1
|
Diakov A, Nesterov V, Mokrushina M, Rauh R, Korbmacher C. Protein kinase B alpha (PKBα) stimulates the epithelial sodium channel (ENaC) heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms. Cell Physiol Biochem 2011; 26:913-24. [PMID: 21220922 DOI: 10.1159/000324000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 11/19/2022] Open
Abstract
Kinases contribute to the regulation of the epithelial sodium channel (ENaC) in a complex manner. For example, SGK1 (serum- and glucocorticoid-inducible kinase type 1) enhances ENaC surface expression by phosphorylating Nedd4-2, thereby preventing ENaC retrieval and degradation. An additional mechanism of ENaC activation by SGK1 involves an SGK consensus motif ((616)RSRYWS(621)) in the C-terminus of the channel's α-subunit. This consensus motif may also be a target for ENaC regulation by protein kinase B α (PKBα) known to be activated by insulin and growth factors. Therefore, we investigated a possible role of PKBα in the regulation of rat ENaC heterologously expressed in Xenopus laevis oocytes. We found that recombinant PKBα included in the pipette solution increased ENaC currents in outside-out patches by about 4-fold within 15-20 min. Replacing the serine residue S621 of the SGK consensus motif by an alanine (S621A) abolished this stimulatory effect. In co-expression experiments active PKBα but not catalytically inactive PKBα significantly increased ENaC whole-cell currents and surface expression by more than 50 % within 24 hours of co-expression. Interestingly, this stimulatory effect was preserved in oocytes expressing ENaC with the S621A mutation. We conclude that the acute stimulatory effect of PKBα involves a specific kinase consensus motif in the C-terminus of the channel's α-subunit. In contrast, the increase in channel surface expression caused by co-expression of PKBα does not depend on this site in the channel and is probably mediated by an effect on channel trafficking.
Collapse
Affiliation(s)
- Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
2
|
Mueller GM, Kashlan OB, Bruns JB, Maarouf AB, Aridor M, Kleyman TR, Hughey RP. Epithelial sodium channel exit from the endoplasmic reticulum is regulated by a signal within the carboxyl cytoplasmic domain of the alpha subunit. J Biol Chem 2007; 282:33475-33483. [PMID: 17855354 DOI: 10.1074/jbc.m707339200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial sodium channels (ENaCs) are assembled in the endoplasmic reticulum (ER) from alpha, beta, and gamma subunits, each with two transmembrane domains, a large extracellular loop, and cytoplasmic amino and carboxyl termini. ENaC maturation involves transit through the Golgi complex where Asn-linked glycans are processed to complex type and the channel is activated by furin-dependent cleavage of the alpha and gamma subunits. To identify signals in ENaC for ER retention/retrieval or ER exit/release, chimera were prepared with the interleukin alpha subunit (Tac) and each of the three cytoplasmic carboxyl termini of mouse ENaC (Tac-Ct) or with gamma-glutamyltranspeptidase and each of the three cytoplasmic amino termini (Nt-GGT). By monitoring acquisition of endoglycosidase H resistance after metabolic labeling, we found no evidence of ER retention of any chimera when compared with control Tac or GGT, but we did observe enhanced exit of Tac-alphaCt when compared with Tac. ER exit of ENaC was assayed after metabolic labeling by following the appearance of cleaved alpha as cleaved alpha subunit, but not non-cleaved alpha, is endoglycosidase H-resistant. Interestingly ER exit of epitope-tagged and truncated alpha (alphaDelta624-699-V5) with full-length betagamma was similar to wild type alpha (+betagamma), whereas ER exit of ENaC lacking the entire cytoplasmic carboxyl tail of alpha (alphaDelta613-699-V5 +betagamma) was significantly reduced. Subsequent analysis of ER exit for ENaCs with mutations within the intervening sequence (613)HRFRSRYWSPG(623) within the context of the full-length alpha revealed that mutation alphaRSRYW(620) to AAAAA significantly reduced ER exit. These data indicate that ER exit of ENaC is regulated by a signal within the alpha subunit carboxyl cytoplasmic tail.
