1
|
Samara I, Moula AI, Moulas AN, Katsouras CS. The Effect of Retinoids in Vascular Smooth Muscle Cells: From Phenotyping Switching to Proliferation and Migration. Int J Mol Sci 2024; 25:10303. [PMID: 39408632 PMCID: PMC11477379 DOI: 10.3390/ijms251910303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Atherosclerosis, a term derived from the Greek "athero" (atheroma) and "sclerosis" (hardening), is a long-standing process that leads to the formation of atheromatous plaques in the arterial wall, contributing to the development of atherosclerotic cardiovascular disease. The proliferation and migration of vascular smooth muscle cells (VSMCs) and the switching of their phenotype play a crucial role in the whole process. Retinoic acid (RA), a natural derivative of vitamin A, has been used in the treatment of various inflammatory diseases and cell proliferation disorders. Numerous studies have demonstrated that RA has an important inhibitory effect on the proliferation, migration, and dedifferentiation of vascular smooth muscle cells, leading to a significant reduction in atherosclerotic lesions. In this review article, we explore the effects of RA on the pathogenesis of atherosclerosis, focusing on its regulatory action in VSMCs and its role in the phenotypic switching, proliferation, and migration of VSMCs. Despite the potential impact that RA may have on the process of atherosclerosis, further studies are required to examine its safety and efficacy in clinical practice.
Collapse
Affiliation(s)
- Ioanna Samara
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Amalia I. Moula
- Department of Surgery, “Achillopouleion” General Hospital, 38222 Volos, Greece;
| | | | - Christos S. Katsouras
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
2
|
Takaguri A, Ishizaka R, Maki S, Satoh K. The role of tribbles homolog 2 in vascular smooth muscle cell proliferation. Cell Biol Int 2023; 47:787-795. [PMID: 36626273 DOI: 10.1002/cbin.11982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Tribbles homolog 2 (TRIB2) functions as an adapter protein that regulates signal transductions involved in a variety of cellular functions, including tumorigenesis. However, the role of TRIB2 in the proliferation of vascular smooth muscle cells (VSMCs) and the underlying expression mechanisms remain unclear. The present study investigated the role of TRIB2 in VSMC proliferation and revealed that TRIB2 expression increases following vascular injury and platelet-derived growth factor (PDGF)-BB-stimulated VSMCs. We found that pretreatment with diphenyleneiodonium (a nicotinamide adenine dinucleotide phosphate oxidase inhibitor), U0126 (an inhibitor of mitogen-activated protein kinase kinase 1 [MEK1]), or siRNA targeting the gene encoding early growth response 1 (EGR-1) significantly inhibits PDGF-BB-induced TRIB2 expression in VSMCs. Furthermore, TRIB2 knockdown significantly inhibits PDGF-BB-induced proliferation of VSMCs but does not affect the phosphorylation of AKT. However, phosphorylation of ERK1 and expression of proliferating cell nuclear antibody are significantly suppressed in VSMCs by PDGF-BB stimulation. Thus, PDGF-BB-induced TRIB2 expression is mediated by ROS/ERK/EGR-1 pathways and plays a critical role in VSMC proliferation via modulation of ERK activity. We propose TRIB2 as a promising therapeutic target for the prevention of neointima formation and vascular disease.
Collapse
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Teine-ku, Japan
| | - Rena Ishizaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Teine-ku, Japan
| | - Shota Maki
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Teine-ku, Japan
| | - Kumi Satoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Teine-ku, Japan
| |
Collapse
|
3
|
Guo M, Goudarzi KM, Abedi S, Pieber M, Sjöberg E, Behnan J, Zhang XM, Harris RA, Bartek J, Lindström MS, Nistér M, Hägerstrand D. SFRP2 induces a mesenchymal subtype transition by suppression of SOX2 in glioblastoma. Oncogene 2021; 40:5066-5080. [PMID: 34021259 PMCID: PMC8363098 DOI: 10.1038/s41388-021-01825-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Intratumoral heterogeneity is a characteristic of glioblastomas that contain an intermixture of cell populations displaying different glioblastoma subtype gene expression signatures. Proportions of these populations change during tumor evolution, but the occurrence and regulation of glioblastoma subtype transition is not well described. To identify regulators of glioblastoma subtypes we utilized a combination of in vitro experiments and in silico analyses, using experimentally generated as well as publicly available data. Through this combined approach SOX2 was identified to confer a proneural glioblastoma subtype gene expression signature. SFRP2 was subsequently identified as a SOX2-antagonist, able to induce a mesenchymal glioblastoma subtype signature. A subset of patient glioblastoma samples with high SFRP2 and low SOX2 expression was particularly enriched with mesenchymal subtype samples. Phenotypically, SFRP2 decreased tumor sphere formation, stemness as assessed by limiting dilution assay, and overall cell proliferation but increased cell motility, whereas SOX2 induced the opposite effects. Furthermore, an SFRP2/non-canonical-WNT/KLF4/PDGFR/phospho-AKT/SOX2 signaling axis was found to be involved in the mesenchymal transition. Analysis of human tumor tissue spatial gene expression patterns showed distinct expression of SFRP2- and SOX2-correlated genes in vascular and cellular areas, respectively. Finally, conditioned media from SFRP2 overexpressing cells increased CD206 on macrophages. Together, these findings present SFRP2 as a SOX2-antagonist with the capacity to induce a mesenchymal subtype transition in glioma cells located in vascular tumor areas, highlighting its role in glioblastoma tumor evolution and intratumoral heterogeneity.
Collapse
Affiliation(s)
- Min Guo
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden. .,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Shiva Abedi
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Melanie Pieber
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Elin Sjöberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jinan Behnan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Department of Neurosurgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xing-Mei Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,The Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Mikael S Lindström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Daniel Hägerstrand
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum, Solna, Sweden.
| |
Collapse
|
4
|
Nicoleau S, Fellows A, Wojciak-Stothard B. Role of Krüppel-like factors in pulmonary arterial hypertension. Int J Biochem Cell Biol 2021; 134:105977. [PMID: 33839307 DOI: 10.1016/j.biocel.2021.105977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/04/2023]
Abstract
Pulmonary arterial hypertension is a rare but deadly disease with a complex pathogenesis. Recent evidence demonstrates that Krüppel-like factors, a diverse family of transcription factors, are involved in several key disease processes such as the phenotypic transition of endothelial cells and smooth muscle cells. Importantly, manipulation of certain Krüppel-like factors enables protection or attenuation against pulmonary arterial hypertension in both animal models and preliminary human studies. In this review, we discuss how Krüppel-like factors, in particular Krüppel-like factors 2, 4 and 5 contribute to the pathological phenomena seen in pulmonary arterial hypertension and how associated signaling and microRNA pathways may be suitable targets for new therapies.
