1
|
Vilahur G, Fuster V. Interplay between platelets and coagulation: from protective haemostasis to pathological arterial thrombosis. Eur Heart J 2025; 46:413-423. [PMID: 39673717 DOI: 10.1093/eurheartj/ehae776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 10/27/2024] [Indexed: 12/16/2024] Open
Abstract
Haemostasis refers to the physiological process aimed at repairing vessel injury and preventing bleeding. It involves four interlinked stages culminating in the formation of a platelet-fibrin haemostatic plug that is eventually dissolved once the vessel heals. In contrast, arterial thrombosis is a pathological condition resulting from atheroma exposure, triggering the formation of a platelet-rich thrombus that may obstruct blood flow, leading to the clinical manifestations of ischaemic cardiovascular disease. The following review will provide a comprehensive overview of the finely regulated endogenous antithrombotic mechanisms responsible for maintaining the haemostatic balance and preventing intravascular thrombosis. Thereafter, it will further detail the different stages and mechanisms governing the intricate interplay between the vessel, platelets, and the coagulation cascade in haemostasis, highlighting the most recent advances in platelet biology and function, to further elucidate the differential traits and players contributing to pathological arterial thrombus growth. The review will also delve into the impact of emerging cardiovascular risk factors on tilting the haemostatic balance towards a pro-thrombotic state, thereby increasing the patient's vulnerability to thrombotic events. Finally, it will underscore the importance of early screening for subclinical atherosclerosis through advanced imaging technologies capable of quantifying plaque burden and metabolic activity since they may set the stage for an increased thrombotic risk. Implementing proactive interventions to halt atherosclerosis progression or inducing its regression at early stages is crucial for preserving haemostasis and reducing the likelihood of ischaemic atherothrombotic disease.
Collapse
Affiliation(s)
- Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer Sant Quintí 77-79, Barcelona 08041, Spain
- CiberCV, Institute Carlos III, Madrid 28029, Spain
| | - Valentin Fuster
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Tan YY, Liu J, Su QP. Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights. SENSORS (BASEL, SWITZERLAND) 2025; 25:491. [PMID: 39860861 PMCID: PMC11768609 DOI: 10.3390/s25020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses. Live-cell imaging has become an invaluable tool for dissecting these complexes. Despite its benefits, live imaging of platelets presents significant technical challenges. This review addresses these challenges, identifying key areas in need of further development and proposing possible solutions. We also focus on the dynamic processes of platelet adhesion, activation, and aggregation in haemostasis and thrombosis, applying imaging capacities from the microscale to the nanoscale. By exploring various live imaging techniques, we demonstrate how these approaches offer crucial insights into platelet biology and deepen our understanding of these three core events. In conclusion, this review provides an overview of the imaging methods currently available for studying platelet dynamics, guiding researchers in selecting suitable techniques for specific studies. By advancing our knowledge of platelet behaviour, these imaging methods contribute to research on haemostasis, thrombosis, and platelet-related diseases, ultimately aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Yuping Yolanda Tan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
3
|
Nigam A, Manjuprasanna VN, Naik MU, Naik UP. Platelet spreading and clot retraction are regulated by 2 distinct α IIbβ 3 outside-in signaling pathways. J Pharmacol Exp Ther 2025; 392:100012. [PMID: 39893014 DOI: 10.1124/jpet.124.002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Bidirectional signaling through platelet integrin αIIbβ3 is essential in hemostasis and thrombosis. In quiescent platelets, αIIbβ3 is in a low-affinity ligand binding state. However, on platelet activation by agonists through inside-out signaling, a rapid switch in the conformation of the integrin results in a high affinity ligand binding state capable of binding soluble fibrinogen. Ligand binding to the αIIbβ3 induces a signaling termed outside-in signaling that regulate platelet spreading and clot retraction. These events are often interchangeably used to represent outside-in signaling pathway. Using pharmacological inhibitors of known signaling molecules that have been implicated to regulate outside-in signaling, we assessed human platelet spreading and clot retraction. We found that inhibition of phosphoinositide-3-kinase, phospholipase C, protein kinase C, and focal adhesion kinase strongly attenuated both platelet spreading and clot retraction suggesting that they are essential for both clot retraction and platelet spreading, whereas inhibition of Rac1, rho-associated, coiled-coil containing protein kinase, p38, and MEK did not affect platelet spreading but significantly delayed clot retraction suggesting that these signaling molecules do not participate in platelet spreading. Interestingly, Src family kinases are required for platelet spreading and FAK activation but suppress clot retraction because their inhibition causes faster clot retraction. Thus, it becomes evident that platelet spreading, and clot retraction are differently regulated through αIIbβ3 outside-in signaling and should not be used interchangeably as readout for αIIbβ3 outside-in signaling assessment. SIGNIFICANCE STATEMENT: Current antiplatelet drugs have increased risk of bleeding and low efficacy. There is an increased effort to identify novel antiplatelet agents that have improved efficacy with reduced risk of bleeding. It is increasingly felt that inhibition of αIIbβ3-induced outside-in signaling may inhibit thrombosis without compromising hemostasis. However, the signaling entities regulating outside-in signaling are poorly understood. The work included in this article delineates the distinct signaling pathways involved in outside-in signaling and identify potential novel targets for intervention of thrombosis.
Collapse
Affiliation(s)
- Arjit Nigam
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Voddarahally N Manjuprasanna
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Meghna U Naik
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ulhas P Naik
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Peshkova AD, Weisel JW, Litvinov RI. A novel technique to quantify the kinetics of blood clot contraction based on the expulsion of fluorescently labeled albumin into serum. J Thromb Haemost 2024; 22:1742-1748. [PMID: 38401713 PMCID: PMC11139561 DOI: 10.1016/j.jtha.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND The platelet-driven contraction or retraction of blood clots has been utilized to obtain blood serum for laboratory studies, but now, in vitro clot contraction assays are used in research laboratories and clinics to assess platelet functionality. The static final extent of clot contraction measured using a clot size or expelled serum volume can be supplemented substantially with a dynamic analysis. OBJECTIVES To provide a step-by-step protocol for a relatively simple and affordable new automated methodology to follow the kinetics of blood clot contraction, which allows for simultaneous measurements of various samples at a time and requires only a fluorescence plate reader. METHODS The kinetics of clot contraction in whole blood was assessed by continuously detecting the fluorescence intensity of fluorescein isothiocyanate-albumin added to a blood sample before clotting and expelled into the serum during clot shrinkage. RESULTS The clots are formed and fluorescence is measured in the wells of a black multiwell plate using a standard plate fluorescent reader. The specificity of this technique for clot contraction has been demonstrated by the strong inhibitory effects of blebbistatin, latrunculin A, and abciximab. To validate the new technique, increased fluorescence intensity in the contracting clots was measured in parallel with a visual decrease in clot size performed with the same blood samples. CONCLUSION The resulting clot contraction dynamics based on the expulsion of fluorescein isothiocyanate-albumin can be quantified using a number of kinetic parameters as well as a phase kinetics analysis. The advantages and drawbacks of the new technique are discussed.
