1
|
Moldovean-Cioroianu NS. Reviewing the Structure-Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. Int J Mol Sci 2024; 25:6789. [PMID: 38928495 PMCID: PMC11204371 DOI: 10.3390/ijms25126789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Polyglutamine (polyQ) disorders are a group of neurodegenerative diseases characterized by the excessive expansion of CAG (cytosine, adenine, guanine) repeats within host proteins. The quest to unravel the complex diseases mechanism has led researchers to adopt both theoretical and experimental methods, each offering unique insights into the underlying pathogenesis. This review emphasizes the significance of combining multiple approaches in the study of polyQ disorders, focusing on the structure-function correlations and the relevance of polyQ-related protein dynamics in neurodegeneration. By integrating computational/theoretical predictions with experimental observations, one can establish robust structure-function correlations, aiding in the identification of key molecular targets for therapeutic interventions. PolyQ proteins' dynamics, influenced by their length and interactions with other molecular partners, play a pivotal role in the polyQ-related pathogenic cascade. Moreover, conformational dynamics of polyQ proteins can trigger aggregation, leading to toxic assembles that hinder proper cellular homeostasis. Understanding these intricacies offers new avenues for therapeutic strategies by fine-tuning polyQ kinetics, in order to prevent and control disease progression. Last but not least, this review highlights the importance of integrating multidisciplinary efforts to advancing research in this field, bringing us closer to the ultimate goal of finding effective treatments against polyQ disorders.
Collapse
Affiliation(s)
- Nastasia Sanda Moldovean-Cioroianu
- Institute of Materials Science, Bioinspired Materials and Biosensor Technologies, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany;
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
2
|
van der Wel PC. Solid-state nuclear magnetic resonance in the structural study of polyglutamine aggregation. Biochem Soc Trans 2024; 52:719-731. [PMID: 38563485 PMCID: PMC11088915 DOI: 10.1042/bst20230731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.
Collapse
|
3
|
Jurcau A, Simion A, Jurcau MC. Emerging antibody-based therapies for Huntington's disease: current status and perspectives for future development. Expert Rev Neurother 2024; 24:299-312. [PMID: 38324338 DOI: 10.1080/14737175.2024.2314183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Being an inherited neurodegenerative disease with an identifiable genetic defect, Huntington's disease (HD) is a suitable candidate for early intervention, possibly even in the pre-symptomatic stage. Our recent advances in elucidating the pathogenesis of HD have revealed a series of novel potential therapeutic targets, among which immunotherapies are actively pursued in preclinical experiments. AREAS COVERED This review focuses on the potential of antibody-based treatments targeting various epitopes (of mutant huntingtin as well as phosphorylated tau) that are currently evaluated in vitro and in animal experiments. The references used in this review were retrieved from the PubMed database, searching for immunotherapies in HD, and clinical trial registries were reviewed for molecules already evaluated in clinical trials. EXPERT OPINION Antibody-based therapies have raised considerable interest in a series of neurodegenerative diseases characterized by deposition of aggregated of aberrantly folded proteins, HD included. Intrabodies and nanobodies can interact with mutant huntingtin inside the nervous cells. However, the conflicting results obtained with some of these intrabodies highlight the need for proper choice of epitopes and for developing animal models more closely mimicking human disease. Approval of these strategies will require a considerable financial and logistic effort on behalf of healthcare systems.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, Oradea, Romania
| | | |
Collapse
|
4
|
DiFiglia M, Leavitt BR, Macdonald D, Thompson LM. Towards Standardizing Nomenclature in Huntington's Disease Research. J Huntingtons Dis 2024; 13:119-131. [PMID: 38968054 PMCID: PMC11307060 DOI: 10.3233/jhd-240044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
The field of Huntington's disease research covers many different scientific disciplines, from molecular biology all the way through to clinical practice, and as our understanding of the disease has progressed over the decades, a great deal of different terminology has accrued. The field is also renowned for its collaborative spirit and use of standardized reagents, assays, datasets, models, and clinical measures, so the use of standardized terms is especially important. We have set out to determine, through a consensus exercise involving basic and clinical scientists working in the field, the most appropriate language to use across disciplines. Nominally, this article will serve as the style guide for the Journal of Huntington's Disease (JHD), the only journal devoted exclusively to HD, and we lay out the preferred and standardized terminology and nomenclature for use in JHD publications. However, we hope that this article will also serve as a useful resource to the HD research community at large and that these recommended naming conventions will be adopted widely.
Collapse
Affiliation(s)
- Marian DiFiglia
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA, USA
| | - Blair R. Leavitt
- Center for Molecular Medicine and Therapeutics and Departments of Medical Genetics and Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Douglas Macdonald
- CHDI Management, Inc., The Company that Manages the Scientific Activities of CHDI Foundation, Inc, Los Angeles, CA, USA
| | - Leslie M. Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Shing K, Sapp E, Boudi A, Liu S, Seeley C, Marchionini D, DiFiglia M, Kegel-Gleason KB. Early whole-body mutant huntingtin lowering averts changes in proteins and lipids important for synapse function and white matter maintenance in the LacQ140 mouse model. Neurobiol Dis 2023; 187:106313. [PMID: 37777020 PMCID: PMC10731584 DOI: 10.1016/j.nbd.2023.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
Expansion of a triplet repeat tract in exon 1 of the HTT gene causes Huntington's disease (HD). The mutant HTT protein (mHTT) has numerous aberrant interactions with diverse, pleiomorphic effects. Lowering mHTT is a promising approach to treat HD, but it is unclear when lowering should be initiated, how much is necessary, and what duration should occur to achieve benefits. Furthermore, the effects of mHTT lowering on brain lipids have not been assessed. Using a mHtt-inducible mouse model, we analyzed mHtt lowering initiated at different ages and sustained for different time-periods. mHTT protein in cytoplasmic and synaptic compartments of the striatum was reduced 38-52%; however, there was minimal lowering of mHTT in nuclear and perinuclear regions where aggregates formed at 12 months of age. Total striatal lipids were reduced in 9-month-old LacQ140 mice and preserved by mHtt lowering. Subclasses important for white matter structure and function including ceramide (Cer), sphingomyelin (SM), and monogalactosyldiacylglycerol (MGDG), contributed to the reduction in total lipids. Phosphatidylinositol (PI), phosphatidylserine (PS), and bismethyl phosphatidic acid (BisMePA) were also changed in LacQ140 mice. Levels of all subclasses except ceramide were preserved by mHtt lowering. mRNA expression profiling indicated that a transcriptional mechanism contributes to changes in myelin lipids, and some but not all changes can be prevented by mHtt lowering. Our findings suggest that early and sustained reduction in mHtt can prevent changes in levels of select striatal proteins and most lipids, but a misfolded, degradation-resistant form of mHTT hampers some benefits in the long term.
Collapse
Affiliation(s)
- Kai Shing
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sophia Liu
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Connor Seeley
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|
6
|
Tsai TY, Chen CY, Lin TW, Lin TC, Chiu FL, Shih O, Chang MY, Lin YC, Su AC, Chen CM, Jeng US, Kuo HC, Chang CF, Chen YR. Amyloid modifier SERF1a interacts with polyQ-expanded huntingtin-exon 1 via helical interactions and exacerbates polyQ-induced toxicity. Commun Biol 2023; 6:767. [PMID: 37479809 PMCID: PMC10361993 DOI: 10.1038/s42003-023-05142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Abnormal polyglutamine (polyQ) expansion and fibrillization occur in Huntington's disease (HD). Amyloid modifier SERF enhances amyloid formation, but the underlying mechanism is not revealed. Here, the fibrillization and toxicity effect of SERF1a on Htt-exon1 are examined. SERF1a enhances the fibrillization of and interacts with mutant thioredoxin (Trx)-fused Httex1. NMR studies with Htt peptides show that TrxHttex1-39Q interacts with the helical regions in SERF1a and SERF1a preferentially interacts with the N-terminal 17 residues of Htt. Time-course analysis shows that SERF1a induces mutant TrxHttex1 to a single conformation enriched of β-sheet. Co-expression of SERF1a and Httex1-polyQ in neuroblastoma and lentiviral infection of SERF1a in HD-induced polypotent stem cell (iPSC)-derived neurons demonstrates the detrimental effect of SERF1a in HD. Higher level of SERF1a transcript or protein is detected in HD iPSC, transgenic mice, and HD plasma. Overall, this study provides molecular mechanism for SERF1a and mutant Httex1 to facilitate therapeutic development for HD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2. Nankang, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Yu Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Wei Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Chang Lin
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ming-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan.
| |
Collapse
|
7
|
Bravo-Arredondo JM, Venkataraman R, Varkey J, Isas JM, Situ AJ, Xu H, Chen J, Ulmer TS, Langen R. Molecular basis of Q-length selectivity for the MW1 antibody-huntingtin interaction. J Biol Chem 2023; 299:104616. [PMID: 36931390 PMCID: PMC10124945 DOI: 10.1016/j.jbc.2023.104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein. Huntingtin exon 1 (Httex1), as well as other naturally occurring N-terminal huntingtin fragments with expanded polyQ are prone to aggregation, forming potentially cytotoxic oligomers and fibrils. Antibodies and other N-terminal huntingtin binders are widely explored as biomarkers and possible aggregation-inhibiting therapeutics. A monoclonal antibody, MW1, is known to preferentially bind to huntingtin fragments with expanded polyQ lengths, but the molecular basis of the polyQ length specificity remains poorly understood. Using solution NMR, EPR, and other biophysical methods, we investigated the structural features of the Httex1-MW1 interaction. Rather than recognizing residual α-helical structure, which is promoted by expanded Q-lengths, MW1 caused the formation of a new, non-native, conformation in which the entire polyQ is largely extended. This non-native polyQ structure allowed the formation of large mixed Httex1-MW1 multimers (600-2900 kD), when Httex1 with pathogenic Q-length (Q46) was used. We propose that these multivalent, entropically favored interactions, are available only to proteins with longer Q-lengths and represent a major factor governing the Q-length preference of MW1. The present study reveals that it is possible to target proteins with longer Q-lengths without having to stabilize a natively favored conformation. Such mechanisms could be exploited in the design of other Q-length specific binders.
