1
|
Kriegermeier A, Hyon A, LeCuyer B, Hubchak S, Liu X, Green RM. Inositol-requiring enzyme 1α/X-box protein 1 pathway expression is impaired in pediatric cholestatic liver disease explants. PLoS One 2022; 17:e0279016. [PMID: 36520816 PMCID: PMC9754178 DOI: 10.1371/journal.pone.0279016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Increased intrahepatic bile acids cause endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) is activated to maintain homeostasis. UPR dysregulation, including the inositol-requiring enzyme 1α/X-box protein 1 (IRE1α/XBP1) pathway, is associated with adult liver diseases but has not been characterized in pediatric liver diseases. We evaluated hepatic UPR expression in pediatric cholestatic liver disease (CLD) explants and hypothesize that an inability to appropriately activate the hepatic IRE1α/XBP1 pathway is associated with the pathogenesis of CLD. METHODS We evaluated 34 human liver explants, including: pediatric CLD (Alagille, ALGS, and progressive familial intrahepatic cholestasis, PFIC), pediatric non-cholestatic liver disease controls (autoimmune hepatitis, AIH), adult CLD, and normal controls. We performed RNA-seq, quantitative PCR, and western blotting to measure expression differences of the hepatic UPR and other signaling pathways. RESULTS Pathway analysis demonstrated that the KEGG 'protein processing in ER' pathway was downregulated in pediatric CLD compared to normal controls. Pediatric CLD had decreased hepatic IRE1α/XBP1 pathway gene expression and decreased protein expression of phosphorylated IRE1α compared to normal controls. IRE1α/XBP1 pathway gene expression was also decreased in pediatric CLD compared to AIH disease controls. CONCLUSIONS Pediatric CLD explants have decreased expression of the protective IRE1α/XBP1 pathway and down-regulated KEGG protein processing in the ER pathways. IRE1α/XBP1 pathway expression differences occur when compared to both normal and non-cholestatic disease controls. Attenuated expression of the IRE1α/XBP1 pathway is associated with cholestatic diseases and may be a target for future therapeutics.
Collapse
Affiliation(s)
- Alyssa Kriegermeier
- Division of Gastroenterology, Hepatology and Nutrition at Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| | - Angela Hyon
- Division of Gastroenterology, Hepatology and Nutrition at Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Brian LeCuyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Susan Hubchak
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
2
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
3
|
Tripathi M, Singh BK, Zhou J, Tikno K, Widjaja A, Sandireddy R, Arul K, Abdul Ghani SAB, Bee GGB, Wong KA, Pei HJ, Shekeran SG, Sinha RA, Singh MK, Cook SA, Suzuki A, Lim TR, Cheah CC, Wang J, Xiao RP, Zhang X, Chow PKH, Yen PM. Vitamin B 12 and folate decrease inflammation and fibrosis in NASH by preventing syntaxin 17 homocysteinylation. J Hepatol 2022; 77:1246-1255. [PMID: 35820507 DOI: 10.1016/j.jhep.2022.06.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Several recent clinical studies have shown that serum homocysteine (Hcy) levels are positively correlated, while vitamin B12 (B12) and folate levels are negative correlated, with non-alcoholic steatohepatitis (NASH) severity. However, it is not known whether hyperhomocysteinemia (HHcy) plays a pathogenic role in NASH. METHODS We examined the effects of HHcy on NASH progression, metabolism, and autophagy in dietary and genetic mouse models, patients, and primates. We employed vitamin B12 (B12) and folate (Fol) to reverse NASH features in mice and cell culture. RESULTS Serum Hcy correlated with hepatic inflammation and fibrosis in NASH. Elevated hepatic Hcy induced and exacerbated NASH. Gene expression of hepatic Hcy-metabolizing enzymes was downregulated in NASH. Surprisingly, we found increased homocysteinylation (Hcy-lation) and ubiquitination of multiple hepatic proteins in NASH including the key autophagosome/lysosome fusion protein, Syntaxin 17 (Stx17). This protein was Hcy-lated and ubiquitinated, and its degradation led to a block in autophagy. Genetic manipulation of Stx17 revealed its critical role in regulating autophagy, inflammation and fibrosis during HHcy. Remarkably, dietary B12/Fol, which promotes enzymatic conversion of Hcy to methionine, decreased HHcy and hepatic Hcy-lated protein levels, restored Stx17 expression and autophagy, stimulated β -oxidation of fatty acids, and improved hepatic histology in mice with pre-established NASH. CONCLUSIONS HHcy plays a key role in the pathogenesis of NASH via Stx17 homocysteinylation. B12/folate also may represent a novel first-line therapy for NASH. LAY SUMMARY The incidence of non-alcoholic steatohepatitis, for which there are no approved pharmacological therapies, is increasing, posing a significant healthcare challenge. Herein, based on studies in mice, primates and humans, we found that dietary supplementation with vitamin B12 and folate could have therapeutic potential for the prevention or treatment of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Keziah Tikno
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Anissa Widjaja
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Reddemma Sandireddy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Kabilesh Arul
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Siti Aishah Binte Abdul Ghani
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - George Goh Boon Bee
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169608
| | - Kiraely Adam Wong
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Ho Jia Pei
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | | | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh 226014, Lucknow, India
| | - Manvendra K Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Stuart Alexander Cook
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857; Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh 226014, Lucknow, India
| | - Ayako Suzuki
- Duke Gastroenterology Clinic, 40 Duke Medicine Circle, Suite 03107, DUMC 3913 Durham, NC 27710, USA
| | - Teegan Reina Lim
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169608
| | - Chang-Chuen Cheah
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169608
| | - Jue Wang
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, China 100871
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, China 100871
| | - Xiuqing Zhang
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, China 100871
| | - Pierce Kah Hoe Chow
- Department of Surgery, Singapore General Hospital and Dept. of Surgical Oncology, National Cancer Centre, Singapore 169608
| | - Paul Michael Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857; Duke Molecular Physiology Institute, 300 N Duke St, Durham, NC 27701, USA; Endocrinology, Metabolism, and Nutrition, 30 Duke Medicine Circle Clinic 1A, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Kriegermeier A, Hyon A, Sommars M, Hubchak S, LeCuyer B, Liu X, Barish G, Green RM. Hepatic X-Box Binding Protein 1 and Unfolded Protein Response Is Impaired in Weanling Mice With Resultant Hepatic Injury. Hepatology 2021; 74:3362-3375. [PMID: 34170527 PMCID: PMC8886505 DOI: 10.1002/hep.32031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The unfolded protein response (UPR) is a coordinated cellular response to endoplasmic reticulum (ER) stress that functions to maintain cellular homeostasis. When ER stress is unresolved, the UPR can trigger apoptosis. Pathways within the UPR influence bile acid metabolism in adult animal models and adult human liver diseases, however, the UPR has not been studied in young animal models or pediatric liver diseases. In this study we sought to determine whether weanling age mice had altered UPR activation compared with adult mice, which could lead to increased bile acid-induced hepatic injury. APPROACH AND RESULTS We demonstrate that after 7 days of cholic acid (CA) feeding to wild-type animals, weanling age mice have a 2-fold greater serum alanine aminotransferase (ALT) levels compared with adult mice, with increased hepatic apoptosis. Weanling mice fed CA have increased hepatic nuclear X-box binding protein 1 spliced (XBP1s) expression, but cannot increase expression of its protective downstream target's ER DNA J domain-containing protein 4 and ER degradation enhancing α-mannoside. In response to tunicamycin induced ER stress, young mice have blunted expression of several UPR pathways compared with adult mice. CA feeding to adult liver-specific XBP1 knockout (LS-XBP1-/- ) mice, which are unable to resolve hepatic ER stress, leads to increased serum ALT and CCAAT/enhancer binding homologous protein, a proapoptotic UPR molecule, expression to levels similar to CA-fed LS-XBP1-/- weanlings. CONCLUSIONS Weanling mice have attenuated hepatic XBP1 signaling and impaired UPR activation with resultant increased susceptibility to bile acid-induced injury.