Collapse
Affiliation(s)
- Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Litvinov RI, Weisel JW. Blood clot contraction: Mechanisms, pathophysiology, and disease. Res Pract Thromb Haemost 2023; 7:100023. [PMID: 36760777 PMCID: PMC9903854 DOI: 10.1016/j.rpth.2022.100023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
A State of the Art lecture titled "Blood Clot Contraction: Mechanisms, Pathophysiology, and Disease" was presented at the International Society on Thrombosis and Haemostasis (ISTH) Congress in 2022. This was a systematic description of blood clot contraction or retraction, driven by activated platelets and causing compaction of the fibrin network along with compression of the embedded erythrocytes. The consequences of clot contraction include redistribution of the fibrin-platelet meshwork toward the periphery of the clot and condensation of erythrocytes in the core, followed by their deformation from the biconcave shape into polyhedral cells (polyhedrocytes). These structural signatures of contraction have been found in ex vivo thrombi derived from various locations, which indicated that clots undergo intravital contraction within the blood vessels. In hemostatic clots, tightly packed polyhedrocytes make a nearly impermeable seal that stems bleeding and is impaired in hemorrhagic disorders. In thrombosis, contraction facilitates the local blood flow by decreasing thrombus obstructiveness, reducing permeability, and changing susceptibility to fibrinolytic enzymes. However, in (pro)thrombotic conditions, continuous background platelet activation is followed by platelet exhaustion, refractoriness, and impaired intravital clot contraction, which is associated with weaker thrombi predisposed to embolization. Therefore, assays that detect imperfect in vitro clot contraction have potential diagnostic and prognostic values for imminent or ongoing thrombosis and thrombotic embolism. Collectively, the contraction of blood clots and thrombi is an underappreciated and understudied process that has a pathogenic and clinical significance in bleeding and thrombosis of various etiologies. Finally, we have summarized relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Weisz A, Abadi U, Mausbach L, Gurwitz D, Ellis M, Ashur-Fabian O. Nuclear αvβ3 integrin expression, post translational modifications and regulation in hematological malignancies. Hematol Oncol 2021; 40:72-81. [PMID: 34534368 DOI: 10.1002/hon.2927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022]
Abstract
αvβ3 integrin, a plasma membrane protein, is amply expressed on an array of tumors. We identified nuclear αvβ3 pool in ovarian cancer cells and were interested to explore this phenomenon in two rare and aggressive types of leukemia, T-cell acute lymphoblastic leukemia (T-ALL) and Mast cell leukemia (MCL) using Jurkat and HMC-1 cell lines, respectively. Moreover, we collected primary cells from patients with chronic lymphocytic leukemia (CLL, n = 11), the most common chronic adult leukemia and used human lymphoblastoid cell lines (LCL) generated from normal B cells. Nuclear αvβ3 integrin was assessed by Western blots, confocal microscopy, and the ImageStream technology which combines flow-cytometry with microscopy. We further examined post translational modifications (phosphorylation/glycosylation), nuclear trafficking regulation using inhibitors for MAPK (U0126) and PI3K (LY294002), as well as nuclear interactions by performing Co-immunoprecipitation (Co-IP). αvβ3 integrin was identified in all cell models within the nucleus and is N-glycosylated. In primary CLL cells the β3 integrin monomer is tyrosine Y759 phosphorylated, suggesting an active receptor conformation. MAPK and PI3K inhibition in Jurkat and CLL cells led to αvβ3 enhancement in the nucleus and a reduction in the membrane. The nuclear αvβ3 integrin interacts with ERK, Histone H3 and Lamin B1 in Jurkat, Histone H3 in CLL cells, but not in control LCL cells. To conclude, this observational study provides the identification of nuclear αvβ3 in hematological malignancies and lays the basis for novel cancer-relevant actions, which may be independent from the membrane functions.
Collapse
Affiliation(s)
- Avivit Weisz
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Abadi
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa Mausbach
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel
| | - David Gurwitz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Martin Ellis
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev 2021; 46:100733. [PMID: 32682574 PMCID: PMC7354275 DOI: 10.1016/j.blre.2020.100733] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Haemostasis stops bleeding at the site of vascular injury and maintains the integrity of blood vessels through clot formation. This regulated physiological process consists of complex interactions between endothelial cells, platelets, von Willebrand factor and coagulation factors. Haemostasis is initiated by a damaged vessel wall, followed with a rapid adhesion, activation and aggregation of platelets to the exposed subendothelial extracellular matrix. At the same time, coagulation factors aggregate on the procoagulant surface of activated platelets to consolidate the platelet plug by forming a mesh of cross-linked fibrin. Platelets and coagulation mutually influence each other and there are strong indications that, thanks to the interplay between platelets and coagulation, haemostasis is far more effective than the two processes separately. Clinically this is relevant because impaired interaction between platelets and coagulation may result in bleeding complications, while excessive platelet-coagulation interaction induces a high thrombotic risk. In this review, platelets, coagulation factors and the complex interaction between them will be discussed in detail.
Collapse
Affiliation(s)
- Yaqiu Sang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Mark Roest
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | | | - Dana Huskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Wang H, Wang Y, Li C, Wang H, Geng X, Hu B, Wen R, Wang J, Zhang F. Structural basis for tailor-made selective PI3K α/β inhibitors: a computational perspective. NEW J CHEM 2021. [DOI: 10.1039/d0nj04216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PI3K α and β are Class IA PI3K isoforms that share a highly homologous ATP binding site, differing only in a few residues around the binding site.
Collapse
Affiliation(s)
- Huibin Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Ying Wang
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Chunshi Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Xiaohui Geng
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Rui Wen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- School of Pharmaceutical Engineering
| | - Fengjiao Zhang
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| |
Collapse
|
9
|
Liu SY, Yuan D, Sun RJ, Zhu JJ, Shan NN. Significant reductions in apoptosis-related proteins (HSPA6, HSPA8, ITGB3, YWHAH, and PRDX6) are involved in immune thrombocytopenia. J Thromb Thrombolysis 2020; 51:905-914. [PMID: 33047245 DOI: 10.1007/s11239-020-02310-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 01/24/2023]
Abstract
To investigate differences in the expression of plasma proteins in immune thrombocytopenia (ITP) and normal control groups, bone marrow samples were collected from 20 active ITP patients and 20 healthy controls. Quantitative proteomics analysis based on mass spectrometry was used to measure the protein levels and understand the protein networks. We found differentially expressed proteins in ITP patients and healthy controls. Parallel reaction monitoring (PRM), a targeted proteome quantification technique, was used to quantitatively confirm the identified target proteins and verify the proteomics data. In this study, a total of 829 proteins were identified, and the fold-change cut-off was set at 1.5 (patients vs controls); a total of 26 proteins were upregulated, and 69 proteins were downregulated. The bioinformatics analysis indicated that some differentially expressed proteins were associated with apoptosis. KEGG enrichment analysis showed that the apoptosis-related proteins were closely related to the PI3K-Akt signalling pathway. PRM demonstrated that apoptosis-related proteins were significantly decreased in ITP patients, which further confirmed the important effect of apoptosis on ITP pathogenesis. We hypothesised that apoptosis may be closely related to ITP pathogenesis through the PI3K-Akt signalling pathway.
Collapse
Affiliation(s)
- Shu-Yan Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jing-Jing Zhu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China.
| |
Collapse
|
10
|
The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation. Biochem Pharmacol 2020; 182:114276. [PMID: 33039417 DOI: 10.1016/j.bcp.2020.114276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Gliflozins (canagliflozin, dapagliflozin and empagliflozin) are the newest anti-hyperglycemic class and have offered cardiovascular and renal benefits. Because platelets are involved in the atherothrombosis process, this study is aimed to evaluate the direct effect of gliflozins on platelet reactivity. Platelet-rich plasma (PRP) or washed platelets (WP) were obtained from healthy volunteers. Aggregation, flow cytometry for glycoprotein IIb/IIIa, cyclic nucleotides and intracellular calcium levels, Western blot, thromboxane B2 (TXB2) measurement and COX-1 activity were performed in the presence of gliflozins (1-30 μM) alone or in combination with sodium nitroprusside (SNP, 10 or 100 nM) + iloprost (ILO, 0.1 or 1 nM). SGLT2 protein is not expressed on human platelets. Gliflozins produced little inhibitory effect in agonists-induced aggregation and this effect was greatly potentiated by ~10-fold in the presence of SNP + ILO, accompanied by lower levels of TXB2 (58.1 ± 5.1%, 47.1 ± 7.2% and 43.4 ± 9.2% inhibition for canagliflozin, dapagliflozin and empagliflozin, respectively). The activity of COX-1 was not affected by gliflozins. Collagen increased Ca2+ levels and α(IIb)β(3) activation, both of which were significantly reduced by gliflozins + SNP + ILO. The intracellular levels of cAMP and cGMP and the protein expression of p-VASPSer157 and p-VASPSer239 were not increased by gliflozins while the expression of the serine-threonine kinase, AktSer473 was markedly reduced. Our results showed that the antiplatelet activity of gliflozins were greatly enhanced by nitric oxide and prostacyclin, thus suggesting that the cardiovascular protection seen by this class of drugs could be in part due to platelet inhibition.