Collapse
Affiliation(s)
- Jose M Bravo-Arredondo
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rajashree Venkataraman
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jobin Varkey
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jose Mario Isas
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alan J Situ
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hui Xu
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeannie Chen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tobias S Ulmer
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ralf Langen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
8
|
Layburn FE, Tan AY, Mehrabi NF, Curtis MA, Tippett LJ, Turner CP, Riguet N, Aeschbach L, Lashuel HA, Dragunow M, Faull RL, Singh-Bains MK. N-terminal mutant huntingtin deposition correlates with CAG repeat length and symptom onset, but not neuronal loss in Huntington's disease. Neurobiol Dis 2022; 174:105884. [DOI: 10.1016/j.nbd.2022.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
|
9
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
10
|
Vieweg S, Mahul-Mellier AL, Ruggeri FS, Riguet N, DeGuire SM, Chiki A, Cendrowska U, Dietler G, Lashuel HA. The Nt17 Domain and its Helical Conformation Regulate the Aggregation, Cellular Properties and Neurotoxicity of Mutant Huntingtin Exon 1. J Mol Biol 2021; 433:167222. [PMID: 34492254 DOI: 10.1016/j.jmb.2021.167222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays important roles in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity.
Collapse
Affiliation(s)
- Sophie Vieweg
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Francesco S Ruggeri
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Urszula Cendrowska
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Adegbuyiro A, Sedighi F, Jain P, Pinti MV, Siriwardhana C, Hollander JM, Legleiter J. Mitochondrial membranes modify mutant huntingtin aggregation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183663. [PMID: 34089719 PMCID: PMC8328955 DOI: 10.1016/j.bbamem.2021.183663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ tracts are prone to aggregate into oligomers and insoluble fibrils. Mutant htt (mhtt) localizes to variety of organelles, including mitochondria. Specifically, mitochondrial defects, morphological alteration, and dysfunction are observed in HD. Mitochondrial lipids, cardiolipin (CL) in particular, are essential in mitochondria function and have the potential to directly interact with htt, altering its aggregation. Here, the impact of mitochondrial membranes on htt aggregation was investigated using a combination of mitochondrial membrane mimics and tissue-derived mitochondrial-enriched fractions. The impact of exposure of outer and inner mitochondrial membrane mimics (OMM and IMM respectively) to mhtt was explored. OMM and IMM reduced mhtt fibrillization, with IMM having a larger effect. The role of CL in mhtt aggregation was investigated using a simple PC system with varying molar ratios of CL. Lower molar ratios of CL (<5%) promoted fibrillization; however, increased CL content retarded fibrillization. As revealed by in situ AFM, mhtt aggregation and associated membrane morphological changes at the surface of OMM mimics was markedly different compared to IMM mimics. While globular deposits of mhtt with few fibrillar aggregates were observed on OMM, plateau-like domains were observed on IMM. A similar impact on htt aggregation was observed with exposure to purified mitochondrial-enriched fractions. Collectively, these observations suggest mitochondrial membranes heavily influence htt aggregation with implication for HD.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Pranav Jain
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Mark V Pinti
- Division of Exercise Physiology, West Virginia School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chathuranga Siriwardhana
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States; Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, United States; Department of Neuroscience, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, United States.
| |
Collapse
|
12
|
Sawant N, Reddy PH. Role of Phosphorylated Tau and Glucose Synthase Kinase 3 Beta in Huntington's Disease Progression. J Alzheimers Dis 2020; 72:S177-S191. [PMID: 31744007 DOI: 10.3233/jad-190851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of our article is to critically assess the role of phosphorylated tau in Huntington's disease (HD) progression and pathogenesis. HD is a fatal and pure genetic disease, characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. HD is caused by expanded polyglutamine (polyQ or CAG) repeats within the exon 1 of the HD gene. HD has an autosomal dominant pattern of inheritance with genetic anticipation. Although the HD gene was discovered 26 years ago, there is no complete understanding of how mutant huntingtin (mHTT) selectively targets medium spiny projection neurons in the basal ganglia of the brain in patients with HD. Several years of intense research revealed that multiple cellular changes are involved in disease process, including transcriptional dysregulation, mitochondrial abnormalities and impaired bioenergetics, defective axonal transport, calcium dyshomeostasis, synaptic damage and caspase, and NMDAR activations. Recent research also revealed that phosphorylated tau and defective GSK-3β signaling are strongly linked to progression of the disease. This article summarizes the recent developments of cellular and pathological changes in disease progression of HD. This article also highlights recent developments in phosphorylated tau and defective GSK-3β signaling and the involvement of calcineurin in HD progression and pathogenesis.
Collapse
Affiliation(s)
- Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
13
|
Liu L, Prime ME, Lee MR, Khetarpal V, Brown CJ, Johnson PD, Miranda-Azpiazu P, Chen X, Clark-Frew D, Coe S, Davis R, Dickie A, Ebneth A, Esposito S, Gadouleau E, Gai X, Galan S, Green S, Greenaway C, Giles P, Halldin C, Hayes S, Herbst T, Herrmann F, Heßmann M, Jia Z, Kiselyov A, Kotey A, Krulle T, Mangette JE, Marston RW, Menta S, Mills MR, Monteagudo E, Nag S, Nibbio M, Orsatti L, Schaertl S, Scheich C, Sproston J, Stepanov V, Svedberg M, Takano A, Taylor M, Thomas W, Toth M, Vaidya D, Vanräs K, Weddell D, Wigginton I, Wityak J, Mrzljak L, Munoz-Sanjuan I, Bard JA, Dominguez C. Imaging Mutant Huntingtin Aggregates: Development of a Potential PET Ligand. J Med Chem 2020; 63:8608-8633. [PMID: 32662649 DOI: 10.1021/acs.jmedchem.0c00955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mutant huntingtin (mHTT) protein carrying the elongated N-terminal polyglutamine (polyQ) tract misfolds and forms protein aggregates characteristic of Huntington's disease (HD) pathology. A high-affinity ligand specific for mHTT aggregates could serve as a positron emission tomography (PET) imaging biomarker for HD therapeutic development and disease progression. To identify such compounds with binding affinity for polyQ aggregates, we embarked on systematic structural activity studies; lead optimization of aggregate-binding affinity, unbound fractions in brain, permeability, and low efflux culminated in the discovery of compound 1, which exhibited target engagement in autoradiography (ARG) studies in brain slices from HD mouse models and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates (NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for imaging of mHTT aggregates. [11C]-1R is now being advanced to human trials as a first-in-class HD PET radiotracer.
