1
|
Sun X, Wang X, Fu L, Wang X, Chen L, Huang Y. A Nanofluorescent Probe for Evaluating the Fluctuation of Aminopeptidase N in Nonalcoholic Fatty Liver Disease and Hepatic Fibrosis. Anal Chem 2024; 96:14639-14649. [PMID: 39208350 DOI: 10.1021/acs.analchem.4c03298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aminopeptidase N (APN/CD13) is a widely expressed transmembrane ectoenzyme that is crucial for maintaining normal physiological activities. It exhibits abnormal activity closely associated with hepatic fibrosis and nonalcoholic fatty liver disease (NAFLD). Therefore, there is a high demand for noninvasive detection of aminopeptidase N (APN) in the diagnosis and research of related diseases. Here, we developed a small molecule fluorescent probe, Hcy-APN, which is a fluorescent probe with high sensitivity and selectivity for the detection of APN. Furthermore, we synthesized the fluorescent nanoprobe Hcy-APN@MSN by self-assembling Hcy-APN and mesoporous silica nanoparticles in solution using a combination of molecular probe design and nanofunctionalization strategies. The detection limit of this probe was 1.5 ng/mL. Hcy-APN@MSN exhibits more stable spectral characteristics compared to Hcy-APN and is suitable for detecting APN activity in live cells and mice. Hcy-APN@MSN was utilized for in vivo and intracellular imaging of NAFLD and hepatic fibrosis at different stages, as well as for a systematic assessment of APN levels in the liver. The results confirm an elevation in the expression levels of APN in NAFLD and hepatic fibrosis models. Furthermore, we investigated the inhibitory effect of the APN inhibitor bestatin in nonalcoholic fatty liver and hepatic fibrosis disease models, confirming its regulatory effect on APN levels in cells and in vivo in both disease models. Therefore, this study may offer diagnostic possibilities for detecting NAFLD and hepatic fibrosis.
Collapse
Affiliation(s)
- Xiao Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xinlei Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lili Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
2
|
Anderluzzi G, Ghitti M, Gasparri AM, Taiè G, Sacchi A, Gori A, Andolfo A, Pozzi F, Musco G, Curnis F, Corti A. A novel aminopeptidase N/CD13 inhibitor selectively targets an endothelial form of CD13 after coupling to proteins. Cell Mol Life Sci 2024; 81:68. [PMID: 38289472 PMCID: PMC10827914 DOI: 10.1007/s00018-023-05102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Aminopeptidase N/CD13, a membrane-bound enzyme upregulated in tumor vasculature and involved in angiogenesis, can be used as a receptor for the targeted delivery of drugs to tumors through ligand-directed targeting approaches. We describe a novel peptide ligand (VGCARRYCS, called "G4") that recognizes CD13 with high affinity and selectivity. Enzymological and computational studies showed that G4 is a competitive inhibitor that binds to the catalytic pocket of CD13 through its N-terminal region. Fusing the peptide C-terminus to tumor necrosis factor-alpha (TNF) or coupling it to a biotin/avidin complex causes loss of binding and inhibitory activity against different forms of CD13, including natural or recombinant ectoenzyme and a membrane form expressed by HL60 promyelocytic leukemia cells (likely due to steric hindrance), but not binding to a membrane form of CD13 expressed by endothelial cells (ECs). Furthermore, G4-TNF systemically administered to tumor-bearing mice exerted anticancer effects through a CD13-targeting mechanism, indicating the presence of a CD13 form in tumor vessels with an accessible binding site. Biochemical studies showed that most CD13 molecules expressed on the surface of ECs are catalytically inactive. Other functional assays showed that these molecules can promote endothelial cell adhesion to plates coated with G4-avidin complexes, suggesting that the endothelial form of CD13 can exert catalytically independent biological functions. In conclusion, ECs express a catalytically inactive form of CD13 characterized by an accessible conformation that can be selectively targeted by G4-protein conjugates. This form of CD13 may represent a specific target receptor for ligand-directed targeted delivery of therapeutics to tumors.
