1
|
Steppan J, Wang H, Nandakumar K, Gadkari M, Poe A, Pak L, Brady T, Berkowitz DE, Shimoda LA, Santhanam L. LOXL2 inhibition ameliorates pulmonary artery remodeling in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L423-L438. [PMID: 39010824 PMCID: PMC11482525 DOI: 10.1152/ajplung.00327.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/16/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Conduit pulmonary arterial stiffening and the resultant increase in pulmonary vascular impedance have emerged as an important underlying driver of pulmonary arterial hypertension (PAH). Given that matrix deposition is central to vascular remodeling, we evaluated the role of the collagen cross-linking enzyme lysyl oxidase like 2 (LOXL2) in this study. Human pulmonary artery smooth muscle cells (PASMCs) subjected to hypoxia showed increased LOXL2 secretion. LOXL2 activity and expression were markedly higher in primary PASMCs isolated from the pulmonary arteries of the rat Sugen 5416 + hypoxia (SuHx) model of severe pulmonary hypertension (PH). Similarly, LOXL2 protein and mRNA levels were increased in the pulmonary arteries (PA) and lungs of rats with PH (SuHx and monocrotaline (MCT) models). Pulmonary arteries (PAs) isolated from the rats with PH exhibited hypercontractility to phenylephrine and attenuated vasorelaxation elicited by acetylcholine, indicating severe endothelial dysfunction. Tensile testing revealed a significant increase in PA stiffness in PH. Treatment with PAT-1251, a novel small-molecule LOXL2 inhibitor, improved active and passive properties of the PA ex vivo. There was an improvement in right heart function as measured by right ventricular pressure volume loops in vivo with PAT-1251. Importantly, PAT-1251 treatment ameliorated PH, resulting in improved pulmonary artery pressures, right ventricular remodeling, and survival. Hypoxia-induced LOXL2 activation is a causal mechanism in pulmonary artery stiffening in PH and pulmonary artery mechanical and functional decline. LOXL2 inhibition with PAT-1251 could be a promising approach to improve pulmonary artery pressures, right ventricular elastance, cardiac relaxation, and survival in PAH.NEW & NOTEWORTHY Pulmonary arterial stiffening contributes to the progression of PAH and the deterioration of right heart function. This study shows that LOXL2 is upregulated in rat models of PH. LOXL2 inhibition halts pulmonary vascular remodeling and improves PA contractility, endothelial function, and PA pressure, resulting in prolonged survival. Thus, LOXL2 is an important mediator of PA remodeling and stiffening in PH and a promising target to improve PA pressures and survival in PH.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kavitha Nandakumar
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Mahin Gadkari
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore Maryland, United States
| | - Alan Poe
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lydia Pak
- Department of Molecular and Cellular Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Travis Brady
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore Maryland, United States
| |
Collapse
|
2
|
Khalil NN, Rexius-Hall ML, Escopete S, Parker SJ, McCain ML. Distinct phenotypes induced by acute hypoxia and TGF-β1 in human adult cardiac fibroblasts. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100080. [PMID: 39329164 PMCID: PMC11423773 DOI: 10.1016/j.jmccpl.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Myocardial infarction (MI) causes hypoxic injury to downstream myocardial tissue, which initiates a wound healing response that replaces injured myocardial tissue with a scar. Wound healing is a complex process that consists of multiple phases, in which many different stimuli induce cardiac fibroblasts to differentiate into myofibroblasts and deposit new matrix. While this process is necessary to replace necrotic tissue, excessive and unresolved fibrosis is common post-MI and correlated with heart failure. Therefore, defining how cardiac fibroblast phenotypes are distinctly regulated by stimuli that are prevalent in the post-MI microenvironment, such as hypoxia and transforming growth factor-beta (TGF-β), is essential for understanding and ultimately mitigating pathological fibrosis. In this study, we acutely treated primary human adult cardiac fibroblasts with TGF-β1 or hypoxia and then characterized their phenotype through immunofluorescence, quantitative RT-PCR, and proteomic analysis. We found that fibroblasts responded to low oxygen with increased localization of hypoxia inducible factor 1 (HIF-1) to the nuclei after 4h, which was followed by increased gene expression of vascular endothelial growth factor A (VEGFA), a known target of HIF-1, by 24h. Both TGF-β1 and hypoxia inhibited proliferation after 24h. TGF-β1 treatment also upregulated various fibrotic pathways. In contrast, hypoxia caused a reduction in several protein synthesis pathways, including collagen biosynthesis. Collectively, these data suggest that TGF-β1, but not acute hypoxia, robustly induces the differentiation of human cardiac fibroblasts into myofibroblasts. Discerning the overlapping and distinctive outcomes of TGF-β1 and hypoxia treatment is important for elucidating their roles in fibrotic remodeling post-MI and provides insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Natalie N. Khalil
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Megan L. Rexius-Hall
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sean Escopete
- Department of Cardiology and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah J. Parker
- Department of Cardiology and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| |
Collapse
|
3
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Alva R, Wiebe JE, Stuart JA. Revisiting reactive oxygen species production in hypoxia. Pflugers Arch 2024; 476:1423-1444. [PMID: 38955833 DOI: 10.1007/s00424-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
5
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| | - Vladimir A Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| |
Collapse
|
6
|
Asiimwe AC, Marin MP, Salvatore M. Breast Collagen Organization: Variance by Patient Age and Breast Quadrant. Diagnostics (Basel) 2024; 14:1748. [PMID: 39202236 PMCID: PMC11353690 DOI: 10.3390/diagnostics14161748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Breast density is an important marker for increased breast cancer risk, but the ideal marker would be more specific. Breast compactness, which reflects the focal density of collagen fibers, parallels breast cancer occurrence being highest in the upper outer quadrants of the breast. In addition, it peaks during the same time frame as breast cancer in women. Improved biomarkers for breast cancer risk could pave the way for patient-specific preventive strategies.
Collapse
Affiliation(s)
| | | | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 177 Fort Washington Avenue, New York, NY 10032, USA; (A.C.A.); (M.P.M.)
| |
Collapse
|
7
|
Lee PWT, Suwa T, Kobayashi M, Yang H, Koseki LR, Takeuchi S, Chow CCT, Yasuhara T, Harada H. Hypoxia- and Postirradiation reoxygenation-induced HMHA1/ARHGAP45 expression contributes to cancer cell invasion in a HIF-dependent manner. Br J Cancer 2024; 131:37-48. [PMID: 38740970 PMCID: PMC11231347 DOI: 10.1038/s41416-024-02691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Cancer cells in severely hypoxic regions have been reported to invade towards tumour blood vessels after surviving radiotherapy in a postirradiation reoxygenation- and hypoxia-inducible factor (HIF)-dependent manner and cause recurrence. However, how HIF induces invasiveness of irradiated and reoxygenated cancer cells remains unclear. METHODS Here, we identified human minor histocompatibility antigen 1 (HMHA1), which has been suggested to function in cytoskeleton dynamics and cellular motility, as a responsible factor and elucidated its mechanism of action using molecular and cellular biology techniques. RESULTS HMHA1 expression was found to be induced at the transcription initiation level in a HIF-dependent manner under hypoxia. Boyden chamber invasion assay revealed that the induction of HMHA1 expression is required for the increase in invasion of hypoxic cancer cells. Reoxygenation treatment after ionising radiation in vitro that mimics dynamic changes of a microenvironment in hypoxic regions of tumour tissues after radiation therapy further enhanced HMHA1 expression and invasive potential of HMHA1 wildtype cancer cells in ROS- and HIF-dependent manners, but not of HMHA1 knockout cells. CONCLUSION These results together provide insights into a potential molecular mechanism of the acquisition of invasiveness by hypoxic cancer cells after radiotherapy via the activation of the ROS/HIF/HMHA1 axis.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Tatsuya Suwa
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Hui Yang
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Lina R Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Takeuchi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Christalle C T Chow
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Takaaki Yasuhara
- Laboratory of Genome Stress Response, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
8
|
Zeng R, Zhang D, Zhang J, Pan Y, Liu X, Qi Q, Xu J, Xu C, Shi S, Wang J, Liu T, Dong L. Targeting lysyl oxidase like 2 attenuates OVA-induced airway remodeling partly via the AKT signaling pathway. Respir Res 2024; 25:230. [PMID: 38824593 PMCID: PMC11144323 DOI: 10.1186/s12931-024-02811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/12/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Airway epithelium is an important component of airway structure and the initiator of airway remodeling in asthma. The changes of extracellular matrix (ECM), such as collagen deposition and structural disturbance, are typical pathological features of airway remodeling. Thus, identifying key mediators that derived from airway epithelium and capable of modulating ECM may provide valuable insights for targeted therapy of asthma. METHODS The datasets from Gene Expression Omnibus database were analyzed to screen differentially expressed genes in airway epithelium of asthma. We collected bronchoscopic biopsies and serum samples from asthmatic and healthy subjects to assess lysyl oxidase like 2 (LOXL2) expression. RNA sequencing and various experiments were performed to determine the influences of LOXL2 knockdown in ovalbumin (OVA)-induced mouse models. The roles and mechanisms of LOXL2 in bronchial epithelial cells were explored using LOXL2 small interfering RNA, overexpression plasmid and AKT inhibitor. RESULTS Both bioinformatics analysis and further experiments revealed that LOXL2 is highly expressed in airway epithelium of asthmatics. In vivo, LOXL2 knockdown significantly inhibited OVA-induced ECM deposition and epithelial-mesenchymal transition (EMT) in mice. In vitro, the transfection experiments on 16HBE cells demonstrated that LOXL2 overexpression increases the expression of N-cadherin and fibronectin and reduces the expression of E-cadherin. Conversely, after silencing LOXL2, the expression of E-cadherin is up-regulated. In addition, the remodeling and EMT process that induced by transforming growth factor-β1 could be enhanced and weakened after LOXL2 overexpression and silencing in 16HBE cells. Combining the RNA sequencing of mouse lung tissues and experiments in vitro, LOXL2 was involved in the regulation of AKT signaling pathway. Moreover, the treatment with AKT inhibitor in vitro partially alleviated the consequences associated with LOXL2 overexpression. CONCLUSIONS Taken together, the results demonstrated that epithelial LOXL2 plays a role in asthmatic airway remodeling partly via the AKT signaling pathway and highlighted the potential of LOXL2 as a therapeutic target for airway remodeling in asthma.
