1
|
Afsari F, McIntyre TM. D-2-Hydroxyglutarate Inhibits Calcineurin Phosphatase Activity to Abolish NF-AT Activation and IL-2 Induction in Stimulated Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:504-514. [PMID: 36602551 PMCID: PMC11071645 DOI: 10.4049/jimmunol.2200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Gliomas expressing mutant isocitrate dehydrogenases excessively synthesize d-2-hydroxyglutarate (D2HG), suppressing immune surveillance. A portion of this D2HG is released from these tumor cells, but the way environmental D2HG inhibits lymphocyte function is undefined. We incubated human PBLs or Jurkat T cells with D2HG at concentrations present within and surrounding gliomas or its obverse l-2-hydroxyglutarate (L2HG) stereoisomer. We quantified each 2HG stereoisomer within washed cells by N-(p-toluenesulfonyl)-l-phenylalanyl chloride derivatization with stable isotope-labeled D2HG and L2HG internal standards, HPLC separation, and mass spectrometry. D2HG was present in quiescent cells and was twice as abundant as L2HG. Extracellular 2HG rapidly increased intracellular levels of the provided stereoisomer by a stereoselective, concentration-dependent process. IL-2 expression, even when elicited by A23187 and PMA, was abolished by D2HG in a concentration-dependent manner, with significant reduction at just twice its basal level. In contrast, L2HG was only moderately inhibitory. IL-2 expression is regulated by increased intracellular Ca2+ that stimulates calcineurin to dephosphorylate cytoplasmic phospho-NF-AT, enabling its nuclear translocation. D2HG abolished stimulated expression of a stably integrated NF-AT-driven luciferase reporter that precisely paralleled its concentration-dependent inhibition of IL-2. D2HG did not affect intracellular Ca2+. Rather, surface plasmon resonance showed D2HG, but not L2HG, bound calcineurin, and D2HG, but not L2HG, inhibited Ca2+-dependent calcineurin phosphatase activity in stimulated Jurkat extracts. Thus, D2HG is a stereoselective calcineurin phosphatase inhibitor that prevents NF-AT dephosphorylation and so abolishes IL-2 transcription in stimulated lymphocytes. This occurs at D2HG concentrations found within and adjacent to gliomas independent of its metabolic or epigenetic transcriptional regulation.
Collapse
Affiliation(s)
- Faezeh Afsari
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Thomas M. McIntyre
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
2
|
Häyry A, Faustini F, Zickert A, Larsson A, Niewold TB, Svenungsson E, Oke V, Gunnarsson I. Interleukin (IL) 16: a candidate urinary biomarker for proliferative lupus nephritis. Lupus Sci Med 2022; 9:9/1/e000744. [PMID: 36104119 PMCID: PMC9476119 DOI: 10.1136/lupus-2022-000744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022]
Abstract
Objective Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE). The pathogenesis is incompletely understood and diagnostic biomarkers are scarce. We investigated interleukin (IL) 16 as a potential biomarker for LN in a well-characterised cohort of patients with SLE. Methods We measured urinary (u-) and plasma (p-) levels of IL-16 in predefined patient groups using ELISA: LN (n=84), active non-renal SLE (n=63), inactive non-renal SLE (n=73) and matched population controls (n=48). The LN group included patients with recent biopsy-confirmed proliferative (PLN, n=47), mesangioproliferative (MES, n=11) and membranous (MLN, n=26) LN. Renal expression of IL-16 was investigated by immunohistochemistry. Associations between IL-16 measurements and clinical parameters and the diagnostic value for LN were explored. Results p-IL-16 was detected in all investigated cases and high p-IL-16 levels were observed in patients with active SLE. u-IL-16 was detected (dt-u-IL-16) in 47.6% of patients with LN, while only up to 17.8% had dt-u-IL-16 in other groups. In the LN group, 68% of patients with PLN had dt-u-IL-16, while the proportions in the MLN and MES groups were lower (11.5% and 45.5%, respectively). The highest u-IL-16 levels were detected in the PLN group. In the regression model, u-IL-16 levels differentiated PLN from other LN patient subgroups (area under the curve 0.775–0.896, p<0.0001). dt-u-IL-16 had superior specificity but slightly lower sensitivity than elevated anti-double-stranded DNA and low complement C3 or C4 in diagnosing PLN. A high proportion of LN kidney infiltrating cells expressed IL-16. Conclusions We demonstrate that detectable u-IL-16 can differentiate patients with PLN from those with less severe LN subtypes and active non-renal SLE. Our findings suggest that u-IL-16 could be used as a screening tool at suspicion of severe LN. Furthermore, the high IL-16 levels in plasma, urine and kidney tissue imply that IL-16 could be explored as a therapeutic target in SLE.
Collapse
Affiliation(s)
- Aliisa Häyry
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Faustini
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Zickert
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anders Larsson
- Department of Clinical Chemistry and Pharmacology, Uppsala University Hospital, Uppsala, Sweden
| | - Timothy B Niewold
- Department of Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Vilija Oke
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden .,Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Rosas-García J, Ramón-Luing LA, Bobadilla K, Meraz-Ríos MA, Sevilla-Reyes EE, Santos-Mendoza T. Distinct Transcriptional Profile of PDZ Genes after Activation of Human Macrophages and Dendritic Cells. Int J Mol Sci 2022; 23:ijms23137010. [PMID: 35806015 PMCID: PMC9266728 DOI: 10.3390/ijms23137010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
The PDZ (PSD95, Dlg and ZO-1) genes encode proteins that primarily function as scaffolds of diverse signaling pathways. To date, 153 PDZ genes have been identified in the human genome, most of which have multiple protein isoforms widely studied in epithelial and neural cells. However, their expression and function in immune cells have been poorly studied. Herein, we aimed to assess the transcriptional profiles of 83 PDZ genes in human macrophages (Mɸ) and dendritic cells (DCs) and changes in their relative expression during cell PRR stimulation. Significantly distinct PDZ gene transcriptional profiles were identified under different stimulation conditions. Furthermore, a distinct PDZ gene transcriptional signature was found in Mɸ and DCs under the same phagocytic stimuli. Notably, more than 40 PDZ genes had significant changes in expression, with potentially relevant functions in antigen-presenting cells (APCs). Given that several PDZ proteins are targeted by viral products, our results support that many of these proteins might be viral targets in APCs as part of evasion mechanisms. Our results suggest a distinct requirement for PDZ scaffolds in Mɸ and DCs signaling pathways activation. More assessments on the functions of PDZ proteins in APCs and their role in immune evasion mechanisms are needed.