Collapse
Affiliation(s)
| | | | | | | | - Meir Aridor
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.
| | - Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
3
|
Husted RF, Volk KA, Sigmund RD, Stokes JB. Discordant effects of corticosteroids and expression of subunits on ENaC activity. Am J Physiol Renal Physiol 2007; 293:F813-20. [PMID: 17609289 DOI: 10.1152/ajprenal.00225.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In renal distal nephron and airway epithelial cells, adrenocortical steroids increase epithelial Na+ channel (ENaC) activity and also markedly increase the expression of the α-subunit. The present experiments were designed to reconstitute this steroid effect in ENaC-expressing cells by overexpressing the subunits whose expression is enhanced by corticosteroids. In renal collecting duct monolayers, corticosteroids increased ENaC activity 5- to 8-fold, endogenous α-ENaC mRNA and protein ∼10-fold, and β-ENaC protein and mRNA 1.2- to 2-fold. γ-ENaC expression was unchanged. To determine whether this increase in expression was sufficient to increase ENaC activity, we used a regulated adenovirus system to increase expression of each subunit alone and in combination. Unexpectedly, increased expression of the α- and/or β-subunit had no effect on ENaC activity in collecting duct cells or lung epithelial cells. In contrast, a small increase in γ-ENaC expression increased ENaC activity about threefold. This increase in activity was additive to the effect of steroids. Thus, even though corticosteroids strongly increase α-ENaC expression and moderately increase β-ENaC expression, these effects are not, by themselves, sufficient to increase ENaC activity. Knockdown experiments are consistent with the idea that the increased expression of α-ENaC is necessary for the full steroid effect on ENaC. Increased expression of γ-ENaC and corticosteroid treatment enhances ENaC activity by parallel, noninteracting pathways. These results underscore the importance of other actions of steroid hormones for long-term enhancement of ENaC activity and raise new possibilities for regulation of ENaC activity by γ-ENaC expression.
Collapse
Affiliation(s)
- Russell F Husted
- Department of Internal Medicine, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52246, USA
| | | | | | | |
Collapse
|
4
|
Abstract
The epithelial Na(+) channel (ENaC) is a pathway for Na(+) transport across epithelia, including the kidney collecting duct, lung, and distal colon. ENaC is critical for Na(+) homeostasis and blood pressure control; defects in ENaC function and regulation are responsible for inherited forms of hypertension and hypotension and may contribute to the pathogenesis of cystic fibrosis and other lung diseases. An emerging theme is that epithelial Na(+) transport is regulated in large part through trafficking mechanisms that control ENaC expression at the cell surface. ENaC trafficking is regulated at multiple steps. Delivery of channels to the cell surface is regulated by aldosterone (and corticosteroids) and vasopressin, which increase ENaC synthesis and exocytosis, respectively. Conversely, endocytosis and degradation is controlled by a sequence located in the C terminus of alpha, beta, and gammaENaC (PPPXYXXL). This sequence functions as an endocytosis motif and as a binding site for Nedd4-2, an E3 ubiquitin protein ligase that targets ENaC for degradation. Mutations that delete or disrupt this motif cause accumulation of channels at the cell surface, resulting in Liddle's syndrome, an inherited form of hypertension. Nedd4-2 is a central convergence point for ENaC regulation by aldosterone and vasopressin; both induce phosphorylation of a common set of three Nedd4-2 residues, which blocks Nedd4-2 binding to ENaC. Thus, aldosterone and vasopressin regulate epithelial Na(+) transport in part by altering ENaC trafficking to and from the cell surface.