Collapse
Affiliation(s)
- Longbin Liu
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Michael E Prime
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Matt R Lee
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Vinod Khetarpal
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Christopher J Brown
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Peter D Johnson
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Patricia Miranda-Azpiazu
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Xuemei Chen
- Albany Molecular Research, Inc., 1001 Main St., Buffalo, New York 14203, United States
| | - Daniel Clark-Frew
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Samuel Coe
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Randall Davis
- Albany Molecular Research, Inc., 1001 Main St., Buffalo, New York 14203, United States
| | - Anthony Dickie
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Andreas Ebneth
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Simone Esposito
- IRBM, IRBM Science Park S.p.A., Via Pontina Km 30, 600, 00071 Pomezia (RM), Italy
| | - Elise Gadouleau
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Xinjie Gai
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Sebastien Galan
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Samantha Green
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Catherine Greenaway
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Paul Giles
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Sarah Hayes
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Todd Herbst
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Frank Herrmann
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Manuela Heßmann
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Zhisheng Jia
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Alexander Kiselyov
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Adrian Kotey
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Thomas Krulle
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - John E Mangette
- Albany Molecular Research, Inc., 1001 Main St., Buffalo, New York 14203, United States
| | - Richard W Marston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Sergio Menta
- IRBM, IRBM Science Park S.p.A., Via Pontina Km 30, 600, 00071 Pomezia (RM), Italy
| | - Matthew R Mills
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Edith Monteagudo
- IRBM, IRBM Science Park S.p.A., Via Pontina Km 30, 600, 00071 Pomezia (RM), Italy
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Martina Nibbio
- IRBM, IRBM Science Park S.p.A., Via Pontina Km 30, 600, 00071 Pomezia (RM), Italy
| | - Laura Orsatti
- IRBM, IRBM Science Park S.p.A., Via Pontina Km 30, 600, 00071 Pomezia (RM), Italy
| | - Sabine Schaertl
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Christoph Scheich
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Joanne Sproston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Marie Svedberg
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Malcolm Taylor
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Wayne Thomas
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Miklós Toth
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Darshan Vaidya
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Katarina Vanräs
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Derek Weddell
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Ian Wigginton
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - John Wityak
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Ladislav Mrzljak
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Ignacio Munoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Jonathan A Bard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| |
Collapse
|
14
|
Sedighi F, Adegbuyiro A, Legleiter J. SUMOylation Prevents Huntingtin Fibrillization and Localization onto Lipid Membranes. ACS Chem Neurosci 2020; 11:328-343. [PMID: 31880908 DOI: 10.1021/acschemneuro.9b00509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD), a genetic neurodegenerative disease, is caused by an expanded polyglutamine (polyQ) domain in the first exon of the huntingtin protein (htt). PolyQ expansion destabilizes protein structure, resulting in aggregation into a variety of oligomers, protofibrils, and fibrils. Beyond the polyQ domain, adjacent protein sequences influence the aggregation process. Specifically, the first 17 N-terminal amino acids (Nt17) directly preceding the polyQ domain promote the formation of α-helix-rich oligomers that represent intermediate species associated with fibrillization. Due to its propensity to form an amphipathic α-helix, Nt17 also facilitates lipid binding. Three lysine residues (K6, K9, and K15) within Nt17 can be SUMOylated, which modifies htt's accumulation and toxicity within cells in a variety of HD models. The impact of SUMOylation on htt aggregation and direct interaction with lipid membranes was investigated. SUMOylation of htt-exon1 inhibited fibril formation while promoting larger, amorphous aggregate species. These amorphous aggregates were SDS soluble but nonetheless exhibited levels of β-sheet structure similar to that of htt-exon1 fibrils. In addition, SUMOylation prevented htt binding, aggregation, and accumulation on model lipid bilayers comprised of total brain lipid extract. Collectively, these observations demonstrate that SUMOylation promotes a distinct htt aggregation pathway that may affect htt toxicity.
Collapse
Affiliation(s)
- Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
- Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
- Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
| |
Collapse
|
15
|
Dhar N, Arsiwala A, Murali S, Kane RS. "Trim"ming PolyQ proteins with engineered PML. Biotechnol Bioeng 2019; 117:362-371. [PMID: 31710088 DOI: 10.1002/bit.27220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 01/06/2023]
Abstract
Protein abnormalities are the major cause of neurodegenerative diseases such as spinocerebellar ataxia (SCA). Protein misfolding and impaired degradation leads to the build-up of protein aggregates inside the cell, which may further cause cellular degeneration. Reducing levels of either the soluble misfolded form of the protein or its precipitated aggregate, even marginally, could significantly improve cellular health. Despite numerous pre-existing strategies to target these protein aggregates, there is considerable room to improve their specificity and efficiency. In this study, we demonstrated the enhanced intracellular degradation of both monomers and aggregates of mutant ataxin1 (Atxn1 82Q) by engineering an E3 ubiquitin ligase enzyme, promyelocytic leukemia protein (PML). Specifically, we showed enhanced degradation of both soluble and aggregated Atxn1 82Q in mammalian cells by targeting this protein using PML fused to single chain variable fragments (scFvs) specific for monomers and aggregates of the target protein. The ability to solubilize Atxn1 82Q aggregates was due to the PML-mediated enhanced SUMOylation of the target protein. This ability to reduce the intracellular levels of both misfolded forms of Atxn1 82Q may not only be useful for treating SCA, but also applicable for the treatment of other PolyQ disorders.
Collapse
Affiliation(s)
- Neha Dhar
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ammar Arsiwala
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Shruthi Murali
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
16
|
Morozko EL, Ochaba J, Hernandez SJ, Lau A, Sanchez I, Orellana I, Kopan L, Crapser J, Duong JH, Overman J, Yeung S, Steffan JS, Reidling J, Thompson LM. Longitudinal Biochemical Assay Analysis of Mutant Huntingtin Exon 1 Protein in R6/2 Mice. J Huntingtons Dis 2019; 7:321-335. [PMID: 30452420 DOI: 10.3233/jhd-180329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Biochemical analysis of mutant huntingtin (mHTT) aggregation species in HD mice is a common measure to track disease. A longitudinal and systematic study of how tissue processing affects detection of conformers has not yet been reported. Understanding the homeostatic flux of mHTT over time and under different processing conditions would aid in interpretation of pre-clinical assessments of disease interventions. OBJECTIVE Provide a systematic evaluation of tissue lysis methods and molecular and biochemical assays in parallel with behavioral readouts in R6/2 mice to establish a baseline for HTT exon1 protein accumulation. METHODS Established biochemical methods were used to process tissue from R6/2 mice of specific ages following behavior tasks. Aggregation states and accumulation of mHTT exon 1 protein were evaluated using multiple break and assay methods to determine potential conformational flux assay specificity in detection of mHTT species, and tissue specificity of conformers. RESULTS Detection of mHTT exon 1 protein species varied based on biochemical processing and analysis providing a baseline for subsequent studies in R6/2 mice. Insoluble, high molecular weight species of mHTT exon 1 protein increased and tracked with onset of behavioral impairments in R6/2 mice using multiple assay methods. CONCLUSIONS Conformational flux from soluble monomer to high molecular weight, insoluble species of mHTT exon 1 protein was generally consistent for multiple assay methods throughout R6/2 disease progression; however, the results support the use of multiple biochemical techniques to detect mHTT exon 1 protein species for preclinical assessments in HD mouse models expressing mHTT exon 1 protein.
Collapse
Affiliation(s)
- Eva L Morozko
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA
| | - Joseph Ochaba
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA.,University of California, Irvine, Psychiatry & Human Behavior, Irvine, CA, USA
| | - Sarah J Hernandez
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA
| | - Alice Lau
- University of California, Irvine, Psychiatry & Human Behavior, Irvine, CA, USA
| | - Isabella Sanchez
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA
| | - Iliana Orellana
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA
| | - Lexi Kopan
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA
| | - Joshua Crapser
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA
| | - Janet H Duong
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA
| | - Julia Overman
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA
| | - Silvia Yeung
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joan S Steffan
- University of California, Irvine, Psychiatry & Human Behavior, Irvine, CA, USA.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jack Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA
| | - Leslie M Thompson
- University of California, Irvine, Neurobiology and Behavior, Irvine, CA, USA.,University of California, Irvine, Psychiatry & Human Behavior, Irvine, CA, USA.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
17
|
Sicorello A, Kelly G, Oregioni A, Nováček J, Sklenář V, Pastore A. The Structural Properties in Solution of the Intrinsically Mixed Folded Protein Ataxin-3. Biophys J 2019; 115:59-71. [PMID: 29972812 DOI: 10.1016/j.bpj.2018.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 10/28/2022] Open
Abstract
It has increasingly become clear over the last two decades that proteins can contain both globular domains and intrinsically unfolded regions that can both contribute to function. Although equally interesting, the disordered regions are difficult to study, because they usually do not crystallize unless bound to partners and are not easily amenable to cryo-electron microscopy studies. NMR spectroscopy remains the best technique to capture the structural features of intrinsically mixed folded proteins and describe their dynamics. These studies rely on the successful assignment of the spectrum, a task not easy per se given the limited spread of the resonances of the disordered residues. Here, we describe the structural properties of ataxin-3, the protein responsible for the neurodegenerative Machado-Joseph disease. Ataxin-3 is a 42-kDa protein containing a globular N-terminal Josephin domain and a C-terminal tail that comprises 13 polyglutamine repeats within a low complexity region. We developed a strategy that allowed us to achieve 87% assignment of the NMR spectrum using a mixed protocol based on high-dimensionality, high-resolution experiments and different labeling schemes. Thanks to the almost complete spectral assignment, we proved that the C-terminal tail is flexible, with extended helical regions, and interacts only marginally with the rest of the protein. We could also, for the first time to our knowledge, observe the structural propensity of the polyglutamine repeats within the context of the full-length protein and show that its structure is stabilized by the preceding region.