Collapse
Affiliation(s)
- Giulia Anderluzzi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Michela Ghitti
- Biomolecular NMR Group, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Gasparri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giulia Taiè
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Angelina Sacchi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche, C.N.R., Milan, Italy
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, Center for Omics Sciences, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pozzi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Group, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
3
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Yang YJ, Dai M, Ahn KH. Cell-Membrane-Localizing Fluorescence Probes for Aminopeptidase N. ACS Sens 2023; 8:2791-2798. [PMID: 37405930 DOI: 10.1021/acssensors.3c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Aminopeptidase N (APN), a transmembrane ectoenzyme, plays multifunctional roles in cell survival and migration, angiogenesis, blood pressure regulation, and viral uptake. Abnormally high levels of the enzyme can be found in some tumors and injured liver and kidney. Therefore, noninvasive detection methods for APN are in demand for diagnosing and studying the associated diseases, leading to two dozen activatable small-molecule probes reported up to date. All of the known probes, however, analyze the enzyme activity by monitoring fluorescent molecules inside cells, despite the enzymatic reaction taking place on the outer cell membrane. In this case, different cell permeability and enzyme kinetics can cause false signal data. To address this critical issue, we have developed two cell-membrane-localizing APN probes whose enzymatic products also localize the outer cell membrane. The probes selectively respond to APN with ratiometric fluorescence signal changes. A selected probe, which has two-photon imaging capability, allowed us to determine the relative APN levels in various organ tissues for the first time: 4.3 (intestine), 2.1 (kidney), 2.7 (liver), 3.2 (lung), and 1.0 (stomach). Also, a higher APN level was observed from a HepG2-xenograft mouse tissue in comparison with the normal tissue. Furthermore, we observed a significant APN level increase in the mouse liver of a drug (acetaminophen)-induced liver injury model. The probe thus offers a reliable means for studying APN-associated biology including drug-induced hepatotoxicity simply by ratiometric imaging.
Collapse
Affiliation(s)
- Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Mingchong Dai
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201, United States
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
5
|
Tanaka K, Tanigawa N, Song I, Komatsu T, Kuriki Y, Tanaka Y, Fukudo S, Urano Y, Fukuda S. A protease activity-based machine-learning approach as a complementary tool for conventional diagnosis of diarrhea-predominant irritable bowel syndrome. Front Microbiol 2023; 14:1179534. [PMID: 37485510 PMCID: PMC10361618 DOI: 10.3389/fmicb.2023.1179534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Irritable bowel syndrome (IBS) has no clinically accepted biomarkers even though it affects a large number of individuals worldwide. To address this lack of understanding, we evaluated peptidase activity in fecal samples from 35 patients with diarrheal IBS without symptom exacerbation (IBS-n) and 35 healthy subjects using a library of 384 fluorescent enzymatic substrate probes. IBS-n patients had high trypsin-like peptidase activity for cleavage of C-terminal lysine and arginine residues and low elastase-like activity for cleavage of C-terminal serine and glycine residues. These fluorescent probe library data, together with diagnostic machine-learning techniques, were able to accurately predict IBS-n. This approach can be used to diagnose diseases where no clinically accepted biomarkers exist, in which fecal enzyme activity is altered and also suggests that the development of new therapies targeting enzyme activities is possible.