Collapse
Affiliation(s)
- Peter M Snyder
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, 52242, USA.
| |
Collapse
|
5
|
Suwalsky M, Schneider C, Villena F, Norris B, Cárdenas H, Cuevas F, Sotomayor CP. A study of the perturbation effects of the local anesthetic procaine on human erythrocyte and model membranes and of modifications of the sodium transport in toad skin. Biophys Chem 2005; 116:227-35. [PMID: 15894419 DOI: 10.1016/j.bpc.2005.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 04/14/2005] [Accepted: 04/15/2005] [Indexed: 11/28/2022]
Abstract
The interaction of the local anesthetic procaine with human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), isolated toad skins, and molecular models is described. The latter consisted of phospholipid multilayers built-up of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), representatives of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Optical and scanning electron microscopy of human erythrocytes revealed that procaine induced the formation of stomatocytes. Experiments performed on IUM at 37 degrees C by fluorescence spectroscopy showed that procaine interacted with the phospholipid bilayer polar groups but not with the hydrophobic acyl chains. X-ray diffraction indicated that procaine perturbed DMPC structure to a higher extent when compared with DMPE, its polar head region being more affected. Electrophysiological measurements disclosed a significant decrease in the potential difference (PD) and in the short-circuit current (Isc) after the application of procaine to isolated toad skin, reflecting inhibition of active ion transport.
Collapse
Affiliation(s)
- Mario Suwalsky
- Faculty of Chemical Sciences, University of Concepcion, Casilla 160-C, Concepción, Chile.
| | | | | | | | | | | | | |
Collapse
|
6
|
Thomas CP, Campbell JR, Wright PJ, Husted RF. cAMP-stimulated Na+transport in H441 distal lung epithelial cells: role of PKA, phosphatidylinositol 3-kinase, and sgk1. Am J Physiol Lung Cell Mol Physiol 2004; 287:L843-51. [PMID: 15208094 DOI: 10.1152/ajplung.00340.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
H441 cells, a bronchiolar epithelial cell line, develop a cAMP-regulated benzamil-sensitive Na+transport pathway on permeable supports (Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP. Am J Physiol Lung Cell Mol Physiol 282: L631–L641, 2002). To understand the molecular basis for the stimulation of Na+transport, we delineated the role of specific intracellular pathways and examined the effect of cAMP on αβγ-epithelial Na+channel (ENaC) and sgk1 expression. Na+transport increases within 5 min of cAMP stimulation and is sustained for >24 h. The sustained effect of cAMP on Na+transport is abolished by LY-294002, an inhibitor of phosphatidylinositol 3-kinase, by H89, an inhibitor of PKA, or by SB-202190, an inhibitor of p38 MAP kinase. The sustained effect of cAMP was associated with increases in α-ENaC mRNA and protein but without a detectable increase in βγ-ENaC and sgk1. The early effect of cAMP on Na+transport is brefeldin sensitive and is mediated via PKA. These results are consistent with a model where the early effect of cAMP is to increase trafficking of Na+channels to the apical cell surface whereas the sustained effect requires the synthesis of α-ENaC.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
7
|
Berdiev BK, Jovov B, Tucker WC, Naren AP, Fuller CM, Chapman ER, Benos DJ. ENaC subunit-subunit interactions and inhibition by syntaxin 1A. Am J Physiol Renal Physiol 2004; 286:F1100-6. [PMID: 14996668 DOI: 10.1152/ajprenal.00344.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amiloride-sensitive epithelial Na+ channels (ENaCs) are subject to modulation by many factors. Recent data have also linked the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery to this regulation of ENaC, but the molecular mechanisms that underlie this modulation are poorly understood. In this study, we demonstrate that syntaxin 1A physically interacts with ENaC and functionally regulates ENaC activity. Syntaxin 1A was able to coimmunoprecipitate in vitro-translated γ-ENaC, but not α- or β-ENaC. Also, using antibodies raised against α-, β-, or γ-ENaC, we detected syntaxin 1A in immunoprecipitates from Madin-Darby canine kidney cells stably transfected with αβγ-ENaC. In bilayers, syntaxin 1A inhibited ENaC, and this syntaxin 1A modulation of ENaC activity was eliminated by truncations of cytoplasmic domains of the ENaC subunits. Our findings provide evidence for a direct physical interaction between ENaC and syntaxin 1A and suggest involvement of ENaC's cytoplasmic domains in functional modulation of ENaC activity by syntaxin 1A.