Collapse
Affiliation(s)
- Salina Nicoleau
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN, London, United Kingdom
| | - Adam Fellows
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN, London, United Kingdom
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN, London, United Kingdom.
| |
Collapse
|
5
|
ET AR silencing ameliorated neurovascular injury after SAH in rats through ERK/KLF4-mediated phenotypic transformation of smooth muscle cells. Exp Neurol 2021; 337:113596. [PMID: 33417892 DOI: 10.1016/j.expneurol.2021.113596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 12/29/2022]
Abstract
Subarachnoid haemorrhage (SAH) is a devastating cerebrovascular disease which has a high morbidity and mortality. The phenotypic transformation of smooth muscle cells (SMCs) lead to neurovascular injury after SAH. However, the underlying mechanism remains unclear. In the present study, we aimed to investigate the potential role of ET-1/ETAR on the phenotypic transformation of SMCs after SAH. The models of SAH were established in vivo and vitro. We observed ET-1 secretion by endothelial cells was increased, and the phenotypic transformation of SMCs was aggravated after SAH. Knocking down ETAR inhibited the phenotypic transformation of SMCs, decreased the migration ability of SMCs in vitro. Moreover, Knocking down ETAR ameliorated cerebral ischaemia and alleviated dysfunction of neurological function in vivo. In addition, Exogenous ET-1 increased the migration ability of SMCs and aggravated the phenotypic transformation of SMCs in vitro, which were partly reversed by the antagonist of Erk1/2 - SCH772984. Taken together, our results demonstrated that endothelial ET-1 aggravated the phenotypic transformation of SMCs after SAH. Knocking down ETAR inhibited the phenotypic transformation of SMCs through ERK/KLF4 thus ameliorating neurovascular injury after SAH. We also revealed that ET-1/ETAR is a potential therapeutic target after SAH.
Collapse
|
6
|
Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clin Sci (Lond) 2020; 133:2481-2498. [PMID: 31868216 PMCID: PMC6928565 DOI: 10.1042/cs20190835] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Notch signalling is critically involved in vascular morphogenesis and function. Four Notch isoforms (Notch1–4) regulating diverse cellular processes have been identified. Of these, Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it is critically involved in vascular development and differentiation. Under pathological conditions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes. Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current literature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH.
Collapse
|
7
|
Maguire EM, Xiao Q. Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia. FEBS J 2020; 287:5260-5283. [DOI: 10.1111/febs.15357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Eithne Margaret Maguire
- Centre for Clinical Pharmacology William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University China
| |
Collapse
|
8
|
Takaguri A, Sasano J, Akihiro O, Satoh K. The role of circadian clock gene BMAL1 in vascular proliferation. Eur J Pharmacol 2020; 872:172924. [PMID: 31958455 DOI: 10.1016/j.ejphar.2020.172924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, is implicated in the development of cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysms. However, the role of BMAL1 in vascular proliferation associated with vascular remodeling is unknown. In the present study, we investigated the mechanisms underlying BMAL1 expression in vascular smooth muscle cells (VSMCs) and the role of BMAL1 in VSMC proliferation. BMAL1 expression significantly increased in injured carotid arteries in C57BL/6J mice and platelet-derived growth factor (PDGF)-BB-stimulated VSMC cultures. Pretreatment with diphenyleneiodonium (an NADPH oxidase inhibitor) and U0126 or PD98059 (MEK Inhibitors) inhibited PDGF-BB-induced BMAL1 expression in a dose-dependent manner in VSMCs. In addition, the knockdown of early growth factor protein-1 (Egr-1) significantly inhibited PDGF-BB-induced BMAL1 mRNA or protein expression in VSMCs, and the knockdown of BMAL1 significantly decreased PDGF-BB-induced cell proliferation and extracellular signal-regulated kinase (ERK) phosphorylation but not Akt phosphorylation in VSMCs. The results demonstrate that PDGF-BB up-regulates BMAL1 expression through reactive oxygen species/ERK/Egr-1 pathways and that BMAL1 is involved in PDGF-BB-induced cell proliferation partially through ERK in VSMCs. Thus, BMAL1 may be a novel therapeutic target for the treatment of atherosclerosis including vascular remodeling.
Collapse
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Jun Sasano
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Oomiya Akihiro
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Kumi Satoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan.
| |
Collapse
|
9
|
Hou D, Fang T, Song L, Sun B, Liu B, Chen L. WITHDRAWN: MicroRNA-18a promotes proliferation and metastasis in oral squamous cell carcinoma via targeting KLF4. Cancer Biomark 2018:CBM181943. [PMID: 30614801 DOI: 10.3233/cbm-181943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
|
10
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Ding X, Zhong T, Jiang L, Huang J, Xia Y, Hu R. miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4. Mol Med Rep 2018; 17:7005-7016. [PMID: 29568911 PMCID: PMC5928655 DOI: 10.3892/mmr.2018.8772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/08/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, microRNAs (miRNAs/miRs) have gained increasing interest in cancer research. Increasing evidences demonstrated that miRNAs are important for tumor early detection and prognosis. The present study aimed to explore the function of miR-25 in non-small-cell lung cancer (NSCLC) and its underlying mechanisms. The expression levels of miR-25 and Krüppel-like factor 4 (KLF4) were assessed in 31 pairs of tissue from patients with NSCLC. In addition, the biological roles of miR-25 in NSCLC were analyzed via a cell wound healing assay, Transwell invasion and migration assays. Target genes of miR-25 were predicted using TargetScan and verified via a dual luciferase activity assay, western blotting and reverse transcription-quantitative polymerase chain reaction. The downstream signaling pathway was confirmed by western blot analysis. In the present study, miR-25 was overexpressed in 31 NSCLC samples compared with in corresponding normal tissues. Overexpression of miR-25 using miR-25 mimics markedly promoted NSCLC cell migration and invasion, while inhibition of miR-25 exerted the opposite effect. KLF4 was suggested to be a novel target gene of miR-25 in NSCLC cells. Knockdown of KLF4 promoted the migration and invasion of NSCLC cells, whereas rescue of KLF4 expression reduced cell motion ability in miR-25-overexpressing NSCLC cells. Furthermore, it was demonstrated that miR-25 activated the extracellular signal-regulated kinase (ERK) signaling pathway, which eventually led to increased vimentin, matrix metalloproteinase 11 and N-cadherin levels, and the downregulation of E-cadherin expression by inhibiting the expression of KLF4. In conclusion, miR-25 was demonstrated to activate the ERK signaling pathway by directly targeting KLF4, promoting cell migration and invasion. The findings of the present study indicated that miR-25 or KLF4 may serve as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoli Ding
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yu Xia
- Graduate Student Major of Laboratory Medicine of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Rong Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
12
|
Kikkawa Y, Ogura T, Nakajima H, Ikeda T, Takeda R, Neki H, Kohyama S, Yamane F, Kurogi R, Amano T, Nakamizo A, Mizoguchi M, Kurita H. Altered Expression of MicroRNA-15a and Kruppel-Like Factor 4 in Cerebrospinal Fluid and Plasma After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2017; 108:909-916.e3. [PMID: 28893694 DOI: 10.1016/j.wneu.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cerebral vasospasm (CVS) is a major determinant of prognosis in patients with subarachnoid hemorrhage (SAH). Alteration in the vascular phenotype contributes to development of CVS. However, little is known about the role of microRNAs (miRNAs) in the phenotypic alteration after SAH. We investigated the expression profile of miRNAs and the chronologic changes in the expression of microRNA-15a (miR-15a) and Kruppel-like factor 4 (KLF4), a potent regulator of vascular phenotype modulation that modulates the expression of miR-15a, in the plasma and cerebrospinal fluid (CSF) of patients with SAH. METHODS Peripheral blood and CSF samples were collected from 8 patients with aneurysmal SAH treated with endovascular obliteration. Samples obtained from 3 patients without SAH were used as controls in the analysis. Exosomal miRNAs were isolated and subjected to microarray analysis with the three-dimensional-gene miRNA microarray kit. The time course of the expression of miR-15a and KLF4 was analyzed using quantitative real-time polymerase chain reaction. RESULTS Microarray analysis showed that 12 miRNAs including miR-15a were upregulated or downregulated both in the CSF and in plasma after SAH within 3 days. Quantitative real-time polymerase chain reaction showed that miR-15a expression was significantly increased in both the CSF and plasma, with a peak around 3-5 days after SAH, whereas the expression of KLF4 was significantly decreased around 1-3 days after SAH and remained lower than in controls. CONCLUSIONS Our results suggest that an early and persistent decrease in KLF4 followed by an increase in miR-15a may contribute to the altered vascular phenotype, resulting in development of CVS.