Collapse
Affiliation(s)
- Kazuki Tanaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
| | - Naoki Tanigawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Isaiah Song
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, Japan
| | - Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, Japan
| | - Yukari Tanaka
- Department of Gastroenterology, Sendai Kousei Hospital, Sendai, Miyagi, Japan
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Hongo, Tokyo, Japan
| |
Collapse
|
6
|
Bianchi D, Pelletier JF, Hutchison CA, Glass JI, Luthey-Schulten Z. Toward the Complete Functional Characterization of a Minimal Bacterial Proteome. J Phys Chem B 2022; 126:6820-6834. [PMID: 36048731 PMCID: PMC9483919 DOI: 10.1021/acs.jpcb.2c04188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Recently, we presented a whole-cell kinetic model of the genetically minimal bacterium JCVI-syn3A that described the coupled metabolic and genetic information processes and predicted behaviors emerging from the interactions among these networks. JCVI-syn3A is a genetically reduced bacterial cell that has the fewest number and smallest fraction of genes of unclear function, with approximately 90 of its 452 protein-coding genes (that is less than 20%) unannotated. Further characterization of unclear JCVI-syn3A genes strengthens the robustness and predictive power of cell modeling efforts and can lead to a deeper understanding of biophysical processes and pathways at the cell scale. Here, we apply computational analyses to elucidate the functions of the products of several essential but previously uncharacterized genes involved in integral cellular processes, particularly those directly affecting cell growth, division, and morphology. We also suggest directed wet-lab experiments informed by our analyses to further understand these "missing puzzle pieces" that are an essential part of the mosaic of biological interactions present in JCVI-syn3A. Our workflow leverages evolutionary sequence analysis, protein structure prediction, interactomics, and genome architecture to determine upgraded annotations. Additionally, we apply the structure prediction analysis component of our work to all 452 protein coding genes in JCVI-syn3A to expedite future functional annotation studies as well as the inverse mapping of the cell state to more physical models requiring all-atom or coarse-grained representations for all JCVI-syn3A proteins.
Collapse
Affiliation(s)
- David
M. Bianchi
- Department
of Chemistry, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - James F. Pelletier
- Centro
Nacional de Biotecnologia, Calle Darwin no. 3, 28049 Madrid, Spain
| | - Clyde A. Hutchison
- J.
Craig Venter Institute, 4120 Capricorn Ln. La Jolla, California 92037, United States
| | - John I. Glass
- J.
Craig Venter Institute, 4120 Capricorn Ln. La Jolla, California 92037, United States
| | - Zaida Luthey-Schulten
- Department
of Chemistry, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Bąchor R. Peptidyl-Resin Substrates as a Tool in the Analysis of Caspase Activity. Molecules 2022; 27:molecules27134107. [PMID: 35807352 PMCID: PMC9268085 DOI: 10.3390/molecules27134107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Caspases, proteolytic enzymes belonging to the group of cysteine proteases, play a crucial role in apoptosis. Understanding their activity and substrate specificity is extremely important. Fluorescence-based approaches, including fluorogenic substrates, are generally used to confirm cleavage preferences. Here we present a new method of substrate specificity and activity analysis based on the application of fix-charge tagged peptides located on the resin. The proteolysis of peptide bond on the resin, occurring even with low efficiency, results in the formation of N-terminal fragments of model peptide containing ionization enhancers in the form of quaternary ammonium groups, allowing for ultrasensitive and reliable analysis by LC-MS/MS. The possibility of application of the proposed solution was tested through the analysis of substrate specificity and activity of caspase 3 or 7. The obtained results confirm the known substrate specificity of executioner caspases. Our solution also allowed us to observe that caspases can hydrolyze peptides shorter than those presented to date in the scientific literature.