Collapse
Affiliation(s)
- Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Qi
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jiawei Xu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Changjuan Xu
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuochuan Shi
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junfei Wang
- Department of Respiratory and Critical Care Medicine, Qilu hospital of Shandong University, Jinan, China
| | - Tian Liu
- Department of Respiratory and Critical Care Medicine, Qilu hospital of Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
9
|
Ma M. Role of Hypoxia in Mesenchymal Stem Cells from Dental Pulp: Influence, Mechanism and Application. Cell Biochem Biophys 2024; 82:535-547. [PMID: 38713403 PMCID: PMC11344735 DOI: 10.1007/s12013-024-01274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Mesenchymal stem cells (MSCs) from dental pulp (DP-MSCs), which include dental pulp stem cells (DPSCs) isolated from permanent teeth and stem cells from human exfoliated deciduous teeth (SHED), have emerged as highly promising cell sources for tissue regeneration, due to their high proliferative rate, multi-lineage differentiation capability and non-invasive accessibility. DP-MSCs also exert extensive paracrine effects through the release of extracellular vesicles (EVs) and multiple trophic factors. To be noted, the microenvironment, commonly referred to as the stem cell niche, plays a crucial role in shaping the functionality and therapeutic effects of DP-MSCs, within which hypoxia has garnered considerable attention. Extensive research has demonstrated that hypoxic conditions profoundly impact DP-MSCs. Specifically, hypoxia promotes DP-MSC proliferation, survival, stemness, migration, and pro-angiogenic potential while modulating their multi-lineage differentiation capacity. Furthermore, hypoxia stimulates the paracrine activities of DP-MSCs, leading to an increased production of EVs and soluble factors. Considering these findings, hypoxia preconditioning has emerged as a promising approach to enhance the therapeutic potential of DP-MSCs. In this comprehensive review, we provide a systematic overview of the influence of hypoxia on DP-MSCs, shedding light on the underlying mechanisms involved. Moreover, we also discuss the potential applications of hypoxia-preconditioned DP-MSCs or their secretome in tissue regeneration. Additionally, we delve into the methodologies employed to simulate hypoxic environments. This review aims to promote a comprehensive and systematic understanding of the hypoxia-induced effects on DP-MSCs and facilitate the refinement of regenerative therapeutic strategies based on DP-MSCs.
Collapse
Affiliation(s)
- Muyuan Ma
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
10
|
Zhang YY, Jin PP, Guo DZ, Bian D. Modified Zhenwu Tang delays chronic renal failure progression by modulating oxidative stress and hypoxic responses in renal proximal tubular epithelial cells. Heliyon 2024; 10:e31265. [PMID: 38803876 PMCID: PMC11128522 DOI: 10.1016/j.heliyon.2024.e31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tubulointerstitial fibrosis (TIF) is a critical pathological feature of chronic renal failure (CRF), with oxidative stress (OS) and hypoxic responses in renal proximal tubular epithelial cells playing pivotal roles in disease progression. This study explores the effects of Modified Zhenwu Tang (MZWT) on these processes, aiming to uncover its potential mechanisms in slowing CRF progression. Methods We used adenine (Ade) to induce CRF in rats, which were then treated with benazepril hydrochloride (Lotensin) and MZWT for 8 weeks. Assessments included liver and renal function, electrolytes, blood lipids, renal tissue pathology, OS levels, the hypoxia-inducible factor (HIF) pathway, inflammatory markers, and other relevant indicators. In vitro, human renal cortical proximal tubular epithelial cells were subjected to hypoxia and lipopolysaccharide for 72 h, with concurrent treatment using MZWT, FM19G11, and N-acetyl-l-cysteine. Measurements taken included reactive oxygen species (ROS), HIF pathway activity, inflammatory markers, and other relevant indicators. Results Ade treatment induced significant disruptions in renal function, blood lipids, electrolytes, and tubulointerstitial architecture, alongside heightened OS, HIF pathway activation, and inflammatory responses in rats. In vivo, MZWT effectively ameliorated proteinuria, renal dysfunction, lipid and electrolyte imbalances, and renal tissue damage; it also suppressed OS, HIF pathway activation, epithelial-mesenchymal transition (EMT) in proximal tubular epithelial cells, and reduced the production of inflammatory cytokines and collagen fibers. In vitro findings demonstrated that MZWT decreased apoptosis, reduced ROS production, curbed OS, HIF pathway activation, and EMT in proximal tubular epithelial cells, and diminished the output of inflammatory cytokines and collagen. Conclusion OS and hypoxic responses significantly contribute to TIF development. MZWT mitigates these responses in renal proximal tubular epithelial cells, thereby delaying the progression of CRF.
Collapse
Affiliation(s)
- Yuan-yuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, 050000, China
| | - Pei-pei Jin
- Hebei Yiling Hospital, Hebei, Shijiazhuang, 050000, China
| | - Deng-zhou Guo
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Chang'an District, Zhongshan East Road 389, 050011, China
| | - Dong Bian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Chang'an District, Zhongshan East Road 389, 050011, China
| |
Collapse
|
11
|
Nakamichi K, Yamamoto Y, Semba K, Nakayama J. Metastatic potentials classified with hypoxia-inducible factor 1 downstream genes in pan-cancer cell lines. Genes Cells 2024; 29:169-177. [PMID: 38158708 DOI: 10.1111/gtc.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Hypoxia-inducible factor 1 (HIF1) is a transcription factor that is stabilized under hypoxia conditions via post-translational modifications. HIF1 regulates tumor malignancy and metastasis by gene transcriptions, such as Warburg effect and angiogenesis-related genes, in cancer cells. However, the HIF1 downstream genes show varied expressional patterns in different cancer types. Herein, we performed the hierarchical clustering based on the HIF1 downstream gene expression patterns using 1406 cancer cell lines crossing 30 types of cancer to understand the relationship between HIF1 downstream genes and the metastatic potential of cancer cell lines. Two types of cancers, including bone and breast cancers, were classified based on HIF1 downstream genes with significantly altered metastatic potentials. Furthermore, different HIF1 downstream gene subsets were extracted to discriminate each subtype for these cancer types. HIF1 downstream subtyping classification will help to understand the novel insight into tumor malignancy and metastasis in each cancer type.
Collapse
Affiliation(s)
- Kazuya Nakamichi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
12
|
Fan P, Zhang N, Candi E, Agostini M, Piacentini M, Shi Y, Huang Y, Melino G. Alleviating hypoxia to improve cancer immunotherapy. Oncogene 2023; 42:3591-3604. [PMID: 37884747 DOI: 10.1038/s41388-023-02869-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Tumor hypoxia resulting from abnormal and dysfunctional tumor vascular network poses a substantial obstacle to immunotherapy. In fact, hypoxia creates an immunosuppressive tumor microenvironment (TME) through promoting angiogenesis, metabolic reprogramming, extracellular matrix remodeling, epithelial-mesenchymal transition (EMT), p53 inactivation, and immune evasion. Vascular normalization, a strategy aimed at restoring the structure and function of tumor blood vessels, has been shown to improve oxygen delivery and reverse hypoxia-induced signaling pathways, thus alleviates hypoxia and potentiates cancer immunotherapy. In this review, we discuss the mechanisms of tumor tissue hypoxia and its impacts on immune cells and cancer immunotherapy, as well as the approaches to induce tumor vascular normalization. We also summarize the evidence supporting the use of vascular normalization in combination with cancer immunotherapy, and highlight the challenges and future directions of this overlooked important field. By targeting the fundamental problem of tumor hypoxia, vascular normalization proposes a promising strategy to enhance the efficacy of cancer immunotherapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Peng Fan
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Naidong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
| | - Yuhui Huang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
13
|
Schito L, Rey-Keim S. Hypoxia signaling and metastatic progression. Semin Cancer Biol 2023; 97:42-49. [PMID: 37926346 DOI: 10.1016/j.semcancer.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Disruption of oxygen homeostasis, resulting from an imbalance between O2 supply and demand during malignant proliferation, leads to the development of hypoxic tumor microenvironments that promote the acquisition of aggressive cancer cell phenotypes linked to metastasis and patient mortality. In this review, the mechanistic links between tumor hypoxia and metastatic progression are presented. Current status and perspectives of targeting hypoxia signaling pathways as a strategy to halt cancer cell metastatic activities are emphasized.