Collapse
Affiliation(s)
- Yuichiro Kikkawa
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan.
| | - Takeshi Ogura
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Hiroyuki Nakajima
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Toshiki Ikeda
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Ririko Takeda
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Hiroaki Neki
- Department of Endovascular Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Shinya Kohyama
- Department of Endovascular Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Fumitaka Yamane
- Department of Endovascular Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Ryota Kurogi
- Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Toshiyuki Amano
- Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Hiroki Kurita
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| |
Collapse
|
13
|
Application of galangin, an active component of Alpinia officinarum Hance (Zingiberaceae), for use in drug-eluting stents. Sci Rep 2017; 7:8207. [PMID: 28811550 PMCID: PMC5557749 DOI: 10.1038/s41598-017-08410-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/10/2017] [Indexed: 01/25/2023] Open
Abstract
In clinical pathology, stent interposition is used to treat vascular disease but can lead to restenosis. Drug-eluting stents (DES) are most commonly used to suppress restenosis but can also have side effects. Therefore, we investigated the anti-proliferative effect and its possible target in vitro and in vivo. We found that Alpinia officinarum Hance (AO) extract efficiently inhibited VSMC proliferation by arresting the transition from the G0/G1 to the S phase via the up-regulation of p27KIP1 expression. Galangin (GA) was determined to be a significant component of this extract, with the same anti-proliferative activity as the raw extract. Immunoblotting and immunofluorescence staining showed that both the AO extract and GA targeted the up-regulation of p27KIP1 expression. Therefore, we next examined the effect of these compounds in a cuff-injured neointimal hyperplasia model in vivo. In this animal model, both the AO extract and GA completely suppressed the neointima formation, and this inhibitory effect was also demonstrated to target the up-regulation of p27KIP1, including the suppression of proliferating cell nuclear antigen expression. Our findings indicate that AO extract and GA have a potent anti-proliferative activity, targeting the up-regulation of p27 expression. Thus, GA may represent an alternative medicine for use in DES.
Collapse
|
14
|
Kobayashi T. Expression and Regulation of Tal2 during Neuronal Differentiation in P19 Cells. YAKUGAKU ZASSHI 2017; 137:61-71. [PMID: 28049897 DOI: 10.1248/yakushi.16-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T-cell acute lymphocytic leukemia 2 (Tal2) is a gene encoding a member of the basic helix-loop-helix transcription factor family, which is essential for the normal development of the mouse brain. We found that Tal2 was induced during neural differentiation in P19 cells, which are pluripotent mouse embryonal carcinoma cells that differentiate into the neural lineage upon both exposure to all-trans retinoic acid (atRA) and the formation of cell aggregation. Tal2 expression during neural differentiation in P19 cells was detected within 3 h after induction with atRA and retinoic acid receptor α (RARα). The atRA-RARα complex is known to bind to a characteristic retinoic acid response element (RARE) located in the promoter of target genes. We found a RARE-like element in the intron of Tal2. We also found a TATA-box-like element in the 5' region. The TATA-box-like element functioned as a core promoter, and TATA- box binding protein bound to this element upstream of Tal2 in P19 cells. The RARE-like element responded to atRA signaling that activated the transcription, and RARα was bound to this element in the intron of Tal2 in P19 cells. Furthermore, the interaction between these elements on Tal2 was confirmed in a chromatin immunoprecipitation assay. Because the neural differentiation of P19 cells mimics in part the development of the nervous system, P19 cells are useful for studying the mechanism underlying the role of Tal2 in neural differentiation. Further work is underway to clarify the function of Tal2 in neural differentiation using the differentiation system of P19 cells.
Collapse
|
15
|
Corley SM, Tsai SY, Wilkins MR, Shannon Weickert C. Transcriptomic Analysis Shows Decreased Cortical Expression of NR4A1, NR4A2 and RXRB in Schizophrenia and Provides Evidence for Nuclear Receptor Dysregulation. PLoS One 2016; 11:e0166944. [PMID: 27992436 PMCID: PMC5161508 DOI: 10.1371/journal.pone.0166944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022] Open
Abstract
Many genes are differentially expressed in the cortex of people with schizophrenia, implicating factors that control transcription more generally. Hormone nuclear receptors dimerize to coordinate context-dependent changes in gene expression. We hypothesized that members of two families of nuclear receptors (NR4As), and retinoid receptors (RARs and RXRs), are altered in the dorsal lateral prefrontal cortex (DLPFC) of people with schizophrenia. We used next generation sequencing and then qPCR analysis to test for changes in mRNA levels for transcripts encoding nuclear receptors: orphan nuclear receptors (3 in the NR4A, 3 in the RAR, 3 in the RXR families and KLF4) in total RNA extracted from the DLPFC from people with schizophrenia compared to controls (n = 74). We also correlated mRNA levels with demographic factors and with estimates of antipsychotic drug exposure (schizophrenia group only). We tested for correlations between levels of transcription factor family members and levels of genes putatively regulated by these transcription factors. We found significantly down regulated expression of NR4A1 (Nurr 77) and KLF4 mRNAs in people with schizophrenia compared to controls, by both NGS and qPCR (p = or <0.01). We also detected decreases in NR4A2 (Nurr1) and RXRB mRNAs by using qPCR in the larger cohort (p<0.05 and p<0.01, respectively). We detected decreased expression of RARG and NR4A2 mRNAs in females with schizophrenia (p<0.05). The mRNA levels of NR4A1, NR4A2 and NR4A3 were all negative correlated with lifetime estimates of antipsychotic exposure. These novel findings, which may be influenced by antipsychotic drug exposure, implicate the orphan and retinoid nuclear receptors in the cortical pathology found in schizophrenia. Genes down stream of these receptors can be dysregulated as well, but the direction of change is not immediately predictable based on the putative transcription factor changes.