Collapse
Affiliation(s)
- Jorge Rosas-García
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
- Department of Molecular Biomedicine, CINVESTAV, Mexico City 07360, Mexico;
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Karen Bobadilla
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
| | | | - Edgar E. Sevilla-Reyes
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (E.E.S.-R.); (T.S.-M.)
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
- Correspondence: (E.E.S.-R.); (T.S.-M.)
| |
Collapse
|
4
|
Krantz D, Mints M, Winerdal M, Riklund K, Rutishauser D, Zubarev R, Zirakhzadeh AA, Alamdari F, Johansson M, Sherif A, Winqvist O. IL-16 processing in sentinel node regulatory T cells is a factor in bladder cancer immunity. Scand J Immunol 2020; 92:e12926. [PMID: 32862475 DOI: 10.1111/sji.12926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/18/2020] [Accepted: 06/27/2020] [Indexed: 11/30/2022]
Abstract
In the effort of developing new immunotherapies, the sentinel node (SN) has proven a promising source from which to harness an effective antitumour T cell response. However, tumour immune escape, a process in which regulatory T cells (Tregs) play a central role, remains a major limiting factor. Therefore, there is a clear need to increase the knowledge of Treg function and signalling in sentinel nodes. Here, we set out to explore whether the proteome in SN-resident T cells is altered by the tumour and to identify key proteins in SN T cell signalling, focusing on Tregs. Five patients with muscle-invasive urothelial bladder cancer were prospectively included. Mass spectrometry was performed on two patients, with validation and functional studies being performed on three additional patients and four healthy donors. At cystectomy, SN, non-SN lymph nodes and peripheral blood samples were collected from the patients and T cell subsets isolated through flow cytometry before downstream experiments. Proteomic analysis indicated that growth and immune signalling pathways are upregulated in SN-resident Tregs. Furthermore, centrality analysis identified the cytokine IL-16 to be central in the SN-Treg signalling network. We show that tumour-released factors, through activating caspase-3, increase Treg IL-16 processing into bioactive forms, reinforcing Treg suppressive capacity. In conclusion, we provide evidence that Tregs exposed to secreted factors from bladder tumours show increased immune and growth signalling and altered IL-16 processing which translates to enhanced Treg suppressive function, indicating altered IL-16 signalling as a novel tumour immune escape mechanism.
Collapse
Affiliation(s)
- David Krantz
- Department of Haematology, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Mints
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Malin Winerdal
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Dorothea Rutishauser
- Department of Medical Biochemistry and Biophysics, Karolinska Institute and University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute and University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Amir Ali Zirakhzadeh
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | | | - Markus Johansson
- Department of Surgery and Urology, Sundsvall Hospital, Sundsvall, Sweden
| | - Amir Sherif
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Ola Winqvist
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Schmeits PCJ, Schaap MM, Luijten M, van Someren E, Boorsma A, van Loveren H, Peijnenburg AACM, Hendriksen PJM. Detection of the mechanism of immunotoxicity of cyclosporine A in murine in vitro and in vivo models. Arch Toxicol 2014; 89:2325-37. [PMID: 25224403 DOI: 10.1007/s00204-014-1365-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023]
Abstract
Transcriptomics in combination with in vitro cell systems is a powerful approach to unravel modes of action of toxicants. An important question is to which extent the modes of action as revealed by transcriptomics depend on cell type, species and study type (in vitro or in vivo). To acquire more insight into this, we assessed the transcriptomic effects of the immunosuppressive drug cyclosporine A (CsA) upon 6 h of exposure of the mouse cytotoxic T cell line CTLL-2, the thymoma EL-4 and primary splenocytes and compared these to the effects in spleens of mice orally treated with CsA for 7 days. EL-4 and CTLL-2 cells showed the highest similarities in response. CsA affected many genes in primary splenocytes that were not affected in EL-4 or CTLL-2. Pathway analysis demonstrated that CsA upregulated the unfolded protein response, endoplasmic reticulum stress and NRF2 activation in EL-4 cells, CTLL-2 cells and primary mouse splenocytes but not in mouse spleen in vivo. As expected, CsA downregulated cell cycle and immune response in splenocytes in vitro, spleens in vivo as well as CTLL-2 in vitro. Genes up- and downregulated in human Jurkat, HepG2 and renal proximal tubular cells were similarly affected in CTLL-2, EL-4 and primary splenocytes in vitro. In conclusion, of the models tested in this study, the known mechanism of immunotoxicity of CsA is best represented in the mouse cytotoxic T cell line CTLL-2. This is likely due to the fact that this cell line is cultured in the presence of a T cell activation stimulant (IL-2) making it more suitable to detect inhibitory effects on T cell activation.
Collapse
Affiliation(s)
- P C J Schmeits
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - M M Schaap
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - E van Someren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Research Group Microbiology and Systems Biology, TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | - A Boorsma
- Research Group Microbiology and Systems Biology, TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | - H van Loveren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - A A C M Peijnenburg
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - P J M Hendriksen
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Alam MS, Gaida MM, Ogawa Y, Kolios AGA, Lasitschka F, Ashwell JD. Counter-regulation of T cell effector function by differentially activated p38. ACTA ACUST UNITED AC 2014; 211:1257-70. [PMID: 24863062 PMCID: PMC4042639 DOI: 10.1084/jem.20131917] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unlike the MAP kinase (MAPK) cascade that phosphorylates p38 on the activation loop, T cell receptor (TCR) signaling results in phosphorylation on Tyr-323 (pY323, alternative pathway). Using mice expressing p38α and p38β with Y323F substitutions, we show that alternatively but not MAPK cascade-activated p38 up-regulates the transcription factors NFATc1 and IRF4, which are required for proliferation and cytokine production. Conversely, activation of p38 with UV or osmotic shock mitigated TCR-mediated activation by phosphorylation and cytoplasmic retention of NFATc1. Notably, UVB treatment of human psoriatic lesions reduced skin-infiltrating p38 pY323(+) T cell IRF4 and IL-17 production. Thus, distinct mechanisms of p38 activation converge on NFATc1 with opposing effects on T cell immunity, which may underlie the beneficial effect of phototherapy on psoriasis.