Collapse
Affiliation(s)
- Bakhrom K Berdiev
- Univ. of Alabama at Birmingham, 1918 University Blvd., MCLM 704, Birmingham, AL 35294-0005, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Suwalsky M, Norris B, Villena F, Cuevas F, Sotomayor P, Zatta P. Aluminum fluoride affects the structure and functions of cell membranes. Food Chem Toxicol 2004; 42:925-33. [PMID: 15110101 DOI: 10.1016/j.fct.2004.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 01/20/2004] [Accepted: 01/27/2004] [Indexed: 11/20/2022]
Abstract
No useful biological function for aluminum has been found. To the contrary, it might play an important role in several pathologies, which could be related to its interactions with cell membranes. On the other hand, fluoride is a normal component of body fluids, soft tissues, bones and teeth. Its sodium salt is frequently added to drinking water to prevent dental caries. However, large doses cause severe pathological alterations. In view of the toxicity of Al(3+) and F(-) ions, it was thought of interest to explore the damaging effects that AlF(3) might induce in cell membranes. With this aim, it was incubated with human erythrocytes, which were examined by phase contrast and scanning electron microscopy, and molecular models of biomembranes. The latter consisted of large unilamellar vesicles (LUV) of dimyristoylphosphatidylcholine (DMPC) and bilayers of DMPC and dimyristoylphosphatidylethanolamine (DMPE) which were studied by fluorescence spectroscopy and X-ray diffraction, respectively. In order to understand the effects of AlF(3) on ion transport (principally sodium and chloride) we used the isolated toad skin to which electrophysiological measurements were applied. It was found that AlF(3) altered the shape of erythrocytes inducing the formation of echinocytes. This effect was explained by X-ray diffraction which revealed that AlF(3) perturbed the structure of DMPC, class of lipids located in the outer monolayer of the erythrocyte membrane. This result was confirmed by fluorescence spectroscopy on DMPC LUV. The biphasic (stimulatory followed by inhibitory) effects on the isolated skin suggested changes in apical Cl(-) secretion and moderate ATPase inactivation.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, University of Concepcion, Casilla 160-C, Concepcion, Chile.
| | | | | | | | | | | |
Collapse
|
9
|
Náray-Fejes-Tóth A, Helms MN, Stokes JB, Fejes-Tóth G. Regulation of sodium transport in mammalian collecting duct cells by aldosterone-induced kinase, SGK1: structure/function studies. Mol Cell Endocrinol 2004; 217:197-202. [PMID: 15134818 DOI: 10.1016/j.mce.2003.10.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Serum- and glucocorticoid-induced kinases (SGK) are members of the serine-threonine kinase family. SGK1, the isoform identified first, is rapidly induced by aldosterone. In this study, we determined that the two recently described isoforms, SGK2 and SGK3 are also expressed in renal cortical collecting duct (CCD) cells; however, their expression is not induced by aldosterone or glucocorticoids. SGK1 increases the activity of the epithelial sodium channel (ENaC) in oocytes but its cellular targets in native mineralocorticoid target cells and its mechanism of action are still unknown. We studied the role of SGK1 in corticosteroid-regulated Na transport in M-1 mouse CCD cell lines that stably over-express or down-regulate SGK1. Basal rates of transepithelial Na transport were significantly lower in CCD cells in which SGK1 expression or activity was down-regulated than in SGK1 overexpressing cells. Importantly, corticosteroid treatment failed to stimulate Na transport in cells with down-regulated SGK1 while it significantly increased Na transport in parent and SGK1 overexpressing M-1 cells. To determine if C-terminal PDZ interactions are important for SGK's effect on ENaC activity or trafficking, we examined the effects of mutant SGK1 in which the conserved PDZ binding domain has been eliminated. However, such mutations did not decrease its stimulatory effect on ENaC current in Xenopus oocytes. Fluorescence confocal microscopy revealed that the intracellular localization of full-length and PDZ binding mutated SGK1 was identical: they both localize to intracellular vesicular structures. On the other hand, N-terminally truncated (delta 60)-SGK1 did not increase ENaC activity. We conclude that SGK1 is a critical component in corticosteroid-regulated Na transport in mammalian CCD cells. Our data also indicate that the N-terminal of SGK1 is necessary for its stimulatory effect on Na transport while elimination of the C-terminal PDZ binding domain did not change its function.