Collapse
Affiliation(s)
- Remigiusz Bąchor
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Kuriki Y, Yoshioka T, Kamiya M, Komatsu T, Takamaru H, Fujita K, Iwaki H, Nanjo A, Akagi Y, Takeshita K, Hino H, Hino R, Kojima R, Ueno T, Hanaoka K, Abe S, Saito Y, Nakajima J, Urano Y. Development of a fluorescent probe library enabling efficient screening of tumour-imaging probes based on discovery of biomarker enzymatic activities. Chem Sci 2022; 13:4474-4481. [PMID: 35656140 PMCID: PMC9019911 DOI: 10.1039/d1sc06889j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 01/05/2023] Open
Abstract
Fluorescent probes that can selectively detect tumour lesions have great potential for fluorescence imaging-guided surgery. Here, we established a library-based approach for efficient screening of probes for tumour-selective imaging based on discovery of biomarker enzymes. We constructed a combinatorial fluorescent probe library for aminopeptidases and proteases, which is composed of 380 probes with various substrate moieties. Using this probe library, we performed lysate-based in vitro screening and/or direct imaging-based ex vivo screening of freshly resected clinical specimens from lung or gastric cancer patients, and found promising probes for tumour-selective visualization. Further, we identified two target enzymes as novel biomarker enzymes for discriminating between tumour and non-tumour tissues. This library-based approach is expected to be an efficient tool to develop tumour-imaging probes and to discover new biomarker enzyme activities for various tumours and other diseases. Efficient methodology to develop tumor-imaging fluorescent probes based on screening with our newly constructed probe library for aminopeptidase/protease (380 probes) and clinical samples has been established.![]()
Collapse
Affiliation(s)
- Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Takafusa Yoshioka
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan .,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Hiroyuki Takamaru
- Endoscopy Division, National Cancer Center Hospital 5-1-1, Tsukiji Chuo-ku Tokyo Japan
| | - Kyohhei Fujita
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Hirohisa Iwaki
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Aika Nanjo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Yuki Akagi
- Institute of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei-shi Tokyo Japan
| | - Kohei Takeshita
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Haruaki Hino
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan .,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Rumi Hino
- Daito Bunka University, Department of Sports and Health Science 560, Iwadono Higashimatsuyama Saitama Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan .,PRESTO, Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi-shi Saitama Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital 5-1-1, Tsukiji Chuo-ku Tokyo Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital 5-1-1, Tsukiji Chuo-ku Tokyo Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan.,Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan .,CREST, Agency for Medical Research and Development (AMED) 1-7-1 Otemachi Chiyoda-ku Tokyo Japan
| |
Collapse
|
9
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|
10
|
Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer 2021; 1876:188641. [PMID: 34695533 DOI: 10.1016/j.bbcan.2021.188641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Aminopeptidase N (APN/CD13) is a multifunctional glycoprotein that acts as a peptidase, receptor, and signalling molecule in a tissue-dependent manner. The activities of APN have been implicated in the progression of many cancers, pointing toward significant therapeutic potential for cancer treatment. However, despite the tumour-specific functions of this protein that have been uncovered, the ubiquitous nature of its expression in normal tissues as generally reported remains a limitation to the potential utility of APN as a target for cancer therapeutics and drug discovery. With this in mind, we have extensively explored the literature, and present a comprehensive review that for the first-time provides evidence to support the suggestion that tumour-expressed APN may in fact be unique in structure, function, substrate specificity and activity, contrary to its nature in normal tissues. The review also focuses on the biology of APN, and its "moonlighting" functional roles in both normal physiology and cancer development. Several APN-targeting approaches that have been explored over recent decades as therapeutic strategies in cancer treatment, including APN-targeting agents reported both in preclinical and clinical studies, are also extensively discussed. This review concludes by posing critical questions about APN that remain unanswered and unexplored, hence providing opportunities for further research.