Collapse
Affiliation(s)
- Luana Schito
- UCD School of Medicine, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| | - Sergio Rey-Keim
- UCD School of Medicine, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| |
Collapse
|
14
|
Steppan J, Wang H, Nandakumar K, Poe A, Pak L, Brady T, Gadkari M, Berkowitz DE, Shimoda LA, Santhanam L. LOXL2 inhibition ameliorates pulmonary artery remodeling in pulmonary hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563874. [PMID: 37961202 PMCID: PMC10634806 DOI: 10.1101/2023.10.24.563874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Conduit pulmonary arterial stiffening and the resultant increase in pulmonary vascular impedance has emerged as an important underlying driver of pulmonary arterial hypertension (PAH). Given that matrix deposition is central to vascular remodeling, we evaluated the role of the collagen crosslinking enzyme lysyl oxidase like 2 (LOXL2) in this study. Methods and Results Human pulmonary artery smooth muscle cells (PASMCs) subjected to hypoxia showed increased LOXL2 secretion. LOXL2 activity and expression were markedly higher in primary PASMCs isolated from pulmonary arteries of the rat Sugen 5416 + hypoxia (SuHx) model of severe PH. Similarly, LOXL2 protein and mRNA levels were increased in pulmonary arteries (PA) and lungs of rats with PH (SuHx and monocrotaline (MCT) models). Pulmonary arteries (PAs) isolated from rats with PH exhibited hypercontractility to phenylephrine and attenuated vasorelaxation elicited by acetylcholine, indicating severe endothelial dysfunction. Tensile testing revealed a a significant increase in PA stiffness in PH. Treatment with PAT-1251, a novel small-molecule LOXL2 inhibitor, improved active and passive properties of the PA ex vivo. There was an improvement in right heart function as measured by right ventricular pressure volume loops in-vivo with PAT-1251. Importantly PAT-1251 treatment ameliorated PH, resulting in improved pulmonary artery pressures, right ventricular remodeling, and survival. Conclusion Hypoxia induced LOXL2 activation is a causal mechanism in pulmonary artery stiffening in PH, as well as pulmonary artery mechanical and functional decline. LOXL2 inhibition with PAT-1251 is a promising approach to improve pulmonary artery pressures, right ventricular elastance, cardiac relaxation, and survival in PAH. New & Noteworthy Pulmonary arterial stiffening contributes to the progression of PAH and the deterioration of right heart function. This study shows that LOXL2 is upregulated in rat models of PH. LOXL2 inhibition halts pulmonary vascular remodeling and improves PA contractility, endothelial function and improves PA pressure, resulting in prolonged survival. Thus, LOXL2 is an important mediator of PA remodeling and stiffening in PH and a promising target to improve PA pressures and survival in PH.
Collapse
|
15
|
Ildiz ES, Gvozdenovic A, Kovacs WJ, Aceto N. Travelling under pressure - hypoxia and shear stress in the metastatic journey. Clin Exp Metastasis 2023; 40:375-394. [PMID: 37490147 PMCID: PMC10495280 DOI: 10.1007/s10585-023-10224-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Cancer cell invasion, intravasation and survival in the bloodstream are early steps of the metastatic process, pivotal to enabling the spread of cancer to distant tissues. Circulating tumor cells (CTCs) represent a highly selected subpopulation of cancer cells that tamed these critical steps, and a better understanding of their biology and driving molecular principles may facilitate the development of novel tools to prevent metastasis. Here, we describe key research advances in this field, aiming at describing early metastasis-related processes such as collective invasion, shedding, and survival of CTCs in the bloodstream, paying particular attention to microenvironmental factors like hypoxia and mechanical stress, considered as important influencers of the metastatic journey.
Collapse
Affiliation(s)
- Ece Su Ildiz
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Werner J Kovacs
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
16
|
Cano A, Eraso P, Mazón MJ, Portillo F. LOXL2 in Cancer: A Two-Decade Perspective. Int J Mol Sci 2023; 24:14405. [PMID: 37762708 PMCID: PMC10532419 DOI: 10.3390/ijms241814405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Lysyl Oxidase Like 2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises five lysine tyrosylquinone (LTQ)-dependent copper amine oxidases in humans. In 2003, LOXL2 was first identified as a promoter of tumour progression and, over the course of two decades, numerous studies have firmly established its involvement in multiple cancers. Extensive research with large cohorts of human tumour samples has demonstrated that dysregulated LOXL2 expression is strongly associated with poor prognosis in patients. Moreover, investigations have revealed the association of LOXL2 with various targets affecting diverse aspects of tumour progression. Additionally, the discovery of a complex network of signalling factors acting at the transcriptional, post-transcriptional, and post-translational levels has provided insights into the mechanisms underlying the aberrant expression of LOXL2 in tumours. Furthermore, the development of genetically modified mouse models with silenced or overexpressed LOXL2 has enabled in-depth exploration of its in vivo role in various cancer models. Given the significant role of LOXL2 in numerous cancers, extensive efforts are underway to identify specific inhibitors that could potentially improve patient prognosis. In this review, we aim to provide a comprehensive overview of two decades of research on the role of LOXL2 in cancer.
Collapse
Affiliation(s)
- Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
| | - María J. Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Löser R, Kuchar M, Wodtke R, Neuber C, Belter B, Kopka K, Santhanam L, Pietzsch J. Lysyl Oxidases as Targets for Cancer Therapy and Diagnostic Imaging. ChemMedChem 2023; 18:e202300331. [PMID: 37565736 DOI: 10.1002/cmdc.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/12/2023]
Abstract
The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure-activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Lakshmi Santhanam
- Departments of Anesthesiology and Critical Care Medicine and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| |
Collapse
|
18
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
19
|
Geetha R, Iyer S, Keechilat P, N GI, Thankappan KK, N V S. Evaluation of premetastatic changes in lymph nodes(pN0) of oral tongue tumour: A prospective observational Study. F1000Res 2023; 12:889. [PMID: 37786649 PMCID: PMC10541534 DOI: 10.12688/f1000research.138951.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/04/2023] Open
Abstract
Background: Tongue tumors show intra and inter-tumoral heterogenicity with high incidence, relapse and mortality rates necessitating further research. Recurrence/metastasis that occurs after surgical resection of primary cancer is often the reason for poor survival in these patients. Lymph nodes are the most common site of metastasis in tongue tumors. Therefore, premetastatic molecular changes can be best evaluated in lymph nodes which may epitomize the earliest events in the metastasis cascades. The presence of circulating tumor cells(CTCs) in the absence of nodal disease (N0) may represent tumor aggressiveness, suggesting an immune escape which may have high metastatic potential. This trial was developed to investigate the earliest pre-metastatic changes which may regulate tumor dormancy and predict metastasis. A better understanding of organotropism or pre-metastatic changes can help in theragnostic, thereby preventing the outbreak of overt metastasis. Methods: A single-institutional prospective observational cohort study. This trial will be conducted at a tertiary care Centre (Amrita Institute of Medical Sciences Kochi). Eligible patients will be enrolled after obtaining informed consent. The dissected lymph nodes will be subjected to histopathological and immunohistochemical analyses for premetastatic niche (PMN) formation. In addition, circulating tumor cells will be evaluated before treatment and 6 months after treatment. The patients will be followed up for a period of two years to correlate the findings with the recurrence-free survival. Expected results: The pre-metastatic changes, if detected will be a predictive biomarker. It may help to define future drug targets for metastasis chemoprevention . CTCs may define the tumor aggressiveness ,there by prognostication and helps in better disease management. Ethics and dissemination: The study has received the following approval: Ethics Committee of Amrita School of Medicine (ECASM-AIMS-2022-048).Trial Registered Prospectively( CTRI/2022/03/041256 ) on 22/03/2022 under Clinical Trial Registry of India.
