Affiliation(s)
- Eng-Hui Chew
- Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
36
|
Abstract
Cullin-based E3 ligases are a large family of multi-subunit ubiquitin ligases with diverse cellular functions, including the regulation of the cell cycle, of the DNA damage response, and of various transcription factors. These ligases are composed of one of six mammalian cullin homologs (Cul1, Cul2, Cul3, Cul4a, Cul4b, and Cul5), the Ring finger containing protein Roc1/Rbx1, and cullin homolog-specific adaptor and substrate recognition subunits. To be active, cullin-based ligases require the covalent modification of a conserved lysine residue in the cullin protein with the ubiquitin-like protein Nedd8. We show in this study that in intact cells Cul1 neddylation is dependent on binding to adaptor proteins and substrate recognition subunits. Mutant Cul1 that is unable to recruit adaptor and substrate recognition subunits exhibits markedly reduced neddylation, and inhibiting binding of adaptor and substrate recognition subunits to wild type Cul1 reduces Nedd8 modification. This regulatory mechanism also extends to other cullin-based E3 ligases, including Cul2, Cul3, and Cul4a. The regulation of cullin neddylation by adaptor proteins and substrate recognition subunits in cells was found to be independent of both CAND1 and the COP9 signalosome, two negative regulators of cullin Nedd8 modification. Using hypoxia-inducible factor-1alpha (HIF-1alpha), a substrate of the Elongin B/C-Cul2-VHL ligase, we demonstrate the critical role of substrate binding to promote Cul2 neddylation in a manner that does not require substrate ubiquitination but may involve a conformational change. These findings suggest a mechanism through which availability of substrate recognition subunits and substrates can regulate the ubiquitin ligase activity.
Collapse
Affiliation(s)
- Eng-Hui Chew
- Wolfson Digestive Diseases Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | |
Collapse
|
37
|
Sakata E, Yamaguchi Y, Miyauchi Y, Iwai K, Chiba T, Saeki Y, Matsuda N, Tanaka K, Kato K. Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nat Struct Mol Biol 2007; 14:167-8. [PMID: 17206147 DOI: 10.1038/nsmb1191] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 12/12/2006] [Indexed: 11/09/2022]
Abstract
Although cullin-1 neddylation is crucial for the activation of SCF ubiquitin E3 ligases, the underlying mechanisms for NEDD8-mediated activation of SCF remain unclear. Here we demonstrate by NMR and mutational studies that NEDD8 binds the ubiquitin E2 (UBC4), but not NEDD8 E2 (UBC12). Our data imply that NEDD8 forms an active platform on the SCF complex for selective recruitment of ubiquitin-charged E2s in collaboration with RBX1, and thereby upregulates the E3 activity.
Collapse
Affiliation(s)
- Eri Sakata
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cullins are members of a family of scaffold proteins that assemble multisubunit ubiquitin ligase complexes to confer substrate specificity for the ubiquitination pathway. Cullin3 (Cul3) forms a catalytically inactive BTB-Cul3-Rbx1 (BCR) ubiquitin ligase, which becomes functional upon covalent attachment of the ubiquitin homologue neural-precursor-cell-expressed and developmentally down regulated 8 (Nedd8) near the C terminus of Cul3. Current models suggest that Nedd8 activates cullin complexes by providing a recognition site for a ubiquitin-conjugating enzyme. Based on the following evidence, we propose that Nedd8 activates the BCR ubiquitin ligase by mediating the dimerization of Cul3. First, Cul3 is found as a neddylated heterodimer bound to a BTB domain-containing protein in vivo. Second, the formation of a Cul3 heterodimer is mediated by a Nedd8 molecule, which covalently attaches itself to one Cul3 molecule and binds to the winged-helix B domain at the C terminus of the second Cul3 molecule. Third, complementation experiments revealed that coexpression of two distinct nonfunctional Cul3 mutants can rescue the ubiquitin ligase function of the BCR complex. Likewise, a substrate of the BCR complex binds heterodimeric Cul3, suggesting that the Cul3 complex is active as a dimer. These findings not only provide insight into the architecture of the active BCR complex but also suggest assembly as a regulatory mechanism for activation of all cullin-based ubiquitin ligases.
