1
|
Dussold C, Zilinger K, Turunen J, Heimberger AB, Miska J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J Clin Invest 2024; 134:e175445. [PMID: 38226622 PMCID: PMC10786697 DOI: 10.1172/jci175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.
Collapse
|
2
|
Liu B, Lu Y, Taledaohan A, Qiao S, Li Q, Wang Y. The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors. Molecules 2023; 29:75. [PMID: 38202657 PMCID: PMC10779805 DOI: 10.3390/molecules29010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Increased glycolysis is a key characteristic of malignant cells that contributes to their high proliferation rates and ability to develop drug resistance. The glycolysis rate-limiting enzyme hexokinase II (HK II) is overexpressed in most tumor cells and significantly affects tumor development. This paper examines the structure of HK II and the specific biological factors that influence its role in tumor development, as well as the potential of HK II inhibitors in antitumor therapy. Furthermore, we identify and discuss the inhibitors of HK II that have been reported in the literature.
Collapse
Affiliation(s)
- Bingru Liu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Shi Qiao
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Qingyan Li
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Halvorson T, Tuomela K, Levings MK. Targeting regulatory T cell metabolism in disease: Novel therapeutic opportunities. Eur J Immunol 2023; 53:e2250002. [PMID: 36891988 DOI: 10.1002/eji.202250002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023]
Abstract
Regulatory T cells (Tregs) are essential for immune homeostasis and suppression of pathological autoimmunity but can also play a detrimental role in cancer progression via inhibition of anti-tumor immunity. Thus, there is broad applicability for therapeutic Treg targeting, either to enhance function, for example, through adoptive cell therapy (ACT), or to inhibit function with small molecules or antibody-mediated blockade. For both of these strategies, the metabolic state of Tregs is an important consideration since cellular metabolism is intricately linked to function. Mounting evidence has shown that targeting metabolic pathways can selectively promote or inhibit Treg function. This review aims to synthesize the current understanding of Treg metabolism and discuss emerging metabolic targeting strategies in the contexts of transplantation, autoimmunity, and cancer. We discuss approaches to gene editing and cell culture to manipulate Treg metabolism during ex vivo expansion for ACT, as well as in vivo nutritional and pharmacological interventions to modulate Treg metabolism in disease states. Overall, the intricate connection between metabolism and phenotype presents a powerful opportunity to therapeutically tune Treg function.
Collapse
Affiliation(s)
- Torin Halvorson
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Pandey S, Anang V, Singh S, Seth S, Bhatt AN, Kalra N, Manda K, Soni R, Roy BG, Natarajan K, Dwarakanath BS. Dietary administration of the glycolytic inhibitor 2-deoxy-D-glucose reduces endotoxemia-induced inflammation and oxidative stress: Implications in PAMP-associated acute and chronic pathology. Front Pharmacol 2023; 14:940129. [PMID: 37234710 PMCID: PMC10206263 DOI: 10.3389/fphar.2023.940129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) like bacterial cell wall components and viral nucleic acids are known ligands of innate inflammatory receptors that trigger multiple inflammatory pathways that may result in acute inflammation and oxidative stress-driven tissue and organ toxicity. When dysregulated, this inflammation may lead to acute toxicity and multiorgan failure. Inflammatory events are often driven by high energy demands and macromolecular biosynthesis. Therefore, we proposed that targeting the metabolism of lipopolysaccharide (LPS)-driven inflammatory events, using an energy restriction approach, can be an effective strategy to prevent the acute or chronic detrimental effects of accidental or seasonal bacterial and other pathogenic exposures. In the present study, we investigated the potential of energy restriction mimetic agent (ERMA) 2-deoxy-D-glucose (2-DG) in targeting the metabolism of inflammatory events during LPS-elicited acute inflammatory response. Mice fed with 2-DG as a dietary component in drinking water showed reduced LPS-driven inflammatory processes. Dietary 2-DG reduced LPS-induced lung endothelial damage and oxidative stress by strengthening the antioxidant defense system and limiting the activation and expression of inflammatory proteins, viz., P-Stat-3, NfκΒ, and MAP kinases. This was accompanied by decreased TNF, IL-1β, and IL-6 levels in peripheral blood and bronchoalveolar lavage fluid (BALF). 2-DG also reduced the infiltration of PMNCs (polymorphonuclear cells) in inflamed tissues. Altered glycolysis and improved mitochondrial activity in 2-DG-treated RAW 264.7 macrophage cells suggested possible impairment of macrophage metabolism and, therefore, activation in macrophages. Taken together, the present study suggests that inclusion of glycolytic inhibitor 2-DG as a part of the diet can be helpful in preventing the severity and poor prognosis associated with inflammatory events during bacterial and other pathogenic exposures.
Collapse
Affiliation(s)
- Sanjay Pandey
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vandana Anang
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Saurabh Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saurabh Seth
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Anant Narayan Bhatt
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Namita Kalra
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Kailash Manda
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ravi Soni
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Bal Gangadhar Roy
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - K. Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Bilikere S. Dwarakanath
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
5
|
Mendes MIP, Arnaut LG. Redaporfin Development for Photodynamic Therapy and its Combination with Glycolysis Inhibitors. Photochem Photobiol 2022; 99:769-776. [PMID: 36564949 DOI: 10.1111/php.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Photodynamic therapy (PDT) remains an underutilized treatment modality in oncology. Many efforts have been dedicated to the development of better photosensitizers, better formulations and delivery methods, rigorous planning of light dose distribution in tissues, mechanistic insight, improvement of treatment protocols and combinations with other therapeutic agents. Hopefully, progress in all these fields will eventually expand the use of PDT. Here we offer a brief review of our own contribution to the development of a photosensitizer for PDT - redaporfin - currently in Phase II clinical trials, and present data on its combination with two glycolysis inhibitors: 2-deoxyglucose and 3-bromopyruvate. We show that 3-bromopyruvate is more cytotoxic to a carcinoma cell line (CT26) than to a normal fibroblast (3T3) cell line, and that this selectivity is maintained in the in vitro combination with redaporfin-PDT. This combination was investigated in BALB/c mice with large subcutaneous CT26 tumors and it is shown that the cure rate in the combination is higher (33% cures) than in PDT (11% cures) or in 3-bromopyruvate (no cures) alone. The combination of redaporfin-PDT with 3-bromopyruvate illustrates the potential of combination therapies and how PDT benefits can be enhanced by systemic drugs with complementary targets.
Collapse
Affiliation(s)
| | - Luis G Arnaut
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Pal S, Sharma A, Mathew SP, Jaganathan BG. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Front Immunol 2022; 13:955476. [PMID: 36618350 PMCID: PMC9815821 DOI: 10.3389/fimmu.2022.955476] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a heterogeneous disease characterized by various genetic and phenotypic aberrations. Cancer cells undergo genetic modifications that promote their proliferation, survival, and dissemination as the disease progresses. The unabated proliferation of cancer cells incurs an enormous energy demand that is supplied by metabolic reprogramming. Cancer cells undergo metabolic alterations to provide for increased energy and metabolite requirement; these alterations also help drive the tumor progression. Dysregulation in glucose uptake and increased lactate production via "aerobic glycolysis" were described more than 100 years ago, and since then, the metabolic signature of various cancers has been extensively studied. However, the extensive research in this field has failed to translate into significant therapeutic intervention, except for treating childhood-ALL with amino acid metabolism inhibitor L-asparaginase. Despite the growing understanding of novel metabolic alterations in tumors, the therapeutic targeting of these tumor-specific dysregulations has largely been ineffective in clinical trials. This chapter discusses the major pathways involved in the metabolism of glucose, amino acids, and lipids and highlights the inter-twined nature of metabolic aberrations that promote tumorigenesis in different types of cancer. Finally, we summarise the therapeutic interventions which can be used as a combinational therapy to target metabolic dysregulations that are unique or common in blood, breast, colorectal, lung, and prostate cancer.
Collapse
Affiliation(s)
- Soumik Pal
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sam Padalumavunkal Mathew
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India,Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India,*Correspondence: Bithiah Grace Jaganathan,
| |
Collapse
|
7
|
Lee DY, Kim JY, Ahn E, Hyeon JS, Kim GH, Park KJ, Jung Y, Lee YJ, Son MK, Kim SW, Han SY, Kim JH, Roh GS, Cha DR, Hwang GS, Kim WH. Associations between local acidosis induced by renal LDHA and renal fibrosis and mitochondrial abnormalities in patients with diabetic kidney disease. Transl Res 2022; 249:88-109. [PMID: 35788054 DOI: 10.1016/j.trsl.2022.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
Abstract
During the progression of diabetic kidney disease (DKD), renal lactate metabolism is rewired. The relationship between alterations in renal lactate metabolism and renal fibrosis in patients with diabetes has only been partially established due to a lack of biopsy tissues from patients with DKD and the intricate mechanism of lactate homeostasis. The role of lactate dehydrogenase A (LDHA)-mediated lactate generation in renal fibrosis and dysfunction in human and animal models of DKD was explored in this study. Measures of lactate metabolism (urinary lactate levels and LDHA expression) and measures of DKD progression (estimated glomerular filtration rate and Wilms' tumor-1 expression) were strongly negatively correlated in patients with DKD. Experiments with streptozotocin-induced DKD rat models and the rat renal mesangial cell model confirmed our findings. We found that the pathogenesis of DKD is linked to hypoxia-mediated lactic acidosis, which leads to fibrosis and mitochondrial abnormalities. The pathogenic characteristics of DKD were significantly reduced when aerobic glycolysis or LDHA expression was inhibited. Further studies will aim to investigate whether local acidosis caused by renal LDHA might be exploited as a therapeutic target in patients with DKD.