Collapse
Affiliation(s)
- Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research; Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthias M Gaida
- Laboratory of Immune Cell Biology, Center for Cancer Research; Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Youichi Ogawa
- Laboratory of Immune Cell Biology, Center for Cancer Research; Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Antonios G A Kolios
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland Laboratory of Applied Immunobiology, University of Zurich, 8006 Zurich, Switzerland
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research; Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Wu X, Guo W, Wu L, Gu Y, Gu L, Xu S, Wu X, Shen Y, Ke Y, Tan R, Sun Y, Xu Q. Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. THE JOURNAL OF IMMUNOLOGY 2012; 189:3497-507. [PMID: 22942432 DOI: 10.4049/jimmunol.1201006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The side effects of current immunosuppressive drugs have impeded the development of therapies for immune diseases. Selective regulation of STAT signaling is an attractive strategy for treating immune disorders. In this study, we used a small-molecule compound to explore possible means of targeting STAT1 for the treatment of Th1-mediated inflammation. Selective regulation of STAT1 signaling in T cells from C57BL/6 mice was accomplished using fusaruside, a small-molecule compound that triggers the tyrosine phosphorylation of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2). The interaction of tyrosine phosphorylated SHP-2 (pY-SHP-2) with cytosolic STAT1 prevented the recruitment of STAT1 to IFN-γR and specifically inhibited STAT1 signaling, resulting in a reduction in Th1 cytokine production and an improvement in 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis in mice. Blocking the pY-SHP-2-STAT1 interaction, with SHP-2 inhibitor NSC-87877 or using T cells from conditional SHP-2 knockout mice, reversed the effects of fusaruside, resulting in STAT1 activation and worsened colitis. The fusaruside-induced ability of pY-SHP-2 to selectively sequestrate STAT1 from recruitment to the receptor is independent of its function as a phosphatase, demonstrating a novel role for SHP-2 in regulating both STAT1 signaling and Th1-type immune responses. These findings could lead to increased options for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Individualized monitoring of nuclear factor of activated T cells-regulated gene expression in FK506-treated kidney transplant recipients. Transplantation 2010; 89:1417-23. [PMID: 20463649 DOI: 10.1097/tp.0b013e3181dc13b6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The suggested key mechanism of both cyclosporine A (CsA) and FK506 is the inhibition of calcineurin phosphatase activity, preventing nuclear factor of activated T cells (NFAT)-translocation into the nucleus of T cells, with a subsequent transcriptional block of crucial cytokine genes. However, the two drugs exert different clinical activities as exemplified by the ability of FK506 to treat acute rejections. Inhibition of calcineurin activity by FK506 occurs in vitro at the same or even higher dose as for CsA; however, the magnitude of clinical and experimental immunosuppression is higher, indicating that FK506 may act in a calcineurin-independent way. METHODS To test this hypothesis, we measured the inhibition of NFAT-regulated gene expression in 262 stable kidney transplanted patients after FK506 intake. RESULTS Previously, we showed that the optimal degree of NFAT inhibition in patients treated with CsA is between 15% and 30% residual gene expression. A considerable number of patients treated with FK506 do not achieve this level of immunosuppression despite therapeutic drug concentrations. Importantly, FK506 does inhibit protein translation. This insufficient degree of NFAT inhibition was associated with a higher rate of biopsy-proven acute rejection but also with a lower incidence of recurrent infections. Conversion of CsA to FK506 causes immediately reduced inhibition of NFAT-regulated gene expression. CONCLUSION We could demonstrate that a considerable number of FK506-treated patients benefit from the drug, irrespective of the potency of NFAT inhibition in T cells by a yet unknown mechanism. Nevertheless, residual expression of NFAT-regulated genes seems to be a useful pharmacodynamic method to monitor FK506 therapy in renal transplant patients.
Collapse
|
9
|
Baba Y, Kurosaki T. Physiological function and molecular basis of STIM1-mediated calcium entry in immune cells. Immunol Rev 2009; 231:174-88. [PMID: 19754897 DOI: 10.1111/j.1600-065x.2009.00813.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Calcium signals in immune cells regulate a variety of physiological responses such as cell activation, differentiation, gene transcription, and effector functions. Surface receptor stimulation induces an increase in the concentration of cytosolic calcium ions (Ca2+), which are derived mainly from two sources, intracellular endoplasmic reticulum (ER) Ca2+ stores and the extracellular space. The major cascade for Ca2+ entry in immune cells is through store-operated Ca2+ entry (SOCE) and Ca2+ release-activated Ca2+ (CRAC) channels. Activation of SOCE is triggered by depletion of intracellular ER Ca2+ stores, but the molecular mechanism was a long-standing issue. With the recent molecular identification of the ER Ca2+ sensor [stromal interacting molecule-1 (STIM1)] and a pore-forming subunit of the CRAC channel (Orai1), our understanding of the SOCE activation pathway has increased dramatically. These advances have now made it possible to shed some light on important questions: what is the physiological significance of SOCE, and what is its molecular basis? This review focuses on the recent progress in the field and the exciting opportunities for understanding how SOCE influences diverse immune functions.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | | |
Collapse
|
10
|
Rumberger B, Kreutz C, Nickel C, Klein M, Lagoutte S, Teschner S, Timmer J, Gerke P, Walz G, Donauer J. Combination of immunosuppressive drugs leaves specific “fingerprint” on gene expressionin vitro. Immunopharmacol Immunotoxicol 2009; 31:283-92. [DOI: 10.1080/08923970802626268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Baken KA, Pennings JL, Jonker MJ, Schaap MM, de Vries A, van Steeg H, Breit TM, van Loveren H. Overlapping gene expression profiles of model compounds provide opportunities for immunotoxicity screening. Toxicol Appl Pharmacol 2008; 226:46-59. [DOI: 10.1016/j.taap.2007.08.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/17/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
|
12
|