Collapse
|
11
|
Huang M, Wu H, Wu J, Chen Q, Zou D, Xu D. Prevention of platelet aggregation and arterial thrombosis using a modified Shenzhu Guanxin Formula. J Int Med Res 2020; 48:300060520941326. [PMID: 33086881 PMCID: PMC7586491 DOI: 10.1177/0300060520941326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Modified Shenzhu Guanxin Formula (mSGF) has beneficial effects in coronary artery disease. Previously, we found that mSGF inhibited platelet aggregation in rats. In the present study we further investigated the antiplatelet and antithrombotic activities of mSGF in rats. METHODS Rats were orally administered mSGF (4.2, 8.4, or 16.8 g crude drug/kg), the adenosine 5'-diphosphate (ADP) receptor antagonist clopidogrel (7.875 mg/kg), or saline once a day for 7 days. The effects of mSGF on platelet aggregation were measured. Levels of cyclic adenosine monophosphate (cAMP) and phosphoinositide 3-kinase (PI3K) signaling were analyzed by ELISA and western blotting, respectively. The antithrombotic effect of mSGF was investigated using a FeCl3-induced carotid arterial thrombosis model and effects on bleeding time were assessed in a rat tail transection model. RESULTS mSGF significantly inhibited ADP-induced platelet aggregation in a dose-dependent manner, elevated cAMP levels and inhibited phosphorylation of extracellular signal-regulated kinase (ERK) and PI3K/protein kinase B (Akt). Moreover, mSGF dose-dependently inhibited thrombosis in a FeCl3-induced carotid arterial thrombus model and had a significantly smaller effect on bleeding time compared with clopidogrel. CONCLUSIONS mSGF represents a potent and safe antithrombotic agent whose antiplatelet activity is probably mediated through blockade of PI3K/Akt signaling and increased cAMP generation.
Collapse
Affiliation(s)
- Manting Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Huanlin Wu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jianping Wu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Qiuxiong Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Dezhi Zou
- Emergency Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Danping Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
- Postdoctoral Research Center, Fujian University of Traditional Chinese Medicine, Fujian, P.R. China
| |
Collapse
|
12
|
Ma Q, Zhang W, Zhu C, Liu J, Chen Q. FUNDC2 regulates platelet activation through AKT/GSK-3β/cGMP axis. Cardiovasc Res 2020; 115:1672-1679. [PMID: 30576423 DOI: 10.1093/cvr/cvy311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/30/2023] Open
Abstract
AIMS AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. METHODS AND RESULTS We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5'-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. CONCLUSION FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.
Collapse
Affiliation(s)
- Qi Ma
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Weilin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chongzhuo Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junling Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Torti M, Manganaro D, Visconte C, Zarà M, Canino J, Vismara M, Canobbio I, Guidetti GF. Stimulation of mTORC2 by integrin αIIbβ3 is required for PI3Kβ-dependent activation of Akt but is dispensable for platelet spreading on fibrinogen. Platelets 2019; 31:521-529. [PMID: 31509054 DOI: 10.1080/09537104.2019.1663806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphatidylinositol 3 kinase (PI3K) is a major player in platelet activation and regulates thrombus formation and stabilization. The β isoform of PI3K is implicated in integrin αIIbβ3 outside-in signaling, is required for the phosphorylation of Akt, and controls efficient platelet spreading upon adhesion to fibrinogen. In this study we found that during integrin αIIbβ3 outside-in signaling PI3Kβ-dependent phosphorylation of Akt on Serine473 is mediated by the mammalian target of rapamycin complex 2 (mTORC2). The activity of mTORC2 is stimulated upon platelet adhesion to fibrinogen, as documented by increased autophosphorylation. However, mTORC2 activation downstream of integrin αIIbβ3 is PI3Kβ-independent. Inhibition of mTORC2, but not mTORC1, also prevents Akt phosphorylation of Threonine308 and affects Akt activity, resulting in the inhibition of GSK3α/β phosphorylation. Nevertheless, mTORC2 or Akt inhibition does not alter PI3Kβ-dependent platelet spreading on fibrinogen. The activation of the small GTPase Rap1b downstream of integrin αIIbβ3 is regulated by PI3Kβ but is not affected upon inhibition of either mTORC2 or Akt. Altogether, these results demonstrate for the first time the activation of mTORC2 and its involvement in Akt phosphorylation and stimulation during integrin αIIbβ3 outside-in signaling. Moreover, the results demonstrate that the mTORC2/Akt pathway is dispensable for PI3Kβ-regulated platelet spreading on fibrinogen.
Collapse
Affiliation(s)
- Mauro Torti
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy
| | | | - Caterina Visconte
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino, IRCCS , Milan, Italy
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy.,University School for Advanced Studies (IUSS) , Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy
| | | |
Collapse
|
14
|
Effect of Furostanol Saponins from Allium Macrostemon Bunge Bulbs on Platelet Aggregation Rate and PI3K/Akt Pathway in the Rat Model of Coronary Heart Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9107847. [PMID: 31341503 PMCID: PMC6612384 DOI: 10.1155/2019/9107847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022]
Abstract
Aim. To investigate the effect of Furostanol Saponins from Allium Macrostemon Bunge Bulbs (FSAMB) on platelet aggregation rate of rats with coronary heart disease and discuss the mechanism of FSAMB affecting the platelet aggregation rate through PI3K/Akt pathway. We established the rat models with coronary heart disease (CHD) and prepared the platelet-rich plasma. The effect of different concentrations of FSAMB on platelet aggregation in SD rats induced by ADP was observed in vitro and in vivo. And Lactate Dehydrogenase (LDH), Creatine Kinase-MB Form (CK-MB), and Cardiac Troponin I (cTnI) are detected in the blood to know the level of damage to heart cells. The expansion of platelets in the immobilized fibrinogen in different concentrations of FSAMB was observed. Western blot was conducted to detect the phosphorylation level of protein kinase B (also known as Akt) and the expression level of phosphoinositide 3-kinase (PI3K). We found that FSAMB had a significant inhibitory effect on the ADP-induced platelet aggregation in vitro. Intragastric administration of FSAMB also inhibited platelet aggregation induced by ADP in rats. LDH, CK-MB, and cTnI levels in serum of rats in FSAMB (672 mg/kg) group were lower than those in the model control group after the intervention (P<0.01 or P<0.05). FSAMB inhibited the expansion of platelets on immobilized fibrinogen. Also, FSAMB inhibited ADP-induced platelet PI3K expression and Akt phosphorylation. The inhibition of Akt phosphorylation by FSAMB was more obvious after the inhibition of the expression of PI3K. This study demonstrated that FSAMB can reduce the degree of myocardial cell damage and inhibit ADP-induced platelet aggregation in SD rats, possibly by inhibiting platelet PI3K/Akt signaling pathway in vitro and in vivo.
Collapse
|
15
|
Guidetti GF, Torti M, Canobbio I. Focal Adhesion Kinases in Platelet Function and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:857-868. [DOI: 10.1161/atvbaha.118.311787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The focal adhesion kinase family includes 2 homolog members, FAK and Pyk2 (proline-rich tyrosine kinase 2), primarily known for their roles in nucleated cells as regulators of cytoskeletal dynamics and cell adhesion. FAK and Pyk2 are also expressed in megakaryocytes and platelets and are activated by soluble agonists and on adhesion to the subendothelial matrix. Despite high sequence homology and similar molecular organization, FAK and Pyk2 play different roles in platelet function. Whereas FAK serves mostly as a traditional focal adhesion kinase activated downstream of integrins, Pyk2 coordinates multiple signals from different receptors. FAK, but not Pyk2, is involved in megakaryocyte maturation and platelet production. In circulating platelets, FAK is recruited by integrin αIIbβ3 to regulate hemostasis, whereas it plays minimal roles in thrombosis. By contrast, Pyk2 is implicated in platelet activation and is an important regulator of thrombosis. The direct activation of Pyk2 by calcium ions provides a connection between GPCRs (G-protein coupled receptors) and Src family kinases. In this review, we provide the comprehensive overview of >20 years of investigations on the role and regulation of focal adhesion kinases in blood platelets, highlighting common and distinctive features of FAK and Pyk2 in hemostasis and thrombosis.