Collapse
|
10
|
Booth RE, Tong Q, Medina J, Snyder PM, Patel P, Stockand JD. A region directly following the second transmembrane domain in gamma ENaC is required for normal channel gating. J Biol Chem 2003; 278:41367-79. [PMID: 12897071 DOI: 10.1074/jbc.m305400200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used a yeast one-hybrid complementation screen to identify regions within the cytosolic tails of the mouse alpha, beta, and gamma epithelial Na+ channel (ENaC) important to protein-protein and/or protein-lipid interactions at the plasma membrane. The cytosolic COOH terminus of alphaENaC contained a strongly interactive domain just distal to the second transmembrane region (TM2) between Met610 and Val632. Likewise, gammaENaC contained such a domain just distal to TM2 spanning Gln573-Pro600. Interactive domains were also localized within Met1-Gln54 and the last 17 residues of alpha- and betaENaC, respectively. Confocal images of Chinese hamster ovary cells transfected with enhanced green fluorescent fusion proteins of the cytosolic tails of mENaC subunits were consistent with results in yeast. Fusion proteins of the NH2 terminus of alphaENaC and the COOH termini of all three subunits co-localized with a plasma membrane marker. The functional importance of the membrane interactive domain in the COOH terminus of gammaENaC was established with whole-cell patch clamp experiments of wild type (alpha, beta, and gamma) and mutant (alpha, beta, and gammadeltaQ573-P600) mENaC reconstituted in Chinese hamster ovary cells. Mutant channels had about 13% of the activity of wild type channels with 0.33 +/- 0.14 versus 2.5 +/- 0.80 nA of amiloridesensitive inward current at -80 mV. Single channel analysis of recombinant channels demonstrated that mutant channels had a decrease in Po with 0.16 +/- 0.03 versus 0.67 +/- 0.07 for wild type. Mutant gammaENaC associated normally with the other two subunits in co-immunoprecipitation studies and localized to the plasma membrane in membrane labeling experiments and when visualized with evanescent-field fluorescence microscopy. Similar to deletion of Gln573-Pro600, deletion of Gln573-Arg583 but not Thr584-Pro600 decreased ENaC activity. The current results demonstrate that residues within Gln573-Arg583 of gammaENaC are necessary for normal channel gating.
Collapse
Affiliation(s)
- Rachell E Booth
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
11
|
Leonard AS, Yermolaieva O, Hruska-Hageman A, Askwith CC, Price MP, Wemmie JA, Welsh MJ. cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. Proc Natl Acad Sci U S A 2003; 100:2029-34. [PMID: 12578970 PMCID: PMC149953 DOI: 10.1073/pnas.252782799] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The acid-sensing ion channel-1 (ASIC1) contributes to synaptic plasticity and may influence the response to cerebral ischemia and acidosis. We found that cAMP-dependent protein kinase phosphorylated heterologously expressed ASIC1 and endogenous ASIC1 in brain slices. ASIC1 also showed significant phosphorylation under basal conditions. Previous studies showed that the extreme C-terminal residues of ASIC1 bind the PDZ domain of the protein interacting with C-kinase-1 (PICK1). We found that protein kinase A phosphorylation of Ser-479 in the ASIC1 C terminus interfered with PICK1 binding. In contrast, minimizing phosphorylation or mutating Ser-479 to Ala enhanced PICK1 binding. Phosphorylation-dependent disruption of PICK1 binding reduced the cellular colocalization of ASIC1 and PICK1. Thus, the ASIC1 C terminus contains two sites that influence its binding to PICK1. Regulation of this interaction by phosphorylation provides a mechanism to control the cellular localization of ASIC1.