Zhang Y, Tuzova M, Xiao ZXJ, Cruikshank WW, Center DM. Pro-IL-16 Recruits Histone Deacetylase 3 to the Skp2 Core Promoter through Interaction with Transcription Factor GABP. THE JOURNAL OF IMMUNOLOGY 2007; 180:402-8. [DOI: 10.4049/jimmunol.180.1.402] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Abstract
Calcium signals in cells of the immune system participate in the regulation of cell differentiation, gene transcription and effector functions. An increase in intracellular levels of calcium ions (Ca2+) results from the engagement of immunoreceptors, such as the T-cell receptor, B-cell receptor and Fc receptors, as well as chemokine and co-stimulatory receptors. The major pathway that induces an increase in intracellular Ca2+ levels in lymphocytes is through store-operated calcium entry (SOCE) and calcium-release-activated calcium (CRAC) channels. This Review focuses on the role of Ca2+ signals in lymphocyte functions, the signalling pathways leading to Ca2+ influx, the function of the recently discovered regulators of Ca2+ influx (STIM and ORAI), and the relationship between Ca2+ signals and diseases of the immune system.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
| |
Collapse
|
14
|
Martínez-Llordella M, Puig-Pey I, Orlando G, Ramoni M, Tisone G, Rimola A, Lerut J, Latinne D, Margarit C, Bilbao I, Brouard S, Hernández-Fuentes M, Soulillou JP, Sánchez-Fueyo A. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant 2007; 7:309-19. [PMID: 17241111 DOI: 10.1111/j.1600-6143.2006.01621.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immunosuppressive drugs can be completely withdrawn in up to 20% of liver transplant recipients, commonly referred to as 'operationally' tolerant. Immune characterization of these patients, however, has not been performed in detail, and we lack tests capable of identifying tolerant patients among recipients receiving maintenance immunosuppression. In the current study we have analyzed a variety of biological traits in peripheral blood of operationally tolerant liver recipients in an attempt to define a multiparameter 'fingerprint' of tolerance. Thus, we have performed peripheral blood gene expression profiling and extensive blood cell immunophenotyping on 16 operationally tolerant liver recipients, 16 recipients requiring on-going immunosuppressive therapy, and 10 healthy individuals. Microarray profiling identified a gene expression signature that could discriminate tolerant recipients from immunosuppression-dependent patients with high accuracy. This signature included genes encoding for gammadelta T-cell and NK receptors, and for proteins involved in cell proliferation arrest. In addition, tolerant recipients exhibited significantly greater numbers of circulating potentially regulatory T-cell subsets (CD4+ CD25+ T-cells and Vdelta1+ T cells) than either non-tolerant patients or healthy individuals. Our data provide novel mechanistic insight on liver allograft operational tolerance, and constitute a first step in the search for a non-invasive diagnostic signature capable of predicting tolerance before undergoing drug weaning.
Collapse
Affiliation(s)
- M Martínez-Llordella
- Liver Transplant Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
van Dieren JM, Kuipers EJ, Samsom JN, Nieuwenhuis EE, van der Woude CJ. Revisiting the immunomodulators tacrolimus, methotrexate, and mycophenolate mofetil: their mechanisms of action and role in the treatment of IBD. Inflamm Bowel Dis 2006; 12:311-27. [PMID: 16633053 DOI: 10.1097/01.mib.0000209787.19952.53] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBDs) are thought to result from unopposed immune responses to normal gut flora in a genetically susceptible host. A variety of immunomodulating therapies are applied for the treatment of patients with IBDs. The first-line treatment for IBDs consists of 5-aminosalicylate and/or budesonide. However, these first-line therapies are often not suitable for continuous treatment or do not suffice for the treatment of severe IBD. Recently, efforts have been made to generate novel selective drugs that are more effective and have fewer side effects. Despite promising results, most of these novel drugs are still in a developmental stage and unavailable for clinical application. Yet, another class of established immunomodulators exists that is successful in the treatment of inflammatory bowel diseases. While waiting for emerging novel therapies, the use of these more established drugs should be considered. Furthermore, one of the advantages of using established immunomodulators is the well-documented knowledge on the long-term side effects and on the mechanisms of action. In this review, the authors discuss 3 well-known immunomodulators that are being applied with increased frequency for the treatment of IBD: tacrolimus, methotrexate, and mycophenolate mofetil. These agents have been used for many years as treatment modalities for immunosuppression after organ transplantation, for the treatment of cancer, and for immunomodulation in several other immune-mediated diseases. First, this review discusses the potential targets for immunomodulating therapies in IBDs. Second, the immunomodulating mechanisms and effects of the 3 immunomodulators are discussed in relationship to these treatment targets.
Collapse
Affiliation(s)
- Jolanda M van Dieren
- Department of Gastroenterology and Hepatology, Division of Gastroenterology and Nutrition, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Wilson KC, Cattel DJ, Wan Z, Rahangdale S, Ren F, Kornfeld H, Sullivan BA, Cruikshank WW, Center DM. Regulation of nuclear Prointerleukin-16 and p27Kip1 in primary human T lymphocytes. Cell Immunol 2005; 237:17-27. [PMID: 16289056 DOI: 10.1016/j.cellimm.2005.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 08/12/2005] [Accepted: 09/06/2005] [Indexed: 01/31/2023]
Abstract
Prointerleukin-16 (Pro-IL-16) is an abundant, PDZ domain-containing protein expressed in the nucleus and cytoplasm of resting human T lymphocytes. We have previously shown that ectopic expression of Pro-IL-16 in Pro-IL-16-negative human Jurkat cells represses transcription of the F-box protein, Skp2, resulting in accumulation of the cyclin-dependent kinase inhibitor, p27(Kip1), and G0/G1 cell cycle arrest. The current studies demonstrate the kinetics of Pro-IL-16 and p27(Kip1) expression in activated normal human T lymphocytes. We correlate nuclear Pro-IL-16 loss with decreased p27(Kip1) expression, increased cell cycle progression, and proliferation. Conversely, we show that constitutive expression of Pro-IL-16 by retroviral infection of activated human T lymphocytes induces G0/G1 cell cycle arrest, inhibits proliferation, and is associated with increased levels of p27(Kip1). These findings implicate nuclear Pro-IL-16 as a cell cycle regulatory protein for human T lymphocytes.