Collapse
Affiliation(s)
| | - Mauro Torti
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
16
|
Tan B, Liu M, Yang Y, Liu L, Meng F. Low expression of PIK3C2A gene: A potential biomarker to predict the risk of acute myocardial infarction. Medicine (Baltimore) 2019; 98:e15061. [PMID: 30946353 PMCID: PMC6456027 DOI: 10.1097/md.0000000000015061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AIMS Phosphoinositide 3-kinases (PI3Ks) are a family of enzymes that phosphorylate the 3'-OH of inositol ring of phosphatidylinositol (PI) and regulate a broad range of signaling pathways. PIK3C2A is structurally distinct from the other members of this class and is expressed in endothelial cells, vascular endothelium, and smooth muscle. In ischemic cardiovascular diseases, such as coronary artery disease, pathology is associated with endothelial damage and inflammation, downregulation of the EPC cell population and function, and impaired angiogenesis. This study aims to make an assessment on whether expression of PIK3C2A gene can be used as a biomarker for predicting the risk of acute myocardial infarction (AMI). METHODS We collected peripheral blood from 84 subjects with non-coronary heart disease and 70 patients with AMI. The real-time quantitative PCR test was applied to measure levels of PIK3C2A gene expression at mRNA level in peripheral blood. RESULTS Our results indicated that the level of PIK3C2A gene expression in peripheral blood of AMI patients was significantly lower than one in the non-coronary heart disease subjects. Binary logistic regression analysis showed that low expression of PIK3C2A gene was an independent risk factor of AMI and increased the risk of AMI by 2.231 folds. Moreover, it was found that low expression of PIK3C2A gene was not associated with level of fasting blood glucose, platelet count, Gensini score of coronary artery, and quantity of cardiac troponin. CONCLUSION The level of PIK3C2A gene expression in patients with AMI is significantly lower than that of healthy people. Low expression of PIK3C2A gene is an independent risk factor of AMI. Low expression of PIK3C2A could serve as a potential biomarker to predict risk of AMI.
Collapse
Affiliation(s)
- Buchuan Tan
- China-Japan Union Hospital of Jilin University
| | - Miao Liu
- Cardiology Department of the China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yushuang Yang
- Cardiology Department of the China-Japan Union Hospital of Jilin University, Changchun, China
| | - Long Liu
- Cardiology Department of the China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fanbo Meng
- Cardiology Department of the China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Scanlon VM, Teixeira AM, Tyagi T, Zou S, Zhang PX, Booth CJ, Kowalska MA, Bao J, Hwa J, Hayes V, Marks MS, Poncz M, Krause DS. Epithelial (E)-Cadherin is a Novel Mediator of Platelet Aggregation and Clot Stability. Thromb Haemost 2019; 119:744-757. [PMID: 30861547 DOI: 10.1055/s-0039-1679908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cadherins play a major role in mediating cell-cell adhesion, which shares many parallels with platelet-platelet interactions during aggregate formation and clot stabilization. Platelets express epithelial (E)-cadherin, but its contribution to platelet function and/or platelet production is currently unknown. To assess the role of E-cadherin in platelet production and function in vitro and in vivo, we utilized a megakaryocyte-specific E-cadherin knockout mouse model. Loss of E-cadherin in megakaryocytes does not affect megakaryocyte maturation, platelet number or size. However, platelet dysfunction in the absence of E-cadherin is revealed when conditional knockout mice are challenged with acute antibody-mediated platelet depletion. Unlike wild-type mice that recover fully, knockout mice die within 72 hours post-antibody administration, likely from haemorrhage. Furthermore, conditional knockout mice have prolonged tail bleeding times, unstable clot formation, reduced clot retraction and reduced fibrin deposition in in vivo injury models. Murine platelet aggregation in vitro in response to thrombin and thrombin receptor activating peptide is compromised in E-cadherin null platelets, while aggregation in response to adenosine diphosphate (ADP) is not significantly different. Consistent with this, in vitro aggregation of primary human platelets in response to thrombin is decreased by an inhibitory E-cadherin antibody. Integrin activation and granule secretion in response to ADP and thrombin are not affected in E-cadherin null platelets, but Akt and glycogen synthase kinase 3β (GSK3β) activation are attenuated, suggesting a that E-cadherin contributes to aggregation, clot stabilization and retraction that is mediated by phosphoinositide 3-kinase/Akt/GSK3β signalling. In summary, E-cadherin plays a salient role in platelet aggregation and clot stability.
Collapse
Affiliation(s)
- Vanessa M Scanlon
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States.,The Yale Stem Cell Center, Yale University, New Haven, Connecticut, United States
| | | | - Tarun Tyagi
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
| | - Siying Zou
- Department of Cell Biology, Yale University, New Haven, Connecticut, United States
| | - Ping-Xia Zhang
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States.,The Yale Stem Cell Center, Yale University, New Haven, Connecticut, United States
| | - Carmen Jane Booth
- Department of Comparative Medicine, Yale University, New Haven, Connecticut, United States
| | - M Anna Kowalska
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.,Institute of Medical Biology, Polish Academy of Sciences, Philadelphia, Pennsylvania, United States
| | - Jialing Bao
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.,Department of Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.,University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - John Hwa
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
| | - Vincent Hayes
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Michael S Marks
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.,Department of Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.,University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Mortimer Poncz
- University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Diane S Krause
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States.,The Yale Stem Cell Center, Yale University, New Haven, Connecticut, United States.,Department of Pathology, Yale University, New Haven, Connecticut, United States.,Department of Cell Biology, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
18
|
Miller MS, Thompson PE, Gabelli SB. Structural Determinants of Isoform Selectivity in PI3K Inhibitors. Biomolecules 2019; 9:biom9030082. [PMID: 30813656 PMCID: PMC6468644 DOI: 10.3390/biom9030082] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023] Open
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are important therapeutic targets for the treatment of cancer, thrombosis, and inflammatory and immune diseases. The four highly homologous Class I isoforms, PI3K, PI3K, PI3K and PI3K have unique, non-redundant physiological roles and as such, isoform selectivity has been a key consideration driving inhibitor design and development. In this review, we discuss the structural biology of PI3Ks and how our growing knowledge of structure has influenced the medicinal chemistry of PI3K inhibitors. We present an analysis of the available structure-selectivity-activity relationship data to highlight key insights into how the various regions of the PI3K binding site influence isoform selectivity. The picture that emerges is one that is far from simple and emphasizes the complex nature of protein-inhibitor binding, involving protein flexibility, energetics, water networks and interactions with non-conserved residues.