Collapse
Affiliation(s)
- Alessandro Sicorello
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Geoff Kelly
- Medical Research Council Biomolecular NMR Centre, The Francis Crick Institute, London, United Kingdom
| | - Alain Oregioni
- Medical Research Council Biomolecular NMR Centre, The Francis Crick Institute, London, United Kingdom
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vladimír Sklenář
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Annalisa Pastore
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
18
|
Gedunin Degrades Aggregates of Mutant Huntingtin Protein and Intranuclear Inclusions via the Proteasomal Pathway in Neurons and Fibroblasts from Patients with Huntington's Disease. Neurosci Bull 2019; 35:1024-1034. [PMID: 31432317 DOI: 10.1007/s12264-019-00421-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein (mHTT) forms abnormal aggregates and intranuclear inclusions in specific neurons, resulting in cell death. Here, we tested the ability of a natural heat-shock protein 90 inhibitor, Gedunin, to degrade transfected mHTT in Neuro-2a cells and endogenous mHTT aggregates and intranuclear inclusions in both fibroblasts from HD patients and neurons derived from induced pluripotent stem cells from patients. Our data showed that Gedunin treatment degraded transfected mHTT in Neuro-2a cells, endogenous mHTT aggregates and intranuclear inclusions in fibroblasts from HD patients, and in neurons derived from induced pluripotent stem cells from patients in a dose- and time-dependent manner, and its activity depended on the proteasomal pathway rather than the autophagy route. These findings also showed that although Gedunin degraded abnormal mHTT aggregates and intranuclear inclusions in cells from HD patient, it did not affect normal cells, thus providing a new perspective for using Gedunin to treat HD.
Collapse
|
19
|
Matlahov I, van der Wel PC. Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington's disease. Exp Biol Med (Maywood) 2019; 244:1584-1595. [PMID: 31203656 PMCID: PMC6920524 DOI: 10.1177/1535370219856620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Huntington’s disease, like other neurodegenerative diseases, continues to lack an
effective cure. Current treatments that address early symptoms ultimately fail
Huntington’s disease patients and their families, with the disease typically
being fatal within 10–15 years from onset. Huntington’s disease is an inherited
disorder with motor and mental impairment, and is associated with the genetic
expansion of a CAG codon repeat encoding a polyglutamine-segment-containing
protein called huntingtin. These Huntington’s disease mutations cause misfolding
and aggregation of fragments of the mutant huntingtin protein, thereby likely
contributing to disease toxicity through a combination of gain-of-toxic-function
for the misfolded aggregates and a loss of function from sequestration of
huntingtin and other proteins. As with other amyloid diseases, the mutant
protein forms non-native fibrillar structures, which in Huntington’s disease are
found within patients’ neurons. The intracellular deposits are associated with
dysregulation of vital processes, and inter-neuronal transport of aggregates may
contribute to disease progression. However, a molecular understanding of these
aggregates and their detrimental effects has been frustrated by insufficient
structural data on the misfolded protein state. In this review, we examine
recent developments in the structural biology of polyglutamine-expanded
huntingtin fragments, and especially the contributions enabled by advances in
solid-state nuclear magnetic resonance spectroscopy. We summarize and discuss
our current structural understanding of the huntingtin deposits and how this
information furthers our understanding of the misfolding mechanism and disease
toxicity mechanisms.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick Ca van der Wel
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
20
|
Abstract
Fluorescence-based nanoscopy methods (also known as "superresolution" microscopy) have substantially expanded our options to examine the distributions of molecules inside cells with nanometer-scale resolution and molecular specificity. In the biophysical analysis of aggregation-prone misfolded proteins and peptides, this has enabled the visualization of distinct populations of aggregated species such as fibrillar assemblies within intact neuronal cells, well below previous limits of sensitivity and resolution. With the Huntington's disease protein, polyglutamine-expanded mutant huntingtin, as an example, we provide sample preparation and imaging protocols for superresolution microscopy down to the ~30 nm-level.
Collapse
|
21
|
Sahoo A, Matysiak S. Computational insights into lipid assisted peptide misfolding and aggregation in neurodegeneration. Phys Chem Chem Phys 2019; 21:22679-22694. [DOI: 10.1039/c9cp02765c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An overview of recent advances in computational investigation of peptide–lipid interactions in neurodegeneration – Alzheimer's, Parkinson's and Huntington's disease.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program
- Institute of Physical Science and Technology
- University of Maryland
- College Park
- USA
| | - Silvina Matysiak
- Biophysics Program
- Institute of Physical Science and Technology
- University of Maryland
- College Park
- USA
| |
Collapse
|
22
|
Reif A, Chiki A, Ricci J, Lashuel HA. Generation of Native, Untagged Huntingtin Exon1 Monomer and Fibrils Using a SUMO Fusion Strategy. J Vis Exp 2018. [PMID: 30010666 PMCID: PMC6102005 DOI: 10.3791/57506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Huntington's Disease (HD) is an inherited fatal neurodegenerative disease caused by a CAG expansion (≥36) in the first exon of the HD gene, resulting in the expression of the Huntingtin protein (Htt) or N-terminal fragments thereof with an expanded polyglutamine (polyQ) stretch. The exon1 of the Huntingtin protein (Httex1) is the smallest Htt fragment that recapitulates many of the features of HD in cellular and animal models and is one of the most widely studied fragments of Htt. The small size of Httex1 makes it experimentally more amenable to biophysical characterization using standard and high-resolution techniques in comparison to longer fragments or full-length Htt. However, the high aggregation propensity of mutant Httex1 (mHttex1) with increased polyQ content (≥42) has made it difficult to develop efficient expression and purification systems to produce these proteins in sufficient quantities and make them accessible to scientists from different disciplines without the use of fusion proteins or other strategies that alter the native sequence of the protein. We present here a robust and optimized method for the production of milligram quantities of native, tag-free Httex1 based on the transient fusion of small ubiquitin related modifier (SUMO). The simplicity and efficiency of the strategy will eliminate the need to use non-native sequences of Httex1, thus making this protein more accessible to researchers and improving the reproducibility of experiments across different laboratories. We believe that these advances will also facilitate future studies aimed at elucidating the structure-function relationship of Htt as well as developing novel diagnostic tools and therapies to treat or slow the progression of HD.
Collapse
Affiliation(s)
- Andreas Reif
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne (EPFL)
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne (EPFL)
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne (EPFL)
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne (EPFL);
| |
Collapse
|
23
|
Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci 2018; 43:424-435. [PMID: 29636213 DOI: 10.1016/j.tibs.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/29/2023]
Abstract
Expanded polyglutamine (polyQ) stretches within endogenous proteins cause at least nine human diseases. The structural basis of polyQ pathogenesis is the key to understanding fundamental mechanisms of these diseases, but it remains unclear and controversial due to a lack of polyQ protein structures at the single-atom level. Various hypotheses have been proposed to explain the structure-cytotoxicity relationship of pathogenic proteins with polyQ expansion, largely based on indirect evidence. Here we review these hypotheses and their supporting evidence, along with additional insights from recent structural biology and chemical biology studies, with a focus on Huntingtin (HTT), the most extensively studied polyQ disease protein. Lastly, we propose potential novel strategies that may further clarify the conformation-cytotoxicity relationship of polyQ proteins.
Collapse
|
24
|
Pandey NK, Isas JM, Rawat A, Lee RV, Langen J, Pandey P, Langen R. The 17-residue-long N terminus in huntingtin controls stepwise aggregation in solution and on membranes via different mechanisms. J Biol Chem 2018; 293:2597-2605. [PMID: 29282287 PMCID: PMC5818184 DOI: 10.1074/jbc.m117.813667] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/19/2017] [Indexed: 01/05/2023] Open
Abstract
Aggregation of huntingtin protein arising from expanded polyglutamine (polyQ) sequences in the exon-1 region of mutant huntingtin plays a central role in the pathogenesis of Huntington's disease. The huntingtin aggregation pathways are of therapeutic and diagnostic interest, but obtaining critical information from the physiologically relevant htt exon-1 (Httex1) protein has been challenging. Using biophysical techniques and an expression and purification protocol that generates clean, monomeric Httex1, we identified and mapped three distinct aggregation pathways: 1) unseeded in solution; 2) seeded in solution; and 3) membrane-mediated. In solution, aggregation proceeded in a highly stepwise manner, in which the individual domains (N terminus containing 17 amino acids (N17), polyQ, and proline-rich domain (PRD)) become ordered at very different rates. The aggregation was initiated by an early oligomer requiring a pathogenic, expanded Gln length and N17 α-helix formation. In the second phase, β-sheet forms in the polyQ. The slowest step is the final structural maturation of the PRD. This stepwise mechanism could be bypassed by seeding, which potently accelerated aggregation and was a prerequisite for prion-like spreading in vivo Remarkably, membranes could catalyze aggregation even more potently than seeds, in a process that caused significant membrane damage. The N17 governed membrane-mediated aggregation by anchoring Httex1 to the membrane, enhancing local concentration and promoting collision via two-dimensional diffusion. Considering its central roles in solution and in membrane-mediated aggregation, the N17 represents an attractive target for inhibiting multiple pathways. Our approach should help evaluate such inhibitors and identify diagnostic markers for the misfolded forms identified here.