Collapse
Affiliation(s)
- Dae-Yeon Lee
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea; Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ji-Yeon Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Eunyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jin Seong Hyeon
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Gyu-Hee Kim
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Keon-Jae Park
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Youngae Jung
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Yoo-Jeong Lee
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Mi Kyoung Son
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Woo Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sang Youb Han
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Jae-Hong Kim
- Division of Life Sciences, College of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| | - Geum-Sook Hwang
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea.
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
8
|
Hu J, Cao J, Jin R, Zhang B, Topatana W, Juengpanich S, Li S, Chen T, Lu Z, Cai X, Chen M. Inhibition of AMPK/PFKFB3 mediated glycolysis synergizes with penfluridol to suppress gallbladder cancer growth. Cell Commun Signal 2022; 20:105. [PMID: 35842652 PMCID: PMC9288071 DOI: 10.1186/s12964-022-00882-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Penfluridol (PF) is an FDA-approved antipsychotic drug that has recently been shown to have anticancer activity. However, the anticancer effects and underlying mechanisms of PF are not well-established in gallbladder cancer (GBC). METHODS The anticancer efficacy of PF on GBC was investigated via a series of cell functions experiments, including cell viability, colony formation, apoptosis assays, and so on. The corresponding signaling changes after PF treatment were explored by western blotting. Then, nude mice were utilized to study and test the anticancer activity of PF in vivo. Besides, glucose consumption and lactic production assays were used to detect the glycolysis alteration. RESULTS In this study, we discovered that PF greatly inhibited the proliferation and invasion ability of GBC cells (GBCs). The glucose consumption and lactic generation ability of GBCs were dramatically elevated following PF treatment. Additionally, we discovered that inhibiting glycolysis could improve PF's anticancer efficacy. Further studies established that the activation of the AMPK/PFKFB3 signaling pathway medicated glycolysis after PF treatment. We proved mechanistically that inhibition of AMPK/PFKFB3 singling pathway mediated glycolysis was a potential synergetic strategy to improve the anticancer efficacy of PF on GBC. CONCLUSIONS By inhibiting AMPK, the anticancer effects of PF on GBCs were amplified. As a result, our investigations shed new light on the possibility of repurposing PF as an anticancer drug for GBC, and AMPK inhibition in combination with PF may represent a novel therapeutic strategy for GBC. Video abstract.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Ren'an Jin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Tian'en Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Ziyi Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China. .,Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China. .,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
9
|
Heaton BJ, Jensen RL, Line J, David CAW, Brain DE, Chadwick AE, Liptrott NJ. Exposure of human immune cells, to the antiretrovirals efavirenz and lopinavir, leads to lower glucose uptake and altered bioenergetic cell profiles through interactions with SLC2A1. Biomed Pharmacother 2022; 150:112999. [PMID: 35461087 DOI: 10.1016/j.biopha.2022.112999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
SLC2A1 mediates glucose cellular uptake; key to appropriate immune function. Our previous work has shown efavirenz and lopinavir exposure inhibits T cell and macrophage responses, to known agonists, likely via interactions with glucose transporters. Using human cell lines as a model, we assessed glucose uptake and subsequent bioenergetic profiles, linked to immunological responses. Glucose uptake was measured using 2-deoxyglucose as a surrogate for endogenous glucose, using commercially available reagents. mRNA expression of SLC transporters was investigated using qPCR TaqMan™ gene expression assay. Bioenergetic assessment, on THP-1 cells, utilised the Agilent Seahorse XF Mito Stress test. In silico analysis of potential interactions between SLC2A1 and antiretrovirals was investigated using bioinformatic techniques. Efavirenz and lopinavir exposure was associated with significantly lower glucose accumulation, most notably in THP-1 cells (up to 90% lower and 70% lower with efavirenz and lopinavir, respectively). Bioenergetic assessment showed differences in the rate of ATP production (JATP); efavirenz (4 μg/mL), was shown to reduce JATP by 87% whereas lopinavir (10 μg/mL), was shown to increase the overall JATP by 77%. Putative in silico analysis indicated the antiretrovirals, apart from efavirenz, associated with the binding site of highest binding affinity to SLC2A1, similar to that of glucose. Our data suggest a role for efavirenz and lopinavir in the alteration of glucose accumulation with subsequent alteration of bioenergetic profiles, supporting our hypothesis for their inhibitory effect on immune cell activation. Clarification of the implications of this data, for in vivo immunological responses, is now warranted to define possible consequences for these, and similar, therapeutics.
Collapse
Affiliation(s)
- Bethany J Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Rebecca L Jensen
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - James Line
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Danielle E Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Amy E Chadwick
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK; Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Shi R, Pan P, Lv R, Ma C, Wu E, Guo R, Zhao Z, Song H, Zhou J, Liu Y, Xu G, Hou T, Kang Z, Liu J. High-throughput glycolytic inhibitor discovery targeting glioblastoma by graphite dots-assisted LDI mass spectrometry. SCIENCE ADVANCES 2022; 8:eabl4923. [PMID: 35171681 PMCID: PMC10921956 DOI: 10.1126/sciadv.abl4923] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Malignant tumors will become vulnerable if their uncontrolled biosynthesis and energy consumption engaged in metabolic reprogramming can be cut off. Here, we report finding a glycolytic inhibitor targeting glioblastoma with graphite dots-assisted laser desorption/ionization mass spectrometry as an integrated drug screening and pharmacokinetic platform (GLMSD). We have performed high-throughput virtual screening to narrow an initial library of 240,000 compounds down to the docking of 40 compounds and identified five previously unknown chemical scaffolds as promising hexokinase-2 inhibitors. The best inhibitor (Compd 27) can regulate the reprogrammed metabolic pathway in U87 glioma cells (median inhibitory concentration ~ 11.3 μM) for tumor suppression. Highly effective therapy against glioblastoma has been demonstrated in both subcutaneous and orthotopic brain tumors by synergizing Compd 27 and temozolomide. Our glycolytic inhibitor discovery can inspire personalized medicine targeting reprogrammed metabolisms of malignant tumors. GLMSD enables large, high-quality data for next-generation artificial intelligence-aided drug development.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peichen Pan
- College of Pharmaceutical Sciences and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chongqing Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Enhui Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruochen Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhihao Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hexing Song
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Joe Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Zhang X, Li S, He J, Jin YJ, Zhang R, Dong W, Lin M, Yang Y, Tian T, Zhou Y, Xu Y, Lei QY, Zhang J, Zhang Q, Xu Y, Lv L. TET2 suppresses VHL deficiency-driven clear cell renal cell carcinoma by inhibiting HIF signaling. Cancer Res 2022; 82:2097-2109. [PMID: 35176127 DOI: 10.1158/0008-5472.can-21-3013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Inactivating mutations of von Hippel-Lindau (VHL) are highly prevalent in clear cell renal cell carcinoma (ccRCC). Improved understanding of the vulnerabilities of VHL-deficient ccRCC could lead to improved treatment strategies. The activity of DNA dioxygenase TET2 is significantly reduced in multiple cancers by different mechanisms, but its role in ccRCC progression remains unclear. Here, we report that increased expression of TET2, but not TET1 and TET3, is negatively associated with tumor metastasis and advanced tumor stage and positively associated with good prognosis uniquely in ccRCC among all 33 types of cancer in the TCGA datasets. TET2 restrained glycolysis and pentose phosphate pathway metabolism in a VHL deficiency-dependent manner, thereby suppressing ccRCC progression. Notably, TET2 and VHL mutations tended to co-occur in ccRCC, providing genetic evidence that they cooperate to inhibit the progression of ccRCC. Mechanistically, TET2 was recruited by transcription factor HNF4α to activate FBP1 expression, which antagonized the function of HIF1/2α in metabolic reprogramming to impede ccRCC growth. Stimulating the TET2-FBP1 axis with vitamin C repressed the growth of VHL-deficient ccRCC with wild-type TET2 and increased the sensitivity to glycolysis inhibitors. Moreover, combined expression levels of the HNF4α-TET2-FBP1 axis served as a biomarker of prognosis in ccRCC patients. This study reveals a unique function of TET2 in the suppression of tumor metabolism and HIF signaling, and it also provides therapeutic targets, potential drugs, and prognostic markers for the management of ccRCC.