Collapse
Affiliation(s)
- Wananit Wimuttisuk
- Department of Molecular Biology, Cell Biology and Biochemistry and Center for Genomics and Proteomics, Brown University, Providence, RI 02903
| | - Jeffrey D. Singer
- Department of Molecular Biology, Cell Biology and Biochemistry and Center for Genomics and Proteomics, Brown University, Providence, RI 02903
| |
Collapse
|
39
|
Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, Kochupurakkal BS, Katz M, Lavi S, Cesareni G, Yarden Y. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem 2006; 281:21640-21651. [PMID: 16735510 DOI: 10.1074/jbc.m513034200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When appended to the epidermal growth factor receptor (EGFR), ubiquitin serves as a sorting signal for lysosomal degradation. Here we demonstrate that the ubiquitin ligase of EGFR, namely c-Cbl, also mediates receptor modification with the ubiquitin-like molecule Nedd8. EGF stimulates receptor neddylation, which enhances subsequent ubiquitylation, as well as sorting of EGFR for degradation. Multiple lysine residues, located within the tyrosine kinase domain of EGFR, serve as attachment sites for Nedd8. A set of clathrin coat-associated binders of ubiquitin also bind Nedd8, but they undergo ubiquitylation, not neddylation. We discuss the emerging versatility of the concerted action of ubiquitylation and neddylation in the process that desensitizes growth factor-activated receptor tyrosine kinases.
Collapse
Affiliation(s)
- Shlomo Oved
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaron Mosesson
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaara Zwang
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Keren Shtiegman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mina D Marmor
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bose S Kochupurakkal
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Menachem Katz
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sara Lavi
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Yosef Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
40
|
Kim HJ, Kim SH, Shim SO, Park E, Kim C, Kim K, Tanouye MA, Yim J. Drosophila homolog of APP-BP1 (dAPP-BP1) interacts antagonistically with APPL during Drosophila development. Cell Death Differ 2006; 14:103-15. [PMID: 16628230 DOI: 10.1038/sj.cdd.4401935] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
beta-Amyloid precursor protein binding protein 1 (APP-BP1) was previously identified based on its binding to the carboxyl terminal of beta-amyloid precursor protein. In this report, we have discovered that a mutation of dAPP-BP1 (Drosophila ortholog of APP-BP1) hinders tissue development, causes apoptosis in imaginal disc cells, and blocks the NEDD8 conjugation pathway. We show that dAPP-BP1 specifically binds the intracellular domain of APP-like protein (APPL). The dAPP-BP1 mutation partially suppresses the abnormal macrochaete phenotype of Appl(d), while overexpression of dAPP-BP1 causes abnormal macrochaetes. When APPL is overexpressed, the normal bristle pattern in the fly thorax is disturbed and apoptosis is induced in wing imaginal discs. APPL overexpression phenotypes are enhanced by reducing the level of dAPP-BP1. APPL overexpression is shown to inhibit the NEDD8 conjugation pathway. APPL-induced apoptosis is rescued by overexpression of dAPP-BP1. Our data suggest that APPL and dAPP-BP1 interact antagonistically during Drosophila development.
Collapse
Affiliation(s)
- H-J Kim
- School of Biological Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tettamanzi MC, Yu C, Bogan JS, Hodsdon ME. Solution structure and backbone dynamics of an N-terminal ubiquitin-like domain in the GLUT4-regulating protein, TUG. Protein Sci 2006; 15:498-508. [PMID: 16501224 PMCID: PMC2249771 DOI: 10.1110/ps.051901806] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/30/2005] [Accepted: 12/07/2005] [Indexed: 02/03/2023]
Abstract
The GLUT4-regulating protein, TUG, functions to retain GLUT4-containing membrane vesicles intracellularly and, in response to insulin stimulation, releases these vesicles to the cellular exocytic machinery for translocation to the plasma membrane. As part of our on going effort to describe the molecular basis for TUG function, we have determined the tertiary structure and characterized the backbone dynamics for an N-terminal ubiquitin-like domain (TUG-UBL1) using NMR spectroscopy. A well-ordered conformation is observed for residues 10-83 of full-length TUG, and confirms a beta-grasp or ubiquitin-like topology. Although not required for in vitro association with GLUT4, the functional role of the TUG-UBL1 domain has not yet been described. We undertook a limited literature review of similar N-terminal UBL domains and noted that a majority participate in protein-protein interactions, generally functioning as adaptor modules to physically associate the over all activity of the protein with a specific cellular process, such as the ubiquitin-proteasome pathway. In consistent fashion, TUG-UBL1 is not expected to participate in a covalent protein modification reaction as it lacks the characteristic C-terminal diglycine ("GG") motif required for conjugation to an acceptor lysine, and also lacks the three most common acceptor lysine residues involved in polyubiquitination. Additionally, analysis of the TUG-UBL1 molecular surface reveals a lack of conservation of the "Ile-44 hydrophobic face" typically involved in ubiquitin recognition. Instead, we speculate on the possible significance of a concentrated area of negative electrostatic potential with increased backbone mobility, both of which are features suggestive of a potential protein-protein interaction site.