Collapse
Affiliation(s)
- Nitin K Pandey
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - J Mario Isas
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Anoop Rawat
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Rachel V Lee
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Jennifer Langen
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Priyatama Pandey
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Ralf Langen
- From the Departments of Physiology and Neuroscience and of Biochemistry and Molecular Medicine. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
25
|
Yang LL, Wu JB, Liu ZG, Liu L, Zeng MS, Yan SS, Chan HC, Xia YF. Preparation of anti-NYD-SP8 rabbit polyclonal antibody and its application in the analysis of NYD-SP8 expression in nasopharyngeal carcinoma cell lines and clinical tissues. TUMORI JOURNAL 2018; 97:655-9. [DOI: 10.1177/030089161109700519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and background NYD-SP8 is a recently identified protein, the biological characteristics of which are still unclear. The aim of this study was to prepare an anti-NYD-SP8 rabbit polyclonal antibody and investigate the expression of NYD-SP8 in human nasopharyngeal carcinoma cell lines and nasopharyngeal carcinoma tissues. Methods The anti-NYD-SP8 rabbit polyclonal antibody was prepared and ELISA was performed to assess the antibody titer. With this antibody, the NYD-SP8 expression in four nasopharyngeal carcinoma cell lines, CNE1, CNE2, 5–8F and 6–10B, was examined by Western blot and its expression in clinical tissues was also assessed by immunohistochemistry. Results The anti-NYD-SP8 rabbit polyclonal antibody with a high titer was successfully prepared. Western blot showed higher NYD-SP8 expression in CNE2 and 6–10B cells and lower expression in CNE1 and 5–8F cells. Immunohistochemistry demonstrated overexpression of NYD-SP8 in nasopharyngeal carcinoma tissue while the expression in normal nasopharyngeal tissue was negligible. Conclusions Our anti-NYD-SP8 rabbit polyclonal antibody can be used both for Western blot and immunohistochemistry, and can be a valuable tool to investigate the function and distribution of NYD-SP8. The different NYD-SP8 expression in various nasopharyngeal carcinoma cell lines indicated its complicated functions at different biological stages. The overexpression of NYD-SP8 in clinical nasopharyngeal carcinoma tissue indicated that it could play an important role in nasopharyngeal carcinoma carcinogenesis.
Collapse
Affiliation(s)
- Ling-Lin Yang
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong
- Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan
| | - Jing-Bo Wu
- Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan
| | - Zhi-Gang Liu
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong
| | - Li Liu
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong
| | - Shan-Shan Yan
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong
| | - Hsiao-Chang Chan
- Epithelial Cell Biology Research Center, Li Ka Shing Institute of Health Sciences, Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong
| |
Collapse
|
26
|
Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases. Brain Sci 2017; 7:brainsci7100128. [PMID: 29019918 PMCID: PMC5664055 DOI: 10.3390/brainsci7100128] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
The polyglutamine (polyQ) diseases, such as Huntington’s disease and several types of spinocerebellar ataxias, are a group of inherited neurodegenerative diseases that are caused by an abnormal expansion of the polyQ tract in disease-causative proteins. Proteins with an abnormally expanded polyQ stretch undergo a conformational transition to β-sheet rich structure, which assemble into insoluble aggregates with β-sheet rich amyloid fibrillar structures and accumulate as inclusion bodies in neurons, eventually leading to neurodegeneration. Since misfolding and aggregation of the expanded polyQ proteins are the most upstream event in the most common pathogenic cascade of the polyQ diseases, they are proposed to be one of the most ideal targets for development of disease-modifying therapies for polyQ diseases. In this review, we summarize the current understanding of the molecular pathogenic mechanisms of the polyQ diseases, and introduce therapeutic approaches targeting misfolding and aggregation of the expanded polyQ proteins, which are not only effective on a wide spectrum of polyQ diseases, but also broadly correct the functional abnormalities of multiple downstream cellular processes affected in the aggregation process of polyQ proteins. We hope that in the near future, effective therapies are developed, to bring hope to many patients suffering from currently intractable polyQ diseases.
Collapse
|
27
|
Fu Y, Wu P, Pan Y, Sun X, Yang H, Difiglia M, Lu B. A toxic mutant huntingtin species is resistant to selective autophagy. Nat Chem Biol 2017; 13:1152-1154. [PMID: 28869595 DOI: 10.1038/nchembio.2461] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023]
Abstract
Protein misfolding is a common theme in neurodegenerative disorders including Huntington's disease (HD). The HD-causing mutant huntingtin protein (mHTT) has an expanded polyglutamine (polyQ) stretch that may adopt multiple conformations, and the most toxic of these is the one recognized by antibody 3B5H10. Here we show that the 3B5H10-recognized mHTT species has a slower degradation rate due to its resistance to selective autophagy in human cells and brains, revealing mechanisms of its higher toxicity.
Collapse
Affiliation(s)
- Yuhua Fu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Wu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuyin Pan
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoli Sun
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huiya Yang
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Marian Difiglia
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Boston, USA
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| |
Collapse
|
28
|
Daldin M, Fodale V, Cariulo C, Azzollini L, Verani M, Martufi P, Spiezia MC, Deguire SM, Cherubini M, Macdonald D, Weiss A, Bresciani A, Vonsattel JPG, Petricca L, Marsh JL, Gines S, Santimone I, Marano M, Lashuel HA, Squitieri F, Caricasole A. Polyglutamine expansion affects huntingtin conformation in multiple Huntington's disease models. Sci Rep 2017; 7:5070. [PMID: 28698602 PMCID: PMC5505970 DOI: 10.1038/s41598-017-05336-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Conformational changes in disease-associated or mutant proteins represent a key pathological aspect of Huntington’s disease (HD) and other protein misfolding diseases. Using immunoassays and biophysical approaches, we and others have recently reported that polyglutamine expansion in purified or recombinantly expressed huntingtin (HTT) proteins affects their conformational properties in a manner dependent on both polyglutamine repeat length and temperature but independent of HTT protein fragment length. These findings are consistent with the HD mutation affecting structural aspects of the amino-terminal region of the protein, and support the concept that modulating mutant HTT conformation might provide novel therapeutic and diagnostic opportunities. We now report that the same conformational TR-FRET based immunoassay detects polyglutamine- and temperature-dependent changes on the endogenously expressed HTT protein in peripheral tissues and post-mortem HD brain tissue, as well as in tissues from HD animal models. We also find that these temperature- and polyglutamine-dependent conformational changes are sensitive to bona-fide phosphorylation on S13 and S16 within the N17 domain of HTT. These findings provide key clinical and preclinical relevance to the conformational immunoassay, and provide supportive evidence for its application in the development of therapeutics aimed at correcting the conformation of polyglutamine-expanded proteins as well as the pharmacodynamics readouts to monitor their efficacy in preclinical models and in HD patients.
Collapse
Affiliation(s)
- Manuel Daldin
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Valentina Fodale
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Cristina Cariulo
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Lucia Azzollini
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Margherita Verani
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Paola Martufi
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | | | - Sean M Deguire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Marta Cherubini
- Departamento de Ciencias Biomedicas, Facultat de Medicina, Instituto de Neurociencias, Universitat de Barcelona, Barcelona, Spain
| | | | - Andreas Weiss
- IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,Evotec AG, Manfred Eigen Campus, Hamburg, Germany
| | - Alberto Bresciani
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Jean-Paul Gerard Vonsattel
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Lara Petricca
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, 92697, USA
| | - Silvia Gines
- Departamento de Ciencias Biomedicas, Facultat de Medicina, Instituto de Neurociencias, Universitat de Barcelona, Barcelona, Spain
| | - Iolanda Santimone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Marano
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Andrea Caricasole
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy. .,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.
| |
Collapse
|
29
|
Brudek T, Winge K, Folke J, Christensen S, Fog K, Pakkenberg B, Pedersen LØ. Autoimmune antibody decline in Parkinson's disease and Multiple System Atrophy; a step towards immunotherapeutic strategies. Mol Neurodegener 2017; 12:44. [PMID: 28592329 PMCID: PMC5463400 DOI: 10.1186/s13024-017-0187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson’s’ disease (PD) and Multiple System Atrophy (MSA) are progressive brain disorders characterized by intracellular accumulations of α-synuclein and nerve cell loss in specific brain areas. This loss causes problems with movement, balance and/or autonomic functions. Naturally occurring autoantibodies (NAbs) play potentially an important role in clearing or/and blocking circulating pathological proteins. Little is known about the functional properties of anti-α-synuclein NAbs in PD and MSA, and there have been opposing reports regarding their plasma concentrations in these disorders. Methods We have investigated the apparent affinity of anti-α-synuclein NAbs in plasma samples from 46 PD patients, 18 MSA patients and 41 controls using competitive enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) set-ups. Results We found that the occurrence of high affinity anti-α-synuclein NAbs in plasma from PD patients is reduced compared to healthy controls, and nearly absent in plasma from MSA patients. Also, levels of α-synuclein/NAbs immunocomplexes is substantially reduced in plasma from both patient groups. Further, cross binding of anti-α-synuclein NAbs with β- and γ-synuclein monomers suggest, the high affinity anti-α-synuclein plasma component, seen in healthy individuals, is directed mainly against C-terminal epitopes. Furthermore, we also observed reduced occurrence of high affinity anti-phosphorylated-α-synuclein NAbs in plasma from PD and MSA patients. Conclusions One interpretation implies that these patients may have impaired ability to clear and/or block the effects of pathological α-synuclein due to insufficient/absent concentration of NAbs and as such provides a rationale for testing immune-based therapeutic strategies directed against pathological α-synuclein. Following this interpretation, we can hypothesize that high affinity autoantibodies efficiently bind and clear potentially pathological species of α-synuclein in healthy brain, and that this mechanism is impaired or absent in PD and MSA patients.