Collapse
Affiliation(s)
| | | | - Jing He
- Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | - Qun-Ying Lei
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | - Qing Zhang
- The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Lei Lv
- Fudan University, Shanghai, China
| |
Collapse
|
12
|
Hao Q, Huang Z, Li Q, Liu D, Wang P, Wang K, Li J, Cao W, Deng W, Wu K, Su R, Liu Z, Vadgama J, Wu Y. A Novel Metabolic Reprogramming Strategy for the Treatment of Diabetes-Associated Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102303. [PMID: 35023320 PMCID: PMC8867195 DOI: 10.1002/advs.202102303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/08/2021] [Indexed: 05/11/2023]
Abstract
Diabetes is directly related to the risk of breast cancer (BC) occurrence and worsened BC prognosis. Currently, there are no specific treatments for diabetes-associated BC. This paper aims to understand the fundamental mechanisms of diabetes-induced BC progression and to develop personalized treatments. It reports a metabolic reprogramming strategy (MRS) that pharmaceutical induction of glucose import and glycolysis with metformin and NF-κB inhibitor (NF-κBi) while blocking the export of excessive lactate via inhibiting monocarboxylate transporter 4 (MCT4) leads to a metabolic crisis within the cancer cells. It demonstrates that the MRS shifts the metabolism of BC cells toward higher production of lactate, blocks lactate secretion, prompts intracellular acidification and induces significant cytotoxicity. Moreover, a novel MCT4 inhibitor CB-2 has been identified by structure-based virtual screening. A triple combination of metformin, CB-2, and trabectedin, a drug that impedes NF-κB signaling, strongly inhibits BC cells. Compared to normal glucose condition, MRS elicits more potent cancer cell-killing effects under high glucose condition. Animal model studies show that diabetic conditions promote the proliferation and progression of BC xenografts in nude mice and that MRS treatment significantly inhibits HG-induced BC progression. Therefore, inhibition of MCT4 combined with metformin/NF-κBi is a promising cancer therapy, especially for diabetes-associated BC.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Zhimin Huang
- Key Laboratory of Cell Differentiation and ApoptosisMinistry of EducationDepartment of PathophysiologyShanghai Jiao‐Tong University School of MedicineShanghai200025China
- Department of BioengineeringRice UniversityHoustonTX77005USA
| | - Qun Li
- Department of OncologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123China
| | - Dingxie Liu
- Bluewater Biotech LLCNew ProvidenceNJ07974USA
| | - Piwen Wang
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Kun Wang
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhou510080China
| | - Jieqing Li
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhou510080China
| | - Wei Cao
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Wenhong Deng
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Ke Wu
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Rui Su
- College of EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Zhongmin Liu
- The Institute for Biomedical Engineering & Nano ScienceShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jay Vadgama
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Yong Wu
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| |
Collapse
|
13
|
Salimi-Jeda A, Ghabeshi S, Gol Mohammad Pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M, Abdoli A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat Res Commun 2022; 30:100512. [PMID: 35026533 DOI: 10.1016/j.ctarc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Ollah Jazaeri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Mehrdad Araiinejad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Edalat
- Department of medical laboratory sciences, Paramedical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
14
|
|
15
|
Cargill KR, Hasken WL, Gay CM, Byers LA. Alternative Energy: Breaking Down the Diverse Metabolic Features of Lung Cancers. Front Oncol 2021; 11:757323. [PMID: 34745994 PMCID: PMC8566922 DOI: 10.3389/fonc.2021.757323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer initiation, progression, and relapse. From the initial observation that cancer cells preferentially ferment glucose to lactate, termed the Warburg effect, to emerging evidence indicating that metabolic heterogeneity and mitochondrial metabolism are also important for tumor growth, the complex mechanisms driving cancer metabolism remain vastly unknown. These unique shifts in metabolism must be further investigated in order to identify unique therapeutic targets for individuals afflicted by this aggressive disease. Although novel therapies have been developed to target metabolic vulnerabilities in a variety of cancer models, only limited efficacy has been achieved. In particular, lung cancer metabolism has remained relatively understudied and underutilized for the advancement of therapeutic strategies, however recent evidence suggests that lung cancers have unique metabolic preferences of their own. This review aims to provide an overview of essential metabolic mechanisms and potential therapeutic agents in order to increase evidence of targeted metabolic inhibition for the treatment of lung cancer, where novel therapeutics are desperately needed.
Collapse
Affiliation(s)
| | | | | | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Huang B, Yan X, Li Y. Cancer Stem Cell for Tumor Therapy. Cancers (Basel) 2021; 13:cancers13194814. [PMID: 34638298 PMCID: PMC8508418 DOI: 10.3390/cancers13194814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although many methods have been applied in clinical treatment for tumors, they still always show a poor prognosis. Molecule targeted therapy has revolutionized tumor therapy, and a proper target must be found urgently. With a crucial role in tumor development, metastasis and recurrence, cancer stem cells have been found to be a feasible and potential target for tumor therapy. We list the unique biological characteristics of cancer stem cells and summarize the recent strategies to target cancer stem cells for tumor therapy, through which we hope to provide a comprehensive understanding of cancer stem cells and find a better combinational strategy to target cancer stem cells for tumor therapy. Abstract Tumors pose a significant threat to human health. Although many methods, such as operations, chemotherapy and radiotherapy, have been proposed to eliminate tumor cells, the results are unsatisfactory. Targeting therapy has shown potential due to its specificity and efficiency. Meanwhile, it has been revealed that cancer stem cells (CSCs) play a crucial role in the genesis, development, metastasis and recurrence of tumors. Thus, it is feasible to inhibit tumors and improve prognosis via targeting CSCs. In this review, we provide a comprehensive understanding of the biological characteristics of CSCs, including mitotic pattern, metabolic phenotype, therapeutic resistance and related mechanisms. Finally, we summarize CSCs targeted strategies, including targeting CSCs surface markers, targeting CSCs related signal pathways, targeting CSC niches, targeting CSC metabolic pathways, inducing differentiation therapy and immunotherapy (tumor vaccine, CAR-T, oncolytic virus, targeting CSCs–immune cell crosstalk and immunity checkpoint inhibitor). We highlight the potential of immunity therapy and its combinational anti-CSC therapies, which are composed of different drugs working in different mechanisms.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xin Yan
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-138-9361-5421
| |
Collapse
|
17
|
Glutamine promotes escape from therapy-induced senescence in tumor cells. Aging (Albany NY) 2021; 13:20962-20991. [PMID: 34492636 PMCID: PMC8457561 DOI: 10.18632/aging.203495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/02/2021] [Indexed: 01/16/2023]
Abstract
Therapy-induced senescence (TIS) is a major cellular response to anticancer therapies. While induction of a persistent growth arrest would be a desirable outcome in cancer therapy, it has been shown that, unlike normal cells, cancer cells are able to evade the senescence cell cycle arrest and to resume proliferation, likely contributing to tumor relapse. Notably, cells that escape from TIS acquire a plastic, stem cell-like phenotype. The metabolic dependencies of cells that evade senescence have not been thoroughly studied. In this study, we show that glutamine depletion inhibits escape from TIS in all cell lines studied, and reduces the stem cell subpopulation. In line with a metabolic reliance on glutamine, escaped clones overexpress the glutamine transporter SLC1A5. We also demonstrate a central role of glutamine synthetase that mediates resistance to glutamine deprivation, conferring independence from exogenous glutamine. Finally, rescue experiments demonstrate that glutamine provides nitrogen for nucleotides biosynthesis in cells that escape from TIS, but also suggest a critical involvement of glutamine in other metabolic and non-metabolic pathways. On the whole, these results reveal a metabolic vulnerability of cancer stem cells that recover proliferation after exposure to anticancer therapies, which could be exploited to prevent tumor recurrence.
Collapse
|
18
|
Glucose starvation greatly enhances antiproliferative and antiestrogenic potency of oligomycin A in MCF-7 breast cancer cells. Biochimie 2021; 186:51-58. [PMID: 33872751 DOI: 10.1016/j.biochi.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Energy imbalance is one of the key properties of tumour cells, which in certain cases supports fast cancer progression and resistance to therapy. The simultaneous blocking of glycolytic processes and oxidative phosphorylation pathways seems to be a promising strategy for antitumor therapies. The study aimed to evaluate the effect of glucose starvation on the antiproliferative and antiestrogenic potency of oligomycin A against hormone-dependent breast cancer cells. Cell viability was assessed by the MTT test. Estrogen receptor alpha (ERα) activity was evaluated by reporter assay. mTOR, AMPK, Akt, and S6 kinase expression was assessed by immunoblotting. Glucose starvation caused multiple increases in the antiproliferative potency of oligomycin A in the hormone-dependent breast cancer MCF-7 cells, while its effect on the sensitivity of the second hormone-dependent cancer cell line, named T47D, was weak and limited. Glycolytic inhibitors, 3-bromopyruvate and 2-deoxyglucose, greatly enhanced the antiproliferative potency of oligomycin A in MCF-7 cells. Glucose starvation leads to remarkable activation of Akt in MCF-7 cells, whereas oligomycin A enhances its effect. The mTOR, S6 kinase, and AMPK signalling pathways are significantly modulated by oligomycin A under glucose starvation. Oligomycin A demonstrates more pronounced antiestrogenic effects under glucose starvation. Thus, glucose starvation and pharmacological inhibition of glycolysis are of interest for revealing the antitumor potential of macrolide oligomycin A against hormone-dependent breast cancers.
Collapse
|
19
|
Ran N, Lin C, Leng L, Han G, Geng M, Wu Y, Bittner S, Moulton HM, Yin H. MOTS-c promotes phosphorodiamidate morpholino oligomer uptake and efficacy in dystrophic mice. EMBO Mol Med 2021; 13:e12993. [PMID: 33337582 PMCID: PMC7863382 DOI: 10.15252/emmm.202012993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022] Open
Abstract
Antisense oligonucleotide (AO)-mediated exon-skipping therapies show promise in Duchenne muscular dystrophy (DMD), a devastating muscular disease caused by frame-disrupting mutations in the DMD gene. However, insufficient systemic delivery remains a hurdle to clinical deployment. Here, we demonstrate that MOTS-c, a mitochondria-derived bioactive peptide, with an intrinsic muscle-targeting property, augmented glycolytic flux and energy production capacity of dystrophic muscles in vitro and in vivo, resulting in enhanced phosphorodiamidate morpholino oligomer (PMO) uptake and activity in mdx mice. Long-term repeated administration of MOTS-c (500 μg) and PMO at the dose of 12.5 mg/kg/week for 3 weeks followed by 12.5 mg/kg/month for 3 months (PMO-M) induced therapeutic levels of dystrophin expression in peripheral muscles, with up to 25-fold increase in diaphragm of mdx mice over PMO alone. PMO-M improved muscle function and pathologies in mdx mice without detectable toxicity. Our results demonstrate that MOTS-c enables enhanced PMO uptake and activity in dystrophic muscles by providing energy and may have therapeutic implications for exon-skipping therapeutics in DMD and other energy-deficient disorders.