Collapse
Affiliation(s)
- Susan M. Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Institute, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Psychiatry, University of New South Wales Sydney, NSW, Australia
| | - Marc R. Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Psychiatry, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
16
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
17
|
Zhang Y, Li YH, Liu C, Nie CJ, Zhang XH, Zheng CY, Jiang W, Yin WN, Ren MH, Jin YX, Liu SF, Zheng B, Wen JK. miR-29a regulates vascular neointimal hyperplasia by targeting YY1. Cell Prolif 2016; 50. [PMID: 27910161 DOI: 10.1111/cpr.12322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The formation of vascular neointima is mainly related to impairment of the vascular endothelial barrier and abnormal proliferation and migration of smooth muscle cells. The objective of this study was to investigate whether miR-29a exerts any promoting effect on the vascular neointimal hyperplasia and if so, its mechanism. MATERIALS AND METHODS RT-qPCR was performed to determine expression of miR-29a in vascular smooth muscle cells (VSMC) and vascular neointimal hyperplasia. To further understand its role, we restored its expression in VSMCs by transfection with miR-29a mimics or inhibitors. Effects of miR-29a on cell proliferation were also determined. RESULTS In this study, we used two kinds of model to observe the role of miR-29a in neointimal hyperplasia induced by carotid ligation or balloon injury. The major findings were that: (i) miR-29a overexpression promoted neointimal hyperplasia induced by carotid ligation; (ii) miR-29a increased proliferation of VSMCs, one aspect of which was by targeting expression of Ying and yang 1 protein (YY1), a negative regulator of Cyclin D1. A further aspect, was by increasing expression of Krüppel-like factor 5, a positive regulator of Cyclin D1, thereby allowing formation a synergistic effect. (iii) Tongxinluo (TXL), a traditional Chinese medicine reduced neointimal formation in ligated vessels by inhibiting VSMC proliferation and migration. CONCLUSIONS These findings provide a new molecular mechanism of TXL in decreasing neointima hyperplasia.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Yong Hui Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Hebei Center for Disease Control and Prevention, Shijiazhuang, China
| | - Chao Liu
- Laboratory Animal Center of Hebei Medical University, Shijiazhuang, China
| | - Chan-Juan Nie
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Cui-Ying Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Wei-Na Yin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Handan First Hospital, Handan, China
| | - Ming-Hui Ren
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Xin Jin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Shu-Feng Liu
- Laboratory Animal Center of Hebei Medical University, Shijiazhuang, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Nie CJ, Li YH, Zhang XH, Wang ZP, Jiang W, Zhang Y, Yin WN, Zhang Y, Shi HJ, Liu Y, Zheng CY, Zhang J, Zhang GL, Zheng B, Wen JK. SUMOylation of KLF4 acts as a switch in transcriptional programs that control VSMC proliferation. Exp Cell Res 2016; 342:20-31. [PMID: 26945917 DOI: 10.1016/j.yexcr.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation is an important issue due to its major implications for the prevention of pathological vascular conditions. The objective of this work was to assess the function of small ubiquitin-like modifier (SUMO)ylated Krϋppel-like transcription factor 4 (KLF4) in the regulation of VSMC proliferation in cultured cells and in animal models with balloon injury. We found that under basal conditions, binding of non-SUMOylated KLF4 to p300 activated p21 (p21(WAF1/CIP1))transcription, leading to VSMC growth arrest. PDGF-BB promoted the interaction between Ubc9 and KLF4 and the SUMOylation of KLF4, which in turn recruited transcriptional corepressors to the p21 promoter. The reduction in p21 enhanced VSMC proliferation. Additionally, the SUMOylated KLF4 did not affect the expression of KLF4, thereby forming a positive feedback loop enhancing cell proliferation. These results demonstrated that SUMOylated KLF4 plays an important role in cell proliferation by reversing the transactivation action of KLF4 on p21 induced with PDGF-BB.
Collapse
Affiliation(s)
- Chan-Juan Nie
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Hui Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China; Hebei Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Zhi-Peng Wang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wen Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wei-Na Yin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Zhang
- Department of Urinary Surgery, Second Hospital of Hebei Medical University, Pingan Road, Shijiazhuang 050000, China
| | - Hui-Jing Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Cui-Ying Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | | | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| |
Collapse
|
19
|
miR-200c-SUMOylated KLF4 feedback loop acts as a switch in transcriptional programs that control VSMC proliferation. J Mol Cell Cardiol 2015; 82:201-12. [PMID: 25791170 DOI: 10.1016/j.yjmcc.2015.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation is an important issue because it has major implications for the prevention of pathological vascular conditions. Using microRNA array screen, we found the expression levels of 200 unique miRNAs in hyperplasic tissues. Among them, miR-200c expression substantially was down-regulated. The objective of this work was to assess the function of miR-200c and SUMOylated Krϋppel-like transcription factor 4 (KLF4) in the regulation of VSMC proliferation in both cultured cells and animal models of balloon injury. Under basal conditions, we found that miR-200c inhibited the expression of KLF4 and the SUMO-conjugating enzyme Ubc9. Upon PDGF-BB treatment, Ubc9 interacted with and promoted the SUMOylation of KLF4, which allowed the recruitment of transcriptional corepressors (e.g., nuclear receptor corepressor (NCoR) and HDAC2) to the miR-200c promoter. The reduction in miR-200c levels led to increased target gene expression (e.g., Ubc9 and KLF4), which further repressed miR-200c levels and accelerated VSMC proliferation. These results demonstrate that induction of a miR-200c-SUMOylated KLF4 feedback loop is a significant aspect of the PDGF-BB proliferative response in VSMCs and that targeting Ubc9 represents a novel approach for the prevention of restenosis.
Collapse
|
20
|
Smith MJ. Germline and somatic mutations in meningiomas. Cancer Genet 2015; 208:107-14. [PMID: 25857641 DOI: 10.1016/j.cancergen.2015.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 02/07/2023]
Abstract
Meningiomas arise from the arachnoid layer of the meninges that surround the brain and spine. They account for over one third of all primary central nervous system tumors in adults and confer a significant risk of location-dependent morbidity due to compression or displacement. A significant increase in risk of meningiomas is associated with neurofibromatosis type 2 (NF2) disease through mutation of the NF2 gene. In addition, approximately 5% of individuals with schwannomatosis disease develop meningiomas, through mutation of the SWI/SNF chromatin remodeling complex subunit, SMARCB1. Recently, a second SWI/SNF complex subunit, SMARCE1, was identified as a cause of clear cell meningiomas, indicating a wider role for this complex in meningioma disease. The sonic hedgehog (SHH)-GLI1 signaling pathway gene, SUFU, has also been identified as the cause of hereditary multiple meningiomas in a large Finnish family. The recent identification of somatic mutations in components of the SHH-GLI1 and AKT1-MTOR signaling pathways indicates the potential for cross talk of these pathways in the development of meningiomas. This review describes the known meningioma predisposition genes and their links to the recently identified somatic mutations.
Collapse
Affiliation(s)
- Miriam J Smith
- Manchester Centre for Genomic Medicine, St Mary's Hospital, University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Kobayashi T, Komori R, Ishida K, Kino K, Tanuma SI, Miyazawa H. Tal2 expression is induced by all-trans retinoic acid in P19 cells prior to acquisition of neural fate. Sci Rep 2014; 4:4935. [PMID: 24816818 PMCID: PMC4017210 DOI: 10.1038/srep04935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/24/2014] [Indexed: 11/10/2022] Open
Abstract
TAL2 is a member of the basic helix-loop-helix family and is essential for the normal development of the mouse brain. However, the function of TAL2 during brain development is unclear. P19 cells are pluripotent mouse embryonal carcinoma cells that adopt neural fates upon exposure to all-trans retinoic acid (atRA) and culture in suspension. We found that the expression of Tal2 gene was induced in P19 cells after addition of atRA in suspension culture. Tal2 expression was detected within 3 h after the induction, and had nearly returned to basal levels by 24 h. When GFP-tagged TAL2 (GFP-TAL2) was expressed in P19 cells, we observed GFP-TAL2 in the nucleus. Moreover, we showed that atRA and retinoic acid receptor α regulated Tal2 expression. These results demonstrate for the first time that atRA induces Tal2 expression in P19 cells, and suggest that TAL2 commits to the acquisition of neural fate in brain development.
Collapse
Affiliation(s)
- Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Rie Komori
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Kiyoshi Ishida
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Sei-ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
22
|
Shi X, DiRenzo D, Guo LW, Franco SR, Wang B, Seedial S, Kent KC. TGF-β/Smad3 stimulates stem cell/developmental gene expression and vascular smooth muscle cell de-differentiation. PLoS One 2014; 9:e93995. [PMID: 24718260 PMCID: PMC3981734 DOI: 10.1371/journal.pone.0093995] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.