Collapse
Affiliation(s)
- Rajalakshmi Geetha
- Head and Neck Surgery/Oncology, Amrita Institute of Medical Sciences - Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Subramania Iyer
- Head and Neck Surgery/Oncology, Amrita Institute of Medical Sciences - Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Pavithran Keechilat
- Medical Oncology, Amrita Institute of Medical Sciences - Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - Krishna Kumar Thankappan
- Head and Neck Surgery/Oncology, Amrita Institute of Medical Sciences - Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Smitha N V
- Department of Pathology, Amrita Institute of Medical Sciences -Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
20
|
Radić J, Kožik B, Nikolić I, Kolarov-Bjelobrk I, Vasiljević T, Vranjković B, Despotović S. Multiple Roles of LOXL2 in the Progression of Hepatocellular Carcinoma and Its Potential for Therapeutic Targeting. Int J Mol Sci 2023; 24:11745. [PMID: 37511503 PMCID: PMC10380739 DOI: 10.3390/ijms241411745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
LOXL2, a copper-dependent amine oxidase, has emerged as a promising therapeutic target in hepatocellular carcinoma (HCC). Increased LOXL2 expression in HCC has been linked with an aggressive phenotype and represents a poor prognostic factor. Here, we focus on the mechanisms through which LOXL2 orchestrates multiple oncogenic functions in HCC development. We performed a review of the current knowledge on the roles LOXL2 performs in the modulation of the HCC tumor microenvironment, formation of premetastatic niches, and epithelial-mesenchymal transition. We also highlighted the complex interplay between LOXL2 and hypoxia, angiogenesis, and vasculogenic mimicry in HCC. At the end of the review, we summarize the current LOXL2 inhibitors and discuss their potential in HCC precision treatment.
Collapse
Affiliation(s)
- Jelena Radić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11100 Belgrade, Serbia
| | - Ivan Nikolić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Ivana Kolarov-Bjelobrk
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Tijana Vasiljević
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia
- Department of Pathology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Bojana Vranjković
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Sanja Despotović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
21
|
Li B, Liang A, Zhou Y, Huang Y, Liao C, Zhang X, Gong Q. Hypoxia preconditioned DPSC-derived exosomes regulate angiogenesis via transferring LOXL2. Exp Cell Res 2023; 425:113543. [PMID: 36894050 DOI: 10.1016/j.yexcr.2023.113543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Hypoxia was proved to enhance the angiogenesis of stem cells. However, the mechanism of the angiogenic potential in hypoxia-pretreated dental pulp stem cells (DPSCs) is poorly understood. We previously confirmed that hypoxia enhances the angiogenic potential of DPSC-derived exosomes with upregulation of lysyl oxidase-like 2 (LOXL2). Therefore, our study aimed to illuminate whether these exosomes promote angiogenesis via transfer of LOXL2. Exosomes were generated from hypoxia-pretreated DPSCs (Hypo-Exos) stably silencing LOXL2 after lentiviral transfection and characterized with transmission electron microscopy, nanosight and Western blot. The efficiency of silencing was verified using quantitative real-time PCR (qRT-PCR) and Western blot. CCK-8, scratch and transwell assays were conducted to explore the effects of LOXL2 silencing on DPSCs proliferation and migration. Human umbilical vein endothelial cells (HUVECs) were co-incubated with exosomes to assess the migration and angiogenic capacity through transwell and matrigel tube formation assays. The relative expression of angiogenesis-associated genes was characterized by qRT-PCR and Western blot. LOXL2 was successfully silenced in DPSCs and inhibited DPSC proliferation and migration. LOXL2 silencing in Hypo-Exos partially reduced promotion of HUVEC migration and tube formation and inhibited the expression of angiogenesis-associated genes. Thus, LOXL2 is one of various factors mediating the angiogenic effects of Hypo-Exos.
Collapse
Affiliation(s)
- Baoyu Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yanling Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yihua Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Chenxi Liao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xufang Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
22
|
Liu X, Zhang L, Tang W, Zhang T, Xiang P, Shen Q, Ye T, Xiao Y. Transcriptomic profiling and differential analysis reveal the renal toxicity mechanisms of mice under cantharidin exposure. Toxicol Appl Pharmacol 2023; 465:116450. [PMID: 36907384 DOI: 10.1016/j.taap.2023.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linghan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Tingting Zhang
- Chongqing university three gorges hospital, Chongqing, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qin Shen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taotao Ye
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
23
|
Sharma RK, Kamble SH, Krishnan S, Gomes J, To B, Li S, Liu IC, Gumz ML, Mohandas R. Involvement of lysyl oxidase in the pathogenesis of arterial stiffness in chronic kidney disease. Am J Physiol Renal Physiol 2023; 324:F364-F373. [PMID: 36825626 PMCID: PMC10069822 DOI: 10.1152/ajprenal.00239.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk for adverse cardiovascular events. CKD is associated with increases in arterial stiffness, whereas improvements in arterial stiffness correlate with better survival. However, arterial stiffness is increased early in CKD, suggesting that there might be additional factors, unique to kidney disease, that increase arterial stiffness. Lysyl oxidase (LOX) is a key mediator of collagen cross linking and matrix remodeling. LOX is predominantly expressed in the cardiovascular system, and its upregulation has been associated with increased tissue stiffening and extracellular matrix remodeling. Thus, this study was designed to evaluate the role of increased LOX activity in inducing aortic stiffness in CKD and whether β-aminopropionitrile (BAPN), a LOX inhibitor, could prevent aortic stiffness by reducing collagen cross linking. Eight-week-old male C57BL/6 mice were subjected to 5/6 nephrectomy (Nx) or sham surgery. Two weeks after surgery, mice were randomized to BAPN (300 mg/kg/day in water) or vehicle treatment for 4 wk. Aortic stiffness was assessed by pulse wave velocity (PWV) using Doppler ultrasound. Aortic levels of LOX were assessed by ELISA, and cross-linked total collagen levels were analyzed by mass spectrometry and Sircol assay. Nx mice showed increased PWV and aortic wall remodeling compared with control mice. Collagen cross linking was increased in parallel with the increases in total collagen in the aorta of Nx mice. In contrast, Nx mice that received BAPN treatment showed decreased cross-linked collagens and PWV compared with that received vehicle treatment. Our results indicated that LOX might be an early and key mediator of aortic stiffness in CKD.NEW & NOTEWORTHY Arterial stiffness in CKD is associated with adverse cardiovascular outcomes. However, the mechanisms underlying increased aortic stiffness in CKD are unclear. Herein, we demonstrated that 1) increased aortic stiffness in CKD is independent of hypertension and calcification and 2) LOX-mediated changes in extracellular matrix are at least in part responsible for increased aortic stiffness in CKD. Prevention of excess LOX may have therapeutic potential in alleviating increased aortic stiffness and improving cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Ravindra K Sharma
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Shyam H Kamble
- Department of Pharmacology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Suraj Krishnan
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Joshua Gomes
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Brandon To
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Shiyu Li
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - I-Chia Liu
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Rajesh Mohandas
- Division of Nephrology and Hypertension, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
24
|
Ding X, Zhang Y, Liang J, Li Q, Hu H, Zhou Y, Zhang B. Dihydroartemisinin Potentiates VEGFR-TKIs Antitumorigenic Effect on Osteosarcoma by Regulating Loxl2/VEGFA Expression and Lipid Metabolism Pathway. J Cancer 2023; 14:809-820. [PMID: 37056396 PMCID: PMC10088882 DOI: 10.7150/jca.81623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 04/15/2023] Open
Abstract
Anti-angiogenesis therapy has shown significant anti-tumor effects against a variety of cancers. But resistance to antiangiogenic drugs, intrinsic and evasive, is frequently found in patients during treatment. Here, we report that dihydroartemisinin (DHA), a derivative of the Chinese medicine artemisinin, enhances antiangiogenic drug-induced cytotoxicity in osteosarcoma (OS) cells. Proteomics analysis revealed that DHA treatment significantly affected the activity of the collagen-modifying enzyme lysyl oxidase-like 2 (LOXL2), a regulatory gene associated with poor prognosis of OS. Furthermore, we found that DHA reduced the expression of vascular endothelial growth factor (VEGFA) by downregulating LOXL2. This mechanism was confirmed by QRT-PCR, western blot, and ELISA assays. Correspondingly, vector-enforced expression of LOXL2 markedly reduced VEGFA secretion. Untargeted metabolomic analysis revealed that the lipid metabolism that confers antiangiogenic drug resistance, was also interfered with by DHA. Thus, DHA not only exerts antitumor effects in OS cells directly but also synergizes with the antiangiogenic drug by regulating vascular endothelial growth factor A (VEGFA) expression and lipid metabolism.
Collapse
Affiliation(s)
- Xiaomin Ding
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - YaWen Zhang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jinrong Liang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qian Li
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yan Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| |
Collapse
|
25
|
Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing Heartaches: The Cardiac ECM and the Effects of Age. Int J Mol Sci 2023; 24:4713. [PMID: 36902143 PMCID: PMC10003270 DOI: 10.3390/ijms24054713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.
Collapse
Affiliation(s)
| | | | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
26
|
Mohamed OAA, Tesen HS, Hany M, Sherif A, Abdelwahab MM, Elnaggar MH. The role of hypoxia on prostate cancer progression and metastasis. Mol Biol Rep 2023; 50:3873-3884. [PMID: 36787054 PMCID: PMC10042974 DOI: 10.1007/s11033-023-08251-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
Prostate cancer is the second most common cancer diagnosed in men and the fifth-leading cause of cancer death in men worldwide. Like any solid tumor, the hypoxic microenvironment of prostatic cancer drives hypoxia-inducible factors (HIFs) to mediate cell adaptions to hypoxic conditions. HIFs direct different signaling pathways such as PI3K/Akt/mTOR, NOX, and Wnt/β-Catenin to tumor progression depending on the degree of hypoxia. HIFs regulate cytoskeleton protein expression, promoting epithelial-mesenchymal transition (EMT), which occurs when cancer cells lose cell-to-cell adhesions and start invasion and metastasis. Through activating pathways, the hypoxic microenvironment maintains the self-renewal, potency, and anti-apoptotic function of prostate cancer cells and induces tumor metastasis and transformation. These pathways could serve as a potential target for prostate cancer therapy. HIFs increase the expression of androgen receptors on cancer cells maintaining the growth and survival of prostate cancer and the development of its castration resistance. In this review, we elaborate on the role of hypoxia in prostatic cancer pathogenesis and different hypoxia-induced mechanisms.