Collapse
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark. .,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.
| | - Kristian Winge
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | - Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | | | - Karina Fog
- , H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
30
|
Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core. Nat Commun 2017; 8:15462. [PMID: 28537272 PMCID: PMC5458082 DOI: 10.1038/ncomms15462] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells. Huntington's disease is caused by a polyglutamine stretch expansion in the first exon of huntingtin. Here, the authors use infrared spectroscopy and solid-state NMR and show that polymorphic huntingtin exon1 fibres differ in their flanking regions but not their core polyglutamine amyloid structures.
Collapse
|
31
|
André W, Sandt C, Nondier I, Djian P, Hoffner G. Inclusions of R6/2 Mice Are Not Amyloid and Differ Structurally from Those of Huntington Disease Brain. Anal Chem 2017; 89:5201-5209. [PMID: 28398721 DOI: 10.1021/acs.analchem.6b04199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
R6/2 mice contain an N-terminal fragment of human huntingtin with an expanded polyQ and develop a neurological disease resembling Huntington disease. Although the brain of R6/2 mice contains numerous inclusions, there is very little neuronal death. In that respect, R6/2 mice differ from patients with Huntington disease whose striatum and cerebral cortex develop inclusions associated with extensive neuronal loss. We have previously demonstrated using synchrotron-based infrared microspectroscopy that the striatum and the cortex of patients with Huntington disease contained inclusions specifically enriched in amyloid β-sheets. We had concluded that the presence of an amyloid motif conferred toxicity to the inclusions. We demonstrate here by synchrotron based infrared microspectroscopy in transmission and attenuated total reflectance mode that the inclusions of R6/2 mice possess no detectable amyloid and are composed of proteins whose structure is not distinguishable from that of the surrounding soluble proteins. The difference in structure between the inclusions of patients affected by Huntington disease and those of R6/2 mice might explain why the former but not the latter cause neuronal death.
Collapse
Affiliation(s)
- William André
- Centre National de la Recherche Scientifique/Université Paris Descartes , UMR 8118, Laboratoire de Physiologie Cérébrale, 75006 Paris, France.,Synchrotron SOLEIL , 91192 Gif-sur-Yvette, France
| | | | - Isabelle Nondier
- Centre National de la Recherche Scientifique/Université Paris Descartes , UMR 8118, Laboratoire de Physiologie Cérébrale, 75006 Paris, France
| | - Philippe Djian
- Centre National de la Recherche Scientifique/Université Paris Descartes , UMR 8118, Laboratoire de Physiologie Cérébrale, 75006 Paris, France
| | - Guylaine Hoffner
- Centre National de la Recherche Scientifique/Université Paris Descartes , UMR 8118, Laboratoire de Physiologie Cérébrale, 75006 Paris, France
| |
Collapse
|
32
|
Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017; 56:1199-1217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University , Morgantown, West Virginia 26506, United States.,NanoSAFE, P.O. Box 6223, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
33
|
Baias M, Smith PES, Shen K, Joachimiak LA, Żerko S, Koźmiński W, Frydman J, Frydman L. Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective. J Am Chem Soc 2017; 139:1168-1176. [DOI: 10.1021/jacs.6b10893] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Baias
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pieter E. S. Smith
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Koning Shen
- Stanford University, Stanford, California 94305, United States
| | | | - Szymon Żerko
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Judith Frydman
- Stanford University, Stanford, California 94305, United States
| | - Lucio Frydman
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
34
|
Ross CA, Kronenbuerger M, Duan W, Margolis RL. Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:15-28. [PMID: 28947113 DOI: 10.1016/b978-0-12-801893-4.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CAG repeat expansion mutation that causes Huntington Disease (HD) was discovered more than 20 years ago, yet no treatment has yet been developed to stop the relentless course of the disease. Nonetheless, substantial progress has been made in understanding HD pathogenesis. We review insights that have been gleaned from HD genetics, metabolism, and pathology; HD mouse and cell models; the structure, function and post-translational modification of normal and mutant huntingtin (htt) protein; gene expression profiles in HD cells and tissue; the neurotoxicy of mutant htt RNA; and the expression of an antisense transcript from the HD locus. We conclude that rationale therapeutics for HD is within sight, though many questions remain to be answered.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Martin Kronenbuerger
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Laboratory of Genetic Neurobiology and Johns Hopkins Schizophrenia Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
35
|
Vieweg S, Ansaloni A, Wang ZM, Warner JB, Lashuel HA. An Intein-based Strategy for the Production of Tag-free Huntingtin Exon 1 Proteins Enables New Insights into the Polyglutamine Dependence of Httex1 Aggregation and Fibril Formation. J Biol Chem 2016; 291:12074-86. [PMID: 27002149 PMCID: PMC4933259 DOI: 10.1074/jbc.m116.713982] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
The first exon of the Huntingtin protein (Httex1) is one of the most actively studied Htt fragments because its overexpression in R6/2 transgenic mice has been shown to recapitulate several key features of Huntington disease. However, the majority of biophysical studies of Httex1 are based on assessing the structure and aggregation of fusion constructs where Httex1 is fused to large proteins, such as glutathione S-transferase, maltose-binding protein, or thioredoxin, or released in solution upon in situ cleavage of these proteins. Herein, we report an intein-based strategy that allows, for the first time, the rapid and efficient production of native tag-free Httex1 with polyQ repeats ranging from 7Q to 49Q. Aggregation studies on these proteins enabled us to identify interesting polyQ-length-dependent effects on Httex1 oligomer and fibril formation that were previously not observed using Httex1 fusion proteins or Httex1 proteins produced by in situ cleavage of fusion proteins. Our studies revealed the inability of Httex1-7Q/15Q to undergo amyloid fibril formation and an inverse correlation between fibril length and polyQ repeat length, suggesting possible polyQ length-dependent differences in the structural properties of the Httex1 aggregates. Altogether, our findings underscore the importance of working with tag-free Httex1 proteins and indicate that model systems based on non-native Httex1 sequences may not accurately reproduce the effect of polyQ repeat length and solution conditions on Httex1 aggregation kinetics and structural properties.
Collapse
Affiliation(s)
- Sophie Vieweg
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and
| | - Annalisa Ansaloni
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and
| | - Zhe-Ming Wang
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and
| | - John B Warner
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and
| | - Hilal A Lashuel
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and Qatar Biomedical Research Institute (QBRI), Hamad bin Khalifa University (HBKU), 5825 Doha, Qatar
| |
Collapse
|
36
|
Strømland Ø, Jakubec M, Furse S, Halskau Ø. Detection of misfolded protein aggregates from a clinical perspective. J Clin Transl Res 2016; 2:11-26. [PMID: 30873457 PMCID: PMC6410640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer's (AD), Parkinson's (PD) and prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Finally, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear which approach may yield a reliable clinical test first. Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for these are subject of this review.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
Arndt JR, Chaibva M, Legleiter J. The emerging role of the first 17 amino acids of huntingtin in Huntington's disease. Biomol Concepts 2016; 6:33-46. [PMID: 25741791 DOI: 10.1515/bmc-2015-0001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is caused by a polyglutamine (polyQ) domain that is expanded beyond a critical threshold near the N-terminus of the huntingtin (htt) protein, directly leading to htt aggregation. While full-length htt is a large (on the order of ∼350 kDa) protein, it is proteolyzed into a variety of N-terminal fragments that accumulate in oligomers, fibrils, and larger aggregates. It is clear that polyQ length is a key determinant of htt aggregation and toxicity. However, the flanking sequences around the polyQ domain, such as the first 17 amino acids on the N terminus (Nt17), influence aggregation, aggregate stability, influence other important biochemical properties of the protein and ultimately its role in pathogenesis. Here, we review the impact of Nt17 on htt aggregation mechanisms and kinetics, structural properties of Nt17 in both monomeric and aggregate forms, the potential role of posttranslational modifications (PTMs) that occur in Nt17 in HD, and the function of Nt17 as a membrane targeting domain.
Collapse
|
38
|
Huntingtin exon 1 fibrils feature an interdigitated β-hairpin-based polyglutamine core. Proc Natl Acad Sci U S A 2016; 113:1546-51. [PMID: 26831073 DOI: 10.1073/pnas.1521933113] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine expansion within the exon1 of huntingtin leads to protein misfolding, aggregation, and cytotoxicity in Huntington's disease. This incurable neurodegenerative disease is the most prevalent member of a family of CAG repeat expansion disorders. Although mature exon1 fibrils are viable candidates for the toxic species, their molecular structure and how they form have remained poorly understood. Using advanced magic angle spinning solid-state NMR, we directly probe the structure of the rigid core that is at the heart of huntingtin exon1 fibrils and other polyglutamine aggregates, via measurements of long-range intramolecular and intermolecular contacts, backbone and side-chain torsion angles, relaxation measurements, and calculations of chemical shifts. These experiments reveal the presence of β-hairpin-containing β-sheets that are connected through interdigitating extended side chains. Despite dramatic differences in aggregation behavior, huntingtin exon1 fibrils and other polyglutamine-based aggregates contain identical β-strand-based cores. Prior structural models, derived from X-ray fiber diffraction and computational analyses, are shown to be inconsistent with the solid-state NMR results. Internally, the polyglutamine amyloid fibrils are coassembled from differently structured monomers, which we describe as a type of "intrinsic" polymorphism. A stochastic polyglutamine-specific aggregation mechanism is introduced to explain this phenomenon. We show that the aggregation of mutant huntingtin exon1 proceeds via an intramolecular collapse of the expanded polyglutamine domain and discuss the implications of this observation for our understanding of its misfolding and aggregation mechanisms.