Collapse
MESH Headings
- Animals
- Aorta
- Cell Dedifferentiation/genetics
- Cell Division/genetics
- Cells, Cultured
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Hyperplasia
- Male
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Recombinant Fusion Proteins/metabolism
- Smad3 Protein
- Transcription, Genetic/genetics
- Transcriptome
- Transduction, Genetic
- Transforming Growth Factor beta1
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Xudong Shi
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Daniel DiRenzo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| | - Sarah R. Franco
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Bowen Wang
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Stephen Seedial
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - K. Craig Kent
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| |
Collapse
|
23
|
Sun Y, Zheng B, Zhang XH, He M, Guo ZW, Wen JK. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. Biochem Biophys Res Commun 2014; 443:382-8. [DOI: 10.1016/j.bbrc.2013.11.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023]
|
24
|
Huo L, Cui D, Yang X, Gao Z, Trier K, Zeng J. All-trans retinoic acid modulates mitogen-activated protein kinase pathway activation in human scleral fibroblasts through retinoic acid receptor beta. Mol Vis 2013; 19:1795-803. [PMID: 23946634 PMCID: PMC3742120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 08/03/2013] [Indexed: 10/28/2022] Open
Abstract
PURPOSE All-trans retinoic acid (ATRA) is known to inhibit the proliferation of human scleral fibroblasts (HSFs) and to modulate the scleral intercellular matrix composition, and may therefore serve as a mediator for controlling eye growth. Cell proliferation is regulated by the mitogen-activated protein kinase (MAPK) pathway. The aim of the current study was to investigate whether changed activation of the MAPK pathway could be involved in the response of HSFs exposed to ATRA. METHODS HSFs were cultured in Dulbecco Modified Eagle's Medium/F12 (DMEM/F12) and exposed to 1 μmol/l ATRA for 10 min, 30 min, 1 h, 8 h, or 24 h. The activation of extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK) in HSFs was assessed with western blot analysis and immunocytofluorescence. RESULTS After exposure to ATRA for 24 h, the HSFs appeared shrunken and thinner than the control cells. The intercellular spaces were wider, and the HSFs appeared less numerous than in the control culture. Western blot showed decreased activation of ERK 1/2 in the HSFs from 30 min (p=0.01) to 24 h (p<0.01) after the start of exposure to ATRA, and increased activation of the JNK protein from 10 to 30 min (p<0.01) after the start of exposure to ATRA. Indirect immunofluorescence confirmed changes in activation of ERK 1/2 and JNK in HSFs exposed to ATRA. No change in activation of p38 in HSFs was observed after exposure to ATRA. Pretreatment of the HSFs with LE135, an antagonist of retinoic acid receptor beta (RARβ), abolished the ATRA-induced changes inactivation of ERK 1/2 and JNK. CONCLUSIONS ATRA inhibits HSF proliferation by a mechanism associated with modulation of ERK 1/2 and JNK activation and depends on stimulation of retinoic acid receptor beta.
Collapse
Affiliation(s)
- Lijun Huo
- State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China,The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Dongmei Cui
- State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiao Yang
- State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhenya Gao
- State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Klaus Trier
- Trier Research Laboratories, Hellerup, Denmark
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
25
|
Liu Y, Zheng B, Zhang XH, Nie CJ, Li YH, Wen JK. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell. Biochem Biophys Res Commun 2013; 436:162-8. [PMID: 23726909 DOI: 10.1016/j.bbrc.2013.05.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 01/04/2023]
Abstract
The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Active Transport, Cell Nucleus/drug effects
- Animals
- Becaplermin
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- HEK293 Cells
- Humans
- Karyopherins/metabolism
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Microscopy, Confocal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation/drug effects
- Protein Binding/drug effects
- Proto-Oncogene Proteins c-sis/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sumoylation/drug effects
- Exportin 1 Protein
Collapse
Affiliation(s)
- Yan Liu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology, China
| | | | | | | | | | | |
Collapse
|
26
|
LIF maintains progenitor phenotype of endothelial progenitor cells via Krüppel-like factor 4. Microvasc Res 2012; 84:270-7. [PMID: 22835519 DOI: 10.1016/j.mvr.2012.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 06/22/2012] [Accepted: 07/16/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) participate in post-natal vasculogenesis. Maintaining the preliminary progenitor phenotype and good proliferation capacity of EPCs is key to their use in treating cardiovascular ischemic diseases. However, transcriptional regulation in EPCs remains largely unknown. We investigated the effect of leukemia inhibitory factor (LIF) combined with vascular endothelial growth factor (VEGF) on EPCs and the potential roles of Krüppel-like transcription factors (KLFs). METHODS AND RESULTS Co-treatment with LIF and VEGF (100 ng/ml each) (V+L) could increase EPC colony-forming units and CD34 expression, which reflects the EPC progenitor phenotype and alleviated differentiation of EPCs. The effect was associated with Akt activation and increased expression of KLF4. Upregulation of KLF4 induced by V+L could be inhibited by transfection with dominant-negative Akt adenovirus. Furthermore, overexpression of KLF4 in EPCs enhanced the expression of CD34 and alleviated cell differentiation but did not increase the phosphorylation of Akt. CONCLUSIONS LIF combined with VEGF can maintain the preliminary, progenitor phenotype of EPCs and alleviate cell differentiation by upregulating KLF4, which may provide new insights into transcriptional regulation in EPCs.
Collapse
|
27
|
Shi HJ, Wen JK, Miao SB, Liu Y, Zheng B. KLF5 and hhLIM cooperatively promote proliferation of vascular smooth muscle cells. Mol Cell Biochem 2012; 367:185-94. [DOI: 10.1007/s11010-012-1332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/03/2012] [Indexed: 12/11/2022]
|
28
|
Sun L, Zhao R, Zhang L, Zhang T, Xin W, Lan X, Huang C, Du G. Salvianolic acid A inhibits PDGF-BB induced vascular smooth muscle cell migration and proliferation while does not constrain endothelial cell proliferation and nitric oxide biosynthesis. Molecules 2012; 17:3333-47. [PMID: 22418933 PMCID: PMC6268737 DOI: 10.3390/molecules17033333] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 11/16/2022] Open
Abstract
Proliferation and migration of vascular smooth muscle cells (VSMCs) are critical events in the initiation and development of restenosis upon percutaneous transluminal coronary angioplasty (PTCA). Polyphenols have been suggested to ameliorate post-angioplasty restenosis. Salvianolic A (SalA) is one of the most abundant polyphenols extracted from salvia. In this study, we investigated the effect of salvianolic A (SalA) on the migration and proliferation of VSMCs. We found a preferential interaction of SalA with cellular systems that rely on the PDGF signal, but not on the EGF and bFGF signal. SalA inhibits PDGF-BB induced VSMC proliferation and migration in the concentration range from 0.01 to 0.1 μM. The inhibition of SalA on VSMC proliferation is associated with cell cycle arrest. We also found that SalA inhibits the PDGFRβ-ERK1/2 signaling cascade activated by PDGF-BB in VSMCs. In addition, SalA does not influence the proliferation of endothelial cells, the synthesis of NO and eNOS protein expression. Our results suggest that SalA inhibits migration and proliferation of VSMCs induced by PDGF-BB via the inhibition of the PDGFRβ-ERK1/2 cascade, but that it does not constrain endothelial cell proliferation and nitric oxide biosynthesis. Thus, the present study suggests a novel adjunct pharmacological strategy to prevent angioplasty-related restenosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guanhua Du
- Author to whom correspondence should be addressed; ; Tel./Fax: +86-10-6316-5184
| |
Collapse
|
29
|
Shi JH, Zheng B, Chen S, Ma GY, Wen JK. Retinoic acid receptor α mediates all-trans-retinoic acid-induced Klf4 gene expression by regulating Klf4 promoter activity in vascular smooth muscle cells. J Biol Chem 2012; 287:10799-811. [PMID: 22337869 DOI: 10.1074/jbc.m111.321836] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor Krüppel-like factor 4 (KLF4) plays a critical role in vascular smooth muscle cell (VSMC) differentiation induced by all-trans-retinoic acid (ATRA). Although it has been demonstrated that ATRA stimulation augments both KLF4 protein and mRNA levels in VSMCs, the molecular mechanisms by which ATRA regulates Klf4 transcription are unknown. In this study, we examined the roles of ATRA-selective nuclear retinoic acid receptors (RARs) in the transcriptional regulation of Klf4. The introduction of small interfering RNA and an RAR antagonist demonstrated that RARα, but not RARβ or RARγ, mediated ATRA-induced Klf4 expression. A luciferase assay for the Klf4 promoter showed that three GC boxes in the proximal Klf4 promoter were indispensible for ATRA-induced Klf4 transcription and that RARα enhanced Klf4 promoter activity in a GC box-dependent manner. Furthermore, chromatin immunoprecipitation and oligonucleotide pulldown assays demonstrated that the transcription factors KLF4, Sp1, and YB1 directly bound to the GC boxes of the proximal Klf4 promoter. Upon RARα agonist stimulation, RARα was recruited to the Klf4 promoter through its interaction with KLF4, Sp1, and YB1 to form a transcriptional activation complex on the three GC boxes of the Klf4 promoter. These results suggest that RARα serves as an essential co-activator for ATRA signaling and that the recruitment of RARα to the KLF4-Sp1-YB1 complex, which leads to Klf4 expression in VSMCs, is independent of a retinoic acid response element.