Collapse
Affiliation(s)
- Ning Ran
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Caorui Lin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Ling Leng
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Gang Han
- School of Medical LaboratoryTianjin Medical UniversityTianjinChina
| | - Mengyuan Geng
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Yingjie Wu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Scott Bittner
- Biomedical SciencesCollege of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Hong M Moulton
- Biomedical SciencesCollege of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - HaiFang Yin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
- School of Medical LaboratoryTianjin Medical UniversityTianjinChina
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
20
|
Jin R, Liu B, Liu X, Fan Y, Peng W, Huang C, Marcus A, Sica G, Gilbert-Ross M, Liu Y, Zhou W. Leflunomide Suppresses the Growth of LKB1-Inactivated Tumors in the Immune-Competent Host and Attenuates Distant Cancer Metastasis. Mol Cancer Ther 2020; 20:274-283. [PMID: 33293343 DOI: 10.1158/1535-7163.mct-20-0567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/20/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Liver kinase B1 (LKB1)-inactivated tumors are vulnerable to the disruption of pyrimidine metabolism, and leflunomide emerges as a therapeutic candidate because its active metabolite, A77-1726, inhibits dihydroorotate dehydrogenase, which is essential for de novo pyrimidine biosynthesis. However, it is unclear whether leflunomide inhibits LKB1-inactivated tumors in vivo, and whether its inhibitory effect on the immune system will promote tumor growth. Here, we carried out a comprehensive analysis of leflunomide treatment in various LKB1-inactivated murine xenografts, patient-derived xenografts, and genetically engineered mouse models. We also generated a mouse tumor-derived cancer cell line, WRJ388, that could metastasize to the lung within a month after subcutaneous implantation in all animals. This model was used to assess the ability of leflunomide to control distant metastasis. Leflunomide treatment shrank a HeLa xenograft and attenuated the growth of an H460 xenograft, a patient-derived xenograft, and lung adenocarcinoma in the immune-competent genetically engineered mouse models. Interestingly, leflunomide suppressed tumor growth through at least three different mechanisms. It caused apoptosis in HeLa cells, induced G1 cell-cycle arrest in H460 cells, and promoted S-phase cell-cycle arrest in WRJ388 cells. Finally, leflunomide treatment prevented lung metastasis in 78% of the animals in our novel lung cancer metastasis model. In combination, these results demonstrated that leflunomide utilizes different pathways to suppress the growth of LKB1-inactivated tumors, and it also prevents cancer metastasis at distant sites. Therefore, leflunomide should be evaluated as a therapeutic agent for tumors with LKB1 inactivation.
Collapse
Affiliation(s)
- Rui Jin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Boxuan Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Xiuju Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Yijian Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Wei Peng
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Chunzi Huang
- The Cancer Animal Models Shared Resource of Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Adam Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Gabriel Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,The Cancer Animal Models Shared Resource of Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Yuan Liu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia. .,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Schmidt MC, O'Donnell AF. 'Sugarcoating' 2-deoxyglucose: mechanisms that suppress its toxic effects. Curr Genet 2020; 67:107-114. [PMID: 33136227 PMCID: PMC7886833 DOI: 10.1007/s00294-020-01122-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Yeast and cancer cells are metabolically similar as they use fermentation of glucose as a primary means of generating energy. Reliance on glucose fermentation makes both of these cell types highly sensitive to the toxic glucose analog, 2-deoxyglucose. Here we review the cellular and metabolic pathways that play a role in 2-deoxyglucose sensitivity and discuss how the modifications to these pathways result in acquisition of 2-deoxyglucose resistance. Insights gained from genetic and proteomic studies in yeast provide new ideas for the design of combinatorial therapies for cancer treatment.
Collapse
Affiliation(s)
- Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Allyson F O'Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
22
|
Mansouri K, Rastegari-Pouyani M, Ghanbri-Movahed M, Safarzadeh M, Kiani S, Ghanbari-Movahed Z. Can a metabolism-targeted therapeutic intervention successfully subjugate SARS-COV-2? A scientific rational. Biomed Pharmacother 2020; 131:110694. [PMID: 32920511 PMCID: PMC7451059 DOI: 10.1016/j.biopha.2020.110694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
As a process entailing a high turnover of the host cell molecules, viral replication is required for a successful viral infection and requests virus capacity to acquire the macromolecules required for its propagation. To this end, viruses have adopted several strategies to harness cellular metabolism in accordance with their specific demands. Most viruses upregulate specific cellular anabolic pathways and are largely dependent on such alterations. RNA viruses, for example, upregulate both glycolysisand glycogenolysis providing TCA cycle intermediates essential for anabolic lipogenesis. Also, these infections usually induce the PPP, leading to increased nucleotide levels supporting viral replication. SARS-CoV-2 (the cause of COVID-19)that has so far spread from China throughout the world is also an RNA virus. Owing to the more metabolic plasticity of uninfected cells, a promising approach for specific antiviral therapy, which has drawn a lot of attention in the recent years, would be the targeting of metabolic changes induced by viruses. In the current review, we first summarize some of virus-induced metabolic adaptations and then based on these information as well as SARS-CoV-2 pathogenesis, propose a potential therapeutic modality for this calamitous world-spreading virus with the hope of employing this strategy for near-future clinical application.
Collapse
Affiliation(s)
- Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanbri-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Lee JY, Stevens RP, Kash M, Zhou C, Koloteva A, Renema P, Paudel SS, Stevens T. KD025 Shifts Pulmonary Endothelial Cell Bioenergetics and Decreases Baseline Lung Permeability. Am J Respir Cell Mol Biol 2020; 63:519-530. [PMID: 32628869 PMCID: PMC7528923 DOI: 10.1165/rcmb.2019-0435oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
KD025 is a ROCK2 inhibitor currently being tested in clinical trials for the treatment of fibrotic lung diseases. The therapeutic effects of KD025 are partly due to its inhibition of profibrotic pathways and fat metabolism. However, whether KD025 affects pulmonary microvascular endothelial cell (PMVEC) function is unknown, despite evidence that alveolar-capillary membrane disruption constitutes major causes of death in fibrotic lung diseases. We hypothesized that KD025 regulates PMVEC metabolism, pH, migration, and survival, a series of interrelated functional characteristics that determine pulmonary barrier integrity. We used PMVECs isolated from Sprague Dawley rats. KD025 dose-dependently decreased lactate production and glucose consumption. The inhibitory effect of KD025 was more potent compared with other metabolic modifiers, including 2-deoxy-glucose, extracellular acidosis, dichloroacetate, and remogliflozin. Interestingly, KD025 increased oxidative phosphorylation, whereas 2-deoxy-glucose did not. KD025 also decreased intracellular pH and induced a compensatory increase in anion exchanger 2. KD025 inhibited PMVEC migration, but fasudil (nonspecific ROCK inhibitor) did not. We tested endothelial permeability in vivo using Evans Blue dye in the bleomycin pulmonary fibrosis model. Baseline permeability was decreased in KD025-treated animals independent of bleomycin treatment. Under hypoxia, KD025 increased PMVEC necrosis as indicated by increased lactate dehydrogenase release and propidium iodide uptake and decreased ATP; it did not affect Annexin V binding. ROCK2 knockdown had no effect on PMVEC metabolism, pH, and migration, but it increased nonapoptotic caspase-3 activity. Together, we report that KD025 promotes oxidative phosphorylation; decreases glycolysis, intracellular pH, and migration; and strengthens pulmonary barrier integrity in a ROCK2-independent manner.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology
- Department of Internal Medicine
- Division of Pulmonary and Critical Care Medicine
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Reece P. Stevens
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Mary Kash
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Chun Zhou
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Anna Koloteva
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Phoibe Renema
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Sunita S. Paudel
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology
- Department of Internal Medicine
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| |
Collapse
|
24
|
Laussel C, Léon S. Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem Pharmacol 2020; 182:114213. [PMID: 32890467 DOI: 10.1016/j.bcp.2020.114213] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Most malignant cells display increased glucose absorption and metabolism compared to surrounding tissues. This well-described phenomenon results from a metabolic reprogramming occurring during transformation, that provides the building blocks and supports the high energetic cost of proliferation by increasing glycolysis. These features led to the idea that drugs targeting glycolysis might prove efficient in the context of cancer treatment. One of these drugs, 2-deoxyglucose (2-DG), is a synthetic glucose analog that can be imported into cells and interfere with glycolysis and ATP generation. Its preferential targeting to sites of cell proliferation is supported by the observation that a derived molecule, 2-fluoro-2-deoxyglucose (FDG) accumulates in tumors and is used for cancer imaging. Here, we review the toxicity mechanisms of this drug, from the early-described effects on glycolysis to its other cellular consequences, including inhibition of protein glycosylation and endoplasmic reticulum stress, and its interference with signaling pathways. Then, we summarize the current data on the use of 2-DG as an anti-cancer agent, especially in the context of combination therapies, as novel 2-DG-derived drugs are being developed. We also show how the use of 2-DG helped to decipher glucose-signaling pathways in yeast and favored their engineering for biotechnologies. Finally, we discuss the resistance strategies to this inhibitor that have been identified in the course of these studies and which may have important implications regarding a medical use of this drug.