Collapse
|
39
|
Vest KE, Apponi LH, Banerjee A, Pavlath GK, Corbett AH. An Antibody to Detect Alanine-Expanded PABPN1: A New Tool to Study Oculopharyngeal Muscular Dystrophy. J Neuromuscul Dis 2015; 2:439-446. [PMID: 27858752 PMCID: PMC5207656 DOI: 10.3233/jnd-150111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oculopharyngeal muscular dystrophy (OPMD), a late onset disorder affecting specific skeletal muscles, is caused by a (GCG)n expansion mutation in the gene encoding the mRNA processing protein, polyadenylate binding protein nuclear 1 (PABPN1). The expansion in PABPN1 leads to an increase in a stretch of N-terminal alanine residues in the PABPN1 protein from the normal 10 to 12-18. Given this modest change, detection of mutant protein has not been possible without the use of tagged constructs. OBJECTIVE We sought to generate a polyclonal antibody that recognizes alanine-expanded but not wild type PABPN1 with the goal of making possible analysis of expression and localization of alanine-expanded PABPN1. METHODS We immunized rabbits with a GST-tagged alanine peptide and tested the resulting serum against alanine-expanded PABPN1 expressed in cell culture as well as in animal models of OPMD. RESULTS The resulting α-alanine antibody detected PABPN1 proteins that contained 14 or more alanine residues. Importantly, the α-alanine antibody could be used to detect alanine-expanded PABPN1 in muscles from either a mouse or Drosophila model of OPMD. CONCLUSIONS This α-alanine antibody provides a new tool that will allow for more in-depth study of how alanine expansion affects aggregation, localization, and steady-state levels of alanine-expanded PABPN1 levels in vivo, providing new insight into the molecular mechanisms underlying OPMD.
Collapse
Affiliation(s)
- Katherine E Vest
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luciano H Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA.,Dicerna Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Ayan Banerjee
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
40
|
Berger TR, Montie HL, Jain P, Legleiter J, Merry DE. Identification of novel polyglutamine-expanded aggregation species in spinal and bulbar muscular atrophy. Brain Res 2015; 1628:254-264. [PMID: 26453288 DOI: 10.1016/j.brainres.2015.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 11/16/2022]
Abstract
Polyglutamine-repeat disorders are part of a larger family of neurodegenerative diseases characterized by protein misfolding and aggregation. In spinal and bulbar muscular atrophy (SBMA), polyglutamine expansion within the androgen receptor (AR) causes progressive debilitating muscular atrophy and lower motor neuron loss in males. Although soluble polyglutamine-expanded aggregation species are considered toxic intermediates in the aggregation process, relatively little is known about the spectrum of structures that are formed. Here we identify novel polyglutamine-expanded AR aggregates that are SDS-soluble and bind the toxicity-predicting antibody 3B5H10. Soluble, 3B5H10-reactive aggregation species exist in low-density conformations and are larger by atomic force microscopy, suggesting that they may be less compact than later-stage, insoluble aggregates. We demonstrate disease-relevance in vivo and draw correlations with toxicity in vitro. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Tamar R Berger
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, USA
| | - Heather L Montie
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences, Philadelphia, PA, USA
| | - Pranav Jain
- West Virginia University, Department of Chemistry, Morgantown, WV, USA
| | - Justin Legleiter
- West Virginia University, Department of Chemistry, Morgantown, WV, USA
| | - Diane E Merry
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Abstract
In aging societies increasing cases of neurodegenerative protein deposit diseases urge for the identification of the underlying mechanisms. Expectations are that in 2050 the percentage of population over age 60 is 42% in Japan, 34% in China, and 27% in the US. The cell nucleus is a major target of amyloid-like protein fibrillation in a variety of disorders that are characterized by widespread aggregation of proteins with instable homopolymeric amino acid repeats, ubiquitin, and other proteinaceous components. Additionally, accumulation of insoluble, SDS-resistant proteins has been identified as an intrinsic property of organismal aging. This review collects current knowledge about the composition and function of insoluble, nuclear protein inclusions from the protein homeostasis perspective. It discusses the occurrence and role of nuclear amyloid in the diseased as well as the healthy cell. Features of nuclear inclusions such as protein composition and locally active protein degradation may predict neural fitness and survival in a variety of health or disease settings.
Collapse
Affiliation(s)
- Anna von Mikecz
- a IUF - Leibniz Research Institute for Environmental Medicine at Heinrich-Heine-University; Duesseldorf, Germany
| |
Collapse
|
42
|
Breydo L, Morgan D, Uversky VN. Pseudocatalytic Antiaggregation Activity of Antibodies: Immunoglobulins can Influence α-Synuclein Aggregation at Substoichiometric Concentrations. Mol Neurobiol 2015; 53:1949-1958. [PMID: 25833100 DOI: 10.1007/s12035-015-9148-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
Protein aggregation is involved in a variety of diseases. Alteration of the aggregation pathway, either to produce less toxic structures or to increase aggregate clearance, is a promising therapeutic route. Both active and passive immunization has been used for this purpose. However, the mechanism of action of antibodies on protein aggregates is not completely clear especially given poor ability of antibodies to cross blood-brain barrier. Here, we have shown that antibodies can interfere with protein aggregation at substoichiometric concentrations (as low as 1:1000 antibody to protein ratio). This is an indication that antibodies interact with aggregation intermediates in chaperone-like manner altering the aggregation pathways at very low antibody levels. This observation supports earlier suggestions that antibodies can inhibit aggregation by interaction with low abundance aggregation intermediates.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Byrd Alzheimer Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Dave Morgan
- Byrd Alzheimer Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Byrd Alzheimer Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Kingdom of Saudi Arabia.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation, 142290.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
43
|
Milewski M, Gawliński P, Bąk D, Matysiak A, Bal J. Complex interplay between the length and composition of the huntingtin-derived peptides modulates the intracellular behavior of the N-terminal fragments of mutant huntingtin. Eur J Cell Biol 2015; 94:179-89. [PMID: 25773959 DOI: 10.1016/j.ejcb.2015.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023] Open
Abstract
Diverse subcellular localizations of the huntingtin-containing inclusion bodies are frequently suspected of reflecting crucial divisions between different cellular pathways contributing to the pathophysiology of Huntington's disease. Here, we use a panel of different N-terminal huntingtin fragments overexpressed in transfected neuronal and non-neuronal cells to demonstrate that it is the length of the N-terminal huntingtin fragments rather than a presence of any specific amino acid sequences that determines the ratio between the nuclear and cytoplasmic inclusion bodies. Importantly, the length of those fragments does also seem to strongly influence the folding of the aggregating huntingtin species, as indicated by the apparent differences in their accessibility for different antibodies directed against particular subdomains within the N-terminal part of huntingtin, although these differences do not correlate with the peptides' ability to efficiently aggregate within the cell nucleus. Furthermore, the relatively long huntingtin fragment containing 588 amino acids of the reference sequence shows intracellular behavior that is substantially different from that exhibited by its shorter counterparts (containing either 171, 120, 89 or 64 amino acids), as this rarely aggregating peptide is not only accumulating in cytoplasmic inclusions of slightly different morphology but is also most strongly affected by the FLAG-tagging procedure that unexpectedly induces (or enhances) autophagy-related processes. Together, our results reveal a significant heterogeneity of the huntingtin accumulation patterns that are observed at the cellular level. These patterns are not only strongly dependent on both the length and the amino acid composition of the N-terminal huntingtin peptides but also seem to engage different cellular mechanisms implicated in the pathogenesis of Huntington's disease, including the non-proteasomal degradation of potentially toxic huntingtin forms.