Collapse
Affiliation(s)
- Osama A A Mohamed
- Biotechnology Department, Faculty of Science, Mansoura University, Dakahlia, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Heba S Tesen
- Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Marwa Hany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aya Sherif
- Chemistry & Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Maya Magdy Abdelwahab
- Faculty of Medicine, Helwan University, Cairo, Egypt. .,Biomedical Research Department, Tetraploid Team, Cairo, Egypt.
| | - Muhammed H Elnaggar
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| |
Collapse
|
27
|
Zhang J, Hu Z, Horta CA, Yang J. Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol 2023; 88:46-66. [PMID: 36521737 DOI: 10.1016/j.semcancer.2022.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in various aspects of tumor development, including tumor invasion and metastasis, cancer stemness, and therapy resistance. Diverse stroma cell types along with biochemical and biophysical factors in the tumor microenvironment impinge on the EMT program to impact tumor progression. Here we provide an in-depth review of various tumor microenvironmental signals that regulate EMT in cancer. We discuss the molecular mechanisms underlying the role of EMT in therapy resistance and highlight new therapeutic approaches targeting the tumor microenvironment to impact EMT and tumor progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Calista A Horta
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Alva R, Moradi F, Liang P, Stuart JA. Culture of Cancer Cells at Physiological Oxygen Levels Affects Gene Expression in a Cell-Type Specific Manner. Biomolecules 2022; 12:1684. [PMID: 36421698 PMCID: PMC9688152 DOI: 10.3390/biom12111684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 02/26/2024] Open
Abstract
Standard cell culture is routinely performed at supraphysiological oxygen levels (~18% O2). Conversely, O2 levels in most mammalian tissues range from 1-6% (physioxia). Such hyperoxic conditions in cell culture can alter reactive oxygen species (ROS) production, metabolism, mitochondrial networks, and response to drugs and hormones. The aim of this study was to investigate the transcriptional response to different O2 levels and determine whether it is similar across cell lines, or cell line-specific. Using RNA-seq, we performed differential gene expression and functional enrichment analyses in four human cancer cell lines, LNCaP, Huh-7, PC-3, and SH-SY5Y cultured at either 5% or 18% O2 for 14 days. We found that O2 levels affected transcript abundance of thousands of genes, with the affected genes having little overlap between cell lines. Functional enrichment analysis also revealed different processes and pathways being affected by O2 in each cell line. Interestingly, most of the top differentially expressed genes are involved in cancer biology, which highlights the importance of O2 levels in cancer cell research. Further, we observed several hypoxia-inducible factor (HIF) targets, HIF-2α targets particularly, upregulated at 5% O2, consistent with a role for HIFs in physioxia. O2 levels also differentially induced the transcription of mitochondria-encoded genes in most cell lines. Finally, by comparing our transcriptomic data from LNCaP and PC-3 with datasets from the Prostate Cancer Transcriptome Atlas, a correlation between genes upregulated at 5% O2 in LNCaP cells and the in vivo prostate cancer transcriptome was found. We conclude that the transcriptional response to O2 over the range from 5-18% is robust and highly cell-type specific. This latter finding indicates that the effects of O2 levels are difficult to predict and thus highlights the importance of regulating O2 in cell culture.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Biotechnology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Biotechnology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
29
|
Recent Advances in the Aging Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:cancers14204990. [PMID: 36291773 PMCID: PMC9599409 DOI: 10.3390/cancers14204990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The incidence of breast cancer has increased rapidly in recent years. Aging is one of the risk factors for advanced breast cancer. More and more studies have been conducted on the influence of the aging microenvironment on breast cancer. In this review, we summarize the effects of physical changes in the aging microenvironment, senescence-associated secretory phenotypes, and senescent stromal cells on the initiation and progression of breast cancer and the underlying mechanisms. In addition, we also discuss potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. We hope this review can provide some directions for future research on the aging microenvironment in breast cancer. Abstract Aging is one of the risk factors for advanced breast cancer. With the increasing trend toward population aging, it is important to study the effects of aging on breast cancer in depth. Cellular senescence and changes in the aging microenvironment in vivo are the basis for body aging and death. In this review, we focus on the influence of the aging microenvironment on breast cancer. Increased breast extracellular matrix stiffness in the aging breast extracellular matrix can promote the invasion of breast cancer cells. The role of senescence-associated secretory phenotypes (SASPs) such as interleukin-6 (IL-6), IL-8, and matrix metalloproteases (MMPs), in breast cancer cell proliferation, invasion, and metastasis is worthy of exploration. Furthermore, the impact of senescent fibroblasts, adipocytes, and endothelial cells on the mammary matrix is discussed in detail. We also list potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. In conclusion, this review offers an overview of the influence of the aging microenvironment on breast cancer initiation and progression, with the aim of providing some directions for future research on the aging microenvironment in breast cancer.
Collapse
|
30
|
Lysyl Oxidases: Orchestrators of Cellular Behavior and ECM Remodeling and Homeostasis. Int J Mol Sci 2022; 23:ijms231911378. [PMID: 36232685 PMCID: PMC9569843 DOI: 10.3390/ijms231911378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Lysyl oxidases have long been considered key secreted extracellular matrix modifying enzymes. As such, their activity has been associated with the crosslinking of collagens and elastin, and as a result, they have been linked to multiple developmental and pathological processes. However, numerous lines of evidence also demonstrated that members of this enzyme family are localized and are active within the cytoplasm or cell nuclei, where they regulate and participate in distinct cellular events. In this review, we focus on a few of these events and highlight the intracellular role these enzymes play. Close examination of these events, suggest that the intracellular activities of lysyl oxidases is mostly observed in processes where concomitant changes in the extracellular matrix takes place. Here, we suggest that the LOX family members act in the relay between changes in the cells’ environment and the intracellular processes that promote them or that follow.
Collapse
|
31
|
Liburkin-Dan T, Nir-Zvi I, Razon H, Kessler O, Neufeld G. Knock-Out of the Five Lysyl-Oxidase Family Genes Enables Identification of Lysyl-Oxidase Pro-Enzyme Regulated Genes. Int J Mol Sci 2022; 23:ijms231911322. [PMID: 36232621 PMCID: PMC9570307 DOI: 10.3390/ijms231911322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The five lysyl-oxidase genes share similar enzymatic activities and contribute to tumor progression. We have knocked out the five lysyl-oxidase genes in MDA-MB-231 breast cancer cells using CRISPR/Cas9 in order to identify genes that are regulated by LOX but not by other lysyl-oxidases and in order to study such genes in more mechanistic detail in the future. Re-expression of the full-length cDNA encoding LOX identified four genes whose expression was downregulated in the knock-out cells and rescued following LOX re-expression but not re-expression of other lysyl-oxidases. These were the AGR2, STOX2, DNAJB11 and DNAJC3 genes. AGR2 and STOX2 were previously identified as promoters of tumor progression. In addition, we identified several genes that were not downregulated in the knock-out cells but were strongly upregulated following LOX or LOXL3 re-expression. Some of these, such as the DERL3 gene, also promote tumor progression. There was very little proteolytic processing of the re-expressed LOX pro-enzyme in the MDA-MB-231 cells, while in the HEK293 cells, the LOX pro-enzyme was efficiently cleaved. We introduced point mutations into the known BMP-1 and ADAMTS2/14 cleavage sites of LOX. The BMP-1 mutant was secreted but not cleaved, while the LOX double mutant dmutLOX was not cleaved or secreted. However, even in the presence of the irreversible LOX inhibitor β-aminoproprionitrile (BAPN), these point-mutated LOX variants induced the expression of these genes, suggesting that the LOX pro-enzyme has hitherto unrecognized biological functions.
Collapse
|
32
|
Regulating the Expression of HIF-1α or lncRNA: Potential Directions for Cancer Therapy. Cells 2022; 11:cells11182811. [PMID: 36139386 PMCID: PMC9496732 DOI: 10.3390/cells11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Previous studies have shown that tumors under a hypoxic environment can induce an important hypoxia-responsive element, hypoxia-induced factor-1α (HIF-1α), which can increase tumor migration, invasion, and metastatic ability by promoting epithelial-to-mesenchymal transition (EMT) in tumor cells. Currently, with the deeper knowledge of long noncoding RNAs (lncRNAs), more and more functions of lncRNAs have been discovered. HIF-1α can regulate hypoxia-responsive lncRNAs under hypoxic conditions, and changes in the expression level of lncRNAs can regulate the production of EMT transcription factors and signaling pathway transduction, thus promoting EMT progress. In conclusion, this review summarizes the regulation of the EMT process by HIF-1α and lncRNAs and discusses their relationship with tumorigenesis. Since HIF-1α plays an important role in tumor progression, we also summarize the current drugs that inhibit tumor progression by modulating HIF-1α.