Collapse
Affiliation(s)
- Jian-hong Shi
- Department of Biochemistry and Molecular Biology, the Key Laboratory of Neurobiology and Vascular Biology, China
| | | | | | | | | |
Collapse
|
30
|
Li XW, Hu CP, Wu WH, Zhang WF, Zou XZ, Li YJ. Inhibitory effect of calcitonin gene-related peptide on hypoxia-induced rat pulmonary artery smooth muscle cells proliferation: role of ERK1/2 and p27. Eur J Pharmacol 2012; 679:117-26. [PMID: 22306243 DOI: 10.1016/j.ejphar.2012.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/05/2012] [Accepted: 01/13/2012] [Indexed: 11/29/2022]
Abstract
Calcitonin gene-related peptide (CGRP) inhibits angiotensin II-induced proliferation of aortic smooth muscle cells via inactivation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). ERK1/2 is necessary for the degradation or down-regulation of the cell cycle inhibitor p27, and is also crucial in mediating proliferation of pulmonary artery smooth muscle cells (PASMCs). Whether ERK1/2/p27 signal pathway is involved in CGRP-mediated pathogenesis of pulmonary hypertension and vascular remodeling remains unknown. Pulmonary hypertension was induced by hypoxia in rats, and capsaicin (50 mg/kg, s.c.) was used to deplete endogenous CGRP. Proliferation of cultured PASMCs was determined by BrdU incorporation method and flow cytometry. The expression/level of CGRP, p27, ERK1/2, c-fos and c-myc was analyzed by radioimmunoassay, immunohistochemistry, real-time PCR or Western blot. Sensory CGRP depletion by capsaicin exacerbated hypoxia-induced pulmonary hypertension in rats, as shown by an increase in right ventricle systolic pressure, mean pulmonary artery pressure and vascular hypertrophy, accompanied with decreased p27 expression and increased expression of phosphorylated ERK1/2, c-fos and c-myc. Exogenous application of CGRP significantly inhibited hypoxia-induced proliferation of PASMCs concomitantly with increased p27 expression and decreased expression of phosphorylated ERK1/2, c-fos and c-myc. These effects of CGRP were abolished in the presence of CGRP(8-37). Knockdown of p27 also reversed the inhibitory effect of CGRP on proliferation of PASMCs and expression of c-fos and c-myc, but not on ERK1/2 phosphorylation. These results suggest that CGRP inhibits hypoxia-induced proliferation of PASMCs via ERK1/2/p27/c-fos/c-myc pathway. Down-regulation of CGRP may contribute to remodeling of pulmonary arteries in hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Xian-Wei Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | | | | | | | | | | |
Collapse
|
31
|
Aydemir E, Bayrak OF, Sahin F, Atalay B, Kose GT, Ozen M, Sevli S, Dalan AB, Yalvac ME, Dogruluk T, Türe U. Characterization of cancer stem-like cells in chordoma. J Neurosurg 2012; 116:810-20. [PMID: 22283189 DOI: 10.3171/2011.12.jns11430] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECT Chordomas are locally aggressive bone tumors known to arise from the remnants of the notochord. Because chordomas are rare, molecular studies aimed at developing new therapies are scarce and new approaches are needed. Chordoma cells and cancer stem-like cells share similar characteristics, including self-renewal, differentiation, and resistance to chemotherapy. Therefore, it seems possible that chordomas might contain a subpopulation of cancer stem-like cells. The aim of this study is to determine whether cancer stem-like cells might be present in chordomas. METHODS In this study, the authors used gene expression analysis for common cancer stem-like cellmarkers, including c-myc, SSEA-1, oct4, klf4, sox2, nanog, and brachyury, and compared chordoma cells and tissues with nucleus pulposus tissues (disc degenerated nontumorigenic tissues). Differentiation through agents such as all-trans retinoic acid and osteogenic differentiation medium was induced to the chordoma cells. Additionally, U-CH1 cells were sorted via magnetic cell sorting for stem cell markers CD133 and CD15. After separation, positive and negative cells for these markers were grown in a nonadherent environment, soft agar, to determine whether the presence of these cancer stem-like cells might be responsible for initiating chordoma. The results were compared with those of untreated cells in terms of migration, proliferation, and gene expression by using reverse transcriptase polymerase chain reaction. RESULTS The results indicate that chordoma cells might be differentiating and committing into an osteogenic lineage when induced with the osteogenic differentiation agent. Chordoma cells that are induced with retinoic acid showed slower migration and proliferation rates when compared with the untreated cells. Chordoma cells that were found to be enriched by cancer stem-like cell markers, namely CD133 and CD15, were able to live in a nonadherent soft agar medium, demonstrating a self-renewal capability. To the authors' knowledge, this is the first time that cancer stem-like cell markers were also found to be expressed in chordoma cells and tissues. CONCLUSIONS Cancer stem-like cell detection might be an important step in determining the recurrent and metastatic characteristics of chordoma. This finding may lead to the development of new approaches toward treatments of chordomas.
Collapse
Affiliation(s)
- Esra Aydemir
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang XH, Zheng B, Gu C, Fu JR, Wen JK. TGF-β1 downregulates AT1 receptor expression via PKC-δ-mediated Sp1 dissociation from KLF4 and Smad-mediated PPAR-γ association with KLF4. Arterioscler Thromb Vasc Biol 2012; 32:1015-23. [PMID: 22282354 DOI: 10.1161/atvbaha.111.244962] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cardiovascular effects of angiotensin II are primarily mediated via the angiotensin II type 1 receptor (AT1R). Krüppel-like factor 4 (KLF4), a transcription factor that binds to the transforming growth factor (TGF)-β control element (TCE), regulates a variety of receptor expression in vascular smooth muscle cells. In the present study, we investigated the mechanisms of TGF-β-mediated KLF4 regulation of AT1R expression. METHODS AND RESULTS Coimmunoprecipitation, chromatin immunoprecipitation, and luciferase assays were performed, with the results suggesting that Sp1 forms a complex with KLF4 bound to the TCE of the AT1R promoter and cooperatively activates AT1R transcription in vascular smooth muscle cells under basal conditions. On activation of TGF-β1 signaling, Sp1 is dissociated from the KLF4-Sp1 complex through PKC-δ-mediated KLF4 phosphorylation at Thr401, downregulating AT1R expression. Simultaneously, TGF-β1 facilitates KLF4-PPAR-γ complex formation and its binding to the TCE of the AT1R promoter through Smad-mediated KLF4 phosphorylation at Ser470, subsequently leading to inhibition of AT1R transcription. CONCLUSIONS KLF4 functions as a protein platform that is able to bind to the TCE of the AT1R promoter. On activation of TGF-β signaling, KLF4 mediates Sp1 dissociation from, and PPAR-γ association with, the AT1R promoter, leading to downregulation of AT1R expression in VSMCs.