Collapse
Affiliation(s)
- Clotilde Laussel
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Sébastien Léon
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
25
|
Atif M, Mohr A, Conti F, Scatton O, Gorochov G, Miyara M. Metabolic Optimisation of Regulatory T Cells in Transplantation. Front Immunol 2020; 11:2005. [PMID: 33013855 PMCID: PMC7495149 DOI: 10.3389/fimmu.2020.02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells expressing the FOXP3 transcription factor are presently under investigation by many teams globally as a cellular therapy to induce tolerance in transplantation. This is primarily due to their immunosuppressive and homeostatic functions. Depending on the type of allograft, Treg cells will need to infiltrate and function in metabolically diverse microenvironments. This means that any resident and circulating Treg cells need to differentially adapt to counter acute or chronic allograft rejection. However, the links between Treg cell metabolism and function are still not entirely delineated. Current data suggest that Treg cells and their effector counterparts have different metabolite dependencies and metabolic programs. These properties could be exploited to optimize intragraft Treg cell function. In this review, we discuss the current paradigms regarding Treg cell metabolism and outline critical intracellular axes that link metabolism and function. Finally, we discuss how this knowledge could be clinically translated for the benefit of transplant patients.
Collapse
Affiliation(s)
- Mo Atif
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Centre for Liver and Gastrointestinal Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Audrey Mohr
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Filomena Conti
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Olivier Scatton
- Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Guy Gorochov
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Makoto Miyara
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
26
|
Annunziata MC, Parisi M, Esposito G, Fabbrocini G, Ammendola R, Cattaneo F. Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling. Int J Mol Sci 2020; 21:ijms21113818. [PMID: 32471307 PMCID: PMC7312799 DOI: 10.3390/ijms21113818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
FPR1, FPR2, and FPR3 are members of Formyl Peptides Receptors (FPRs) family belonging to the GPCR superfamily. FPR2 is a low affinity receptor for formyl peptides and it is considered the most promiscuous member of this family. Intracellular signaling cascades triggered by FPRs include the activation of different protein kinases and phosphatase, as well as tyrosine kinase receptors transactivation. Protein kinases and phosphatases act coordinately and any impairment of their activation or regulation represents one of the most common causes of several human diseases. Several phospho-sites has been identified in protein kinases and phosphatases, whose role may be to expand the repertoire of molecular mechanisms of regulation or may be necessary for fine-tuning of switch properties. We previously performed a phospho-proteomic analysis in FPR2-stimulated cells that revealed, among other things, not yet identified phospho-sites on six protein kinases and one protein phosphatase. Herein, we discuss on the selective phosphorylation of Serine/Threonine-protein kinase N2, Serine/Threonine-protein kinase PRP4 homolog, Serine/Threonine-protein kinase MARK2, Serine/Threonine-protein kinase PAK4, Serine/Threonine-protein kinase 10, Dual specificity mitogen-activated protein kinase kinase 2, and Protein phosphatase 1 regulatory subunit 14A, triggered by FPR2 stimulation. We also describe the putative FPR2-dependent signaling cascades upstream to these specific phospho-sites.
Collapse
Affiliation(s)
- Maria Carmela Annunziata
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Melania Parisi
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
- Correspondence: ; Fax: +39-081-7464-359
| |
Collapse
|
27
|
Ato S, Maruyama Y, Yoshizato H, Ogasawara R. Habitual high-protein diet does not influence muscle protein synthesis in response to acute resistance exercise in rats. Nutrition 2020; 78:110795. [PMID: 32480256 DOI: 10.1016/j.nut.2020.110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Resistance training combined with consumption of a high-protein diet (HPD) is typically recommended to increase muscle mass, as both acute resistance exercise (RE) and dietary protein intake stimulate mechanistic target of rapamycin complex 1 (mTORC1) and muscle protein synthesis (MPS). However, the effect of chronic HPD consumption on MPS response to an acute RE remains to be determined. METHODS Male Sprague-Dawley rats aged 10 wk were fed HPD (50 kcal % protein, for 4 wk) or normal protein diet (NPD; 20 kcal % protein). After the 4-wk dietary intervention, the rats were fasted overnight and the right gastrocnemius muscle was subjected to percutaneous electrical stimulation to mimic acute RE, whereas the left gastrocnemius muscle served as control. The rats were sacrificed 6 h after exercise and the tissues were sampled immediately. RESULTS The HPD group showed significantly lower fat mass and higher skeletal muscle mass than the NPD group without affecting body weight. Resting mTORC1 activity did not differ between the groups. Additionally, resting MPS was also unchanged after HPD. Acute RE significantly increased mTORC1 activity and MPS in both groups. However, differences in diet did not influence the response of mTORC1 activation to acute RE. Furthermore, HPD did not affect the response of MPS to acute RE. CONCLUSION The present results suggested that although 4 wk of HPD reduces body fat and increases skeletal muscle mass, it does not affect muscle protein synthesis at basal state, and in response to acute RE.
Collapse
Affiliation(s)
- Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuki Maruyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideo Yoshizato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
28
|
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
|
29
|
Vanhove K, Graulus GJ, Mesotten L, Thomeer M, Derveaux E, Noben JP, Guedens W, Adriaensens P. The Metabolic Landscape of Lung Cancer: New Insights in a Disturbed Glucose Metabolism. Front Oncol 2019; 9:1215. [PMID: 31803611 PMCID: PMC6873590 DOI: 10.3389/fonc.2019.01215] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolism encompasses the biochemical processes that allow healthy cells to keep energy, redox balance and building blocks required for cell development, survival, and proliferation steady. Malignant cells are well-documented to reprogram their metabolism and energy production networks to support rapid proliferation and survival in harsh conditions via mutations in oncogenes and inactivation of tumor suppressor genes. Despite the histologic and genetic heterogeneity of tumors, a common set of metabolic pathways sustain the high proliferation rates observed in cancer cells. This review with a focus on lung cancer covers several fundamental principles of the disturbed glucose metabolism, such as the “Warburg” effect, the importance of the glycolysis and its branching pathways, the unanticipated gluconeogenesis and mitochondrial metabolism. Furthermore, we highlight our current understanding of the disturbed glucose metabolism and how this might result in the development of new treatments.
Collapse
Affiliation(s)
- Karolien Vanhove
- UHasselt, Faculty of Medicine and Life Sciences, LCRC, Diepenbeek, Belgium.,Department of Respiratory Medicine, Algemeen Ziekenhuis Vesalius, Tongeren, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| | - Liesbet Mesotten
- UHasselt, Faculty of Medicine and Life Sciences, LCRC, Diepenbeek, Belgium.,Department of Nuclear Medicine, Ziekenhuis Oost Limburg, Genk, Belgium
| | - Michiel Thomeer
- UHasselt, Faculty of Medicine and Life Sciences, LCRC, Diepenbeek, Belgium.,Department of Respiratory Medicine, Ziekenhuis Oost Limburg, Genk, Belgium
| | - Elien Derveaux
- UHasselt, Faculty of Medicine and Life Sciences, LCRC, Diepenbeek, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research, Hasselt University, Diepenbeek, Belgium.,Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
30
|
Reyes-Farias M, Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int J Mol Sci 2019; 20:E3177. [PMID: 31261749 PMCID: PMC6651418 DOI: 10.3390/ijms20133177] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer is a problem with worldwide importance and is the second leading cause of death globally. Cancer cells reprogram their metabolism to support their uncontrolled expansion by increasing biomass (anabolic metabolism-glycolysis) at the expense of their energy (bioenergetics- mitochondrial function) requirements. In this aspect, metabolic reprogramming stands out as a key biological process in understanding the conversion of a normal cell into a neoplastic precursor. Quercetin is the major representative of the flavonoid subclass of flavonols. Quercetin is ubiquitously present in fruits and vegetables, being one of the most common dietary flavonols in the western diet. The anti-cancer effects of quercetin include its ability to promote the loss of cell viability, apoptosis and autophagy through the modulation of PI3K/Akt/mTOR, Wnt/-catenin, and MAPK/ERK1/2 pathways. In this review, we discuss the role of quercetin in cancer metabolism, addressing specifically its ability to target molecular pathways involved in glucose metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, 08916 Barcelona, Spain
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
31
|
Floberg JM, Schwarz JK. Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response. Semin Radiat Oncol 2019; 29:33-41. [PMID: 30573182 DOI: 10.1016/j.semradonc.2018.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysregulated glucose and redox metabolism are near universal features of cancers. They therefore represent potential selectively toxic metabolic targets. This review outlines the preclinical and clinical data for targeting glucose and hydroperoxide metabolism in cancer, with a focus on drug strategies that have the most available evidence. In particular, inhibition of glycolysis using 2-deoxyglucose, and inhibition of redox metabolism using the glutathione pathway inhibitor buthionine sulfoximine and the thioredoxin pathway inhibitor auranofin, have shown promise in preclinical studies to increase sensitivity to chemotherapy and radiation by increasing intracellular oxidative stress. Combined inhibition of glycolysis, glutathione, and thioredoxin pathways sensitizes highly glycolytic, radioresistant cancer models in vitro and in vivo. Although the preclinical data support this approach, clinical data are limited to exploratory trials using a single drug in combination with either chemotherapy or radiation. Open research questions include optimizing drug strategies for targeting glycolysis and redox metabolism, determining the appropriate timing for administering this therapy with concurrent chemotherapy and radiation, and identifying biomarkers to determine the cancers that would benefit most from this approach. Given the quality of preclinical evidence, dual targeting of glycolysis and redox metabolism in combination with chemotherapy and radiation should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- John M Floberg
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
32
|
Peng W, Guo L, Tang R, Liu X, Jin R, Dong JT, Xing CG, Zhou W. Sox7 negatively regulates prostate-specific membrane antigen (PSMA) expression through PSMA-enhancer. Prostate 2019; 79:370-378. [PMID: 30488457 PMCID: PMC6344945 DOI: 10.1002/pros.23743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND PSMA expression in the prostate epithelium is controlled by a cis-element, PSMA enhancer (PSME). PSME contains multiple binding sites for Sox proteins, and in this study, we identified Sox7 protein as a negative regulator of PSMA expression through its interaction with PSME. METHODS The statistical correlation between Sox7 and PSMA mRNA expression was evaluated using five prostate cancer studies from cBioportal. In vitro and in vivo interaction between Sox7 and PSME was evaluated by chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), and luciferase reporter assay. Synthetic oligonucleotides were generated to define the sites in PSME that interact with Sox7 protein. Sox7 mutants were generated to identify the region of this protein required to regulate PSMA expression. Sox7 was also stably expressed in LNCaP/C4-2 and 22Rv1 cells to validate the regulation of PSMA expression by Sox7 in vivo. RESULTS Sox7 mRNA expression negatively correlated with PSMA/FOLH1 and PSMAL/FOLH1B mRNA expression in Broad/Cornell, TCGA and MSKCC studies, but not in two studies containing only metastatic prostate tumors. PC-3 cells mostly expressed the 48.5 KDa isoform 2 of Sox7, and the depletion of this isoform did not restore PSMA expression. Ectopic expression of canonical, wild-type Sox7 in C4-2 and 22Rv1 cells suppressed PSMA protein expression. ChIP assay revealed that canonical Sox7 protein preferentially interacts with PSME in vivo, and EMSA identified the SOX box sites #2 and #4 in PSME as required for its interaction. Sox7 was capable of directly binding to PSME and suppressed PSME-mediated transcription. The NLS regions of Sox7, but not its β-catenin interacting motif, are essential for this suppressing activity. Furthermore, restoration of wild-type Sox7 expression but not Sox7-NLS mutant in Sox7-null prostate cancer cell lines suppressed PSMA expression. CONCLUSIONS The inactivation of canonical Sox7 is responsible for the upregulated expression of PSMA in non-metastatic prostate cancer.