Collapse
Affiliation(s)
- A Soren Leonard
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Becchetti A, Malik B, Yue G, Duchatelle P, Al-Khalili O, Kleyman TR, Eaton DC. Phosphatase inhibitors increase the open probability of ENaC in A6 cells. Am J Physiol Renal Physiol 2002; 283:F1030-45. [PMID: 12372779 DOI: 10.1152/ajprenal.00011.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the cellular phosphatase inhibitors okadaic acid (OKA), calyculin A, and microcystin on the epithelial sodium channel (ENaC) in A6 renal cells. OKA increased the amiloride-sensitive current after approximately 30 min with maximal stimulation at 1-2 h. Fluctuation analysis of cell-attached patches containing a large number of ENaC yielded power spectra with corner frequencies in untreated cells almost two times as large as in cells pretreated for 30 min with OKA, implying an increase in single channel open probability (P(o)) that doubled after OKA. Single channel analysis showed that, in cells pretreated with OKA, P(o) and mean open time approximately doubled. Two other phosphatase inhibitors, calyculin A and microcystin, had similar effects on P(o) and mean open time. An analog of OKA, okadaone, that does not inhibit phosphatases had no effect. Pretreatment with 10 nM OKA, which blocks protein phosphatase 2A (PP2A) but not PP1 in mammalian cells, had no effect even though both phosphatases are present in A6 cells. Several proteins were differentially phosphorylated after OKA, but ENaC subunit phosphorylation did not increase. We conclude that, in A6 cells, there is an OKA-sensitive phosphatase that suppresses ENaC activity by altering the phosphorylation of a regulatory molecule associated with the channel.
Collapse
Affiliation(s)
- A Becchetti
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Itani OA, Liu KZ, Cornish KL, Campbell JR, Thomas CP. Glucocorticoids stimulate human sgk1 gene expression by activation of a GRE in its 5'-flanking region. Am J Physiol Endocrinol Metab 2002; 283:E971-9. [PMID: 12376324 DOI: 10.1152/ajpendo.00021.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In lung and collecting duct epithelia, glucocorticoid (GC)-stimulated Na+ transport is preceded by an increase in the protein kinase sgk1, which in turn regulates the activity of the epithelial Na+ channel (ENaC). We investigated the mechanism for GC-regulated human sgk1 expression in lung and renal epithelia. sgk1 mRNA was increased in these epithelia by GCs, and this was inhibited by actinomycin D and superinduced by cycloheximide, consistent with a transcriptional effect that did not require protein synthesis. To understand the basis for transcriptional regulation, the transcription initiation site was mapped and the 5'-flanking region cloned by PCR. A 3-kb fragment of the upstream region was coupled to luciferase and transfected into A549 cells. By deletion analysis, an imperfect GC response element (GRE) was identified that was necessary and sufficient for GC responsiveness. When tested with cell extracts, a specific protein recognized by an anti-GC receptor (GR) antibody bound the GRE in gel mobility shift assays. We conclude that GCs stimulate sgk1 expression in human epithelial cells via activation of a GRE in the 5'-flanking region of sgk1.
Collapse
Affiliation(s)
- Omar A Itani
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52246, USA
| | | | | | | | | |
Collapse
|