Collapse
Affiliation(s)
- Xin-hua Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
33
|
Kee HJ, Kwon JS, Shin S, Ahn Y, Jeong MH, Kook H. Trichostatin A prevents neointimal hyperplasia via activation of Krüppel like factor 4. Vascul Pharmacol 2011; 55:127-34. [DOI: 10.1016/j.vph.2011.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/28/2011] [Accepted: 07/02/2011] [Indexed: 12/20/2022]
|
34
|
Zheng B, Han M, Shu YN, Li YJ, Miao SB, Zhang XH, Shi HJ, Zhang T, Wen JK. HDAC2 phosphorylation-dependent Klf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs. Cell Res 2011; 21:1487-508. [PMID: 21383775 PMCID: PMC3193446 DOI: 10.1038/cr.2011.34] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/19/2010] [Accepted: 01/10/2011] [Indexed: 02/03/2023] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) occurs in hypertension, atherosclerosis and restenosis after angioplasty, leading to pathophysiological vascular remodeling. As an important growth arrest gene, p21 plays critical roles in vascular remodeling. Regulation of p21 expression by retinoic acid receptor (RAR) and its ligand has important implications for control of pathological vascular remodeling. Nevertheless, the mechanism of RAR-mediated p21 expression in VSMCs remains poorly understood. Here, we show that, under basal conditions, RARα forms a complex with histone deacetylase 2 (HDAC2) and Krüppel-like factor 5 (Klf5) at the p21 promoter to inhibit its expression. Upon RARα agonist stimulation, HDAC2 is phosphorylated by CK2α. Phosphorylation of HDAC2, on the one hand, promotes its dissociation from RARα, thus allowing the liganded-RARα to interact with co-activators; on the other hand, it increases its interaction with Klf5, thus leading to deacetylation of Klf5. Deacetylation of Klf5 facilitates its dissociation from the p21 promoter, relieving its repressive effect on the p21 promoter. Interference with HDAC2 phosphorylation by either CK2α knockdown or the use of phosphorylation-deficient mutant of HDAC2 prevents the dissociation of Klf5 from the p21 promoter and impairs RAR agonist-induced p21 activation. Our results reveal a novel mechanism involving a phosphorylation-deacetylation cascade that functions to remove the basal repression complex from the p21 promoter upon RAR agonist treatment, allowing for optimum agonist-induced p21 expression.
Collapse
MESH Headings
- Acetylation
- Animals
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Line
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Gene Expression Regulation/physiology
- Histone Deacetylase 2/genetics
- Histone Deacetylase 2/metabolism
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation/physiology
- Promoter Regions, Genetic/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retinoic Acid Receptor alpha
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Ya-nan Shu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Ying-jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Sui-bing Miao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Xin-hua Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Hui-jing Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Tian Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jin-kun Wen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| |
Collapse
|
35
|
Zhang HB, Wen JK, Zhang J, Miao SB, Ma GY, Wang YY, Zheng B, Han M. Flavonoids from Inula britannica reduces oxidative stress through inhibiting expression and phosphorylation of p47(phox) in VSMCs. PHARMACEUTICAL BIOLOGY 2011; 49:815-820. [PMID: 21500971 DOI: 10.3109/13880209.2010.550055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Inula britanica Linn. (Compositae) is a traditional Chinese medicinal herb that has been used to treat bronchitis and inflammation. The total flavonoid extracts (TFEs) isolated from its flowers can inhibit neointimal formation induced by balloon injury in vivo. OBJECTIVE To investigate the mechanism by which TFE suppresses oxidative stress generation and the subsequent inflammation response in vitro. MATERIALS AND METHODS The cultured vascular smooth muscle cells (VSMCs) form rats were exposed to oxidative stress following pretreatment with or without TFE at different concentration. Then, fluorescence staining was used to detect superoxide anion (O₂(˙-)) production, and the lever of maleic dialdehyde (MDA) and superoxide dismutase (SOD) was measured at the same time. Furthermore, tumor necrosis factor-α (TNF-α) was measured by enzyme linked immunosorbent assay (ELISA), reverse transcription-PCR and western blot were performed to detect the expression activity of p47(phox) gene, and immunoprecipitation was used to test the level of p47(phox) phosphorylation. RESULTS TFE inhibited the production of O₂(˙-) induced by H₂O₂ in VSMCs, with decrease in secretion of TNF-α; elevated the activity of SOD in the medium, similar to the effect of quercetin; reduced the level of MDA in culture medium of VSMCs. The pretreatment with TFE resulted in decrease the level of p47(phox) mRNA and protein, and even p47(phox) phosphorylation in VSMCs, compared with H₂O₂ control. DISCUSSION AND CONCLUSION These findings demonstrate that TFE is capable of attenuating the oxidative stress generation and the subsequent inflammation response via preventing the overexpression and activation of p47(phox) and the increased TNF-α secretion in VSMCs in vitro.
Collapse
Affiliation(s)
- Hong-Bing Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medicine, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sun SG, Zheng B, Han M, Fang XM, Li HX, Miao SB, Su M, Han Y, Shi HJ, Wen JK. miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep 2010; 12:56-62. [PMID: 21109779 DOI: 10.1038/embor.2010.172] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 10/06/2010] [Accepted: 10/11/2010] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are phenotypic regulators of vascular smooth muscle cells (VSMCs). In this paper, we demonstrate that miR-146a targets the Krüppel-like factor 4 (KLF4) 3'-untranslated region and has an important role in promoting VSMC proliferation in vitro and vascular neointimal hyperplasia in vivo. Silencing of miR-146a in VSMCs increases KLF4 expression, whereas overexpression of miR-146a decreases KLF4 levels. Furthermore, we demonstrate that KLF4 competes with Krüppel-like factor 5 (KLF5) to bind to and regulate the miR-146a promoter, and that KLF4 and KLF5 exert opposing effects on the miR-146a promoter. Overexpression of KLF4 in VSMCs decreases miR-146a transcription levels. By using both gain-of-function and loss-of-function approaches, we found that miR-146a promotes VSMC proliferation in vitro. Transfection of antisense miR-146a oligonucleotide into balloon-injured rat carotid arteries markedly decreased neointimal hyperplasia. These findings suggest that miR-146a and KLF4 form a feedback loop to regulate each other's expression and VSMC proliferation.
Collapse
Affiliation(s)
- Shao-guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
38
|
Krüppel-like factor 4 interacts with p300 to activate mitofusin 2 gene expression induced by all-trans retinoic acid in VSMCs. Acta Pharmacol Sin 2010; 31:1293-302. [PMID: 20711222 DOI: 10.1038/aps.2010.96] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM To elucidate how krüppel-like factor 4 (KLF4) activates mitofusin 2 (mfn-2) expression in all-trans retinoic acid (ATRA)-induced vascular smooth muscle cell (VSMC) differentiation. METHODS The mfn-2 promoter-reporter constructs and the KLF4 acetylation-deficient or phosphorylation-deficient mutants were constructed. Adenoviral vector of KLF4-mediated overexpression and Western blot analysis were used to determine the effect of KLF4 on mfn-2 expression. The luciferase assay and chromatin immunoprecipitation were used to detect the transactivation of KLF4 on mfn-2 gene expression. Co-immunoprecipitation and GST pull-down assays were used to determine the modification of KLF4 and interaction of KLF4 with p300 in VSMCs. RESULTS KLF4 mediated ATRA-induced mfn-2 expression in VSMCs. KLF4 bound directly to the mfn-2 promoter and activated its transcription. ATRA increased the interaction of KLF4 with p300 by inducing KLF4 phosphorylation via activation of JNK and p38 MAPK signaling. KLF4 acetylation by p300 increased its activity to transactivate the mfn-2 promoter. CONCLUSION ATRA induces KLF4 acetylation by p300 and increases the ability of KLF4 to transactivate the mfn-2 promoter in VSMCs.