Collapse
Affiliation(s)
- Wei Peng
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital Of Soochow University, Suzhou, Jiangsu Province 215004, P.R. China
| | - Lizheng Guo
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Ruoyi Tang
- Department of Environmental Health, Rollins School of Public Health
| | - Xiuju Liu
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Rui Jin
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Urology, Emory University School of Medicine
| | - Chun-gen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital Of Soochow University, Suzhou, Jiangsu Province 215004, P.R. China
| | - Wei Zhou
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine
| |
Collapse
|
33
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
34
|
Kulkarni A, Taylor GP, Klose RJ, Schofield CJ, Bangham CR. Histone H2A monoubiquitylation and p38-MAPKs regulate immediate-early gene-like reactivation of latent retrovirus HTLV-1. JCI Insight 2018; 3:123196. [PMID: 30333309 PMCID: PMC6237452 DOI: 10.1172/jci.insight.123196] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
It is not understood how the human T cell leukemia virus human T-lymphotropic virus-1 (HTLV-1), a retrovirus, regulates the in vivo balance between transcriptional latency and reactivation. The HTLV-1 proviral plus-strand is typically transcriptionally silent in freshly isolated peripheral blood mononuclear cells from infected individuals, but after short-term ex vivo culture, there is a strong, spontaneous burst of proviral plus-strand transcription. Here, we demonstrate that proviral reactivation in freshly isolated, naturally infected primary CD4+ T cells has 3 key attributes characteristic of an immediate-early gene. Plus-strand transcription is p38-MAPK dependent and is not inhibited by protein synthesis inhibitors. Ubiquitylation of histone H2A (H2AK119ub1), a signature of polycomb repressive complex-1 (PRC1), is enriched at the latent HTLV-1 provirus, and immediate-early proviral reactivation is associated with rapid deubiquitylation of H2A at the provirus. Inhibition of deubiquitylation by the deubiquitinase (DUB) inhibitor PR619 reverses H2AK119ub1 depletion and strongly inhibits plus-strand transcription. We conclude that the HTLV-1 proviral plus-strand is regulated with characteristics of a cellular immediate-early gene, with a PRC1-dependent bivalent promoter sensitive to p38-MAPK signaling. Finally, we compare the epigenetic signatures of p38-MAPK inhibition, DUB inhibition, and glucose deprivation at the HTLV-1 provirus, and we show that these pathways act as independent checkpoints regulating proviral reactivation from latency.
Collapse
Affiliation(s)
- Anurag Kulkarni
- Division of Infectious Diseases, Department of Medicine, Imperial College, London, United Kingdom
| | - Graham P. Taylor
- Division of Infectious Diseases, Department of Medicine, Imperial College, London, United Kingdom
| | - Robert J. Klose
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, and
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Charles R.M. Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
35
|
Wilson JJ, Chow KH, Labrie NJ, Branca JA, Sproule TJ, Perkins BRA, Wolf EE, Costa M, Stafford G, Rosales C, Mills KD, Roopenian DC, Hasham MG. Enhancing the efficacy of glycolytic blockade in cancer cells via RAD51 inhibition. Cancer Biol Ther 2018; 20:169-182. [PMID: 30183475 PMCID: PMC6343731 DOI: 10.1080/15384047.2018.1507666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Targeting the early steps of the glycolysis pathway in cancers is a well-established therapeutic strategy; however, the doses required to elicit a therapeutic effect on the cancer can be toxic to the patient. Consequently, numerous preclinical and clinical studies have combined glycolytic blockade with other therapies. However, most of these other therapies do not specifically target cancer cells, and thus adversely affect normal tissue. Here we first show that a diverse number of cancer models – spontaneous, patient-derived xenografted tumor samples, and xenografted human cancer cells – can be efficiently targeted by 2-deoxy-D-Glucose (2DG), a well-known glycolytic inhibitor. Next, we tested the cancer-cell specificity of a therapeutic compound using the MEC1 cell line, a chronic lymphocytic leukemia (CLL) cell line that expresses activation induced cytidine deaminase (AID). We show that MEC1 cells, are susceptible to 4,4ʹ-Diisothiocyano-2,2ʹ-stilbenedisulfonic acid (DIDS), a specific RAD51 inhibitor. We then combine 2DG and DIDS, each at a lower dose and demonstrate that this combination is more efficacious than fludarabine, the current standard- of- care treatment for CLL. This suggests that the therapeutic blockade of glycolysis together with the therapeutic inhibition of RAD51-dependent homologous recombination can be a potentially beneficial combination for targeting AID positive cancer cells with minimal adverse effects on normal tissue. Implications: Combination therapy targeting glycolysis and specific RAD51 function shows increased efficacy as compared to standard of care treatments in leukemias.
Collapse
Affiliation(s)
- John J Wilson
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Kin-Hoe Chow
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Nathan J Labrie
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Jane A Branca
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Thomas J Sproule
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Bryant R A Perkins
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Elise E Wolf
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Mauro Costa
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Grace Stafford
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Christine Rosales
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | | | - Derry C Roopenian
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Muneer G Hasham
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| |
Collapse
|
36
|
Gill KS, Fernandes P, Bird B, Soden DM, Forde PF. Combination of electroporation delivered metabolic modulators with low-dose chemotherapy in osteosarcoma. Oncotarget 2018; 9:31473-31489. [PMID: 30140384 PMCID: PMC6101145 DOI: 10.18632/oncotarget.25843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/08/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Osteosarcoma accounts for roughly 60% of all malignant bone tumors in children and young adults. The five-year survival rate for localized tumors after surgery and chemotherapy is approximately 70% whilst it drastically reduces to 15-30% in metastatic cases. Metabolic modulation is known to increase sensitivity of cancers to chemotherapy. A novel treatment strategy in Osteosarcoma is needed to battle this devastating malady. RESULTS Electroporation-delivered metabolic modulators were more effective in halting the cell cycle of Osteosarcoma cells and this negatively affects their ability to recover and proliferate, as shown in colony formation assays. Electroporation-delivered metabolic modulators increase the sensitivity of Osteosarcoma cells to chemotherapy and this combination reduces their survivability. CONCLUSION This novel treatment approach highlights the efficacy of electroporation in the delivery of metabolic modulators in Osteosarcoma cells, and increased sensitivity to chemotherapy allowing for a lower dose to be therapeutic. METHODS Metabolic modulations of two Osteosarcoma cell lines were performed with clinically available modulators delivered using electroporation, and its combination with low-dose Cisplatin. The effects of Dicholoroacetic acid, 2-Deoxy-D-glucose and Metformin on cell cycle and recovery of Osteosarcoma cells were assessed. Their sensitivity to chemotherapy was also assessed when treated in combination with electroporation-delivered metabolic modulators.