Collapse
Affiliation(s)
- Alyssa Kriegermeier
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Division of Gastroenterology, Hepatology and Nutrition at Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - Angela Hyon
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Division of Gastroenterology, Hepatology and Nutrition at Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - Meredith Sommars
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Division of Endocrinology, Chicago, IL 60611
| | - Susan Hubchak
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Division of Gastroenterology and Hepatology, Chicago, IL 60611
| | - Brian LeCuyer
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Division of Gastroenterology and Hepatology, Chicago, IL 60611
| | - Xiaoying Liu
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Division of Gastroenterology and Hepatology, Chicago, IL 60611
| | - Grant Barish
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Division of Endocrinology, Chicago, IL 60611
| | - Richard M. Green
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Division of Gastroenterology and Hepatology, Chicago, IL 60611
| |
Collapse
|
5
|
Levine JA, Olivares S, Miyata T, Vaughan DE, Henkel AS. Inhibition of PAI-1 Promotes Lipolysis and Enhances Weight Loss in Obese Mice. Obesity (Silver Spring) 2021; 29:713-720. [PMID: 33594826 PMCID: PMC8842994 DOI: 10.1002/oby.23112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study investigates the therapeutic potential of a small molecule inhibitor of plasminogen activator inhibitor-1 (PAI-1), TM5441, in reversing diet-induced obesity in mice. METHODS Wild-type C57BL/6J mice were fed a high-fat high-sugar (HFHS) diet for 8 weeks to induce obesity. After the first 8 weeks, TM5441 was added to the diet for an additional 8 weeks. In order to determine the efficacy of PAI-1 inhibition in conjunction with dietary modification, mice were fed an HFHS diet for 8 weeks to induce obesity and were then switched to a low-fat diet with or without TM5441 for an additional 2 to 8 weeks. RESULTS Obese mice showed weight reduction and significant improvement in hepatic steatosis when TM5441 was added to the HFHS diet. Obese mice that were treated with TM5441 in conjunction with dietary modification showed enhanced weight loss and a more rapid reversal of hepatic steatosis compared with obese mice treated with dietary modification alone. The enhanced weight loss among mice treated with TM5441 was associated with increased adipose tissue expression of adipose triglyceride lipase, phosphorylated hormone-sensitive lipase, and phosphorylated perilipin-1 as well as induction of adipose tissue lipolysis. CONCLUSIONS Pharmacologic PAI-1 inhibition stimulates adipose tissue lipolysis and enhances weight loss in obese mice.
Collapse
Affiliation(s)
- Joshua A. Levine
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shantel Olivares
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Douglas E. Vaughan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Anne S. Henkel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
6
|
Sámano-Hernández L, Fierro R, Marchal A, Guéant JL, González-Márquez H, Guéant-Rodríguez RM. Beneficial and deleterious effects of sitagliptin on a methionine/choline-deficient diet-induced steatohepatitis in rats. Biochimie 2020; 181:240-248. [PMID: 33333172 DOI: 10.1016/j.biochi.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fat liver disease (NAFLD) is the most common chronic liver disease in the world. NAFLD is a spectrum of diseases ranging from simple steatosis to hepatic carcinoma. The complexity of pathomechanisms makes treatment difficult. The oral antidiabetic agents, dipeptidyl peptidase four inhibitors (DPP-4i) have been proposed as possible therapeutic agents. This study was performed using a well-established NAFLD model in rats to elucidate whether sitagliptin could prevent steatohepatitis. Rats were fed a methionine/choline-deficient (MCD) diet with or without sitagliptin treatment for six weeks. Liver tissue was examined to estimate sitagliptin's effect on the development of NASH. The MCD diet decreased the SAM/SAH ratio, and increased plasma levels of homocysteine, free fatty acids, and long-chain acylcarnitines in the MCD rats. MMP2 and Col1A2 expression also increased under the MCD diet. Sitagliptin treatment did not reverse these effects and increased steatosis and long-chain acylcarnitines. In conclusion, sitagliptin was ineffective to prevent from NAFLD in the MCD rat model. This result challenges previous data reporting beneficial effects and is consistent with the clinical trials' negative results.
Collapse
Affiliation(s)
- Leslye Sámano-Hernández
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico.
| | - Reyna Fierro
- Laboratorio de Andrología, Depto. Ciencias de la Salud, D.C.B.S. Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico.
| | - Aude Marchal
- Laboratoire de Biopathologie, Hôpital Robert-Debré, Avenue du Général-Koenig, 51092, Reims CEDEX, France.
| | - Jean-Louis Guéant
- Laboratoire INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Nancy, France.
| | - Humberto González-Márquez
- Laboratorio de Expresión Génica, Depto. Ciencias de la Salud, D.C.B.S. Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico.
| | | |
Collapse
|
7
|
Olivares S, Henkel AS. Endoplasmic reticulum stress induces hepatic plasminogen activator inhibitor 1 in murine nonalcoholic steatohepatitis. FASEB Bioadv 2020; 2:695-704. [PMID: 33336157 PMCID: PMC7734423 DOI: 10.1096/fba.2020-00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/20/2023] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a stress-responsive gene that is highly induced in nonalcoholic steatohepatitis (NASH). Endoplasmic reticulum (ER) stress is a salient feature of NASH, yet it is unknown whether ER stress contributes to hepatic PAI-1 induction in this disorder. Therefore, we aimed to (a) establish the role of ER stress in the regulation of hepatic Pai-1 expression, and (b) determine whether induction of Pai-1 in murine NASH is driven by ER stress. Hepatic Pai-1 expression was measured in C57BL/6 J mice and human HepG2 cells subjected to acute or prolonged pharmacologic ER stress. We found that hepatic Pai-1 expression was acutely suppressed in murine liver in response to severe ER stress followed by marked induction during the recovery phase of the ER stress response. Hepatic Pai-1 expression was induced in response to prolonged low-grade ER stress in mice. Induction of PAI-1 by ER stress in HepG2 cells was prevented by pharmacologic inhibition of MEK1/ERK signaling or by siRNA-mediated knockdown of XBP1, mediators of the recovery response to ER stress. Inhibiting ER stress with 4-phenylbutyric acid prevented hepatic Pai-1 induction in mice with diet-induced steatohepatitis. We conclude that hepatic Pai-1 is induced by ER stress via a pathway involving XBP1 and MEK1/ERK signaling, and induction of hepatic Pai-1 in murine NASH is mediated by ER stress. These data implicate ER stress as a novel mechanistic link between Pai-1 induction and NASH.