Collapse
Affiliation(s)
- Michelle S Miller
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Departments of Medicine, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
|
20
|
The Glycoprotein Ib-IX-V Complex. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
21
|
You Y, Zhang Q, Zhang XG, Liu L, Zhang QL, Ding SL, Chen Y, Wang JY, Wang L, Liang RX, Liao FL, Wang YH. Effects of water-soluble tomato concentrate on platelet aggregation. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2019. [DOI: 10.4103/wjtcm.wjtcm_35_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Abstract
Thrombus formation is dependent on the interaction of platelets, leukocytes and endothelial cells as well as proteins of the coagulation cascade. This interaction is tightly controlled by phospho-regulated pathways involving protein kinase CK2. A growing number of studies have demonstrated an important role of this kinase in the regulation of primary and secondary hemostasis. Inhibition of CK2 downregulates the expression of important adhesion molecules on platelets and endothelial cells, such as glycoprotein (GP)IIb/IIIa, P-selectin, von Willebrand factor and vascular cell adhesion molecule. Moreover, the reduced CK2-dependent phosphorylation of different coagulation factors prevents the conversion of fibrinogen to fibrin. Targeting these mechanisms may open the door for the development of novel anti-thrombotic therapies.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Beate M Schmitt
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Matthias W Laschke
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Michael D Menger
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
23
|
Zhang J, Gao X, Schmit F, Adelmant G, Eck MJ, Marto JA, Zhao JJ, Roberts TM. CRKL Mediates p110β-Dependent PI3K Signaling in PTEN-Deficient Cancer Cells. Cell Rep 2018; 20:549-557. [PMID: 28723560 DOI: 10.1016/j.celrep.2017.06.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 05/01/2017] [Accepted: 06/20/2017] [Indexed: 02/03/2023] Open
Abstract
The p110β isoform of PI3K is preferentially activated in many tumors deficient in the phosphatase and tensin homolog (PTEN). However, the mechanism(s) linking PTEN loss to p110β activation remain(s) mysterious. Here, we identify CRKL as a member of the class of PI3Kβ-interacting proteins. Silencing CRKL expression in PTEN-null human cancer cells leads to a decrease in p110β-dependent PI3K signaling and cell proliferation. In contrast, CRKL depletion does not impair p110α-mediated signaling. Further study showed that CRKL binds to tyrosine-phosphorylated p130Cas in PTEN-null cancer cells. Since Src family kinases are known both to be regulated by PTEN and to phosphorylate and activate p130Cas, we tested and found that Src inhibition cooperated with p110β inhibition to suppress the growth of PTEN-null cells. These data suggest both a potential mechanism linking PTEN loss to p110β activation and the possible benefit of dual inhibition of Src and PI3K for PTEN-null tumors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Xueliang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Fabienne Schmit
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Gao W, Wang K, Zhang L, Li J, Liu J, Chen X, Luo X. Pharmacological inhibition of S6K1 facilitates platelet activation by enhancing Akt phosphorylation. Platelets 2017; 30:241-250. [PMID: 29257917 DOI: 10.1080/09537104.2017.1416075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kemin Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Getz TM, Manne B, Buitrago L, Mao Y, Kunapuli SP. Dextran sulphate induces fibrinogen receptor activation through a novel Syk-independent PI-3 kinase-mediated tyrosine kinase pathway in platelets. Thromb Haemost 2017; 109:1131-40. [DOI: 10.1160/th12-09-0645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
SummaryIn our attempt to find a physiological agonist that activates PAR3 receptors, we screened several coagulation proteases using PAR4 null platelets. We observed that FXIIa and heat inactivated FXIIa, but not FXII, caused platelet aggregation. We have identified a contaminant activating factor in FXIIa preparation as dextran sulfate (DxS), which caused aggregation of both human and mouse platelets. DxS-induced platelet aggregation was unaffected by YM254890, a Gq inhibitor, but abolished by pan-Src family kinase (SFK) inhibitor PP2, suggesting a role for SFKs in this pathway. However, DxS-induced platelet aggregation was unaffected in FcRγ-chain null murine platelets, ruling out the possibility of glycoprotein VI-mediated events. More interesting, OXSI-2 and Go6976, two structurally unrelated inhibitors shown to affect Syk, had only a partial effect on DxS-induced PAC-1 binding. DxS-induced platelet aggregation and intracellular calcium increases were abolished by the pan PI-3 kinase inhibitor LY294002, or an isoform-specific PI-3 kinase β inhibitor TGX-221. Pretreatment of platelets with Syk inhibitors or ADP receptor antagonists had little effect on Akt phosphorylation following DxS stimulation. These results, for the first time, establish a novel tyrosine kinase pathway in platelets that causes fibrinogen receptor activation in a PI-3 kinase-dependent manner without a crucial role for Syk.
Collapse
|
26
|
Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood 2017; 130:2171-2179. [DOI: 10.1182/blood-2017-05-787259] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
Abstract
Current understanding of how platelets localize coagulation to wound sites has come mainly from studies of a subpopulation of activated platelets. In this review, we summarize data from the last 4 decades that have described these platelets with a range of descriptive titles and attributes. We identify striking overlaps in the reported characteristics of these platelets, which imply a single subpopulation of versatile platelets and thus suggest that their commonality requires unification of their description. We therefore propose the term procoagulant platelet as the unifying terminology. We discuss the agonist requirements and molecular drivers for the dramatic morphological transformation platelets undergo when becoming procoagulant. Finally, we provide perspectives on the biomarker potential of procoagulant platelets for thrombotic events as well as on the possible clinical benefits of inhibitors of carbonic anhydrase enzymes and the water channel Aquaporin-1 for targeting this subpopulation of platelets as antiprocoagulant antithrombotics.
Collapse
|
27
|
Gao W, Shi P, Chen X, Zhang L, Liu J, Fan X, Luo X. Clathrin-mediated integrin αIIbβ3 trafficking controls platelet spreading. Platelets 2017; 29:610-621. [PMID: 28961039 DOI: 10.1080/09537104.2017.1353682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dynamic endocytic and exocytic trafficking of integrins is an important mechanism for cell migration, invasion, and cytokinesis. Endocytosis of integrin can be classified as clathrin dependent and clathrin independent manners. And rapid delivery of endocytic integrins back to the plasma membrane is key intracellular signals and is indispensable for cell movement. Integrin αIIbβ3 plays a critical role in thrombosis and hemostasis. Although previous studies have demonstrated that internalization of fibrinogen-bound αIIbβ3 may regulate platelet activation, the roles of endocytic and exocytic trafficking of integrin αIIbβ3 in platelet activation are unclear. In this study, we found that a selective inhibitor of clathrin-mediated endocytosis pitstop 2 inhibited human platelet spreading on immobilized fibrinogen (Fg). Mechanism studies revealed that pitstop 2 did not block the endocytosis of αIIbβ3 and Fg uptake, but inhibit the recycling of αIIbβ3 to plasma membrane during platelet or CHO cells bearing αIIbβ3 spreading on immobilized Fg. And pitstop 2 enhanced the association of αIIbβ3 with clathrin, and AP2 indicated that pitstop 2 inhibit platelet activation is probably due to disturbance of the dynamic dissociation of αIIbβ3 from clathrin and AP2. Further study demonstrated that Src/PLC/PKC was the key pathway to trigger the endocytosis of αIIbβ3 during platelet activation. Pitstop 2 also inhibited platelet aggregation and secretion. Our findings suggest integrin αIIbβ3 trafficking is clathrin dependent and plays a critical role in platelet spreading, and pitstop 2 may serve as an effective tool to address clathrin-mediated trafficking in platelets.
Collapse
Affiliation(s)
- Wen Gao
- a Department of Cardiology , Huashan Hospital, Fudan University , Shanghai , China
| | - Panlai Shi
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xue Chen
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Lin Zhang
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Junling Liu
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xuemei Fan
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xinping Luo
- a Department of Cardiology , Huashan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
28
|
ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene 2017; 36:6059-6066. [PMID: 28783168 PMCID: PMC5808977 DOI: 10.1038/onc.2017.264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer among women and 30% will be diagnosed with an ErbB2-positive cancer. Forty percent of ErbB2-positive breast tumors have an activating mutation in p110α, a catalytic subunit of phosphoinositide 3-kinase (PI3K). Clinical and experimental data show that breast tumors treated with a p110α-specific inhibitor often circumvent inhibition and resume growth. To understand this mechanism of resistance, we crossed a p110α conditional (p110αflx/flx) mouse model with mice that overexpresses the ErbB2/Neu-IRES-Cre transgene (NIC) specifically in the mammary epithelium. Although mammary-specific deletion of p110α dramatically delays tumor onset, tumors eventually arise and are dependent on p110β. Through biochemical analyses we find that a proportion of p110α-deficient tumors (23%) display downregulation of the Pten tumor suppressor. We further demonstrate that loss of one allele of PTEN is sufficient to shift isoform dependency from p110α to p110β in vivo. These results provide insight into the molecular mechanism by which ErbB2-positive breast cancer escapes p110α inhibition.