Collapse
Affiliation(s)
- Kheshwant S. Gill
- Cancer Research at UCC, Western Gateway Building, University College Cork, Cork, Ireland
| | - Philana Fernandes
- Cancer Research at UCC, Western Gateway Building, University College Cork, Cork, Ireland
| | - Brian Bird
- Cancer Research at UCC, Western Gateway Building, University College Cork, Cork, Ireland
- Bons Secours Hospital, Cork, Ireland
| | - Declan M. Soden
- Cancer Research at UCC, Western Gateway Building, University College Cork, Cork, Ireland
| | - Patrick F. Forde
- Cancer Research at UCC, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Inhibition of IGF1R enhances 2-deoxyglucose in the treatment of non-small cell lung cancer. Lung Cancer 2018; 123:36-43. [PMID: 30089593 DOI: 10.1016/j.lungcan.2018.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We previously postulated that 2-deoxyglucose (2-DG) activates multiple pro-survival pathways through IGF1R to negate its inhibitory effect on glycolysis. Here, we evaluated whether IGF1R inhibitor synergizes with 2-DG to impede the growth of non-small cell lung cancer (NSCLC). MATERIALS AND METHODS The activation of IGF1R signaling was assessed by the phosphorylation of IGF1R and its downstream target AKT using immunoblot. Drug dose response and combination index analyses were carried out according to the method of Chou and Talalay. Flow cytometry was used to evaluate cell cycle progression. Apoptosis was monitored by caspase-3/PARP cleavages or Annexin V staining. A subcutaneous xenograft model was used to assess this combination in vivo. RESULTS 2-DG induces the phosphorylation of IGF1R in its kinase domain, which can be abolished by the IGF1R inhibitor BMS-754807. Furthermore, the combination of 2-DG and BMS-754807 synergistically inhibited the survival of several non-small cell lung cancer (NSCLC) cell lines both in vitro and in vivo. The mechanistic basis of this synergy was cell line-dependent, and LKB1-inactivated EKVX cells underwent apoptosis following treatment with a subtoxic dose of 2-DG and BMS-754807. For these cells, the restoration of LKB1 kinase activity suppressed apoptosis induced by this combination but enhanced G1 arrest. In H460 cells, the addition of 2-DG did not enhance the low level of apoptosis induced by BMS-754807. However, treatment with 0.75 μM of BMS-754807 resulted in the accumulation of H460 cells with 8n-DNA content without affecting cell density increases. Hence, H460 cells may escape BMS-754807-induced G2/M cell cycle arrest through polyploidy. The inclusion of 2-DG blocked formation of the 8n-DNA cell population and restored G2/M phase cell cycle arrest. CONCLUSION The combination of 2-DG and IGF1R inhibitor BMS-754807 may be used to suppress the proliferation of NSCLC tumors through different mechanisms.
Collapse
|
38
|
Chen H, Lee LS, Li G, Tsao SW, Chiu JF. Upregulation of glycolysis and oxidative phosphorylation in benzo[α]pyrene and arsenic-induced rat lung epithelial transformed cells. Oncotarget 2018; 7:40674-40689. [PMID: 27276679 PMCID: PMC5130035 DOI: 10.18632/oncotarget.9814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 12/26/2022] Open
Abstract
Arsenic and benzo[β]pyrene (B[a]P) are common contaminants in developing countries. Many studies have investigated the consequences of arsenic and/or B[a]P-induced cellular transformation, including altered metabolism. In the present study, we show that, in addition to elevated glycolysis, B[a]P/arsenic-induced transformation also stimulates oxidative phosphorylation (OXPHOS). Proteomic data and immunoblot studies demonstrated that enzymatic activities, involved in both glycolysis and OXPHOS, are upregulated in the primary transformed rat lung epithelial cell (TLEC) culture, as well as in subcloned TLEC cell lines (TMCs), indicating that OXPHOS was active and still contributed to energy production. LEC expression, of the glycolytic enzyme phosphoglycerate mutase (PGAM) and the TCA cycle enzyme alpha-ketoglutarate dehydrogenase (OGDH), revealed an alternating cyclic pattern of glycolysis and OXPHOS during cell transformation. We also found that the expression levels of hypoxia-inducible factor-1β were consistent with the pattern of glycolysis during the course of transformation. Low doses of an ATP synthase inhibitor depleted endogenous ATP levels to a greater extent in TLECs, compared to parental LECs, indicating greater sensitivity of B[a]P/arsenic-transformed cells to ATP depletion. However, TLEC cells exhibited better survival under hypoxia, possibly due to further induction of anaerobic glycolysis. Collectively, our data indicate that B[a]P/arsenic-transformed cells can maintain energy production through upregulation of both glycolysis and OXPHOS. Selective inhibition of metabolic pathways may serve as a therapeutic option for cancer therapy.
Collapse
Affiliation(s)
- Huachen Chen
- Department of Biochemistry/Open Laboratory of Tumor Molecular Biology, Shantou University College of Medicine, Shantou, Guangdong, China
| | - Lai-Sheung Lee
- School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Guanwu Li
- Department of Biochemistry/Open Laboratory of Tumor Molecular Biology, Shantou University College of Medicine, Shantou, Guangdong, China
| | - Sai-Wah Tsao
- School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jen-Fu Chiu
- Department of Biochemistry/Open Laboratory of Tumor Molecular Biology, Shantou University College of Medicine, Shantou, Guangdong, China.,School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
39
|
Kim YH, Nakayama T, Nayak J. Glycolysis and the Hexosamine Biosynthetic Pathway as Novel Targets for Upper and Lower Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:6-11. [PMID: 29178672 PMCID: PMC5705485 DOI: 10.4168/aair.2018.10.1.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Glycolysis is a process that rapidly converts glucose to lactate to produce adenosine triphosphate (ATP) under anaerobic conditions and occurs in all eukaryotic and prokaryotic cells. On the other hand, the hexosamine biosynthetic pathway (HBP) converts glucose to intermediate products like UDP-N-acetylglucosamine, which is critical for post-translational modifications of proteins, such as protein glycosylation. These 2 pathways are well known to contribute to glucose metabolism, but recent studies indicate modulation of these pathways can alter immune system function. In this review article, the authors present results suggesting how cellular metabolism, including glycolysis and the HBP, occurs in immune cells, and the immunologic significances of such activities. In addition, they provide a review of the literature on the effects of glycolysis and the HBP on various autoimmune, immunologic, and allergic diseases. Finally, the authors briefly introduce the results of their research on the immunologic effects of HBP supplementation (glucosamine) in animal models of allergic disease.
Collapse
Affiliation(s)
- Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Korea. .,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Jayakar Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
2-Deoxy-D-glucose suppresses the migration and reverses the drug resistance of colon cancer cells through ADAM expression regulation. Anticancer Drugs 2017; 28:410-420. [PMID: 28059830 DOI: 10.1097/cad.0000000000000472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer cell resistance to chemotherapy is associated with a poor prognosis. The compound 2-deoxy-D-glucose (2-DG) enhances the effect of chemotherapy against cancer cells lines in vitro and in vivo. However, its effect on the epithelial to mesenchymal transition (EMT) in drug-resistant cancer cells has not been fully elucidated. In this study, we investigated whether treatment of 5-fluorouracil or oxaliplatin-resistant colorectal cancer (CRC) cells with 2-DG suppressed their migratory activity and enhanced their susceptibility to chemotherapy. Chemoresistant CRC cells stably expressed drug resistance-related proteins (MDR1, MRP1, MRP2, and MRP3) and showed mesenchymal characteristics and a migratory phenotype. 2-DG treatment attenuated glycolysis-related enzyme expression, invasion activity, and EMT-related cytokine secretion in drug-resistant CRC cells. In addition, 2-DG inhibited the activation of a disintegrin and metalloproteinase 10 (ADAM10) and ADAM17. Gene silencing of ADAM10 and ADAM17 with small interfering RNA downregulated mesenchymal properties, reduced EMT-associated cytokine secretion, and rendered chemoresistant cells susceptible to anticancer drug treatment. Collectively, these findings suggest that increased glycolytic metabolism in drug-resistant cells has an effect on both migratory activity and cell viability through the activation of ADAM10 and ADAM17.
Collapse
|
41
|
Kulkarni A, Mateus M, Thinnes CC, McCullagh JS, Schofield CJ, Taylor GP, Bangham CRM. Glucose Metabolism and Oxygen Availability Govern Reactivation of the Latent Human Retrovirus HTLV-1. Cell Chem Biol 2017; 24:1377-1387.e3. [PMID: 28965728 PMCID: PMC5696563 DOI: 10.1016/j.chembiol.2017.08.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
Abstract
The human retrovirus HTLV-1 causes a hematological malignancy or neuroinflammatory disease in ∼10% of infected individuals. HTLV-1 primarily infects CD4+ T lymphocytes and persists as a provirus integrated in their genome. HTLV-1 appears transcriptionally latent in freshly isolated cells; however, the chronically active anti-HTLV-1 cytotoxic T cell response observed in infected individuals indicates frequent proviral expression in vivo. The kinetics and regulation of HTLV-1 proviral expression in vivo are poorly understood. By using hypoxia, small-molecule hypoxia mimics, and inhibitors of specific metabolic pathways, we show that physiologically relevant levels of hypoxia, as routinely encountered by circulating T cells in the lymphoid organs and bone marrow, significantly enhance HTLV-1 reactivation from latency. Furthermore, culturing naturally infected CD4+ T cells in glucose-free medium or chemical inhibition of glycolysis or the mitochondrial electron transport chain strongly suppresses HTLV-1 plus-strand transcription. We conclude that glucose metabolism and oxygen tension regulate HTLV-1 proviral latency and reactivation in vivo. Physiological (1%) hypoxia enhances HTLV-1 plus-strand transcription HTLV-1 transcription is hypoxia regulated but HIF independent Inhibition of glycolysis or the mitochondrial ETC suppresses HTLV-1 transcription Extracellular glucose concentration regulates HTLV-1 reactivation from latency
Collapse
Affiliation(s)
- Anurag Kulkarni
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK
| | - Manuel Mateus
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK
| | - Cyrille C Thinnes
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK
| | - James S McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK
| | - Graham P Taylor
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK
| | - Charles R M Bangham
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK.