Collapse
Affiliation(s)
- Shantel Olivares
- Department of MedicineNorthwestern UniversityChicagoILUSA
- Jesse Brown VA Medical CenterChicagoILUSA
| | - Anne S. Henkel
- Department of MedicineNorthwestern UniversityChicagoILUSA
- Jesse Brown VA Medical CenterChicagoILUSA
| |
Collapse
|
8
|
Si-Wu-Tang Alleviates Nonalcoholic Fatty Liver Disease via Blocking TLR4-JNK and Caspase-8-GSDMD Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8786424. [PMID: 32849904 PMCID: PMC7439165 DOI: 10.1155/2020/8786424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has high global prevalence; however, the treatments of NAFLD are limited due to lack of approved drugs. Methods Mice were randomly assigned into three groups: Control group, NAFLD group, NAFLD plus Si-Wu-Tang group. A NAFLD mice model was established by feeding with a methionine- and choline-deficient (MCD) diet for four weeks. Si-Wu-Tang was given orally by gastric gavage at the beginning of 3rd week, and it lasted for two weeks. The treatment effects of Si-Wu-Tang were confirmed by examining the change of body weight, serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels, Oil Red O staining, and hematoxylin and eosin (H&E) staining of the liver samples and accompanied by steatosis grade scores. The expression and activation of the possible signaling proteins involved in the pathogenesis of NAFLD were determined by western blotting. Results Mice fed with four weeks of MCD diet displayed elevated serum levels of ALT and AST, while there was decreased body weight. The hepatic Oil Red O staining and H&E staining showed severe liver steatosis with high steatosis grade scores. All these can be improved by treating with Si-Wu-Tang for two weeks. Mechanistically, the increased hepatic TLR4 expression and its downstream JNK phosphorylation induced by MCD diet were suppressed by Si-Wu-Tang. Moreover, the upregulations of Caspase-8, gasdermin D (GSDMD), and cleaved-GSDMD in liver mediated by MCD diet were all inhibited by Si-Wu-Tang. Conclusions Treatment with Si-Wu-Tang improves MCD diet-induced NAFLD in part via blocking TLR4-JNK and Caspase-8-GSDMD signaling pathways, suggesting that Si-Wu-Tang has potential for clinical application in treating NAFLD.
Collapse
|
9
|
Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K, Labudovic-Borovic M, Dragutinovic V, Vucevic D, Jorgacevic B, Isakovic A, Trajkovic V, Radosavljevic T. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol 2019; 848:39-48. [PMID: 30689995 DOI: 10.1016/j.ejphar.2019.01.043] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
We examined the effects of betaine, an endogenous and dietary methyl donor essential for the methionine-homocysteine cycle, on oxidative stress, inflammation, apoptosis, and autophagy in methionine-choline deficient diet (MCD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6 mice received standard chow (control), standard chow and betaine (1.5% w/v in drinking water), MCD, or MCD and betaine. After six weeks, serum and liver samples were collected for analysis. Betaine reduced MCD-induced increase in liver transaminases and inflammatory infiltration, as well as hepatosteatosis and serum levels of low-density lipoprotein, while it increased that of high-density lipoprotein. MCD-induced hepatic production of reactive oxygen and nitrogen species was significantly reduced by betaine, which also improved liver antioxidative defense by increasing glutathione content and superoxide-dismutase, catalase, glutathione peroxidase, and paraoxonase activity. Betaine reduced the liver expression of proinflammatory cytokines tumor necrosis factor and interleukin-6, as well as that of proapoptotic mediator Bax, while increasing the levels of anti-inflammatory cytokine interleukin-10 and antiapoptotic Bcl-2 in MCD-fed mice. In addition, betaine increased the expression of autophagy activators beclin 1, autophagy-related (Atg)4 and Atg5, as well as the presence of autophagic vesicles and degradation of autophagic target sequestosome 1/p62 in the liver of NAFLD mice. The observed effects of betaine coincided with the increase in the hepatic phosphorylation of mammalian target of rapamycin (mTOR) and its activator Akt. In conclusion, the beneficial effect of betaine in MCD-induced NAFLD is associated with the reduction of liver oxidative stress, inflammation, and apoptosis, and the increase in cytoprotective Akt/mTOR signaling and autophagy.
Collapse
Affiliation(s)
- Milena Veskovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Mladenovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Milenkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Suncica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Serbia
| | - Kristina Gopcevic
- Institute of Medical Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic-Borovic
- Institute of Histology and Embriology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Dragutinovic
- Institute of Medical Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Vucevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojan Jorgacevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Tatjana Radosavljevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
10
|
Minami S, Miura K, Ishioka M, Morimoto N, Isoda N, Yamamoto H, Iijima K. Homocysteine supplementation ameliorates steatohepatitis induced by a choline-deficient diet in mice. Hepatol Res 2019; 49:189-200. [PMID: 30048033 DOI: 10.1111/hepr.13234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 01/18/2023]
Abstract
AIM High concentrations of homocysteine are believed to induce lipid synthesis and cell injury through endoplasmic reticulum (ER) stress in metabolic syndrome. However, homocysteine could be used to improve steatohepatitis induced by choline deficiency, in which methyl donors are decreased. The aim of the present study was to clarify the role of the physiological concentration of homocysteine in the development of steatohepatitis induced by choline deficiency. METHODS Wild-type mice were fed a choline-deficient amino acid-defined (CDAA) diet with or without homocysteine supplementation for 24 weeks. Liver cells isolated from mice were exposed to homocysteine under choline-deficient conditions. RESULTS Wild-type mice fed the CDAA diet developed steatohepatitis with increased ER stress and decreased S-adenosylmethionine (SAM), a methyl donor. Homocysteine supplementation reduced ER stress and restored hepatic SAM, leading to the improvement of steatohepatitis. In in vitro experiments using primary cultured hepatocytes, the physiological concentration of homocysteine decreased the lipid accumulation and ER stress induced by the choline-deficient conditions. However, hepatocyte death was not induced by a physiological concentration of homocysteine or in choline-deficient medium. Interestingly, tumor necrosis factor (TNF)α promoted hepatocyte death under choline-deficient conditions, which was suppressed by homocysteine supplementation. Hepatic macrophages increased the production of TNFα under choline-deficient conditions whereas supplementation of SAM reduced the TNFα production. CONCLUSIONS Homocysteine supplementation ameliorates steatohepatitis by reducing ER stress and increasing SAM in mice fed a CDAA diet. These results were opposite to those of previous reports, which showed that homocysteine induced cell injury.