Collapse
Affiliation(s)
- Kevin C Wilson
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cheadle C, Fan J, Cho-Chung YS, Werner T, Ray J, Do L, Gorospe M, Becker KG. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics 2005; 6:75. [PMID: 15907206 PMCID: PMC1156890 DOI: 10.1186/1471-2164-6-75] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 05/20/2005] [Indexed: 11/15/2022] Open
Abstract
Background Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The effective correlation of observed changes in gene expression with shared transcription regulatory elements remains difficult to demonstrate convincingly. One reason for this difficulty may result from the intricate convergence of both transcriptional and mRNA turnover events which, together, directly influence steady-state mRNA levels. Results In order to investigate the relative contribution of gene transcription and changes in mRNA stability regulation to standard analyses of gene expression, we used two distinct microarray methods which individually measure nuclear gene transcription and changes in polyA mRNA gene expression. Gene expression profiles were obtained from both polyA mRNA (whole-cell) and nuclear run-on (newly transcribed) RNA across a time course of one hour following the activation of human Jurkat T cells with PMA plus ionomycin. Comparative analysis revealed that regulation of mRNA stability may account for as much as 50% of all measurements of changes in polyA mRNA in this system, as inferred by the absence of any corresponding regulation of nuclear gene transcription activity for these groups of genes. Genes which displayed dramatic elevations in both mRNA and nuclear run-on RNA were shown to be inhibited by Actinomycin D (ActD) pre-treatment of cells while large numbers of genes regulated only through altered mRNA turnover (both up and down) were ActD-resistant. Consistent patterns across the time course were observed for both transcribed and stability-regulated genes. Conclusion We propose that regulation of mRNA stability contributes significantly to the observed changes in gene expression in response to external stimuli, as measured by high throughput systems.
Collapse
Affiliation(s)
- Chris Cheadle
- Cellular Biochemistry Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Jinshui Fan
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, NIH, 5600 Nathan Shock Drive, Baltimore MD 21224-6825 USA
| | - Yoon S Cho-Chung
- Cellular Biochemistry Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Thomas Werner
- Genomatix Software GmbH, Landsberger Str. 6, D-80339 München, Germany
| | - Jill Ray
- Capital Genomix, 9290 Gaither Road, Gaithersburg, MD 20877 USA
| | - Lana Do
- Capital Genomix, 9290 Gaither Road, Gaithersburg, MD 20877 USA
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, NIH, 5600 Nathan Shock Drive, Baltimore MD 21224-6825 USA
| | - Kevin G Becker
- DNA Array Unit, National Institute on Aging-Intramural Research Program, NIH, 5600 Nathan Shock Drive, Baltimore MD 21224-6825 USA
| |
Collapse
|
18
|
Abstract
The adaptability of skeletal muscle to changes in the mechanical environment has been well characterized at the tissue and system levels, but the mechanisms through which mechanical signals are transduced to chemical signals that influence muscle growth and metabolism remain largely unidentified. However, several findings have suggested that mechanical signal transduction in muscle may occur through signaling pathways that are shared with insulin-like growth factor (IGF)-I. The involvement of IGF-I-mediated signaling for mechanical signal transduction in muscle was originally suggested by the observations that muscle releases IGF-I on mechanical stimulation, that IGF-I is a potent agent for promoting muscle growth and affecting phenotype, and that IGF-I can function as an autocrine hormone in muscle. Accumulating evidence shows that at least two signaling pathways downstream of IGF-I binding can influence muscle growth and adaptation. Signaling via the calcineurin/nuclear factor of activated T-cell pathway has been shown to have a powerful influence on promoting the slow/type I phenotype in muscle but can also increase muscle mass. Neural stimulation of muscle can activate this pathway, although whether neural activation of the pathway can occur independent of mechanical activation or independent of IGF-I-mediated signaling remains to be explored. Signaling via the Akt/mammalian target of rapamycin pathway can also increase muscle growth, and recent findings show that activation of this pathway can occur as a response to mechanical stimulation applied directly to muscle cells, independent of signals derived from other cells. In addition, mechanical activation of mammalian target of rapamycin, Akt, and other downstream signals is apparently independent of autocrine factors, which suggests that activation of the mechanical pathway occurs independent of muscle-mediated IGF-I release.
Collapse
Affiliation(s)
- James G Tidball
- Department of Physiological Science, 5833 Life Science Bldg., University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Ren F, Zhan X, Martens G, Lee J, Center D, Hanson SK, Kornfeld H. Pro-IL-16 Regulation in Activated Murine CD4+ Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 174:2738-45. [PMID: 15728482 DOI: 10.4049/jimmunol.174.5.2738] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prior DNA microarray studies suggested that IL-16 mRNA levels decrease following T cell activation, a property unique among cytokines. We examined pro-IL-16 mRNA and protein expression in resting and anti-CD3 mAb-activated primary murine CD4(+) T cells. Consistent with the microarray reports, pro-IL-16 mRNA levels fell within 4 h of activation, and this response is inhibited by cyclosporin A. Total cellular pro-IL-16 protein also fell, reaching a nadir at 48 h. Pro-IL-16 comprises a C-terminal cytokine domain and an N-terminal prodomain that are cleaved by caspase-3. Pro-IL-16 expressed in transfected tumor cells was previously shown to translocate to the nucleus and to promote G(0)/G(1) arrest by stabilizing the cyclin-dependent kinase inhibitor p27(Kip1). In the present study, we observed increased S-phase kinase-associated protein 2 mRNA expression in IL-16 null mice, but basal expression and activation-dependent regulation of p27(Kip1) were no different from wild-type mice. Stimulation with anti-CD3 mAb induced transiently greater thymidine incorporation in IL-16-deficient CD4(+) T cells than wild-type controls, but there was no difference in cell survival or in the CFSE dilution profiles. Analysis of CD4(+) T cell proliferation in vivo using BrdU labeling similarly failed to identify a hyperproliferative phenotype in T cells lacking IL-16. These data demonstrate that pro-IL-16 mRNA and protein expression are dynamically regulated during CD4(+) T cell activation by a calcineurin-dependent mechanism, and that pro-IL-16 might influence T cell cycle regulation, although not in a dominant manner.