Collapse
|
11
|
Mapping the substrate specificity of the Plasmodium M1 and M17 aminopeptidases. Biochem J 2021; 478:2697-2713. [PMID: 34133730 PMCID: PMC8286833 DOI: 10.1042/bcj20210172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/02/2023]
Abstract
During malarial infection, Plasmodium parasites digest human hemoglobin to obtain free amino acids for protein production and maintenance of osmotic pressure. The Plasmodium M1 and M17 aminopeptidases are both postulated to have an essential role in the terminal stages of the hemoglobin digestion process and are validated drug targets for the design of new dual-target anti-malarial compounds. In this study, we profiled the substrate specificity fingerprints and kinetic behaviors of M1 and M17 aminopeptidases from Plasmodium falciparum and Plasmodium vivax, and the mouse model species, Plasmodium berghei. We found that although the Plasmodium M1 aminopeptidases share a largely similar, broad specificity at the P1 position, the P. falciparum M1 displays the greatest diversity in specificity and P. berghei M1 showing a preference for charged P1 residues. In contrast, the Plasmodium M17 aminopeptidases share a highly conserved preference for hydrophobic residues at the P1 position. The aminopeptidases also demonstrated intra-peptide sequence specificity, particularly the M1 aminopeptidases, which showed a definitive preference for peptides with fewer negatively charged intrapeptide residues. Overall, the P. vivax and P. berghei enzymes had a faster substrate turnover rate than the P. falciparum enzymes, which we postulate is due to subtle differences in structural dynamicity. Together, these results build a kinetic profile that allows us to better understand the catalytic nuances of the M1 and M17 aminopeptidases from different Plasmodium species.
Collapse
|
12
|
Lee U, Kim TI, Jeon S, Luo Y, Cho S, Bae J, Kim Y. Native Chemical Ligation-Based Fluorescent Probes for Cysteine and Aminopeptidase N Using meso-thioester-BODIPY. Chemistry 2021; 27:12545-12551. [PMID: 34132430 DOI: 10.1002/chem.202101990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/22/2022]
Abstract
meso-Carboxyl-BODIPY responds to small electronic changes resulting from acyl substitution reactions with a marked change in fluorescence. Herein, the minute changes that accompany the thioester to amide conversion encountered in native chemical ligation (NCL) are exploited in the construction of fluorescent "turn-on" probes. Two fluorogenic probes, 1 a and 4, derived from a meso-thioester-BODIPY scaffold, were designed for the selective detection of cysteine (1 a) and aminopeptidase N (4), respectively. The aromatic (1 a) and aliphatic (4) thioesters of meso-carboxyl-BODIPY are nonfluorescent. However, specific analyte-induced conversion to the meso-amide derivative caused significant spectral changes and a dramatic fluorescence enhancement. Probe 1 a exhibited a large fluorescence "turn-on" response with high selectivity toward cysteine via a tandem NCL reaction. Probe 4 was successfully applied to the monitoring and imaging of endogenous aminopeptidase N in live cancer cells.
Collapse
Affiliation(s)
- Uisung Lee
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Tae-Il Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Sungjin Jeon
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, Korea
| | - Siyoung Cho
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
13
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
14
|
Crystal structure, theoretical and vibrational analysis of isostructural salts of l-arginine analogue, (S)-2-amino-3-guanidinopropanoic acid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Jiang T, Liu C, Xu X, He B, Mo R. Formation Mechanism and Biomedical Applications of Protease-Manipulated Peptide Assemblies. Front Bioeng Biotechnol 2021; 9:598050. [PMID: 33718335 PMCID: PMC7952644 DOI: 10.3389/fbioe.2021.598050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/04/2021] [Indexed: 12/02/2022] Open
Abstract
Exploiting enzyme-catalyzed reactions to manipulate molecular assembly has been considered as an attractive bottom-up nanofabrication approach to developing a variety of nano-, micro-, and macroscale structures. Upon enzymatic catalysis, peptides and their derivatives transform to assemblable building blocks that form ordered architecture by non-covalent interactions. The peptide assemblies with unique characteristics have great potential for applications in bionanotechnology and biomedicine. In this mini review, we describe typical mechanisms of the protease-instructed peptide assembly via bond-cleaving or bond-forming reactions, and outline biomedical applications of the peptide assemblies, such as drug depot, sustained release, controlled release, gelation-regulated cytotoxicity, and matrix construction.