Collapse
Affiliation(s)
- Shinichiro Minami
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kouichi Miura
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan.,Division of Gastroenterology, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Mitsuaki Ishioka
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoki Morimoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Norio Isoda
- Division of Gastroenterology, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Hironori Yamamoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Katsunori Iijima
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
11
|
Olivares S, Henkel AS. The role of X-box binding protein 1 in the hepatic response to refeeding in mice. J Lipid Res 2018; 60:353-359. [PMID: 30482806 DOI: 10.1194/jlr.m086413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/08/2018] [Indexed: 02/03/2023] Open
Abstract
Refeeding mice after a prolonged fast is a potent stimulus of hepatic lipogenesis, but is also associated with induction of the hepatic unfolded protein response (UPR). The X-box binding protein 1 (Xbp1), a key regulator of the adaptive UPR, transcriptionally activates hepatic lipogenesis genes. We therefore determined whether hepatic Xbp1 mediates the hepatic lipogenic response to refeeding. Mice bearing a hepatocyte-specific deletion of Xbp1 and littermate controls were fasted overnight, followed by refeeding for up to 6 h. Among control mice, refeeding induced hepatic expression of activated Xbp1 and, as expected, induced hepatic expression of genes controlling de novo lipogenesis of fatty acids. Unexpectedly, deletion of hepatic Xbp1 allowed for normal induction of hepatic lipogenesis genes, yet impaired translation of SREBP1c and its targets in response to refeeding. Impaired protein translation was associated with enhanced postprandial activation of the global translational arrest protein, eukaryotic initiation factor 2α, among mice lacking hepatic Xbp1 Deletion of hepatic Xbp1 prevented postprandial induction of genes regulating protein folding and processing and shifted the pattern of postprandial UPR activation to favor proapoptotic signals. We conclude that activation of hepatic Xbp1 in the postprandial states serves the dual roles of restoring postprandial hepatic lipogenesis and proteostasis.
Collapse
Affiliation(s)
- Shantel Olivares
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Anne S Henkel
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL .,Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
12
|
Zhang Y, Wang G, Liu J, Xu Y. Impact of hyperhomocysteinemia on insulin resistance in patients with H-type hypertension. Clin Exp Hypertens 2017; 40:28-31. [PMID: 29172743 DOI: 10.1080/10641963.2017.1288738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hypertension (HT) and hyperhomocysteinemia (HHcy) had been considered influential factors of insulin resistance. H-type HT occurred as HHcy associated with HT. The impact of HHcy on insulin resistance in H-type HT patients remains to be estimated. The interacted effects of HHcy and HT on insulin resistance are still unclear. METHODS A total of 790 patients were recruited and classified into four groups according to their blood pressure and plasma Hcy level, i.e., control group (C group), HHcy group (HHcy subjects without HT), HT group (HT subjects without HHcy), and H group (subjects with H-type HT). The relationship between HHcy and insulin resistance, as estimated using the HOMA-IR, was analyzed and related to blood pressure. RESULTS HOMA-IR values were significantly higher in the HHcy group than the C group (2.97 (2.23-4.01) versus 2.54 (1.87-3.58), P < 0.01). H-type HT patients showed more severe insulin resistance than those who only got HT (3.58 (2.59-4.85) versus 2.96 (1.90-3.49),P < 0.01). Moreover, HOMA-IR values were positively correlated with Hcy levels (r = 0.26, P < 0.01). After correcting for possible risking factors, a linear regression relationship between insulin resistance and HHcy was found (β = 0.158, P < 0.01). HHcy was interacted with HT on the exacerbation of insulin resistance in H-type HT patients (β = 0.501, P < 0.01). CONCLUSIONS HHcy obviously exacerbate insulin resistance, especially in H-type HT patients. HHcy and HT have a multiplicative effect on metabolic dysfunction, which may help to interpret why these patients are suffering a high risk of cardiovascular disease and stroke.
Collapse
Affiliation(s)
- Yan Zhang
- a Department of Endocrinology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , P. R. of China
| | - Guang Wang
- a Department of Endocrinology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , P. R. of China
| | - Jia Liu
- a Department of Endocrinology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , P. R. of China
| | - Yuan Xu
- a Department of Endocrinology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , P. R. of China
| |
Collapse
|
13
|
Olivares S, Henkel AS. Induction of fibroblast growth factor 21 does not require activation of the hepatic X-box binding protein 1 in mice. Mol Metab 2017; 6:1616-1624. [PMID: 29157602 PMCID: PMC5699917 DOI: 10.1016/j.molmet.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21), a key regulator of the metabolic response to fasting, is highly induced by endoplasmic reticulum (ER) stress. The X-box binding protein 1 (Xbp1) is one of several ER stress proteins that has been shown to directly activate the FGF21 promoter. We aimed to determine whether hepatic Xbp1 is required for induction of hepatic FGF21 in vivo. Methods Mice bearing a hepatocyte-specific deletion of Xbp1 (Xbp1LKO) were subjected to fasting, pharmacologic ER stress, or a ketogenic diet, all potent stimuli of Fgf21 expression. Results Hepatocyte-specific Xbp1 knockout mice demonstrated normal induction of FGF21 in response to fasting or pharmacologic ER stress and enhanced induction of FGF21 in response to a ketogenic diet. Consistent with preserved induction of FGF21, Xbp1LKO mice exhibited normal induction of FGF21 target genes and normal ketogenesis in response to fasting or a ketogenic diet. Conclusion Hepatic Xbp1 is not required for induction of FGF21 under physiologic or pathophysiologic conditions in vivo. Deletion of hepatic Xbp1 in mice allows for normal induction of FGF21 upon fasting. ER stress induces FGF21 independently of hepatic Xbp1. Mice lacking hepatic Xbp1 show enhanced FGF21 induction when fed a ketogenic diet. Hepatic Xbp1 is not required for induction of FGF21 in vivo.
Collapse
Affiliation(s)
- Shantel Olivares
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anne S Henkel
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
Wang JG, Guo YZ, Kong YZ, Dai S, Zhao BY. High non-esterified fatty acid concentrations promote expression and secretion of fibroblast growth factor 21 in calf hepatocytes cultured in vitro. J Anim Physiol Anim Nutr (Berl) 2017; 102:e476-e481. [PMID: 28447390 DOI: 10.1111/jpn.12699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022]
Abstract
Negative energy balance is considered as the pathological basis of energy metabolic disorders in periparturient dairy cows. Serum non-esterified fatty acids (NEFA) are one of the most important indicators of energy balance status. Fibroblast growth factor 21 (FGF21) has been identified as a hepatokine involved in regulation of metabolic adaptations, such as promoting hepatic lipid oxidation and ketogenesis, during energy deprivation. However, the direct effects of NEFA on FGF21 expression and secretion in bovine hepatocytes are not entirely clear. The objective of this study was to investigate the effects of different NEFA concentrations on FGF21 expression and secretion in calf hepatocytes cultured in vitro. NEFA were added to the culture solution at final concentrations of 0.6, 1.2, 1.8 and 2.4 mmol/L. After 24 hr of continuous culture, FGF21 mRNA and protein expression levels in the hepatocytes were determined by real-time PCR and Western blot respectively. FGF21 secretion in the supernatant was determined by enzyme-linked immunosorbent assay (ELISA). The results showed that expression and secretion of FGF21 at 0.6 mmol/L NEFA-treated hepatocytes was higher than that of the control group (p < .05). The FGF21 expression and secretion were similar at 1.2, 1.8 and 2.4 mmol/L NEFA-treated hepatocytes and significantly higher than those observed for controls (p < .01). These data suggest that high concentrations of NEFA significantly promote FGF21 expression and secretion in bovine hepatocytes. In particular, this promotion occurs in a dose-dependent manner and may be involved in the pathological processes of energy metabolism disorders of dairy cows in the peripartum period.