Collapse
Affiliation(s)
- Fucheng Ren
- Division of Pulmonary and Critical Care Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Barlic J, McDermott DH, Merrell MN, Gonzales J, Via LE, Murphy PM. Interleukin (IL)-15 and IL-2 Reciprocally Regulate Expression of the Chemokine Receptor CX3CR1 through Selective NFAT1- and NFAT2-dependent Mechanisms. J Biol Chem 2004; 279:48520-34. [PMID: 15347678 DOI: 10.1074/jbc.m406978200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that interleukin (IL)-15 and IL-2, which signal through IL-2Rbetagamma, oppositely regulate expression of the proinflammatory chemokine receptor CX3CR1. Here we delineate molecular mechanisms responsible for this paradox. By using a luciferase reporter plasmid, we identified a 433-bp region spanning the major transcriptional start point of human CX3CR1 that, when expressed in human peripheral blood mononuclear cells (PBMCs), possessed strong constitutive promoter activity. IL-2 and IL-15 treatment increased and abolished this activity, respectively, mimicking their effects on endogenous CX3CR1. IL-2 and IL-15 have been reported to also have opposite effects on the immunoregulatory transcription factor NFAT (nuclear factor of activated T cells), and the 433-bp region contains a kappaB-like NFAT site. The effects of IL-15 and IL-2 on both CX3CR1 reporter activity and endogenous CX3CR1 transcription in PBMCs were abolished by the NFAT inhibitors cyclosporin A and VIVIT. Moreover, mutation of the kappaB-like NFAT sequence markedly attenuated IL-2 and IL-15 modulation of CX3CR1 promoter-reporter activity in PBMCs. Furthermore, chromatin immunoprecipitation revealed that IL-15 promoted specific recruitment of NFAT1 but not NFAT2 to the CX3CR1 promoter, whereas IL-2 had the converse effect. This appears to be relevant in vivo because mouse CX3CR1 mRNA was expressed in both PBMCs and splenocytes from NFAT1-/- mice injected with recombinant IL-15 but was undetectable in cells from IL-15-injected NFAT1+/+ BALB/c mice; as predicted, IL-2 up-regulated cx3cr1 in both mouse strains to a similar extent. Thus, by pharmacologic, genetic, and biochemical criteria in vitro and in vivo, our results suggest that IL-15 and IL-2 oppositely regulate CX3CR1 gene expression by differentially recruiting NFAT1 and NFAT2 to a kappaB-like NFAT site within the CX3CR1 promoter. We propose that expression of CX3CR1 and possibly other immunoregulatory genes may be determined in part by the balance of NFAT1 and NFAT2 activity in leukocytes.
Collapse
MESH Headings
- Animals
- Base Sequence
- CX3C Chemokine Receptor 1
- Cell Line
- Chromatin/metabolism
- Chromatin Immunoprecipitation
- Crosses, Genetic
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Exons
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Immunoprecipitation
- Interleukin-15/physiology
- Interleukin-2/metabolism
- Interleukin-2/physiology
- Leukocytes, Mononuclear/metabolism
- Luciferases/metabolism
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
- Mutation
- NFATC Transcription Factors
- Nuclear Proteins/metabolism
- Open Reading Frames
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA/metabolism
- Receptors, Chemokine/metabolism
- Recombinant Proteins/chemistry
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Jana Barlic
- Molecular Signaling Section, Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
21
|
Center DM, Cruikshank WW, Zhang Y. Nuclear pro-IL-16 regulation of T cell proliferation: p27(KIP1)-dependent G0/G1 arrest mediated by inhibition of Skp2 transcription. THE JOURNAL OF IMMUNOLOGY 2004; 172:1654-60. [PMID: 14734747 DOI: 10.4049/jimmunol.172.3.1654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The precursor for IL-16 (pro-IL-16) is a nuclear and cytoplasmic PDZ domain-containing protein. In this study we have found that pro-IL-16 is absent or mutated in four T lymphoblastic leukemia cell lines examined. Ectopic expression of pro-IL-16 in pro-IL-16-negative Jurkat cells blocks cell cycle progression from G(0)/G(1) to S phase associated with elevated levels of the cyclin-dependent kinase inhibitor p27(KIP1). Pro-IL-16 decreases p27(KIP1) degradation by reducing transcription and subsequent expression of Skp2, a key component of the SCF(Skp2) ubiquitin E3 ligase complex. Taken together, these findings identify pro-IL-16 as a novel regulator of Skp2 expression and p27(KIP1) levels and implicate a role for pro-IL-16 in T cell proliferation.
Collapse
Affiliation(s)
- David M Center
- The Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
22
|
Fischer G, Aumüller T. Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 2004; 148:105-50. [PMID: 12698322 DOI: 10.1007/s10254-003-0011-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In some cases, the slow rotational movement underlying peptide bond cis/trans isomerizations is found to control the biological activity of proteins. Peptide bond cis/trans isomerases as cyclophilins, Fk506-binding proteins, parvulins, and bacterial hsp70 generally assist in the interconversion of the polypeptide substrate cis/trans isomers, and rate acceleration is the dominating mechanism of action in cells. We present evidence disputing the hypothesis that some of the molecular properties of these proteins play an auxiliary role in enzyme function.
Collapse
Affiliation(s)
- G Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle, Germany.
| | | |
Collapse
|
23
|
Giese T, Zeier M, Schemmer P, Uhl W, Schoels M, Dengler T, Buechler M, Meuer S. Monitoring of NFAT-regulated gene expression in the peripheral blood of allograft recipients: a novel perspective toward individually optimized drug doses of cyclosporine A. Transplantation 2004; 77:339-44. [PMID: 14966405 DOI: 10.1097/01.tp.0000109260.00094.01] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND With the introduction of cyclosporine A (CsA), long-term allograft function has significantly improved. Problems related to limited therapeutic margins and CsA toxicity remain unsolved. Until now there have been no reliable, practical markers to measure the biologic activity of CsA in vivo. METHODS Expression of NFAT (nuclear factor of activated T cells)-regulated genes (interleukin 2, interferon-gamma, and granulocyte-macrophage colony-stimulating factor) in phorbol myristate acetate/ionomycin-stimulated peripheral blood from healthy volunteers (n=34) and from stable renal (n=25), cardiac (n=26), and liver (n=14) transplant recipients receiving CsA therapy was measured by quantitative real-time reverse transcriptase-polymerase chain reaction before and 2 hr after drug intake. Gene expression and CsA plasma levels were correlated. RESULTS Two hours after oral CsA ingestion, the mean suppression of induced interleukin 2, interferon-gamma, and granulocyte-macrophage colony-stimulating factor gene expression was 85%. The individual decline of NFAT-regulated gene expression and the total drug exposure at this time point were closely related. Six hours after oral CsA uptake, gene expression levels reached predose values and subsequently increased further in some patients (rebound effect). CONCLUSION Quantitative measurement of the inhibition of NFAT-regulated gene expression 2 hr after CsA intake represents a novel approach to assess the biologic effectiveness of CsA therapy and has the potential to enable individualized immunosuppressive regimens.