Collapse
|
29
|
Schisandra chinensis and Morus alba Synergistically Inhibit In Vivo Thrombus Formation and Platelet Aggregation by Impairing the Glycoprotein VI Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7839658. [PMID: 28194217 PMCID: PMC5286545 DOI: 10.1155/2017/7839658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/13/2016] [Accepted: 12/29/2016] [Indexed: 01/13/2023]
Abstract
Morus alba L. (MAL) extract has been used in traditional medicine for its cardioprotective and antiplatelet effects, while another herbal remedy, Schisandra chinensis (SCC), has been reported to have anti-inflammatory and antioxidant properties. We evaluated underlying cellular changes exerted by extracts of these plants on platelet function and effects of SCC + MAL on in vivo thrombus formation using AV shunt and tail thrombosis-length models in rats. In vitro platelet aggregation, granule secretion, and [Ca2+] i release assays were carried out. The activation of integrin αIIbβ3 and phosphorylation of downstream signaling molecules, including MAPK and Akt, were investigated using cytometry and immunoblotting, respectively. Scanning electron microscopy (SEM) was used to evaluate changes in platelet shape and HPLC analysis was carried out to identify the marker compounds in SCC + MAL mixture. In vivo thrombus weight and average length of tail thrombosis were significantly decreased by SCC + MAL. In vitro platelet aggregation, granule secretion, [Ca2+] i release, and integrin αIIbβ3 activation were notably inhibited. SCC + MAL markedly reduced the phosphorylation of MAPK pathway factors along with Akt. HPLC analysis identified four marker compounds: isoquercitrin, astragalin, schizandrol A, and gomisin A. The extracts exerted remarkable synergistic effects as natural antithrombotic and antiplatelet agent and a potent drug candidate for treating cardiovascular diseases.
Collapse
|
30
|
Falasca M, Hamilton JR, Selvadurai M, Sundaram K, Adamska A, Thompson PE. Class II Phosphoinositide 3-Kinases as Novel Drug Targets. J Med Chem 2016; 60:47-65. [DOI: 10.1021/acs.jmedchem.6b00963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Falasca
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Justin R. Hamilton
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Maria Selvadurai
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Krithika Sundaram
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aleksandra Adamska
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
31
|
Criel M, Izzi B, Vandenbriele C, Liesenborghs L, Van kerckhoven S, Lox M, Cludts K, Jones EA, Vanassche T, Verhamme P, Hoylaerts M. Absence of Pear1 does not affect murine platelet function in vivo. Thromb Res 2016; 146:76-83. [DOI: 10.1016/j.thromres.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022]
|
32
|
Singh P, Dar MS, Dar MJ. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin? FEBS Lett 2016; 590:3071-82. [PMID: 27552098 DOI: 10.1002/1873-3468.12377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
Class-1 phosphatidylinositol-3-kinases (PI3Ks) are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes. p110α and p110β are the two most studied isoforms of the class-1A PI3K signaling pathway. Although these two isoforms are ubiquitously expressed and play multiple redundant roles, they also have distinct functions within the cell. More recently, p110α and p110β isoforms have been shown to translocate into the nucleus and play a role in DNA replication and repair, and in cell cycle progression. In the following Review article, we discuss the overlapping and unique roles of p110α and p110β isoforms with a particular focus on their structure, expression analysis, subcellular localization, and signaling contributions in various cell types and model organisms.
Collapse
Affiliation(s)
- Paramjeet Singh
- Academy of Scientific and Innovative Research, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Mohd Saleem Dar
- Academy of Scientific and Innovative Research, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research, New Delhi, India. .,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.
| |
Collapse
|
33
|
Zheng Z, Pinson JA, Mountford SJ, Orive S, Schoenwaelder SM, Shackleford D, Powell A, Nelson EM, Hamilton JR, Jackson SP, Jennings IG, Thompson PE. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922). Eur J Med Chem 2016; 122:339-351. [PMID: 27387421 DOI: 10.1016/j.ejmech.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
A series of amino-substituted triazines were developed and examined for PI3Kβ inhibition and anti-platelet function. Structural adaptations of a morpholine ring of the prototype pan-PI3K inhibitor ZSTK474 yielded PI3Kβ selective compounds, where the selectivity largely derives from an interaction with the non-conserved Asp862 residue, as shown by site directed mutagenesis. The most PI3Kβ selective inhibitor from the series was studied in detail through a series of in vitro and in vivo functional studies. MIPS-9922, 10 potently inhibited ADP-induced washed platelet aggregation. It also inhibited integrin αIIbβ3 activation and αIIbβ3 dependent platelet adhesion to immobilized vWF under high shear. It prevented arterial thrombus formation in the in vivo electrolytic mouse model of thrombosis without inducing prolonged bleeding or excess blood loss.
Collapse
Affiliation(s)
- Zhaohua Zheng
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Prahran, Victoria 3004, Australia
| | - Jo-Anne Pinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Stephanie Orive
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Prahran, Victoria 3004, Australia
| | - Simone M Schoenwaelder
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Prahran, Victoria 3004, Australia
| | - David Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Erin M Nelson
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Prahran, Victoria 3004, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Prahran, Victoria 3004, Australia
| | - Shaun P Jackson
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Prahran, Victoria 3004, Australia
| | - Ian G Jennings
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
34
|
Budnik I, Shenkman B, Savion N. Role of G protein signaling in the formation of the fibrin(ogen)–integrin αIIbβ3–actin cytoskeleton complex in platelets. Platelets 2016; 27:563-75. [DOI: 10.3109/09537104.2016.1147544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ivan Budnik
- Goldschleger Eye Research Institute and the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris Shenkman
- National Hemophilia Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Naphtali Savion
- Goldschleger Eye Research Institute and the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Krishnan R, Park JA, Seow CY, Lee PVS, Stewart AG. Cellular Biomechanics in Drug Screening and Evaluation: Mechanopharmacology. Trends Pharmacol Sci 2015; 37:87-100. [PMID: 26651416 DOI: 10.1016/j.tips.2015.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022]
Abstract
The study of mechanobiology is now widespread. The impact of cell and tissue mechanics on cellular responses is well appreciated. However, knowledge of the impact of cell and tissue mechanics on pharmacological responsiveness, and its application to drug screening and mechanistic investigations, have been very limited in scope. We emphasize the need for a heightened awareness of the important bidirectional influence of drugs and biomechanics in all living systems. We propose that the term 'mechanopharmacology' be applied to approaches that employ in vitro systems, biomechanically appropriate to the relevant (patho)physiology, to identify new drugs and drug targets. This article describes the models and techniques that are being developed to transform drug screening and evaluation, ranging from a 2D environment to the dynamic 3D environment of the target expressed in the disease of interest.
Collapse
Affiliation(s)
- Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chun Y Seow
- Center for Heart Lung Innovation, St Pauls Hospital, University of British Columbia, Vancouver, Canada
| | - Peter V-S Lee
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
36
|
Tripeptide SQL Inhibits Platelet Aggregation and Thrombus Formation by Affecting PI3K/Akt Signaling. J Cardiovasc Pharmacol 2015; 66:254-60. [DOI: 10.1097/fjc.0000000000000269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Kuijpers MJ, Mattheij NJ, Cipolla L, van Geffen JP, Lawrence T, Donners MM, Boon L, Lievens D, Torti M, Noels H, Gerdes N, Cosemans JM, Lutgens E, Heemskerk JW. Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase β, and Not Via CD40 and IκB Kinase α. Arterioscler Thromb Vasc Biol 2015; 35:1374-81. [DOI: 10.1161/atvbaha.114.305127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
Abstract
Objective—
To investigate the roles and signaling pathways of CD40L and CD40 in platelet–platelet interactions and thrombus formation under conditions relevant for atherothrombosis.