Collapse
Affiliation(s)
- J G Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Z Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Z Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - S Dai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - B Y Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Henkel AS, LeCuyer B, Olivares S, Green RM. Endoplasmic Reticulum Stress Regulates Hepatic Bile Acid Metabolism in Mice. Cell Mol Gastroenterol Hepatol 2016; 3:261-271. [PMID: 28275692 PMCID: PMC5331781 DOI: 10.1016/j.jcmgh.2016.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Cholestasis promotes endoplasmic reticulum (ER) stress in the liver, however, the effect of ER stress on hepatic bile acid metabolism is unknown. We aim to determine the effect of ER stress on hepatic bile acid synthesis and transport in mice. METHODS ER stress was induced pharmacologically in C57BL/6J mice and human hepatoma (HepG2) cells. The hepatic expression of genes controlling bile acid synthesis and transport was determined. To measure the activity of the primary bile acid synthetic pathway, the concentration of 7α-hydroxy-4-cholesten-3-1 was measured in plasma. RESULTS Induction of ER stress in mice and HepG2 cells rapidly suppressed the hepatic expression of the primary bile acid synthetic enzyme, cholesterol 7α-hydroxylase. Plasma levels of 7α-hydroxy-4-cholesten-3-1 were reduced in mice subjected to ER stress, indicating impaired bile acid synthesis. Induction of ER stress in mice and HepG2 cells increased expression of the bile salt export pump (adenosine triphosphate binding cassette [Abc]b11) and a bile salt efflux pump (Abcc3). The observed regulation of Cyp7a1, Abcb11, and Abcc3 occurred in the absence of hepatic inflammatory cytokine activation and was not dependent on activation of hepatic small heterodimer partner or intestinal fibroblast growth factor 15. Consistent with suppressed bile acid synthesis and enhanced bile acid export from hepatocytes, prolonged ER stress decreased the hepatic bile acid content in mice. CONCLUSIONS Induction of ER stress in mice suppresses bile acid synthesis and enhances bile acid removal from hepatocytes independently of established bile acid regulatory pathways. These data show a novel function of the ER stress response in regulating bile acid metabolism.
Collapse
Key Words
- 7α-Hydroxy-4-Cholesten-3-1
- ABC, adenosine triphosphate binding cassette
- Bile Acid Synthesis
- C4, 7α-hydroxy-4-cholesten-3-1
- CYP7A1, cholesterol 7α-hydroxylase
- Cyp7a1
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- ERK, extracellular signaling-regulated kinase
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- IL, interleukin
- IRE1α, inositol requiring enzyme 1α
- JNK, c-Jun-N-terminal kinase
- NTCP, sodium/taurocholate cotransporter
- RIDD, regulated inositol requiring enzyme 1α–dependent messenger RNA decay
- SHP, small heterodimer partner
- UPR, unfolded protein response
- Unfolded Protein Response
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Anne S. Henkel
- Correspondence Address correspondence to: Anne S. Henkel, MD, 320 East Superior Street, Tarry 15-705, Chicago, Illinois 60611. fax: (312) 908-9032.320 East Superior StreetTarry 15-705ChicagoIllinois 60611
| | | | | | | |
Collapse
|
16
|
Melatonin Alleviates Liver Apoptosis in Bile Duct Ligation Young Rats. Int J Mol Sci 2016; 17:ijms17081365. [PMID: 27556445 PMCID: PMC5000760 DOI: 10.3390/ijms17081365] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/01/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Bile duct ligation (BDL)-treated rats display cholestasis and liver damages. The potential protective activity of melatonin in young BDL rats in terms of apoptosis, mitochondrial function, and endoplasmic reticulum (ER) homeostasis has not yet been evaluated. Three groups of young male Sprague-Dawley rats were used: one group received laparotomy (Sham), a second group received BDL for two weeks (BDL), and a third group received BDL and intraperitoneal melatonin (100 mg/day) for two weeks (BDL + M). BDL group rats showed liver apoptosis, increased pro-inflamamtory mediators, caspases alterations, anti-apoptotic factors changes, and dysfunction of ER homeostasis. Melatonin effectively reversed apoptosis, mainly through intrinsic pathway and reversed ER stress. In addition, in vitro study showed melatonin exerted its effect mainly through the melatonin 2 receptor (MT2) in HepG2 cells. In conclusion, BDL in young rats caused liver apoptosis. Melatonin rescued the apoptotic changes via the intrinsic pathway, and possibly through the MT2 receptor. Melatonin also reversed ER stress induced by BDL.
Collapse
|
17
|
Olivares S, Henkel AS. Hepatic Xbp1 Gene Deletion Promotes Endoplasmic Reticulum Stress-induced Liver Injury and Apoptosis. J Biol Chem 2015; 290:30142-51. [PMID: 26504083 DOI: 10.1074/jbc.m115.676239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), a highly conserved signaling cascade that functions to alleviate stress and promote cell survival. If, however, the cell is unable to adapt and restore homeostasis, then the UPR activates pathways that promote apoptotic cell death. The molecular mechanisms governing the critical transition from adaptation and survival to initiation of apoptosis remain poorly understood. We aim to determine the role of hepatic Xbp1, a key mediator of the UPR, in controlling the adaptive response to ER stress in the liver. Liver-specific Xbp1 knockout mice (Xbp1(LKO)) and Xbp1(fl/fl) control mice were subjected to varying levels and durations of pharmacologic ER stress. Xbp1(LKO) and Xbp1(fl/fl) mice showed robust and equal activation of the UPR acutely after induction of ER stress. By 24 h, Xbp1(fl/fl) controls showed complete resolution of UPR activation and no liver injury, indicating successful adaptation to the stress. Conversely, Xbp1(LKO) mice showed ongoing UPR activation associated with progressive liver injury, apoptosis, and, ultimately, fibrosis by day 7 after induction of ER stress. These data indicate that hepatic XBP1 controls the adaptive response of the UPR and is critical to restoring homeostasis in the liver in response to ER stress.
Collapse
Affiliation(s)
- Shantel Olivares
- From the Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Anne S Henkel
- From the Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
18
|
Pacana T, Cazanave S, Verdianelli A, Patel V, Min HK, Mirshahi F, Quinlivan E, Sanyal AJ. Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease. PLoS One 2015; 10:e0136822. [PMID: 26322888 PMCID: PMC4556375 DOI: 10.1371/journal.pone.0136822] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/10/2015] [Indexed: 12/30/2022] Open
Abstract
Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, p< 0.01) while s-adenosylmethionine (SAM)/methionine ratio (p< 0.05), s-adenosylhomocysteine (SAH) (35%, p< 0.01) and homocysteine (25%, p< 0.01) were increased significantly. SAH hydrolase protein levels decreased significantly (p <0.01). Serine, a substrate for both homocysteine remethylation and transsulfuration, was depleted (45%, p< 0.01). In the transsulfuration pathway, cystathionine and cysteine trended upward while glutathione decreased significantly (p< 0.05). In the transmethylation pathway, levels of glycine N-methyltransferase (GNMT), the most abundant methyltransferase in the liver, decreased. The phosphatidylcholine (PC)/ phosphatidylethanolamine (PE) ratio increased significantly (p< 0.01), indicative of increased phosphatidylethanolamine methyltransferase (PEMT) activity. The protein levels of protein arginine methytransferase 1 (PRMT1) increased significantly, but its products, monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), decreased significantly. Circulating ADMA increased and approached significance (p< 0.06). Protein expression of methionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA methyltransferase Dnmt3a decreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfκb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation.