Collapse
|
39
|
Dong LH, Wen JK, Miao SB, Jia Z, Hu HJ, Sun RH, Wu Y, Han M. Baicalin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation through suppressing PDGFRβ-ERK signaling and increase in p27 accumulation and prevents injury-induced neointimal hyperplasia. Cell Res 2010; 20:1252-62. [PMID: 20661261 DOI: 10.1038/cr.2010.111] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown to induce apoptosis and growth inhibition in cancer cells through multiple pathways. However, the potential role of baicalin in regulation of VSMC proliferation and prevention of cardiovascular diseases remains unexplored. In this study, we show that pretreatment with baicalin has a dose-dependent inhibitory effect on PDGF-BB-stimulated VSMC proliferation, accompanied with the reduction of proliferating cell nuclear antigen (PCNA) expression. We also show that baicalin-induced growth inhibition is associated with a decrease in cyclin E-CDK2 activation and increase in p27 level in PDGF-stimulated VSMCs, which appears to be at least partly mediated by blockade of PDGF receptor β (PDGFRβ)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In addition, baicalin was also found to inhibit adhesion molecule expression and cell migration induced by PDGF-BB in VSMCs. Furthermore, using an animal carotid arterial balloon-injury model, we found that baicalin significantly inhibited neointimal hyperplasia. Taken together, our results reveal a novel function of baicalin in inducing growth arrest of PDGF-stimulated VSMCs and suppressing neointimal hyperplasia after balloon injury, and suggest that the underlying mechanism involves the inhibition of cyclin E-CDK2 activation and the increase in p27 accumulation via blockade of the PDGFRβ-ERK1/2 signaling cascade.
Collapse
Affiliation(s)
- Li-Hua Dong
- Department of Biochemistry and Molecular Biology, Institute of Basic Medicine, Key Laboratory of Neural and Vascular Biology, China Ministry of Education, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Li HX, Han M, Bernier M, Zheng B, Sun SG, Su M, Zhang R, Fu JR, Wen JK. Krüppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J Biol Chem 2010; 285:17846-56. [PMID: 20375011 DOI: 10.1074/jbc.m109.076992] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KLF4 (Krüppel-like factor 4) has been implicated in vascular smooth muscle cell (VSMC) differentiation induced by transforming growth factor beta (TGF-beta). However, the role of KLF4 and mechanism of KLF4 actions in regulating TGF-beta signaling in VSMCs remain unclear. In this study, we showed that TGF-beta1 inhibited cell cycle progression and induced differentiation in cultured rat VSMCs. This activity of TGF-beta1 was accompanied by up-regulation of KLF4, with concomitant increase in TbetaRI (TGF-beta type I receptor) expression. KLF4 was found to transduce TGF-beta1 signals via phosphorylation-mediated activation of Smad2, Smad3, and p38 MAPK. The activation of both pathways, in turn, increased the phosphorylation of KLF4, which enabled the formation of KLF4-Smad2 complex in response to TGF-beta1. Chromatin immunoprecipitation studies and oligonucleotide pull-down assays showed the direct binding of KLF4 to the KLF4-binding sites 2 and 3 of the TbetaRI promoter and the recruitment of Smad2 to the Smad-responsive region. Formation of a stable KLF4-Smad2 complex in the promoter's Smad-responsive region mediated cooperative TbetaRI promoter transcription in response to TGF-beta1. These results suggest that KLF4-dependent regulation of Smad and p38 MAPK signaling via TbetaRI requires prior phosphorylation of KLF4 through Smad and p38 MAPK pathways. This study demonstrates a novel mechanism by which TGF-beta1 regulates VSMC differentiation.
Collapse
Affiliation(s)
- Hui-xuan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, China Ministry of Education, Hebei Medical University, No 361, Zhongshan East Road, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dong LH, Wen JK, Liu G, McNutt MA, Miao SB, Gao R, Zheng B, Zhang H, Han M. Blockade of the Ras–Extracellular Signal–Regulated Kinase 1/2 Pathway Is Involved in Smooth Muscle 22α–Mediated Suppression of Vascular Smooth Muscle Cell Proliferation and Neointima Hyperplasia. Arterioscler Thromb Vasc Biol 2010; 30:683-91. [DOI: 10.1161/atvbaha.109.200501] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objective—
Vascular smooth muscle cells (VSMCs) can switch between differentiated and dedifferentiated phenotypes, and this phenotype switch is believed to be essential for repair of vascular injury. We studied the inhibitory effect of smooth muscle 22α (SM22α) on VSMC proliferation in vitro and in vivo and explored the potential molecular mechanisms of this effect.
Methods and Results—
By using coimmunoprecipitation and glutathione
S
-transferase pull-down assays, we have shown that SM22α binds to Ras in SM22α-overexpressed VSMCs in the presence or absence of platelet-derived growth factor–BB stimulation. SM22α arrested cell cycle progression through segregation of Ras with Raf-1 and downregulation of the Raf-1–MEK1/2–extracellular signal–regulated kinase 1/2 mitogen-activated protein kinase signaling cascade. The inhibitory effect of SM22α on VSMC proliferation was verified in vivo. The infection of rat carotid arteries with recombinant adenovirus encoding SM22α inhibited neointimal hyperplasia via suppression of the Raf-1–MEK1/2–extracellular signal–regulated kinase 1/2 signaling pathway.
Conclusion—
These findings suggest that high expression of SM22α inhibits cell proliferation via reduction of the response to mitogen stimuli in VSMCs and provide a novel mechanism by which VSMCs maintain their contractile phenotype and resist mitogenic stimuli in an SM22α-dependent manner.
Collapse
Affiliation(s)
- Li-Hua Dong
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| | - Jin-Kun Wen
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| | - George Liu
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| | - Michael A. McNutt
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| | - Sui-Bing Miao
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| | - Rui Gao
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| | - Bin Zheng
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| | - Hailin Zhang
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| | - Mei Han
- From the Department of Biochemistry and Molecular Biology (L.-H.D., J.-K.W., S.-B.M., R.G., B.Z., and M.H.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang; the Department of Pharmacology (H.Z.), Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Department of Physiology, Institute of Cardiovascular Sciences, Peking University, Beijing, China; Key Laboratory of Cardiovascular Sciences, China Administration of Education (G.L.); and the Department of Pathology (M
| |
Collapse
|
42
|
Zheng B, Han M, Wen JK. Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life 2010; 62:132-9. [PMID: 20073036 DOI: 10.1002/iub.298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) are critical components in the development of many vascular proliferation diseases such as atherosclerosis and restenosis after percutaneous coronary interventions. Krüppel-like factor 4 (KLF4) has been shown to play a key role in VSMC proliferation and differentiation. The focus of this review is to provide an overview for understanding the physiological and pathobiological roles of KLF4 in phenotypic switching and proliferation of VSMCs.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | | | | |
Collapse
|