Approach and Results—
Platelets from mice prone to atherosclerosis lacking CD40L (
Cd40lg
−/−
Apoe
−/−
) showed diminished α
IIb
β
3
activation and α-granule secretion in response to glycoprotein VI stimulation, whereas these responses of CD40-deficient platelets (
Cd40
−/−
Apoe
−/−
) were not decreased. Using blood from
Cd40lg
−/−
Apoe
−/−
and
Cd40
−/−
Apoe
−/−
mice, the glycoprotein VI-dependent formation of dense thrombi was impaired on atherosclerotic plaque material or on collagen, in comparison with
Apoe
−/−
blood. In all genotypes, addition of CD40L to the blood enhanced the growth of dense thrombi on plaques and collagen. Similarly, CD40L enhanced glycoprotein VI–induced platelet aggregation, even with platelets deficient in CD40. This potentiation was antagonized in
Pik3cb
R/R
platelets or by inhibiting phosphatidylinositol 3-kinase β (PI3Kβ). Addition of CD40L also enhanced collagen-induced Akt phosphorylation, which was again antagonized by absence or inhibition of PI3Kβ. Finally, platelets from
Chuk1
A/A
Apoe
−/−
mice deficient in IκB kinase α (IKKα), implicated in CD40 signaling to nuclear factor (NF) κB, showed unchanged responses to CD40L in aggregation or thrombus formation.
Conclusions—
Under atherogenic conditions, CD40L enhances collagen-induced platelet–platelet interactions by supporting integrin α
IIb
β
3
activation, secretion and thrombus growth via PI3Kβ, but not via CD40 and IKKα/NFκB. This role of CD40L exceeds the no more than modest role of CD40 in thrombus formation.
Collapse
Affiliation(s)
- Marijke J.E. Kuijpers
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Nadine J.A. Mattheij
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Lina Cipolla
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Johanna P. van Geffen
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Toby Lawrence
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Marjo M.P.C. Donners
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Louis Boon
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Dirk Lievens
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Mauro Torti
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Heidi Noels
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Norbert Gerdes
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Judith M.E.M. Cosemans
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Esther Lutgens
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| | - Johan W.M. Heemskerk
- From the Departments of Biochemistry (M.J.E.K., N.J.A.M., L.C., J.P.v.G., J.M.E.M.C., J.W.M.H.) and Molecular Genetics (M.M.P.C.D.), CARIM, Maastricht University, Maastricht, The Netherlands; Division of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy (L.C., M.T.); Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France (T.L.); Bioceros, Utrecht, The Netherlands (L.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians
| |
Collapse
|
38
|
Abstract
In this issue of Blood, Laurent et al demonstrate that phosphatidylinositol 3-kinase β (PI3Kβ) activity is essential for thrombus stability at a high shear rate, highlighting a potential risk of embolization upon PI3Kβ inhibition.
Collapse
|
39
|
Iturri J, García-Fernández L, Reuning U, García AJ, del Campo A, Salierno MJ. Synchronized cell attachment triggered by photo-activatable adhesive ligands allows QCM-based detection of early integrin binding. Sci Rep 2015; 5:9533. [PMID: 25825012 PMCID: PMC4379501 DOI: 10.1038/srep09533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
The Quartz Crystal Microbalance with dissipation (QCM-D) technique was applied to monitor and quantify integrin-RGD recognition during the early stages of cell adhesion. Using QCM-D crystals modified with a photo-activatable RGD peptide, the time point of presentation of adhesive ligand at the surface of the QCM-D crystal could be accurately controlled. This allowed temporal resolution of early integrin-RGD binding and the subsequent cell spreading process, and their separate detection by QCM-D. The specificity of the integrin-RGD binding event was corroborated by performing the experiments in the presence of soluble cyclicRGD as a competitor, and cytochalasin D as inhibitor of cell spreading. Larger frequency change in the QCM-D signal was observed for cells with larger spread area, and for cells overexpressing integrin αvβ3 upon stable transfection. This strategy enables quantification of integrin activity which, in turn, may allow discrimination among different cell types displaying distinct integrin subtypes and expression levels thereof. On the basis of these findings, we believe the strategy can be extended to other photoactivatable ligands to characterize cell membrane receptors activity, a relevant issue for cancer diagnosis (and prognosis) as other several pathologies.
Collapse
Affiliation(s)
- Jagoba Iturri
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Ute Reuning
- Clinical Research Unit, Dept. for Obstetrics &Gynecology, Technische Universitaet München, Munich, Germany
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aránzazu del Campo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marcelo J Salierno
- 1] Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany [2] National Scientific and Technical Research Council, Av. Rivadavia 1917, C1033AAJ CABA, Argentina
| |
Collapse
|
40
|
Mountford JK, Petitjean C, Putra HWK, McCafferty JA, Setiabakti NM, Lee H, Tønnesen LL, McFadyen JD, Schoenwaelder SM, Eckly A, Gachet C, Ellis S, Voss AK, Dickins RA, Hamilton JR, Jackson SP. The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nat Commun 2015; 6:6535. [PMID: 25779105 DOI: 10.1038/ncomms7535] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/05/2015] [Indexed: 12/29/2022] Open
Abstract
PI3KC2α is a broadly expressed lipid kinase with critical functions during embryonic development but poorly defined roles in adult physiology. Here we utilize multiple mouse genetic models to uncover a role for PI3KC2α in regulating the internal membrane reserve structure of megakaryocytes (demarcation membrane system) and platelets (open canalicular system) that results in dysregulated platelet adhesion under haemodynamic shear stress. Structural alterations in the platelet internal membrane lead to enhanced membrane tether formation that is associated with accelerated, yet highly unstable, thrombus formation in vitro and in vivo. Notably, agonist-induced 3-phosphorylated phosphoinositide production and cellular activation are normal in PI3KC2α-deficient platelets. These findings demonstrate an important role for PI3KC2α in regulating shear-dependent platelet adhesion via regulation of membrane structure, rather than acute signalling. These studies provide a link between the open canalicular system and platelet adhesive function that has relevance to the primary haemostatic and prothrombotic function of platelets.
Collapse
Affiliation(s)
- Jessica K Mountford
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Claire Petitjean
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Harun W Kusuma Putra
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Jonathan A McCafferty
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Natasha M Setiabakti
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Hannah Lee
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Lotte L Tønnesen
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - James D McFadyen
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Simone M Schoenwaelder
- 1] Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia [2] The Heart Research Institute and Charles Perkins Centre, The University of Sydney, Newtown 2050, Australia
| | - Anita Eckly
- Unité mixte de recherche S949 Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Etablissement Français du Sang-Alsace 67000, Strasbourg, France
| | - Christian Gachet
- Unité mixte de recherche S949 Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Etablissement Français du Sang-Alsace 67000, Strasbourg, France
| | - Sarah Ellis
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Anne K Voss
- 1] Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Ross A Dickins
- 1] Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Shaun P Jackson
- 1] Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia [2] The Heart Research Institute and Charles Perkins Centre, The University of Sydney, Newtown 2050, Australia [3] Department of Molecular and Experimental Medicine, The Scripps Research Institute, San Diego, CA 92037, USA
| |
Collapse
|
41
|
Peng J, Awad A, Sar S, Komaiha OH, Moyano R, Rayal A, Samuel D, Shewan A, Vanhaesebroeck B, Mostov K, Gassama-Diagne A. Phosphoinositide 3-kinase p110δ promotes lumen formation through the enhancement of apico-basal polarity and basal membrane organization. Nat Commun 2015; 6:5937. [PMID: 25583025 PMCID: PMC5094449 DOI: 10.1038/ncomms6937] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/22/2014] [Indexed: 01/04/2023] Open
Abstract
Signalling triggered by adhesion to the extracellular matrix plays a key role in the spatial orientation of epithelial polarity and formation of lumens in glandular tissues. Phosphoinositide 3-kinase signalling in particular is known to influence the polarization process during epithelial cell morphogenesis. Here, using Madin-Darby canine kidney epithelial cells grown in 3D culture, we show that the p110δ isoform of phosphoinositide 3-kinase co-localizes with focal adhesion proteins at the basal surface of polarized cells. Pharmacological, siRNA- or kinase-dead-mediated inhibition of p110δ impair the early stages of lumen formation, resulting in inverted polarized cysts, with no laminin or type IV collagen assembly at cell/extracellular matrix contacts. p110δ also regulates the organization of focal adhesions and membrane localization of dystroglycan. Thus, we uncover a previously unrecognized role for p110δ in epithelial cells in the orientation of the apico-basal axis and lumen formation.