Collapse
|
42
|
Petroski MD, Deshaies RJ. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 2006; 123:1107-20. [PMID: 16360039 DOI: 10.1016/j.cell.2005.09.033] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/30/2022]
Abstract
Ubiquitin chains linked via lysine 48 (K48) of ubiquitin mediate recognition of ubiquitinated proteins by the proteasome. However, the mechanisms underlying polymerization of this targeting signal on a substrate are unknown. Here we dissect this process using the cyclin-dependent kinase inhibitor Sic1 and its ubiquitination by the cullin-RING ubiquitin ligase SCF(Cdc4) and the ubiquitin-conjugating enzyme Cdc34. We show that Sic1 ubiquitination can be separated into two steps: attachment of the first ubiquitin, which is rate limiting, followed by rapid elongation of a K48-linked ubiquitin chain. Mutation of an acidic loop conserved among Cdc34 orthologs has no effect on attachment of the first ubiquitin onto Sic1 but compromises the processivity and linkage specificity of ubiquitin-chain synthesis. We propose that the acidic loop favorably positions K48 of a substrate-linked ubiquitin to attack SCF bound Cdc34 approximately ubiquitin thioester and thereby enables processive synthesis of K48-linked ubiquitin chains by SCF-Cdc34.
Collapse
Affiliation(s)
- Matthew D Petroski
- Howard Hughes Medical Institute, Division of Biology, 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | | |
Collapse
|
43
|
Liu C, Poitelea M, Watson A, Yoshida SH, Shimoda C, Holmberg C, Nielsen O, Carr AM. Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase. EMBO J 2005; 24:3940-51. [PMID: 16252005 PMCID: PMC1283953 DOI: 10.1038/sj.emboj.7600854] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 10/07/2005] [Indexed: 11/09/2022] Open
Abstract
Cullin-4 forms a scaffold for multiple ubiquitin ligases. In Schizosaccharomyces pombe, the Cullin-4 homologue (Pcu4) physically associates with Ddb1 and the COP9 signalosome (CSN). One target of this complex is Spd1. Spd1 regulates ribonucleotide reductase (RNR) activity. Spd1 degradation during S phase, or following DNA damage of G2 cells, results in the nuclear export of the small RNR subunit. We demonstrate that Cdt2, an unstable WD40 protein, is a regulatory subunit of Pcu4-Ddb1-CSN ubiquitin ligase. cdt2 deletion stabilises Spd1 and prevents relocalisation of the small RNR subunit from the nucleus to the cytoplasm. cdt2+ is periodically transcribed by the Cdc10/DSC1 transcription factor during S phase and transiently transcribed following DNA damage of G2 cells, corresponding to Spd1 degradation profiles. Cdt2 co-precipitates with Spd1, and Cdt2 overexpression results in constitutive Spd1 degradation. We propose that Cdt2 incorporation into the Pcu4-Ddb1-CSN complex prompts Spd1 targeting and subsequent degradation and that Cdt2 is a WD40 repeat adaptor protein for Cullin-4-based ubiquitin ligase.