Collapse
Affiliation(s)
- Tommy Pacana
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
- * E-mail: (AJS); (TP)
| | - Sophie Cazanave
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Aurora Verdianelli
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Vaishali Patel
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Hae-Ki Min
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Faridoddin Mirshahi
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Eoin Quinlivan
- Biomedical Mass Spectrometry Laboratory, General Clinical Research Center, University of Florida, Gainesville, FL, United States of America
| | - Arun J. Sanyal
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
- * E-mail: (AJS); (TP)
| |
Collapse
|
19
|
Polyzos SA, Kountouras J, Tsoukas MA. Circulating homocysteine in nonalcoholic fatty liver disease. Eur J Intern Med 2015; 26:152-3. [PMID: 25676807 DOI: 10.1016/j.ejim.2015.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Stergios A Polyzos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Michael A Tsoukas
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Acid sphingomyelinase-ceramide system in steatohepatitis: a novel target regulating multiple pathways. J Hepatol 2015; 62:219-33. [PMID: 25281863 DOI: 10.1016/j.jhep.2014.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/13/2014] [Accepted: 09/24/2014] [Indexed: 02/07/2023]
Abstract
Steatohepatitis (SH) is an intermediate stage of fatty liver disease and is one of the most common causes of chronic liver disease worldwide that may progress to cirrhosis and liver cancer. SH encompasses alcoholic and non-alcoholic steatohepatitis, the latter being of particular concern as it is associated with obesity and insulin resistance and has become a major cause of liver transplantation. The molecular mechanisms governing the transition from steatosis to SH are not fully understood. Here we discuss emerging data indicating that the acid sphingomyelinase (ASMase), a specific mechanism of ceramide generation, is required for the activation of key pathways that regulate steatosis, fibrosis and lipotoxicity, including endoplasmic reticulum stress, autophagy and lysosomal membrane permeabilization. Moreover, ASMase modulates alterations of the methionine cycle and phosphatidylcholine homeostasis, two crucial events involved in SH that regulate methylation reactions, antioxidant defence and membrane integrity. These new findings suggest that targeting ASMase in combination with restoring methionine metabolism and phosphatidylcholine levels may be of utility in the treatment of SH.
Collapse
|
21
|
Endoplasmic reticulum stress activates the hepatic activator protein 1 complex via mitogen activated protein kinase-dependent signaling pathways. PLoS One 2014; 9:e103828. [PMID: 25077945 PMCID: PMC4117566 DOI: 10.1371/journal.pone.0103828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/06/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Endoplasmic reticulum (ER) stress is induced in many forms of chronic liver disease and may promote the development of hepatocellular carcinoma. The activator protein 1 (AP-1) complex is a transcription factor that promotes hepatic carcinogenesis in response to cellular stress. The aim of this study was to determine the role of ER stress in the regulation of the hepatic AP-1 complex. METHODS Human hepatocellular carcinoma (HepG2) cells and C57BL/6J mice were subjected to pharmacologic ER stress and the expression of AP-1-associated genes and proteins was assessed. To determine the role of MAPK signaling in ER stress-induced AP-1 activation, ER stress was induced in JNK- and ERK-inhibited HepG2 cells. RESULTS Induction of ER stress promoted the activation of both Jun- and Fos-related genes and proteins of the AP-1 complex in HepG2 cells and murine liver. Inhibition of ERK phosphorylation in HepG2 cells completely prevented ER stress-induced activation of the fos-related components of AP-1 whereas activation of Jun-related components was only partially attenuated. Conversely, inhibition of JNK phosphorylation in HepG2 cells reduced ER stress-induced activation of Jun-related components but did not prevent activation of fos-related components. CONCLUSIONS ER stress activates the hepatic AP-1 complex via MAPK-dependent signaling pathways. ER stress-induced activation of Fos-related components is dependent primarily on ERK activation whereas ER stress-induced activation of Jun-related components is dependent primarily on JNK activation, although there is interplay between these regulatory pathways. These data implicate a novel signaling pathway by which sustained ER stress, as observed in many chronic liver diseases, may promote hepatic carcinogenesis.
Collapse
|
22
|
Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse. Mamm Genome 2014; 25:473-86. [PMID: 24802098 PMCID: PMC4164843 DOI: 10.1007/s00335-014-9521-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/14/2014] [Indexed: 12/19/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world and its prevalence is rising. In the absence of disease progression, fatty liver poses minimal risk of detrimental health outcomes. However, advancement to non-alcoholic steatohepatitis (NASH) confers a markedly increased likelihood of developing severe liver pathologies, including fibrosis, cirrhosis, organ failure, and cancer. Although a substantial percentage of NAFLD patients develop NASH, the genetic and molecular mechanisms driving this progression are poorly understood, making it difficult to predict which patients will ultimately develop advanced liver disease. Deficiencies in mechanistic understanding preclude the identification of beneficial prognostic indicators and the development of effective therapies. Mouse models of progressive NAFLD serve as a complementary approach to the direct analysis of human patients. By providing an easily manipulated experimental system that can be rigorously controlled, they facilitate an improved understanding of disease development and progression. In this review, we discuss genetically- and chemically-induced models of NAFLD that progress to NASH, fibrosis, and liver cancer in the context of the major signaling pathways whose disruption has been implicated as a driving force for their development. Additionally, an overview of nutritional models of progressive NAFLD is provided.
Collapse
|
23
|
Abstract
The unfolded protein response (UPR) is a protective cellular response activated under conditions of endoplasmic reticulum (ER) stress. The hepatic UPR is activated in several forms of liver disease including nonalcoholic fatty liver disease (NAFLD). Recent data defining the role of the UPR in hepatic lipid metabolism have identified molecular mechanisms that may underlie the association between UPR activation and NAFLD. It has become increasingly evident that the IRE1α/Xbp1 pathway of the UPR is critical for hepatic lipid homeostasis, and dysregulation of this evolutionarily conserved pathway is associated with human nonalcoholic steatohepatitis (NASH). Although increasing evidence has delineated the importance of UPR pathway signaling in fatty liver disorders, the regulation of the hepatic UPR in normal physiology and fatty liver disorders remains incompletely understood. Understanding the role of the UPR in hepatic lipid metabolism may lead to the identification of novel therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Henkel
- Assistant Professor of Medicine, Division of Gastroenterology and Hepatology, Section of Hepatology, Northwestern University Feinberg School of Medicine, Tarry Building 15-705, 303 East Chicago Avenue, Chicago, IL 60611, Tel: 312-503-3148, Fax: 312-908-9032
| | - Richard M. Green
- Professor of Medicine, Division of Gastroenterology and Hepatology, Section of Hepatology, Northwestern University Feinberg School of Medicine, Tarry Building 15-719, 303 East Chicago Avenue, Chicago, IL 60611, Tel: 312-503-1812, Fax: 312-908-9032
| |
Collapse
|
24
|
García-Ruiz C, Baulies A, Mari M, García-Rovés PM, Fernandez-Checa JC. Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: Cause or consequence? Free Radic Res 2013; 47:854-68. [DOI: 10.3109/10715762.2013.830717] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Vinknes KJ, Dekker JM, Drevon CA, Refsum H, Nurk E, Nijpels G, Stehouwer CDA, Teerlink T, Tell GS, Nygård O, Vollset SE, Ueland PM, Elshorbagy AK. Plasma sulfur amino acids and stearoyl-CoA desaturase activity in two Caucasian populations. Prostaglandins Leukot Essent Fatty Acids 2013; 89:297-303. [PMID: 24120123 DOI: 10.1016/j.plefa.2013.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 12/29/2022]
Abstract
In rats, dietary restriction of the cysteine precursor methionine suppresses hepatic stearoyl-CoA desaturase (SCD)-1 expression and activity, whereas cysteine supplementation reverses these effects. In 2 independent cohorts: Hordaland Health Study (HUSK; N=2021, aged 71-74y), Norway, and Hoorn study (N=686, aged 50-87y), Netherlands, we examined the cross-sectional associations of plasma sulfur-containing compounds (SCC; methionine, S-adenosylmethionine, S-adenosylhomocysteine, homocysteine, cystathionine, total cysteine (tCys), glutathione and cysteinylglycine) with SCD-16 index (16:1n-7/16:0), estimated from fatty acid profiles of total plasma or serum lipids. Only tCys was consistently associated with SCD-16 index after adjustments for sex and age (HUSK: partial r=0.14; Hoorn: partial r=0.11, P<0.001 for both), and after further adjustments for other SCC, body fat, diet, exercise and plasma lipids (HUSK: partial r=0.07, P=0.004; Hoorn: partial r=0.12, P=0.013). Together with animal data showing an effect of dietary cysteine on SCD1, our results suggest a role for cysteine in SCD1 regulation in humans.