Collapse
Affiliation(s)
- Thomas Giese
- Department of Immunology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Montero M, Lobatón CD, Gutierrez-Fernández S, Moreno A, Alvarez J. Calcineurin-independent inhibition of mitochondrial Ca2+ uptake by cyclosporin A. Br J Pharmacol 2003; 141:263-8. [PMID: 14691054 PMCID: PMC1574196 DOI: 10.1038/sj.bjp.0705609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Cyclosporin A (CsA) is a widely used compound because of its potent immunosupressive properties, derived mainly from the inhibition of calcineurin, and also because of its ability to block the mitochondrial permeability transition pore (PTP). This second effect has been involved in the protection against apoptosis mediated by release of mitochondrial factors. We show here that CsA (1-10 microm) has an additional effect on Ca(2+) homeostasis in mitochondria that cannot be attributed to inhibition of PTP. 2. By measuring specifically mitochondrial [Ca(2+)] with targeted aequorin, we show that CsA inhibited Ca(2+) entry into mitochondria both in intact and in permeabilized cells, and this effect was stronger when Ca(2+) entry was triggered by low cytosolic [Ca(2+)], below 5 microm. 3. Inhibition of mitochondrial Ca(2+) uptake required micromolar concentrations of CsA and was not mimicked by other inhibitors of calcineurin such as FK-506 or cypermethrin, nor by a different inhibitor of the PTP, bongkrekic acid. 4. CsA blocked the increase in mitochondrial Ca(2+) uptake rate induced by the mitochondrial Ca(2+) uniporter activator SB202190. 5. Our results suggest that CsA inhibits Ca(2+) entry through the Ca(2+) uniporter by a mechanism independent of the inhibition of PTP or calcineurin. This effect may contribute to reduce depolarization and Ca(2+) overloading in mitochondria after cell stimulation, and thus cooperate with the direct inhibition of PTP to prevent apoptosis.
Collapse
Affiliation(s)
- M Montero
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC) Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Ramón y Cajal 7, E-47005 Valladolid, Spain
| | - C D Lobatón
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC) Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Ramón y Cajal 7, E-47005 Valladolid, Spain
| | - S Gutierrez-Fernández
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC) Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Ramón y Cajal 7, E-47005 Valladolid, Spain
| | - A Moreno
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC) Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Ramón y Cajal 7, E-47005 Valladolid, Spain
| | - J Alvarez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC) Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Ramón y Cajal 7, E-47005 Valladolid, Spain
- Author for correspondence:
| |
Collapse
|
25
|
Feske S, Okamura H, Hogan PG, Rao A. Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 2003; 311:1117-32. [PMID: 14623298 DOI: 10.1016/j.bbrc.2003.09.174] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcineurin is a serine-threonine - phosphatase that is expressed in a wide variety of tissues and has particularly critical functions in neurons, cardiac and skeletal muscle cells, and lymphocytes. This review focuses on recent studies elucidating the role of Ca(2+)/calcineurin signalling of the immune system.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, Harvard Medical School, Boston and The CBR Institute for Biomedical Research, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
26
|
Cristillo AD, Nie L, Macri MJ, Bierer BE. Cloning and characterization of N4WBP5A, an inducible, cyclosporine-sensitive, Nedd4-binding protein in human T lymphocytes. J Biol Chem 2003; 278:34587-97. [PMID: 12796489 DOI: 10.1074/jbc.m304723200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized a human cDNA, designated N4WBP5A, that belongs to the family of Nedd4-binding proteins. We originally identified N4WBP5A as an unknown expressed sequence tag (AA770150) represented in a cDNA microarray analysis that was up-regulated upon activation of T cells and inhibited by cell treatment with the calcineurin phosphatase inhibitors, cyclosporine (CsA) and tacrolimus (FK506). The predicted N4WBP5A amino acid sequence of 242 amino acid residues reveals an open reading frame of 729 nucleotides with a corresponding molecular mass of 27.1 kDa. Detection of N4WBP5A mRNA by reverse transcription-PCR was consistent with the induction of N4WBP5A following mitogenic stimulation of T lymphocytes and inhibition by CsA. Immunoblot analysis revealed endogenous N4WBP5A protein to be up-regulated following T cell activation and inhibited by CsA. This regulation of N4WBP5A mRNA expression differed from that of its homologue (51% identical; 65% similar) N4WBP5. Like N4WBP5, however, expression of epitope-tagged N4WBP5A indicated that the protein is localized predominantly to the Golgi network. Here we show by co-precipitation experiments that N4WBP5A interacts with the WW domains of Nedd4, an E3 ubiquitin ligase. Taken together, our data suggest that N4WBP5A may play a regulatory role in modulating Nedd4 activity at the level of the Golgi apparatus in T lymphocytes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- COS Cells
- Calcium-Binding Proteins/chemistry
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Cells, Cultured
- Cloning, Molecular
- Cyclosporine/pharmacology
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Endoplasmic Reticulum/metabolism
- Endosomal Sorting Complexes Required for Transport
- Epitopes
- Expressed Sequence Tags
- Golgi Apparatus/metabolism
- HeLa Cells
- Humans
- Immunoblotting
- Immunosuppressive Agents/pharmacology
- Ligases/chemistry
- Lymphocyte Activation
- Membrane Proteins
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Models, Genetic
- Molecular Sequence Data
- Nedd4 Ubiquitin Protein Ligases
- Oligonucleotide Array Sequence Analysis
- Open Reading Frames
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- T-Lymphocytes/metabolism
- Tacrolimus/pharmacology
- Time Factors
- Tissue Distribution
- Transfection
- Ubiquitin-Protein Ligases
- Up-Regulation
Collapse
Affiliation(s)
- Anthony D Cristillo
- Laboratory of Lymphocyte Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
27
|
Waring JF. Overview of microarrays in drug discovery and development. CURRENT PROTOCOLS IN PHARMACOLOGY 2003; Chapter 9:Unit9.6. [PMID: 21956809 DOI: 10.1002/0471141755.ph0906s21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With the sequencing of the human genome, new tools and technologies have been developed to identify and quantify global gene-expression changes occurring in the cell. One of the main tools being utilized is microarray technology, which allows one to quantitate expression changes of thousands of genes in a single experiment. Microarrays allow researchers to gain an unprecedented understanding of the function and regulation of genes, and are transforming virtually all areas of biological research. In the drug-discovery process, microarrays have the potential to play a role in all stages, from new target discovery through compound profiling and safety assessment. This overview highlights some of these studies and discusses how this technology is transforming the field of drug discovery and development.