Collapse
Affiliation(s)
- Michał Milewski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland.
| | - Paweł Gawliński
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Daniel Bąk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Agata Matysiak
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; Institute of Genetics and Biotechnology, Warsaw University, Warsaw, Poland
| | - Jerzy Bal
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
44
|
Fodale V, Kegulian NC, Verani M, Cariulo C, Azzollini L, Petricca L, Daldin M, Boggio R, Padova A, Kuhn R, Pacifici R, Macdonald D, Schoenfeld RC, Park H, Isas JM, Langen R, Weiss A, Caricasole A. Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy. PLoS One 2014; 9:e112262. [PMID: 25464275 PMCID: PMC4251833 DOI: 10.1371/journal.pone.0112262] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In Huntington's disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational changes in isolated proteins and biological samples would advance the testing of novel therapeutic approaches aimed at correcting mutant HTT misfolding. Time-resolved Förster energy transfer (TR-FRET)-based assays represent high-throughput, homogeneous, sensitive immunoassays widely employed for the quantification of proteins of interest. TR-FRET is extremely sensitive to small distances and can therefore provide conformational information based on detection of exposure and relative position of epitopes present on the target protein as recognized by selective antibodies. We have previously reported TR-FRET assays to quantify HTT proteins based on the use of antibodies specific for different amino-terminal HTT epitopes. Here, we investigate the possibility of interrogating HTT protein conformation using these assays. METHODOLOGY/PRINCIPAL FINDINGS By performing TR-FRET measurements on the same samples (purified recombinant proteins or lysates from cells expressing HTT fragments or full length protein) at different temperatures, we have discovered a temperature-dependent, reversible, polyglutamine-dependent conformational change of wild type and expanded mutant HTT proteins. Circular dichroism spectroscopy confirms the temperature and polyglutamine-dependent change in HTT structure, revealing an effect of polyglutamine length and of temperature on the alpha-helical content of the protein. CONCLUSIONS/SIGNIFICANCE The temperature- and polyglutamine-dependent effects observed with TR-FRET on HTT proteins represent a simple, scalable, quantitative and sensitive assay to identify genetic and pharmacological modulators of mutant HTT conformation, and potentially to assess the relevance of conformational changes during onset and progression of Huntington's disease.
Collapse
Affiliation(s)
| | - Natalie C. Kegulian
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | | | | | | | | | | | | | | | | | - Robert Pacifici
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Douglas Macdonald
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Ryan C. Schoenfeld
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Hyunsun Park
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - J. Mario Isas
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (RL); (AW); (AC)
| | - Andreas Weiss
- IRBM Promidis, Pomezia, Rome, Italy
- * E-mail: (RL); (AW); (AC)
| | | |
Collapse
|
45
|
Hoffner G, Djian P. Polyglutamine Aggregation in Huntington Disease: Does Structure Determine Toxicity? Mol Neurobiol 2014; 52:1297-1314. [PMID: 25336039 DOI: 10.1007/s12035-014-8932-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/09/2014] [Indexed: 01/14/2023]
Abstract
Huntington disease is a dominantly inherited disease of the central nervous system. The mutational expansion of polyglutamine beyond a critical length produces a toxic gain of function in huntingtin and results in neuronal death. In the course of the disease, expanded huntingtin is proteolyzed, becomes abnormally folded, and accumulates in oligomers, fibrils, and microscopic inclusions. The aggregated forms of the expanded protein are structurally diverse. Structural heterogeneity may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective. When defined, the toxic structures could then specifically be targeted by prophylactic or therapeutic drugs aimed at inhibiting polyglutamine aggregation.
Collapse
Affiliation(s)
- Guylaine Hoffner
- Laboratoire de Physiologie Cérébrale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France
| | - Philippe Djian
- Laboratoire de Physiologie Cérébrale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| |
Collapse
|
46
|
Hoop CL, Lin HK, Kar K, Hou Z, Poirier MA, Wetzel R, van der Wel PCA. Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance. Biochemistry 2014; 53:6653-66. [PMID: 25280367 PMCID: PMC4211650 DOI: 10.1021/bi501010q] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
In Huntington’s disease, expansion
of a polyglutamine (polyQ)
domain in the huntingtin (htt) protein leads to misfolding and aggregation.
There is much interest in the molecular features that distinguish
monomeric, oligomeric, and fibrillar species that populate the aggregation
pathway and likely differ in cytotoxicity. The mechanism and rate
of aggregation are greatly affected by the domains flanking the polyQ
segment within exon 1 of htt. A “protective” C-terminal
proline-rich flanking domain inhibits aggregation by inducing polyproline
II structure (PPII) within an extended portion of polyQ. The N-terminal
flanking segment (httNT) adopts an α-helical structure
as it drives aggregation, helps stabilize oligomers and fibrils, and
is seemingly integral to their supramolecular assembly. Via solid-state
nuclear magnetic resonance (ssNMR), we probe how, in the mature fibrils,
the htt flanking domains impact the polyQ domain and in particular
the localization of the β-structured amyloid core. Using residue-specific
and uniformly labeled samples, we find that the amyloid core occupies
most of the polyQ domain but ends just prior to the prolines. We probe
the structural and dynamical features of the remarkably abrupt β-sheet
to PPII transition and discuss the potential connections to certain
htt-binding proteins. We also examine the httNT α-helix
outside the polyQ amyloid core. Despite its presumed structural and
demonstrated stabilizing roles in the fibrils, quantitative ssNMR
measurements of residue-specific dynamics show that it undergoes distinct
solvent-coupled motion. This dynamical feature seems reminiscent of
molten-globule-like α-helix-rich features attributed to the
nonfibrillar oligomeric species of various amyloidogenic proteins.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Structural Biology, University of Pittsburgh School of Medicine , Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
TR-FRET assays of Huntingtin protein fragments reveal temperature and polyQ length-dependent conformational changes. Sci Rep 2014; 4:5601. [PMID: 24998512 PMCID: PMC4083280 DOI: 10.1038/srep05601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/19/2014] [Indexed: 11/08/2022] Open
Abstract
Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) technology is a widely used immunoassay that enables high-throughput quantitative measurements of proteins of interest. One of the well established examples is the TR-FRET assay for mutant huntingtin protein (HTT), which is the major cause of the neurodegenerative Huntington's disease (HD). To measure the mutant HTT protein, the published assays utilize a polyQ antibody, MW1, paired with HTT N-terminal antibodies. MW1 has much higher apparent affinity to mutant HTT with expanded polyQ stretch than to wild-type HTT with shorter polyQ, and thus the assays detect mutant HTT preferentially. Here we report a reversible temperature dependent change of TR-FRET signals for HTT N-terminal fragments: the signals become higher when the temperature is lowered from room temperature to 4°C. Interestingly, the temperature sensitivity of the TR-FRET signals is much higher for the Q25 (wild-type) than for the Q72 (mutant) protein. We further revealed that it is likely due to a temperature and polyQ length-dependent structural or spatial change of HTT, which is potentially useful for understanding polyQ structure and toxicity.
Collapse
|
48
|
Hoffner G, Djian P. Monomeric, oligomeric and polymeric proteins in huntington disease and other diseases of polyglutamine expansion. Brain Sci 2014; 4:91-122. [PMID: 24961702 PMCID: PMC4066239 DOI: 10.3390/brainsci4010091] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 01/03/2023] Open
Abstract
Huntington disease and other diseases of polyglutamine expansion are each caused by a different protein bearing an excessively long polyglutamine sequence and are associated with neuronal death. Although these diseases affect largely different brain regions, they all share a number of characteristics, and, therefore, are likely to possess a common mechanism. In all of the diseases, the causative protein is proteolyzed, becomes abnormally folded and accumulates in oligomers and larger aggregates. The aggregated and possibly the monomeric expanded polyglutamine are likely to play a critical role in the pathogenesis and there is increasing evidence that the secondary structure of the protein influences its toxicity. We describe here, with special attention to huntingtin, the mechanisms of polyglutamine aggregation and the modulation of aggregation by the sequences flanking the polyglutamine. We give a comprehensive picture of the characteristics of monomeric and aggregated polyglutamine, including morphology, composition, seeding ability, secondary structure, and toxicity. The structural heterogeneity of aggregated polyglutamine may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective.
Collapse
Affiliation(s)
- Guylaine Hoffner
- Génétique moléculaire et défense antivirale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France.
| | - Philippe Djian
- Génétique moléculaire et défense antivirale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
49
|
Mutant huntingtin gene-dose impacts on aggregate deposition, DARPP32 expression and neuroinflammation in HdhQ150 mice. PLoS One 2013; 8:e75108. [PMID: 24086450 PMCID: PMC3781050 DOI: 10.1371/journal.pone.0075108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 08/12/2013] [Indexed: 12/05/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model.
Collapse
|
50
|
Todd TW, Lim J. Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cells 2013; 36:185-94. [PMID: 23794019 PMCID: PMC3800151 DOI: 10.1007/s10059-013-0167-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 12/30/2022] Open
Abstract
Mutant protein aggregation is a hallmark of many neurodegenerative diseases, including the polyglutamine disorders. Although the correlation between aggregation formation and disease pathology originally suggested that the visible inclusions seen in patient tissue might directly contribute to pathology, additional studies failed to confirm this hypothesis. Current opinion in the field of polyglutamine disease research now favors a model in which large inclusions are cytoprotective and smaller oligomers or misfolded monomers underlie pathogenesis. Nonetheless, therapies aimed at reducing or preventing aggregation show promise. This review outlines the debate about the role of aggregation in the polyglutamine diseases as it has unfolded in the literature and concludes with a brief discussion on the manipulation of aggregation formation and clearance mechanisms as a means of therapeutic intervention.
Collapse
Affiliation(s)
- Tiffany W. Todd
- Department of Genetics, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Janghoo Lim
- Department of Genetics, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|