Collapse
Affiliation(s)
- K J Vinknes
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Post box 1046 Blindern, 0317 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fernandez A, Matias N, Fucho R, Ribas V, Von Montfort C, Nuño N, Baulies A, Martinez L, Tarrats N, Mari M, Colell A, Morales A, Dubuquoy L, Mathurin P, Bataller R, Caballeria J, Elena M, Balsinde J, Kaplowitz N, Garcia-Ruiz C, Fernandez-Checa JC. ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. J Hepatol 2013; 59:805-13. [PMID: 23707365 PMCID: PMC3779525 DOI: 10.1016/j.jhep.2013.05.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS The pathogenesis of alcohol-induced liver disease (ALD) is poorly understood. Here, we examined the role of acid sphingomyelinase (ASMase) in alcohol induced hepatic endoplasmic reticulum (ER) stress, a key mechanism of ALD. METHODS We examined ER stress, lipogenesis, hyperhomocysteinemia, mitochondrial cholesterol (mChol) trafficking and susceptibility to LPS and concanavalin-A in ASMase(-)(/-) mice fed alcohol. RESULTS Alcohol feeding increased SREBP-1c, DGAT-2, and FAS mRNA in ASMase(+/+) but not in ASMase(-/-) mice. Compared to ASMase(+/+) mice, ASMase(-/-) mice exhibited decreased expression of ER stress markers induced by alcohol, but the level of tunicamycin-mediated upregulation of ER stress markers and steatosis was similar in both types of mice. The increase in homocysteine levels induced by alcohol feeding was comparable in both ASMase(+/+) and ASMase(-/-) mice. Exogenous ASMase, but not neutral SMase, induced ER stress by perturbing ER Ca(2+) homeostasis. Moreover, alcohol-induced mChol loading and StARD1 overexpression were blunted in ASMase(-/-) mice. Tunicamycin upregulated StARD1 expression and this outcome was abrogated by tauroursodeoxycholic acid. Alcohol-induced liver injury and sensitization to LPS and concanavalin-A were prevented in ASMase(-/-) mice. These effects were reproduced in alcohol-fed TNFR1/R2(-/-) mice. Moreover, ASMase does not impair hepatic regeneration following partial hepatectomy. Of relevance, liver samples from patients with alcoholic hepatitis exhibited increased expression of ASMase, StARD1, and ER stress markers. CONCLUSIONS Our data indicate that ASMase is critical for alcohol-induced ER stress, and provide a rationale for further clinical investigation in ALD.
Collapse
Affiliation(s)
- Anna Fernandez
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Núria Matias
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Raquel Fucho
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Vicente Ribas
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Claudia Von Montfort
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Natalia Nuño
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Anna Baulies
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Laura Martinez
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Núria Tarrats
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Montserrat Mari
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Laurent Dubuquoy
- Université Lille Nord de France, and Service des Maladies de l'Appareil Digestif, Hôpital Huriez, Lille, France; Unité 995, Institut National de la Santé et de la Recherche Médicale, Lille, France
| | - Philippe Mathurin
- Université Lille Nord de France, and Service des Maladies de l'Appareil Digestif, Hôpital Huriez, Lille, France; Unité 995, Institut National de la Santé et de la Recherche Médicale, Lille, France
| | - Ramón Bataller
- Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | - Joan Caballeria
- Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain
| | | | - Jesus Balsinde
- Institut of Molecular Biology and Genetics, CSIC-CIBERDEM, Valladolid, Spain
| | - Neil Kaplowitz
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain,Carmen Garcia-Ruiz and Jose C Fernandez-Checa share senior authorship. Correspondence addressed to Jose C Fernandez-Checa,
| | - Jose C. Fernandez-Checa
- Department of Cell Death and Proliferation, IIBB-CSIC,Liver Unit-Hospital Clinic-IDIBAPS, and CIBEREHD, Barcelona, Spain,Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033,Carmen Garcia-Ruiz and Jose C Fernandez-Checa share senior authorship. Correspondence addressed to Jose C Fernandez-Checa,
| |
Collapse
|
27
|
Tsedensodnom O, Vacaru AM, Howarth DL, Yin C, Sadler KC. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease. Dis Model Mech 2013; 6:1213-26. [PMID: 23798569 PMCID: PMC3759341 DOI: 10.1242/dmm.012195] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes.
Collapse
Affiliation(s)
- Orkhontuya Tsedensodnom
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
28
|
Henkel AS, Dewey AM, Anderson KA, Olivares S, Green RM. Reducing endoplasmic reticulum stress does not improve steatohepatitis in mice fed a methionine- and choline-deficient diet. Am J Physiol Gastrointest Liver Physiol 2012; 303:G54-9. [PMID: 22556147 PMCID: PMC3404574 DOI: 10.1152/ajpgi.00052.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.
Collapse
Affiliation(s)
- Anne S. Henkel
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois
| | - Amanda M. Dewey
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois
| | - Kristy A. Anderson
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois
| | - Shantel Olivares
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois
| |
Collapse
|
29
|
Rinella ME, Siddiqui MS, Gardikiotes K, Gottstein J, Elias M, Green RM. Dysregulation of the unfolded protein response in db/db mice with diet-induced steatohepatitis. Hepatology 2011; 54:1600-9. [PMID: 21748768 PMCID: PMC3205284 DOI: 10.1002/hep.24553] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2011] [Indexed: 12/13/2022]
Abstract
UNLABELLED In humans with nonalcoholic fatty liver, diabetes is associated with more advanced disease. We have previously shown that diabetic db/db mice are highly susceptible to methionine choline-deficient diet (MCD)-induced hepatic injury. Because activation of the unfolded protein response (UPR) is an important adaptive cellular mechanism in diabetes, obesity, and fatty liver, we hypothesized that dysregulation of the UPR may partially explain how diabetes could promote liver injury. Db/db and db/m mice were fed the MCD or control diet for 4 weeks to characterize differences in UPR activation and downstream injury. Wildtype mice (C57BLKS/J) fed the MCD or control diet were treated with SP600125; a c-Jun N-terminal kinase (JNK) inhibitor and its effect on liver injury and UPR activation was measured. The MCD diet resulted in global up-regulation of the UPR in both diabetic db/db and nondiabetic db/m mice. db/db mice had an inadequate activation of recovery pathways (GADD34, XBP-1(s)) and accentuated activation of injury pathways related to persistent eif2-α phosphorylation (activating transcription factor 4 [ATF-4], C/EBP homologous transcription factor [CHOP], oxireductase endoplasmic reticulum oxidoreductin-1 [ERO-1α], JNK, nuclear factor kappaB [NF-κB]) compared to db/m mice. This led to increased expression of inflammatory mediators such as tumor necrosis factor alpha (TNF-α), ICAM-1, and MCP-1 compared to db/m mice. Interestingly, whereas pharmacologic JNK inhibition did not prevent the development of MCD diet-induced steatohepatitis, it did attenuate UPR and downstream inflammatory signaling. CONCLUSION MCD-fed db/db mice develop a more proinflammatory milieu than db/m mice associated with an impaired ability to dephosphorylate eif2-α through GADD34, impairing cellular recovery. These data may enhance our understanding of why diabetics with nonalcoholic steatohepatitis are prone to develop more severe liver injury than nondiabetic patients.