Collapse
Affiliation(s)
- Cong Liu
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Marius Poitelea
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Adam Watson
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Shu-hei Yoshida
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Olaf Nielsen
- Department of Genetics, University of Copenhagen, Copenhagen K, Denmark
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK. Tel.: +44 1273 678122; Fax +44 1273 678121; E-mail:
| |
Collapse
|
44
|
Gazdoiu S, Yamoah K, Wu K, Escalante CR, Tappin I, Bermudez V, Aggarwal AK, Hurwitz J, Pan ZQ. Proximity-induced activation of human Cdc34 through heterologous dimerization. Proc Natl Acad Sci U S A 2005; 102:15053-8. [PMID: 16210246 PMCID: PMC1242854 DOI: 10.1073/pnas.0507646102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cdc34 is an E2-conjugating enzyme required for catalyzing the polyubiquitination reaction mediated by the Skp1.CUL1.F-box (SCF) protein E3 ubiquitin (Ub) ligase. Here, we show that the activity of human Cdc34 in the Ub-Ub ligation reaction was enhanced dramatically by SCF's core Ub ligase module, composed of a heterodimeric complex formed by the ROC1 RING finger protein and the CUL1 C terminus that contains a Nedd8 moiety covalently conjugated at K720. Unexpectedly, we found that N-terminal fusion of a GST moiety to human Cdc34 generated dimeric GST-Cdc34 that was constitutively active in supporting the assembly of K48-linked polyUb chains independently of SCF. Furthermore, fusion of a FK506-binding protein (FKBP) to the N terminus of human Cdc34 yielded FKBP-Cdc34 that was induced to form a dimer upon treatment with the chemical inducer AP20187. The AP20187-induced dimeric form of FKBP-Cdc34 was substantially more active than the monomer in catalyzing Ub-Ub ligation. Thus, juxtaposition of human Cdc34 activates its catalytic capability, suggesting that the SCF-mediated polyubiquitination reaction may require the conversion of Cdc34 from an inactive monomer to a highly active dimeric form.
Collapse
Affiliation(s)
- Stefan Gazdoiu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shen LN, Liu H, Dong C, Xirodimas D, Naismith JH, Hay RT. Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO J 2005; 24:1341-51. [PMID: 15775960 PMCID: PMC1142549 DOI: 10.1038/sj.emboj.7600628] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 02/23/2005] [Indexed: 11/09/2022] Open
Abstract
NEDD8 (neural precursor cell expressed developmentally downregulated gene 8)-specific protease NEDP1 processes preNEDD8 to its mature form and deconjugates NEDD8 from substrates such as p53 and cullins. Although NEDD8 and ubiquitin are highly related in sequence and structure, their attachment to a protein leads to different biological effects. It is therefore critical that NEDP1 discriminates between NEDD8 and ubiquitin, and this requires remarkable precision in molecular recognition. To determine the basis of this specificity, we have determined the crystal structure of NEDP1 in isolation and in a transition state complex with NEDD8. This reveals that NEDP1 is a cysteine protease of the Ulp family. Binding of NEDD8 induces a dramatic conformational change in a flexible loop that swings over the C-terminus of NEDD8 locking it into an extended beta-structure optimal for catalysis. Structural, mutational and biochemical studies have identified key residues involved in molecular recognition. A single-residue difference in the C-terminus of NEDD8 and ubiquitin contributes significantly to the ability of NEDP1 to discriminate between them. In vivo analysis indicates that NEDP1 mutants perturb deNEDDylation of the tumour suppressor p53.
Collapse
Affiliation(s)
- Lin-nan Shen
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Huanting Liu
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Changjiang Dong
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dimitris Xirodimas
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - James H Naismith
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Ronald T Hay
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| |
Collapse
|
46
|
Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:55-72. [PMID: 15571809 DOI: 10.1016/j.bbamcr.2004.09.019] [Citation(s) in RCA: 964] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity.