Collapse
|
33
|
Dekker Y, Le Dévédec SE, Danen EHJ, Liu Q. Crosstalk between Hypoxia and Extracellular Matrix in the Tumor Microenvironment in Breast Cancer. Genes (Basel) 2022; 13:genes13091585. [PMID: 36140753 PMCID: PMC9498429 DOI: 10.3390/genes13091585] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Even though breast cancer is the most diagnosed cancer among women, treatments are not always successful in preventing its progression. Recent studies suggest that hypoxia and the extracellular matrix (ECM) are important in altering cell metabolism and tumor metastasis. Therefore, the aim of this review is to study the crosstalk between hypoxia and the ECM and to assess their impact on breast cancer progression. The findings indicate that hypoxic signaling engages multiple mechanisms that directly contribute to ECM remodeling, ultimately increasing breast cancer aggressiveness. Second, hypoxia and the ECM cooperate to alter different aspects of cell metabolism. They mutually enhance aerobic glycolysis through upregulation of glucose transport, glycolytic enzymes, and by regulating intracellular pH. Both alter lipid and amino acid metabolism by stimulating lipid and amino acid uptake and synthesis, thereby providing the tumor with additional energy for growth and metastasis. Third, YAP/TAZ signaling is not merely regulated by the tumor microenvironment and cell metabolism, but it also regulates it primarily through its target c-Myc. Taken together, this review provides a better understanding of the crosstalk between hypoxia and the ECM in breast cancer. Additionally, it points to a role for the YAP/TAZ mechanotransduction pathway as an important link between hypoxia and the ECM in the tumor microenvironment, driving breast cancer progression.
Collapse
Affiliation(s)
- Yasmin Dekker
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvia E. Le Dévédec
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence: (E.H.J.D.); (Q.L.)
| | - Qiuyu Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100102, China
- Correspondence: (E.H.J.D.); (Q.L.)
| |
Collapse
|
34
|
Devaraj E, Perumal E, Subramaniyan R, Mustapha N. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology 2022; 76:275-285. [PMID: 34773651 DOI: 10.1002/hep.32239] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ezhilarasan Devaraj
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Elumalai Perumal
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raghunandhakumar Subramaniyan
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Najimi Mustapha
- Laboratory of Pediatric Hepatology and Cell Therapy, IREC Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
35
|
Liu D, Sun H, Li K, Zhao Z, Liu Z, Zhang G, Ge Y, Zhang J, Wang D, Leng Y. HIF-1α mediates renal fibrosis by regulating metabolic remodeling of renal tubule epithelial cells. Biochem Biophys Res Commun 2022; 618:15-23. [PMID: 35714566 DOI: 10.1016/j.bbrc.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
Hypoxia-inducible factor 1-α (HIF-1α) mediates the occurrence and development of renal diseases and fibrosis. In the process, dysregulated cellular metabolism was suggested to be involved in several pathological processes. Here, we found that HIF-1α expression was increased in the early stage of renal fibrosis, and significant metabolic remodeling was triggered. Epigenetic events that drive diseases were characterized previously. Our study showed that ten-eleven translocation-2 (TET2) was upregulated in both renal fibrosis models and metabolite-treated samples. Furthermore, we found that the promoter of α-SMA was hypomethylated at CpG sites, which promoted the expression of α-SMA and the occurrence of renal fibrosis. HIF-1α inhibition alleviated renal fibrosis development by improving metabolic remodeling and TET2 activation. Our studies provide novel insight into HIF-1α-mediated metabolic remodeling in the pathogenesis of renal fibrosis and propose a concept that targets this pathway to treat fibrotic disorders.
Collapse
Affiliation(s)
- Disheng Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 73000, China; The First Hospital of Lanzhou University, Lanzhou University, Gansu, 73000, China
| | - Haonan Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 73000, China
| | - Kan Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 73000, China; The First Hospital of Lanzhou University, Lanzhou University, Gansu, 73000, China
| | - Zhiyu Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 73000, China; The First Hospital of Lanzhou University, Lanzhou University, Gansu, 73000, China
| | - Zhenzhen Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 73000, China
| | - Guangru Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 73000, China
| | - Yan Ge
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 73000, China
| | - Jinduo Zhang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 73000, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 73000, China.
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 73000, China; The First Hospital of Lanzhou University, Lanzhou University, Gansu, 73000, China.
| |
Collapse
|
36
|
Liburkin-Dan T, Toledano S, Neufeld G. Lysyl Oxidase Family Enzymes and Their Role in Tumor Progression. Int J Mol Sci 2022; 23:6249. [PMID: 35682926 PMCID: PMC9181702 DOI: 10.3390/ijms23116249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
The five genes of the lysyl oxidase family encode enzymes that covalently cross-link components of the extracellular matrix, such as various types of collagen and elastin, and, thus, promote the stabilization of extracellular matrixes. Several of these genes, in particular lysyl oxidase (LOX) and lysyl oxidase like-2 (LOXL2) were identified as genes that are upregulated by hypoxia, and promote tumor cells invasion and metastasis. Here, we focus on the description of the diverse molecular mechanisms by which the various lysyl oxidases affect tumor progression. We also describe attempts that have been made, and are still on-going, that focus on the development of efficient lysyl oxidase inhibitors for the treatment of various forms of cancer, and of diseases associated with abnormal fibrosis.
Collapse
Affiliation(s)
| | | | - Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel; (T.L.-D.); (S.T.)
| |
Collapse
|
37
|
Wicks EE, Semenza GL. Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest 2022; 132:159839. [PMID: 35642641 PMCID: PMC9151701 DOI: 10.1172/jci159839] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis that match O2 supply and demand for each of the 50 trillion cells in the adult human body. Cancer cells co-opt this homeostatic system to drive cancer progression. HIFs activate the transcription of thousands of genes that mediate angiogenesis, cancer stem cell specification, cell motility, epithelial-mesenchymal transition, extracellular matrix remodeling, glucose and lipid metabolism, immune evasion, invasion, and metastasis. In this Review, the mechanisms and consequences of HIF activation in cancer cells are presented. The current status and future prospects of small-molecule HIF inhibitors for use as cancer therapeutics are discussed.
Collapse
Affiliation(s)
| | - Gregg L Semenza
- Department of Genetic Medicine.,Institute for Cell Engineering, and.,Stanley Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Li B, Xian X, Lin X, Huang L, Liang A, Jiang H, Gong Q. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules 2022; 12:biom12040575. [PMID: 35454164 PMCID: PMC9029684 DOI: 10.3390/biom12040575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Dental pulp stem cells (DPSCs) and their exosomes (Exos) are effective treatments for regenerative medicine. Hypoxia was confirmed to improve the angiogenic potential of stem cells. However, the angiogenic effect and mechanism of hypoxia-preconditioned DPSC-Exos are poorly understood. We isolated exosomes from DPSCs under normoxia (Nor-Exos) and hypoxia (Hypo-Exos) and added them to human umbilical vein endothelial cells (HUVECs). HUVEC proliferation, migration and angiogenic capacity were assessed by CCK-8, transwell, tube formation assays, qRT-PCR and Western blot. iTRAQ-based proteomics and bioinformatic analysis were performed to investigate proteome profile differences between Nor-Exos and Hypo-Exos. Western blot, immunofluorescence and immunohistochemistry were used to detect the expression of lysyl oxidase-like 2 (LOXL2) in vitro and in vivo. Finally, we silenced LOXL2 in HUVECs and rescued tube formation with Hypo-Exos. Hypo-Exos enhanced HUVEC proliferation, migration and tube formation in vitro superior to Nor-Exos. The proteomics analysis identified 79 proteins with significantly different expression in Hypo-Exos, among which LOXL2 was verified as being upregulated in hypoxia-preconditioned DPSCs, Hypo-Exos, and inflamed dental pulp. Hypo-Exos partially rescued the inhibitory influence of LOXL2 silence on HUVEC tube formation. In conclusion, hypoxia enhanced the angiogenic potential of DPSCs-Exos and partially altered their proteome profile. LOXL2 is likely involved in Hypo-Exos mediated angiogenesis.
Collapse
Affiliation(s)
- Baoyu Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xuehong Xian
- Department of Stomatology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China;
- Foshan Stomatological Hospital, Foshan University, Foshan 528000, China
| | - Xinwei Lin
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Luo Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Hongwei Jiang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (H.J.); (Q.G.)