Collapse
|
28
|
Abstract
The modulation of intracellular calcium ion concentration, [Ca(2+)](i), is a common signalling mechanism used in many biological systems. B and T lymphocytes rely on Ca(2+) signalling to initiate both developmental and activation programs. Recent data has shed new light on the initiation of this signalling pathway, the connection between the release of intracellular Ca(2+) stores and the influx of extracellular Ca(2+), and the molecular identity of the elusive Ca(2+) release-activated Ca(2+) (CRAC) channel. In addition, recent gene profiling of T lymphocytes has identified the genes that are controlled by [Ca(2+)](i) and the Ca(2+)-dependent phosphatase calcineurin.
Collapse
Affiliation(s)
- Monte M Winslow
- Program in Immunology and the Howard Hughes Medical Institute, Stanford University, Stanford CA 94305, USA.
| | | | | |
Collapse
|
29
|
Kramer D, Fresu L, Ashby DS, Freeman TC, Genazzani AA. Calcineurin controls the expression of numerous genes in cerebellar granule cells. Mol Cell Neurosci 2003; 23:325-30. [PMID: 12812763 DOI: 10.1016/s1044-7431(03)00057-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ca(2+)/calmodulin-dependent phosphatase calcineurin plays a crucial role in gene expression in different cell types such as T-lymphocytes, cardiac myocytes, and smooth muscle cells. A possible role for calcineurin in gene expression was recently found in neurons, where calcineurin regulates the expression of several genes involved in Ca(2+) homeostasis. To detect additional genes regulated in a calcineurin-dependent way in neurons we analysed gene expression profiles of cerebellar granule cells cultured in depolarising conditions in the presence or absence of the calcineurin inhibitory agents FK506 and CsA. Using oligonucleotide arrays we identified 34 genes that are differentially expressed between the samples and confirmed the calcineurin-dependent regulation of some of these genes by RT-PCR. Therefore, our results, which are likely not to be comprehensive, suggest that calcineurin plays a fundamental role in neuronal gene expression by either activating or repressing the expression of genes such as receptors, transcription factors, and signalling molecules.
Collapse
Affiliation(s)
- Dana Kramer
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | |
Collapse
|
30
|
Goppelt-Struebe M, Esslinger B, Kunzendorf U. Failure of cyclosporin A to induce transforming growth factor beta (TGF-beta) synthesis in activated peripheral blood lymphocytes. Clin Transplant 2003; 17:20-5. [PMID: 12588317 DOI: 10.1034/j.1399-0012.2003.02053.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Induction of transforming growth factor beta (TGF-beta) by the immunosuppressive drug cyclosporin A (CsA) in activated lymphocytes has been claimed to add to the renal pro-fibrotic effects of CsA. The aim of this study was to evaluate CsA-mediated TGF-beta induction in a larger number of lymphocyte preparations from different donors. Peripheral blood lymphocytes (PBL) were obtained from healthy blood donors. The cells were stimulated with phytohemagglutinin E (PHA) and phorbol ester (tetradecanoyl phorbol acetate, TPA) in the presence or absence of CsA. TGF-beta, interleukin-2 (IL-2) and cyclooxygenase-2 (Cox-2) mRNA were detected by Northern blot analysis or by real time reverse transcriptase-polymerase chain reaction (RT-PCR). TGF-beta and IL-2 protein were determined in the cellular supernatants by enzyme-linked immunosorbent assay. TGF-beta mRNA and protein were up-regulated when the cells were stimulated with PHA/TPA. Cyclosporin A at high concentrations (500 ng/mL) caused a transient increase in TGF-beta mRNA which was significant after 2 h. CsA did not induce sustained TGF-beta protein expression (24-72 h) in any of the preparations (n = 14), whereas the up-regulation of IL-2 mRNA and protein was prevented by CsA in the same preparations. Furthermore, up-regulation of Cox-2 mRNA was inhibited by CsA. Taken together, there was no evidence for TGF-beta as a clinically relevant mediator being induced by CsA in activated peripheral blood T-lymphocytes.
Collapse
|
31
|
Zhang X, Chen Z, Huang H, Gordon JR, Xiang J. DNA microarray analysis of the gene expression profiles of naïve versus activated tumor-specific T cells. Life Sci 2002; 71:3005-17. [PMID: 12384184 DOI: 10.1016/s0024-3205(02)02164-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cells are a key element in effective cancer immunity, recognizing MHC-antigen peptide complexes on the surface of antigen presenting cells and translating these signals into cytotoxic effector T cell responses. In this study, we systematically investigated by DNA array analysis the expression profiles of 514 immunologically relevant genes in naïve and SP2/0 tumor-specific activated mouse T cell populations. Our data shows that naïve T cells expressed 37 (i.e., 7.6% of the 514) transcripts with expression level (EL) values of > or =2.0, while the activated T cells expressed 101 such transcripts. The expression levels of 9 (1.75% of 514) of the shared transcripts were equivalent in the two populations of T cells. Ninety-six genes were differently expressed upon T cell activation, with 71 (13.81%) being up-regulated and 25 (4.86%) down-regulated. The list of significantly affected genes includes numerous cytokines and their receptors (e.g., IL-2Ralpha, IL-6Ralpha, IL-7Ralpha, IL-16, IL-17R, TGF-beta), chemokines and chemokine receptors (e.g., RANTES, CCR7, CXCR4), alternate surface proteins (e.g., 4-1BB, GITR, integrins-alphaL and -beta7, L-selectin, CD6, CD45 and EMMPRIN), cytoplasmic signaling intermediates (e,g., GATA-3, 14-3-3-eta, CIS1, SMAD4 and JAK1) and an array of other molecules (e.g., NFkappa-B inducing kinase, LTBP3 and persephin), several of which are associated with Th1 responses, and T cell self-regulation or migration. Taken together, our data contribute to our understanding of the generalized processes that accompany T cell activation and, more specifically, to our understanding of the processes associated with T cell activation during antitumor responses.
Collapse
Affiliation(s)
- Xueshu Zhang
- Department of Oncology, Research Unit, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon Cancer Center, 20 Campus Drive CM200, Saskatoon, Saskatchewan, Canada S7N 0W0
| | | | | | | | | |
Collapse
|
32
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2448432 DOI: 10.1002/cfg.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|