| |
Collapse
|
42
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
43
|
Karanja CW, Hong W, Younis W, Eldesouky HE, Seleem MN, Cheng JX. Stimulated Raman Imaging Reveals Aberrant Lipogenesis as a Metabolic Marker for Azole-Resistant Candida albicans. Anal Chem 2017; 89:9822-9829. [PMID: 28813144 DOI: 10.1021/acs.analchem.7b01798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Caroline W. Karanja
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Weili Hong
- Weldon
School of Biomedical Engineering, Purdue University, 206 S. Martin
Jischke Dr., West Lafayette, Indiana 47907, United States
| | - Waleed Younis
- Department
of Comparative Pathobiology, Purdue College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hassan E. Eldesouky
- Department
of Comparative Pathobiology, Purdue College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department
of Comparative Pathobiology, Purdue College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ji-Xin Cheng
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue University, 206 S. Martin
Jischke Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
44
|
Yadav U, Anjaria KB, Nairy R, Shirsath KB, Desai UN, Chaurasia RK, Bhat NN, Sapra BK. Differential killing and radio-modifying effects of iodoacetate in mammalian normal and cancer cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:227-239. [PMID: 28612110 DOI: 10.1007/s00411-017-0699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
To explore possible applications of iodoacetate (IA), a glycolytic inhibitor, in cancer treatment, we screened its cytotoxicity and radioprotective/sensitizing efficacy in three different mammalian cell lines; A549 (human lung carcinoma), MCF7 (human mammary cancer), a non-cancerous CHO (Chinese hamster ovary) cells and human lymphocytes. Experiments were carried out using IA concentrations ranging from 0.01 to 2.5 µg/ml, with or without 60Coγ-radiation. In the outcomes, IA was found to exhibit higher toxicity in the cancer cells, whereas it was non-toxic/marginally toxic to the non-cancerous cells. Considerably higher glucose uptake in both cancer cells lines was observed indicating higher rates of glycolysis. IA significantly inhibited glycolysis as reflected by GAPDH activity inhibition. Radiomodifying effects of IA were found to be concentration dependent in both cancerous and non-cancerous cells. The response in non-cancerous was found to be biphasic: at lower concentrations, it offered significant radioprotection; however, the protection decreased with increasing concentration. Moreover, at the highest tested concentration, marginal radiosensitization was also observed (as indicated by clonogenic assay). In both cancer cells, IA offered significant amount of radiosensitization which was considerably high at higher concentrations. Further experiments were carried out to estimate the Dose Modification Factor (DMF) to quantify and compare relative radiosensitization by IA in cancer and normal cell lines. The DMF was calculated for three different concentrations of IA, 0.5, 1, and 1.5 µg/ml, and corresponding values were found to be 1.26, 1.43, and 1.89 for A549 cancer cells, whereas for normal CHO cells, it was 1.13, 1.13, and 1.24. In conclusion, differential killing and radiosensitizing effects of IA suggest that it may have potential use as a anticancer agent and radiosensitizer in cancer therapy.
Collapse
Affiliation(s)
- Usha Yadav
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K B Anjaria
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Rajesha Nairy
- Department of Studies in Physics, Mangalore University, Mangalore, Karnataka, 574199, India
| | - K B Shirsath
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Utkarsha N Desai
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Rajesh K Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Nagesh N Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| | - B K Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
45
|
Beaumatin F, El Dhaybi M, Bobo C, Verdier M, Priault M. Bcl-x L deamidation and cancer: Charting the fame trajectories of legitimate child and hidden siblings. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28645514 DOI: 10.1016/j.bbamcr.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bcl-2 family proteins control programmed cell death through a complex network of interactions within and outside of this family, that are modulated by post-translational modifications (PTM). Bcl-xL, an anti-apoptotic member of this family, is overexpressed in a number of cancers, plays an important role in tumorigenesis and is correlated with drug resistance. Bcl-xL is susceptible to a number of different PTMs. Here, we focus on deamidation. We will first provide an overview of protein deamidation. We will then review how the apoptotic and autophagic functions of Bcl-xL are modified by this PTM, and how this impacts on its oncogenic properties. Possible therapeutic outcomes will also be discussed. Finally, we will highlight how the specific case of Bcl-xL deamidation provides groundings to revisit some concepts related to protein deamidation in general.
Collapse
Affiliation(s)
- Florian Beaumatin
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Mohamad El Dhaybi
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, 2, rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Claude Bobo
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Mireille Verdier
- EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, 2, rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Muriel Priault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France.
| |
Collapse
|
46
|
Tian C, Yuan Z, Xu D, Ding P, Wang T, Zhang L, Jiang Z. Inhibition of glycolysis by a novel EGFR/HER2 inhibitor KU004 suppresses the growth of HER2+ cancer. Exp Cell Res 2017; 357:211-221. [PMID: 28532652 DOI: 10.1016/j.yexcr.2017.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/27/2022]
Abstract
Upregulation of glycolysis was often observed in human HER2-overexpressing cancers. In this study, we demonstrated that KU004, a dual novel EGFR/HER2 inhibitor, disrupted cancer cell proliferation via modulation of glycolysis. KU004, inhibited the Warburg effect by suppressing hexokinase II (HK2) expression at the transcriptional and post-translational levels. Further study demonstrated that the downregulation of HKII by KU004 was mainly mediated by the PI3K/Akt signaling pathway. Furthermore, the role of HKII downregulation in KU004-mediated antitumor effect was also confirmed in our in vivo xenograft model. Collectively, these data suggest that multifaceted targeting the aberrant glucose metabolism along with the upstream HER2 may be an effective approach for clinical treatment against HER2+ cancer.
Collapse
Affiliation(s)
- Chongchong Tian
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Pingping Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
47
|
Samuel SM, Ghosh S, Majeed Y, Arunachalam G, Emara MM, Ding H, Triggle CR. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol 2017; 132:118-132. [DOI: 10.1016/j.bcp.2017.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/02/2017] [Indexed: 11/27/2022]
|
48
|
Raffaghello L, Longo V. Metabolic Alterations at the Crossroad of Aging and Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:1-42. [PMID: 28526131 DOI: 10.1016/bs.ircmb.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aging represents the major risk factor for cancer. Cancer and aging are characterized by a similar dysregulated metabolism consisting in upregulation of glycolysis and downmodulation of oxidative phosphorylation. In this respect, metabolic interventions can be viewed as promising strategies to promote longevity and to prevent or delay age-related disorders including cancer. In this review, we discuss the most promising metabolic approaches including chronic calorie restriction, periodic fasting/fasting-mimicking diets, and pharmacological interventions mimicking calorie restriction. Metabolic interventions can also be viewed as adjuvant anticancer strategies to be combined to standard cancer therapy (chemotherapeutic agents, ionizing radiation, and drugs with specific molecular target), whose major limiting factors are represented by toxicity against healthy cells but also limited efficacy easily circumvented by tumor cells. In fact, conventional cancer therapy is unable to distinguish normal and cancerous cells and thus causes toxic side effects including secondary malignancies, cardiovascular and respiratory complications, endocrinopathies, and other chronic conditions, that resemble and, in some cases, accelerate the age-related disorders and profoundly affect the quality of life. In this scenario, geroscience contributes to the understanding of the mechanisms of protection of normal cells against a cytotoxic agent and finding strategies focused on the preserving healthy cells while enhancing the efficacy of the treatment against malignant cells.
Collapse
Affiliation(s)
- L Raffaghello
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - V Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States; IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
49
|
Sun L, Liu X, Fu H, Zhou W, Zhong D. 2-Deoxyglucose Suppresses ERK Phosphorylation in LKB1 and Ras Wild-Type Non-Small Cell Lung Cancer Cells. PLoS One 2016; 11:e0168793. [PMID: 28033353 PMCID: PMC5198974 DOI: 10.1371/journal.pone.0168793] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
Tumor cells rely on aerobic glycolysis to generate ATP, namely the "Warburg" effect. 2-deoxyglucose (2-DG) is well characterized as a glycolytic inhibitor, but its effect on cellular signaling pathways has not been fully elucidated. Herein, we sought to investigate the effect of 2-DG on ERK function in lung cancer cells. We found that 2-DG inhibits ERK phosphorylation in a time and dose-dependent manner in lung cancer cells. This inhibition requires functional LKB1. LKB1 knockdown in LKB1 wildtype cells correlated with an increase in the basal level of p-ERK. Restoration of LKB1 in LKB1-null cells significantly inhibits ERK activation. Blocking AMPK function with AMPK inhibitor, AMPK siRNA or DN-AMPK diminishes the inhibitory effect of 2-DG on ERK, suggesting that 2-DG—induced ERK inhibition is mediated by LKB1/AMPK signaling. Moreover, IGF1-induced ERK phosphorylation is significantly decreased by 2-DG. Conversely, a subset of oncogenic mutants of K-Ras, the main upstream regulator of ERK, blocks 2-DG—induced LKB1/AMPK signaling. These findings reveal the potential cross-talk between LKB1/AMPK and ERK signaling and help to better understand the mechanism of action of 2-DG.
Collapse
Affiliation(s)
- Linlin Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xiuju Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine and the Department of Human Genetics Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (DZ); (WZ)
| | - Diansheng Zhong
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, P.R. China
- * E-mail: (DZ); (WZ)
| |
Collapse
|
50
|
Liu F, Jin R, Liu X, Huang H, Wilkinson SC, Zhong D, Khuri FR, Fu H, Marcus A, He Y, Zhou W. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions. Oncotarget 2016; 7:2519-31. [PMID: 26506235 PMCID: PMC4823052 DOI: 10.18632/oncotarget.6224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.
Collapse
Affiliation(s)
- Fakeng Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Jin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiuju Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Henry Huang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott C Wilkinson
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - Diansheng Zhong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, P.R.China
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology and Laboratory Medicine and Department of Human Genetics Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|