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (H.J.); (Q.G.)
| |
Collapse
|
39
|
Liu SR, Ren D, Wu HT, Yao SQ, Song ZH, Geng LD, Wang PC. Reparative effects of chronic intermittent hypobaric hypoxia pre‑treatment on intervertebral disc degeneration in rats. Mol Med Rep 2022; 25:173. [PMID: 35315494 PMCID: PMC8971903 DOI: 10.3892/mmr.2022.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have indicated that chronic intermittent hypobaric hypoxia (CIHH) preconditioning can inhibit TNF-α and other related inflammatory cytokines and exerts protective effect on intervertebral disc degeneration disease (IDD) in rats; however, the mechanism is still unclear. The present study aimed to explore the repair mechanisms of CIHH on IDD in rats. In the experiment, 48 adult Sprague-Dawley rats were selected and randomly divided into an experimental group (CIHH-IDD), a degenerative group (IDD) and a control group (CON). The CIHH-IDD group of rats (n=16) were treated with CIHH (simulated 3000 m altitude, 5 h per day, 28 days; PO2=108.8 mmHg) before disc degeneration surgery. The IDD group of rats (n=16) underwent tail-vertebral intervertebral disc surgery to establish a model of intervertebral disc degeneration. The CON group of rats (n=16) did not receive any treatments. After surgery, the disc height index was calculated using X-ray analysis of rat tail vertebrae, the degeneration process was observed and repair was evaluated by chemically staining degenerative intervertebral disc tissue slices. The expression levels of basic fibroblast growth factor (bFGF), TGFβ1, Collagen I and Collagen II were measured in the intervertebral disc tissue using western blotting; while the expression levels of bFGF, TGFβ1 and hypoxia-inducible factor 1-α (HIF-1α) were measured in rat serum using ELISA. The results demonstrated that: i) The degree of intervertebral disc height degeneration in CIHH-IDD rats was significantly lower compared with that in IDD rats (P<0.05); ii) the expression levels of bFGF, TGFβ1 and HIF-1α were higher in CIHH-IDD rat serum compared with those in IDD rat serum (P<0.05); iii) optical microscopy revealed that the degree of disc degeneration was relatively mild in CIHH-IDD rats; and iv) the protein expression levels of bFGF, TGFβ1 and collagen II were increased in CIHH-IDD rat intervertebral disc tissues compared with those of IDD rats, while the overexpression of collagen I protein was inhibited. Overall, after CIHH pre-treatment, the expression levels of bFGF and TGFβ1 were up-regulated, which play notable roles in repairing degenerative intervertebral discs in rats.
Collapse
Affiliation(s)
- Shu-Ren Liu
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Dong Ren
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Hao-Tan Wu
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Shuang-Quan Yao
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Zhao-Hui Song
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Lin-Dan Geng
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Peng-Cheng Wang
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| |
Collapse
|
40
|
Bianco A, Tiribelli C, Bellarosa C. Translational Approach to the Protective Effect of Bilirubin in Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10030696. [PMID: 35327498 PMCID: PMC8945513 DOI: 10.3390/biomedicines10030696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Bilirubin has been regarded as a powerful endogenous antioxidant and anti-inflammatory molecule, able to act on cellular pathways as a hormone. Diabetic kidney disease (DKD) is a common chronic complication of diabetes, and it is the leading cause of end-stage renal disease. Here, we will review the clinical and molecular features of mild hyperbilirubinemia in DKD. The pathogenesis of DKD involves oxidative stress, inflammation, fibrosis, and apoptosis. Serum bilirubin levels are positively correlated with the levels of the antioxidative enzymes as superoxide dismutase, catalase, and glutathione peroxidase, while it is inversely correlated with C-reactive protein, TNF-α, interleukin (IL)-2, IL-6, and IL-10 release in diabetic kidney disease. Bilirubin downregulates NADPH oxidase, reduces the induction of pro-fibrotic factor HIF-1α expression, cleaved caspase-3, and cleaved PARP induction showing lower DNA fragmentation. Recent experimental and clinical studies have demonstrated its effects in the development and progression of renal diseases, pointing out that only very mild elevations of bilirubin concentrations result in real clinical benefits. Future controlled studies are needed to explore the precise role of bilirubin in the pathogenesis of DKD and to understand if the use of serum bilirubin levels as a marker of progression or therapeutic target in DKD is feasible and realistic.
Collapse
Affiliation(s)
- Annalisa Bianco
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
| | - Cristina Bellarosa
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
- Correspondence:
| |
Collapse
|
41
|
Novotny T, Eckhardt A, Doubkova M, Knitlova J, Vondrasek D, Vanaskova E, Ostadal M, Uhlik J, Bacakova L, Musilkova J. The possible role of hypoxia in the affected tissue of relapsed clubfoot. Sci Rep 2022; 12:4462. [PMID: 35292718 PMCID: PMC8924187 DOI: 10.1038/s41598-022-08519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Our aim was to study the expression of hypoxia-related proteins as a possible regulatory pathway in the contracted side tissue of relapsed clubfoot. We compared the expression of hypoxia-related proteins in the tissue of the contracted (medial) side of relapsed clubfoot, and in the tissue of the non-contracted (lateral) side of relapsed clubfoot. Tissue samples from ten patients were analyzed by immunohistochemistry and image analysis, Real-time PCR and Mass Spectrometry to evaluate the differences in protein composition and gene expression. We found a significant increase in the levels of smooth muscle actin, transforming growth factor-beta, hypoxia-inducible factor 1 alpha, lysyl oxidase, lysyl oxidase-like 2, tenascin C, matrix metalloproteinase-2, matrix metalloproteinase-9, fibronectin, collagen types III and VI, hemoglobin subunit alpha and hemoglobin subunit beta, and an overexpression of ACTA2, FN1, TGFB1, HIF1A and MMP2 genes in the contracted medial side tissue of clubfoot. In the affected tissue, we have identified an increase in the level of hypoxia-related proteins, together with an overexpression of corresponding genes. Our results suggest that the hypoxia-associated pathway is potentially a factor contributing to the etiology of clubfoot relapses, as it stimulates both angioproliferation and fibroproliferation, which are considered to be key factors in the progression and development of relapses.
Collapse
Affiliation(s)
- Tomas Novotny
- Department of Orthopaedics, University J.E. Purkinje and Masaryk Hospital, Usti nad Labem, Czech Republic.,Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adam Eckhardt
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. .,Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jarmila Knitlova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Vondrasek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Eliska Vanaskova
- Department of Orthopaedics, University J.E. Purkinje and Masaryk Hospital, Usti nad Labem, Czech Republic
| | - Martin Ostadal
- Department of Orthopaedics, University Hospital Bulovka, Charles University, Prague, Czech Republic
| | - Jiri Uhlik
- Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Musilkova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
42
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
43
|
HIF-1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer. Cancer Lett 2022; 531:39-56. [DOI: 10.1016/j.canlet.2022.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
|
44
|
Li R, Li H, Zhu L, Zhang X, Liu D, Li Q, Ni B, Hu L, Zhang Z, Zhang Y, Wang X, Jiang SH. Reciprocal regulation of LOXL2 and HIF1α drives the Warburg effect to support pancreatic cancer aggressiveness. Cell Death Dis 2021; 12:1106. [PMID: 34836938 PMCID: PMC8626482 DOI: 10.1038/s41419-021-04391-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Hypoxic microenvironment is common in solid tumors, particularly in pancreatic ductal adenocarcinoma (PDAC). The Warburg effect is known to facilitate cancer aggressiveness and has long been linked to hypoxia, yet the underlying mechanism remains largely unknown. In this study, we identify that lysyl oxidase-like 2 (LOXL2) is a hypoxia-responsive gene and is essential for the Warburg effect in PDAC. LOXL2 stabilizes hypoxia-inducible factor 1α (HIF1α) from prolyl hydroxylase (PHD)-dependent hydroxylation via hydrogen peroxide generation, thereby facilitating the transcription of multiple glycolytic genes. Therefore, a positive feedback loop exists between LOXL2 and HIF1α that facilitates glycolytic metabolism under hypoxia. Moreover, LOXL2 couples the Warburg effect to tumor growth and metastasis in PDAC. Hijacking glycolysis largely compromises LOXL2-induced oncogenic activities. Collectively, our results identify a hitherto unknown hypoxia-LOXL2-HIF1α axis in regulating the Warburg effect and provide an intriguing drug target for PDAC therapy.
Collapse
Affiliation(s)
- Rongkun Li
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengchao Li
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lili Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
45
|
Bahcecioglu G, Yue X, Howe E, Guldner I, Stack MS, Nakshatri H, Zhang S, Zorlutuna P. Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100128. [PMID: 34617419 PMCID: PMC8596116 DOI: 10.1002/advs.202100128] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Age is a major risk factor for cancer. While the importance of age related genetic alterations in cells on cancer progression is well documented, the effect of aging extracellular matrix (ECM) has been overlooked. This study shows that the aging breast ECM alone is sufficient to drive normal human mammary epithelial cells (KTB21) to a more invasive and cancer-like phenotype, while promoting motility and invasiveness in MDA-MB-231 cells. Decellularized breast matrix from aged mice leads to loss of E-cadherin membrane localization in KTB21 cells, increased cell motility and invasion, and increased production of inflammatory cytokines and cancer-related proteins. The aged matrix upregulates cancer-related genes in KTB21 cells and enriches a cell subpopulation highly expressing epithelial-mesenchymal transition-related genes. Lysyl oxidase knockdown reverts the aged matrix-induced changes to the young levels; it relocalizes E-cadherin to cell membrane, and reduces cell motility, invasion, and cytokine production. These results show for the first time that the aging ECM harbors key biochemical, physical, and mechanical cues contributing to invasive and cancer-like behavior in healthy and cancer mammary cells. Differential response of cells to young and aged ECMs can lead to identification of new targets for cancer treatment and prevention.