Collapse
Affiliation(s)
- Cecile M Pickart
- Department of Biochemistry and Molecular Biology/Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
47
|
Reverter D, Wu K, Erdene TG, Pan ZQ, Wilkinson KD, Lima CD. Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1. J Mol Biol 2005; 345:141-51. [PMID: 15567417 DOI: 10.1016/j.jmb.2004.10.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 10/11/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
The Nedd8 conjugation pathway is conserved from yeast to humans and is essential in many organisms. Nedd8 is conjugated to cullin proteins in a process that alters SCF E3 ubiquitin ligase activity, and it is presumed that Nedd8 deconjugation would reverse these effects. We now report the X-ray structures of the human Nedd8-specific protease, Den1, in a complex with the inhibitor Nedd8 aldehyde, thus revealing a model for the tetrahedral transition state intermediate generated during proteolysis. Although Den1 is closely related to the SUMO-specific protease family (Ulp/Senp family), structural analysis of the interface suggests determinants involved in Nedd8 selectivity by Den1 over other ubiquitin-like family members and suggests how the Ulp/Senp architecture has been modified to interact with different ubiquitin-like modifiers.
Collapse
Affiliation(s)
- David Reverter
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15:535-48. [PMID: 15327770 DOI: 10.1016/j.molcel.2004.08.008] [Citation(s) in RCA: 679] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 06/26/2004] [Accepted: 07/07/2004] [Indexed: 11/19/2022]
Abstract
The activation of NF-kappaB and IKK requires an upstream kinase complex consisting of TAK1 and adaptor proteins such as TAB1, TAB2, or TAB3. TAK1 is in turn activated by TRAF6, a RING domain ubiquitin ligase that facilitates the synthesis of lysine 63-linked polyubiquitin chains. Here we present evidence that TAB2 and TAB3 are receptors that bind preferentially to lysine 63-linked polyubiquitin chains through a highly conserved zinc finger (ZnF) domain. Mutations of the ZnF domain abolish the ability of TAB2 and TAB3 to bind polyubiquitin chains, as well as their ability to activate TAK1 and IKK. Significantly, replacement of the ZnF domain with a heterologous ubiquitin binding domain restored the ability of TAB2 and TAB3 to activate TAK1 and IKK. We also show that TAB2 binds to polyubiquitinated RIP following TNFalpha stimulation. These results indicate that polyubiquitin binding domains represent a new class of signaling domains that regulate protein kinase activity through a nonproteolytic mechanism.
Collapse
Affiliation(s)
- Atsuhiro Kanayama
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Parry G, Estelle M. Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol 2004; 15:221-9. [PMID: 15209382 DOI: 10.1016/j.semcdb.2003.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of the ubiquitin related protein Nedd8/RUB is essential for growth in most organisms. Nedd8/RUB has been shown to modify the cullin subunit of culling-based ubiquitin protein ligases (E3). Neddylation acts to regulate the function of these E3s and organisms with lesions in the neddylation process exhibit severe growth defects. In this review we describe the proteins that participate in neddylation and discuss a model for Nedd8/RUB regulation of ubiquitin ligase function.
Collapse
Affiliation(s)
- Geraint Parry
- Department of Biology, Indiana University, Myers Hall 150, 915 East Third Street, Bloomington, IN 47405, USA
| | | |
Collapse
|
50
|
Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 2004; 118:83-97. [PMID: 15242646 DOI: 10.1016/j.cell.2004.06.016] [Citation(s) in RCA: 414] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 05/28/2004] [Accepted: 06/04/2004] [Indexed: 01/08/2023]
Abstract
The only reported role for the conjugation of the NEDD8 ubiquitin-like molecule is control of the activity of SCF ubiquitin ligase complexes. Here, we show that the Mdm2 RING finger E3 ubiquitin ligase can also promote NEDD8 modification of the p53 tumor suppressor protein. Mdm2 is itself modified with NEDD8 with very similar characteristics to the autoubiquitination activity of Mdm2. By using a cell line (TS-41) with a temperature-sensitive mutation in the NEDD8 conjugation pathway and a p53 mutant that cannot be NEDDylated (3NKR), we demonstrate that Mdm2-dependent NEDD8 modification of p53 inhibits its transcriptional activity. These findings expand the role for Mdm2 as an E3 ligase, providing evidence that Mdm2 is a common component of the ubiquitin and NEDD8 conjugation pathway and indicating the diverse mechanisms by which E3 ligases can control the function of substrate proteins.
Collapse
Affiliation(s)
- Dimitris P Xirodimas
- University of Dundee, Ninewells Hospital and Medical School, Department of Surgery and Molecular Oncology, Dundee DD1 9SY, UK
| | | | | | | | | |
Collapse
|