Collapse
Affiliation(s)
- Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Chendan Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Pascual Alonso I, Rivera Méndez L, Valdés-Tresanco ME, Bounaadja L, Schmitt M, Arrebola Sánchez Y, Alvarez Lajonchere L, Charli JL, Florent I. Biochemical evidences for M1-, M17- and M18-like aminopeptidases in marine invertebrates from Cuban coastline. Z NATURFORSCH C 2020; 75:397-407. [PMID: 32609656 DOI: 10.1515/znc-2019-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/01/2020] [Indexed: 11/15/2022]
Abstract
Metallo-aminopeptidases (mAPs) control many physiological processes. They are classified in different families according to structural similarities. Neutral mAPs catalyze the cleavage of neutral amino acids from the N-terminus of proteins or peptide substrates; they need one or two metallic cofactors in their active site. Information about marine invertebrate's neutral mAPs properties is scarce; available data are mainly derived from genomics and cDNA studies. The goal of this work was to characterize the biochemical properties of the neutral APs activities in eight Cuban marine invertebrate species from the Phyla Mollusca, Porifera, Echinodermata, and Cnidaria. Determination of substrate specificity, optimal pH and effects of inhibitors (1,10-phenanthroline, amastatin, and bestatin) and cobalt on activity led to the identification of distinct neutral AP-like activities, whose biochemical behaviors were similar to those of the M1 and M17 families of mAPs. Additionally, M18-like glutamyl AP activities were detected. Thus, marine invertebrates express biochemical activities likely belonging to various families of metallo-aminopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Laura Rivera Méndez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba.,Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Lotfi Bounaadja
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Marjorie Schmitt
- Laboratoire d'Innovation Moléculaire et Applications - Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR7042, Mulhouse, France
| | | | - Luis Alvarez Lajonchere
- Museum of Natural History Felipe Poey, Faculty of Biology, University of Havana, Havana, Cuba
| | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Isabelle Florent
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
17
|
Lee J, Drinkwater N, McGowan S, Scammells P. A Structure-Activity Relationship Study of Novel Hydroxamic Acid Inhibitors around the S1 Subsite of Human Aminopeptidase N. ChemMedChem 2020; 16:234-249. [PMID: 32945135 DOI: 10.1002/cmdc.202000527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/24/2022]
Abstract
Aminopeptidase N (APN/CD13) is a zinc-dependent ubiquitous transmembrane ectoenzyme that is widely present in different types of cells. APN is one of the most extensively studied metalloaminopeptidases as an anti-cancer target due to its significant role in the regulation of metastasis and angiogenesis. Previously, we identified a potent and selective APN inhibitor, N-(2-(Hydroxyamino)-2-oxo-1-(3',4',5'-trifluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-(methylsulfonamido)benzamide (3). Herein, we report the further modifications performed to explore SAR around the S1 subsite of APN and to improve the physicochemical properties. A series of hydroxamic acid analogues were synthesised, and the pharmacological activities were evaluated in vitro. N-(1-(3'-Fluoro-[1,1'-biphenyl]-4-yl)-2-(hydroxyamino)-2-oxoethyl)-4-(methylsulfonamido)benzamide (6 f) was found to display an extremely potent inhibitory activity in the sub-nanomolar range.
Collapse
Affiliation(s)
- Jisook Lee
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, VIC, 3052, Australia
| | - Nyssa Drinkwater
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Sheena McGowan
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Peter Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, VIC, 3052, Australia
| |
Collapse
|
18
|
X-ray crystal structure and specificity of the Toxoplasma gondii ME49 TgAPN2. Biochem J 2020; 477:3819-3832. [PMID: 32926129 PMCID: PMC7557147 DOI: 10.1042/bcj20200569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022]
Abstract
Toxoplasmosis is a parasitic disease caused by infection with Toxoplasma gondii that currently has few therapeutic options. The M1 aminopeptidase enzymes have been shown to be attractive targets for anti-parasitic agents and/or vaccine candidates, suggesting potential to re-purpose inhibitors between parasite M1 aminopeptidase targets. The M1 aminopeptidase TgAPN2 has been suggested to be a potential new drug target for toxoplasmosis. Here we investigate the structure and function of TgAPN2, a homologue of the antimalarial drug target PfA-M1, and evaluate the capacity to use inhibitors that target PfA-M1 against TgAPN2. The results show that despite a similar overall fold, the TgAPN2 has a unique substrate specificity and inhibition profile. Sequence and structure differences are investigated and show how comparative structure-activity relationships may provide a route to obtaining potent inhibitors of TgAPN2.