Collapse
Affiliation(s)
- Mary E Rinella
- Division of Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved cell signaling pathway that is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed from increased client protein load or the accumulation of unfolded or malfolded proteins. Once activated, this signaling pathway can either result in the recovery of homeostasis or can activate a cascade of events that ultimately result in cell death. The UPR/endoplasmic reticulum (ER) stress response spectrum and its interplay with other cellular organelles play an important role in the pathogenesis of disease in secretory cells rich in ER, such as hepatocytes. Over the past 2 decades, the contribution of ER stress to various forms of liver diseases has been examined. Robust support for a contributing, as opposed to a secondary role, for ER stress response is seen in the nonalcoholic steatohepatitis, alcoholic liver disease, ischemia/reperfusion injury, and cholestatic models of liver disease. The exact direction of the cause and effect relationship between modes of cell injury and ER stress remains elusive. It is apparent that a complex interplay exists between ER stress response, conditions that promote it, and those that result from it. A vicious cycle in which ER stress promotes inflammation, cell injury, and steatosis and in which steatogenesis, inflammation, and cell injury aggravate ER stress seems to be at play. It is perhaps the nature of such a vicious cycle that is the key pathophysiologic concept. Therapeutic approaches aimed at interrupting the cycle may dampen the stress response and the ensuing injury.
Collapse
Affiliation(s)
- Lily Dara
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA, USA.
| | | | | |
Collapse
|
31
|
Greene MW, Burrington CM, Ruhoff MS, Johnson AK, Chongkrairatanakul T, Kangwanpornsiri A. PKC{delta} is activated in a dietary model of steatohepatitis and regulates endoplasmic reticulum stress and cell death. J Biol Chem 2010; 285:42115-29. [PMID: 20971848 DOI: 10.1074/jbc.m110.168575] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hepatic steatosis can progress to the clinical condition of non-alcoholic steatohepatitis (NASH), which is a precursor of more serious liver diseases. The novel PKC isoforms δ and ε are activated by lipid metabolites and have been implicated in lipid-induced hepatic disease. Using a methionine- and choline-deficient (MCD) dietary model of NASH, we addressed the question of whether hepatic PKCδ and PKCε are activated. With progression from steatosis to steatohepatitis, there was activation and increased PKCδ protein content coincident with hepatic endoplasmic reticulum (ER) stress parameters. To examine whether similar changes could be induced in vitro, McA-RH 7777 (McA) hepatoma cells were used. We observed that McA cells stored triglyceride and released alanine aminotransferase (ALT) when treated with MCD medium in the presence of fatty acids. Further, MCD medium with palmitic acid, but not oleic or linoleic acids, maximally activated PKCδ and stimulated ER stress. In PKCδ knockdown McA cells, MCD/fatty acid medium-induced ALT release and ER stress induction were completely blocked, but triglyceride storage was not. In addition, a reduction in the uptake of propidium iodide and the number of apoptotic nuclei and a significant increase in cell viability and DNA content were observed in PKCδ knockdown McA cells incubated in MCD medium with palmitic acid. Our studies show that PKCδ activation and protein levels are elevated in an animal model of steatohepatitis, which was recapitulated in a cell model, supporting the conclusion that PKCδ plays a role in ALT release, the ER stress signal, and cell death.
Collapse
Affiliation(s)
- Michael W Greene
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York 13326, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Nuño-Ayala M, Guillén N, Navarro MA, Lou-Bonafonte JM, Arnal C, Gascón S, Barranquero C, Godino J, Royo-Cañas M, Sarría AJ, Guzmán MA, Hernandez E, Bregante MA, García-Gimeno MA, Osada J. Cysteinemia, rather than homocysteinemia, is associated with plasma apolipoprotein A-I levels in hyperhomocysteinemia. Atherosclerosis 2010; 212:268-73. [DOI: 10.1016/j.atherosclerosis.2010.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 04/15/2010] [Accepted: 04/23/2010] [Indexed: 02/02/2023]
|
33
|
Caballero F, Fernández A, Matías N, Martínez L, Fucho R, Elena M, Caballeria J, Morales A, Fernández-Checa JC, García-Ruiz C. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem 2010; 285:18528-36. [PMID: 20395294 DOI: 10.1074/jbc.m109.099333] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pathogenesis and treatment of nonalcoholic steatohepatitis (NASH) are not well established. Feeding a diet deficient in both methionine and choline (MCD) is one of the most common models of NASH, which is characterized by steatosis, mitochondrial dysfunction, hepatocellular injury, oxidative stress, inflammation, and fibrosis. However, the individual contribution of the lack of methionine and choline in liver steatosis, advanced pathology and impact on mitochondrial S-adenosyl-L-methionine (SAM) and glutathione (GSH), known regulators of disease progression, has not been specifically addressed. Here, we examined the regulation of mitochondrial SAM and GSH and signs of disease in mice fed a MCD, methionine-deficient (MD), or choline-deficient (CD) diet. The MD diet reproduced most of the deleterious effects of MCD feeding, including weight loss, hepatocellular injury, oxidative stress, inflammation, and fibrosis, whereas CD feeding was mainly responsible for steatosis, characterized by triglycerides and free fatty acids accumulation. These findings were preceded by MCD- or MD-mediated SAM and GSH depletion in mitochondria due to decreased mitochondrial membrane fluidity associated with a lower phosphatidylcholine/phosphatidylethanolamine ratio. MCD and MD but not CD feeding resulted in increased ceramide levels by acid sphingomyelinase. Moreover, GSH ethyl ester or SAM therapy restored mitochondrial GSH and ameliorated hepatocellular injury in mice fed a MCD or MD diet. Thus, the depletion of SAM and GSH in mitochondria is an early event in the MCD model of NASH, which is determined by the lack of methionine. Moreover, therapy using permeable GSH prodrugs may be of relevance in NASH.
Collapse
Affiliation(s)
- Francisco Caballero
- Liver Unit, Centro de Investigaciones Biomédicas Esther Koplowitz, Instituto Malalties Digestivas i Metaboliques, Hospital Clínic i Provincial, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|