Collapse
Affiliation(s)
- Gokhan Bahcecioglu
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Xiaoshan Yue
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Erin Howe
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Ian Guldner
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - M. Sharon Stack
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIN46556USA
| | - Harikrishna Nakshatri
- Department of SurgerySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologySchool of MedicineIndiana UniversityIndianapolisIN46202USA
| | - Siyuan Zhang
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIN46556USA
| |
Collapse
|
46
|
Contribution of Oxidative Stress to HIF-1-Mediated Profibrotic Changes during the Kidney Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6114132. [PMID: 34712385 PMCID: PMC8548138 DOI: 10.1155/2021/6114132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/09/2021] [Indexed: 12/01/2022]
Abstract
Hypoxia and oxidative stress are the common causes of various types of kidney injury. During recent years, the studies on hypoxia inducible factor- (HIF-) 1 attract more and more attention, which can not only mediate hypoxia adaptation but also contribute to profibrotic changes. Through analyzing related literatures, we found that oxidative stress can regulate the expression and activity of HIF-1α through some signaling molecules, such as prolyl hydroxylase domain-containing protein (PHD), PI-3K, and microRNA. And oxidative stress can take part in inflammation, epithelial-mesenchymal transition, and extracellular matrix deposition mediated by HIF-1 via interacting with classical NF-κB and TGF-β signaling pathways. Therefore, based on previous literatures, this review summarizes the contribution of oxidative stress to HIF-1-mediated profibrotic changes during the kidney damage, in order to further understand the role of oxidative stress in renal fibrosis.
Collapse
|
47
|
Zhu G, Wang L, Meng W, Lu S, Cao B, Liang X, He C, Hao Y, Du X, Wang X, Li L, Li L. LOXL2-enriched small extracellular vesicles mediate hypoxia-induced premetastatic niche and indicates poor outcome of head and neck cancer. Theranostics 2021; 11:9198-9216. [PMID: 34646366 PMCID: PMC8490529 DOI: 10.7150/thno.62455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
Small extracellular vesicles (sEVs) operate as a signaling platform due to their ability to carry functional molecular cargos. However, the role of sEVs in hypoxic tumor microenvironment-mediated premetastatic niche formation remains poorly understood. Methods: Protein expression profile of sEVs derived from normoxic and hypoxic head and neck squamous cell carcinoma (HNSCC) cells were determined by Isobaric Tagging Technology for Relative Quantitation. In vitro invasion assay and in vivo colonization were performed to evaluate the role of sEV-delivering proteins. Results: We identified lysyl oxidase like 2 (LOXL2) which had the highest fold increase in hypoxic sEVs compared with normoxic sEVs. Hypoxic cell-derived sEVs delivered high amounts of LOXL2 to non-hypoxic HNSCC cells to elicit epithelial-to-mesenchymal transition (EMT) and induce the invasion of the recipient cancer cells. Moreover, LOXL2-enriched sEVs were incorporated by distant fibroblasts and activate FAK/Src signaling in recipient fibroblasts. Increased production of fibronectin mediated by FAK/Src signaling recruited myeloid-derived suppressor cells to form a premetastatic niche. Serum sEV LOXL2 can reflect a hypoxic and aggressive tumor type and can serve as an alternative to tissue LOXL2 as an independent prognostic factor of overall survival for patients with HNSCC. Conclusion: sEVs derived from the hypoxic tumor microenvironment of HNSCC can drive local invasion of non-hypoxic HNSCC cells and stimulate premetastatic niche formation by delivering LOXL2 to non-hypoxic HNSCC cells and fibroblasts to induce EMT and fibronectin production, respectively.
Collapse
Affiliation(s)
- Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041
| | - Linlin Wang
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Wanrong Meng
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Shun Lu
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Bangrong Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Xinhua Liang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041
| | - Chuanshi He
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Yaying Hao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Xueyu Du
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Xiaoyi Wang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041
| | - Ling Li
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| |
Collapse
|
48
|
James DS, Brereton CJ, Davies DE, Jones MG, Campagnola PJ. Examining lysyl oxidase-like modulation of collagen architecture in 3D spheroid models of idiopathic pulmonary fibrosis via second-harmonic generation microscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210062R. [PMID: 34145800 PMCID: PMC8212879 DOI: 10.1117/1.jbo.26.6.066501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Idiopathic pulmonary fibrosis (IPF) patients have a poor prognosis with short lifespan following diagnosis as there are limited effective treatment options. Despite matrix stiffening being the hallmark of the disease there remains a lack of knowledge surrounding the underlying collagen alterations in the disease. Specifically, while increased collagen crosslinking has been implicated, the resulting effects on collagen macro/supramolecular changes have not been explored. AIM We sought to determine if second-harmonic generation (SHG) microscopy could characterize differences in the collagen architecture in 3D spheroid models of IPF grown under different crosslinking modulation conditions (promotion and inhibition). APPROACH We used SHG metrics based on the fiber morphology, relative SHG brightness, and macro/supramolecular structure by SHG polarization analyses to compare the structure of the IPF spheroids. RESULTS Comparison of the fiber morphology of the spheroids showed that the control group had the longest, straightest, and thickest fibers. The spheroids with crosslink enhancement and inhibition had the highest and lowest SHG conversion efficiencies, respectively, consistent with the resulting harmonophore density. SHG polarization analyses showed that the peptide pitch angle, alignment of collagen molecules, and overall chirality were altered upon crosslink modulation and were also consistent with reduced organization relative to the control group. CONCLUSIONS While no single SHG signature is associated with crosslinking, we show that the suite of metrics used here is effective in delineating alterations across the collagen architecture sizescales. The results largely mirror those of human tissues and demonstrate that the combination of 3D spheroid models and SHG analysis is a powerful approach for hypothesis testing the roles of operative cellular and molecular factors in IPF.
Collapse
Affiliation(s)
- Darian S. James
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Christopher J. Brereton
- University of Southampton, Clinical and Experimental Sciences, Faculty of Medicine, Southampton, United Kingdom
- University Hospital Southampton, National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
- University of Southampton, Institute for Life Sciences, Southampton, United Kingdom
| | - Donna E. Davies
- University of Southampton, Clinical and Experimental Sciences, Faculty of Medicine, Southampton, United Kingdom
- University Hospital Southampton, National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
- University of Southampton, Institute for Life Sciences, Southampton, United Kingdom
| | - Mark G. Jones
- University of Southampton, Clinical and Experimental Sciences, Faculty of Medicine, Southampton, United Kingdom
- University Hospital Southampton, National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
- University of Southampton, Institute for Life Sciences, Southampton, United Kingdom
| | - Paul J. Campagnola
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
49
|
From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers (Basel) 2021; 13:cancers13092024. [PMID: 33922182 PMCID: PMC8122743 DOI: 10.3390/cancers13092024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Despite the recent advances in human malignancy therapy, metastasis and chemoresistance remain the principal causes of cancer-derived deaths. Given the fatal forms of cutaneous metastatic melanoma, we herein employed primary (WM115) and metastatic (WM266-4) melanoma cells, both obtained from the same patient, to identify novel biomarkers and therapeutic agents. Through state-of-the-art technologies including deep proteome landscaping, immunofluorescence phenotyping, and drug toxicity screening, we were able to describe new molecular programs, oncogenic drivers, and drug regimens, controlling the invasion-metastasis cascade during BRAFV600D-dependent melanomagenesis. It proved that proteomic navigation could foster the development of systemic biomarkering and targeted drugging for successful treatment of advanced disease. Abstract Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-β controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.
Collapse
|
50
|
Saraswati S, Martínez P, Graña-Castro O, Blasco MA. Short and dysfunctional telomeres sensitize the kidneys to develop fibrosis. ACTA ACUST UNITED AC 2021; 1:269-283. [PMID: 37118410 DOI: 10.1038/s43587-021-00040-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Accumulation of short telomeres is a hallmark of aging. Mutations in telomerase or telomere-binding proteins lead to telomere shortening or dysfunction and are at the origin of human pathologies known as 'telomere syndromes', which are characterized by loss of the regenerative capacity of tissues and fibrotic pathologies. Here, we generated two mouse models of kidney fibrosis, either by combining telomerase deficiency to induce telomere shortening and a low dose of folic acid, or by conditionally deleting Trf1, a component of the shelterin telomere protective complex, from the kidneys. We find that short telomeres sensitize the kidneys to develop fibrosis in response to folic acid and exacerbate the epithelial-to-mesenchymal transition (EMT) program. Trf1 deletion in kidneys led to fibrosis and EMT activation. Our findings suggest that telomere shortening or dysfunction may contribute to pathological, age-associated renal fibrosis by influencing the EMT program.
Collapse
|