Collapse
Affiliation(s)
- Juan Peng
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Aline Awad
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Sokhavuth Sar
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Ola Hamze Komaiha
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Romina Moyano
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Amel Rayal
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Didier Samuel
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, F-94800 Villejuif, France
| | - Annette Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street London WC1E 6BT, UK
| | - Keith Mostov
- Departments of Anatomy, and Biochemistry and Biophysics, University of California San Francisco, School of Medicine, 600 16th Street, San Francisco, CA 94143-2140
| | - Ama Gassama-Diagne
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| |
Collapse
|
42
|
Abstract
Class IA phosphoinositide 3-kinase β (PI3Kβ) is considered a potential drug target in arterial thrombosis, which is a major cause of death worldwide. Here we show that a striking phenotype of mice with selective p110β deletion in the megakaryocyte lineage is thrombus instability at a high shear rate, which is an effect that is not detected in the absence of p110α in platelets. The high shear rate-dependent thrombus instability in the absence of p110β is observed both ex vivo and in vivo with the formation of platelet emboli. Moreover, PI3Kβ is required for the recruitment of new platelets to a growing thrombus when a pathological high shear is applied. Treatment of human blood with AZD6482, a selective PI3Kβ inhibitor, phenocopies p110β deletion in mouse platelets, which highlights the role of the kinase activity of p110β. Within the growing platelet thrombus, p110β inactivation impairs the activating phosphorylations of Akt and the inhibitory phosphorylation of GSK3. In accord with these data, pharmacologic inhibition of GSK3 restores thrombus stability. Thus, platelet PI3Kβ is not essential for thrombus growth and stability at normal arterial shear but has a specific and critical role in maintaining the integrity of the formed thrombus on elevation of shear rate, suggesting a potential risk of embolization on treatment with PI3Kβ inhibitors.
Collapse
|
43
|
Misztal T, Rusak T, Tomasiak M. Clinically relevant HOCl concentrations reduce clot retraction rate via the inhibition of energy production in platelet mitochondria. Free Radic Res 2014; 48:1443-53. [DOI: 10.3109/10715762.2014.960866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
45
|
Rusak T, Piszcz J, Misztal T, Brańska-Januszewska J, Tomasiak M. Platelet-related fibrinolysis resistance in patients suffering from PV. Impact of clot retraction and isovolemic erythrocytapheresis. Thromb Res 2014; 134:192-8. [DOI: 10.1016/j.thromres.2014.04.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/27/2022]
|
46
|
de Witt SM, Verdoold R, Cosemans JM, Heemskerk JW. Insights into platelet-based control of coagulation. Thromb Res 2014; 133 Suppl 2:S139-48. [DOI: 10.1016/s0049-3848(14)50024-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Misztal T, Rusak T, Tomasiak M. Peroxynitrite may affect clot retraction in human blood through the inhibition of platelet mitochondrial energy production. Thromb Res 2014; 133:402-11. [DOI: 10.1016/j.thromres.2013.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/12/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023]
|
48
|
Wang L, Soe NN, Sowden M, Xu Y, Modjeski K, Baskaran P, Kim Y, Smolock EM, Morrell CN, Berk BC. Cyclophilin A is an important mediator of platelet function by regulating integrin αIIbβ3 bidirectional signalling. Thromb Haemost 2014; 111:873-82. [PMID: 24429998 DOI: 10.1160/th13-09-0738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/22/2013] [Indexed: 01/08/2023]
Abstract
Cyclophilin A (CyPA) is an important mediator in cardiovascular diseases. It possesses peptidyl-prolyl cis-trans isomerase activity (PPIase) and chaperone functions, which regulate protein folding, intracellular trafficking and reactive oxygen species (ROS) production. Platelet glycoprotein receptor αIIbβ3 integrin activation is the common pathway for platelet activation. It was our objective to understand the mechanism by which CyPA-regulates αIIbβ3 activation in platelets. Mice deficient for CyPA (CyPA-/-) had prolonged tail bleeding time compared to wild-type (WT) controls despite equivalent platelet numbers. In vitro studies revealed that CyPA-/- platelets exhibited dramatically decreased thrombin-induced platelet aggregation. In vivo, formation of occlusive thrombi following FeCl3 injury was also significantly impaired in CyPA-/- mice compared with WT-controls. Furthermore, CyPA deficiency inhibited flow-induced thrombus formation in vitro. Flow cytometry demonstrated that thrombin-induced ROS production and αIIbβ3 activation were reduced in CyPA-/- platelets. Coimmunoprecipitation studies showed ROS-dependent increased association of CyPA and αIIbβ3. This association was dependent upon the PPIase activity of CyPA. Significantly, fibrinogen-platelet binding, platelet spreading and cytoskeleton reorganisation were also altered in CyPA-/- platelets. Moreover, CyPA deficiency prevented thrombin-induced αIIbβ3 and cytoskeleton association. In conclusion, CyPA is an important mediator in platelet function by regulation of αIIbβ3 bidirectionalsignalling through increased ROS production and facilitating interaction between αIIbβ3 and the cell cytoskeleton.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bradford C Berk
- Bradford C. Berk, MD, PhD, Aab Cardiovascular Research Institute, University of Rochester, Box CVRI, 601 Elmwood Avenue, Rochester, NY 14642, USA, Tel.: +1 585 275 3407, Fax: +1 585 273 1059, E-mail:
| |
Collapse
|
49
|
Dangelmaier C, Manne BK, Liverani E, Jin J, Bray P, Kunapuli SP. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb Haemost 2013; 111:508-17. [PMID: 24352480 DOI: 10.1160/th13-06-0484] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/14/2013] [Indexed: 11/05/2022]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1), a member of the protein A,G and C (AGC) family of proteins, is a Ser/Thr protein kinase that can phosphorylate and activate other protein kinases from the AGC family, including Akt at Thr308, all of which play important roles in mediating cellular responses. The functional role of PDK1 or the importance of phosphorylation of Akt on Thr308 for its activity has not been investigated in human platelets. In this study, we tested two pharmacological inhibitors of PDK1, BX795 and BX912, to assess the role of Thr308 phosphorylation on Akt. PAR4-induced phosphorylation of Akt on Thr308 was inhibited by BX795 without affecting phosphorylation of Akt on Ser473. The lack of Thr308 phosphorylation on Akt also led to the inhibition of PAR4-induced phosphorylation of two downstream substrates of Akt, viz. GSK3β and PRAS40. In vitro kinase activity of Akt was completely abolished if Thr308 on Akt was not phosphorylated. BX795 caused inhibition of 2-MeSADP-induced or collagen-induced aggregation, ATP secretion and thromboxane generation. Primary aggregation induced by 2-MeSADP was also inhibited in the presence of BX795. PDK1 inhibition also resulted in reduced clot retraction indicating its role in outside-in signalling. These results demonstrate that PDK1 selectively phosphorylates Thr308 on Akt thereby regulating its activity and plays a positive regulatory role in platelet physiological responses.
Collapse
Affiliation(s)
| | | | | | | | | | - S P Kunapuli
- Satya P. Kunapuli, PhD, Department of Physiology, Temple University, Rm. 217 MRB, 3420 N. Broad Street, Philadelphia, Pennsylvania 19140, USA, Tel.: +1 215 707 4615, Fax: +1 215 707 4003, E-mail:
| |
Collapse
|
50
|
Ryu SY, Kim S. Evaluation of CK2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) in regulation of platelet function. Eur J Pharmacol 2013; 720:391-400. [DOI: 10.1016/j.ejphar.2013.09.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/10/2013] [Accepted: 09/22/2013] [Indexed: 11/25/2022]
|