Collapse
|
19
|
Wanat W, Talma M, Dziuk B, Kafarski P. Synthesis and Inhibitory Studies of Phosphonic Acid Analogues of Homophenylalanine and Phenylalanine towards Alanyl Aminopeptidases. Biomolecules 2020; 10:E1319. [PMID: 32938014 PMCID: PMC7565091 DOI: 10.3390/biom10091319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 11/17/2022] Open
Abstract
A library of novel phosphonic acid analogues of homophenylalanine and phenylalanine, containing fluorine and bromine atoms in the phenyl ring, have been synthesized. Their inhibitory properties against two important alanine aminopeptidases, of human (hAPN, CD13) and porcine (pAPN) origin, were evaluated. Enzymatic studies and comparison with literature data indicated the higher inhibitory potential of the homophenylalanine over phenylalanine derivatives towards both enzymes. Their inhibition constants were in the submicromolar range for hAPN and the micromolar range for pAPN, with 1-amino-3-(3-fluorophenyl) propylphosphonic acid (compound 15c) being one of the best low-molecular inhibitors of both enzymes. To the best of our knowledge, P1 homophenylalanine analogues are the most active inhibitors of the APN among phosphonic and phosphinic derivatives described in the literature. Therefore, they constitute interesting building blocks for the further design of chemically more complex inhibitors. Based on molecular modeling simulations and SAR (structure-activity relationship) analysis, the optimal architecture of enzyme-inhibitor complexes for hAPN and pAPN were determined.
Collapse
Affiliation(s)
- Weronika Wanat
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.T.); (P.K.)
| | - Michał Talma
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.T.); (P.K.)
| | - Błażej Dziuk
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland;
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.T.); (P.K.)
| |
Collapse
|
20
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
22
|
Localization and enzyme kinetics of aminopeptidase N3 from Toxoplasma gondii. Parasitol Res 2019; 119:357-364. [PMID: 31836922 DOI: 10.1007/s00436-019-06512-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Aminopeptidase N is an important metalloenzyme from the M1 zinc metallopeptidase family, which is present in numerous apicomplexan parasites, including Plasmodium, Eimeria, and Cryptosporidium. Aminopeptidase N is a potential drug target, and hence, its properties have been widely investigated. In the current study, the cellular localization and enzyme characteristics of Toxoplasma gondii aminopeptidase N3 (TgAPN3) were evaluated in vitro. Cellular localization analysis revealed that TgAPN3 and GRA protein were co-located in the organelle and parasitophorous vacuole of T. gondii. The secretion assay showed that TgAPN3 could be co-secreted from the tachyzoites with GRA protein. A functional recombinant Toxoplasma aminopeptidase N3 (rTgAPN3) was produced in Escherichia coli. The enzyme activity was first determined using a fluorogenic H-Ala-MCA substrate. Some activity of rTgAPN3 was observed between pH 3.0 and 8.0, with a peak at pH 7.0. The activity was significantly enhanced in the presence of Co2+ ions. Substrate specificity of rTgAPN3 was then evaluated. The enzyme showed a preference for substrates containing N-terminal Ala residues, followed by Tyr and Cys. The rTgAPN3 activity was significantly inhibited by bestatin and phebestatin. In general, TgAPN3 was a structurally conserved member of the M1 family, although it also displayed unique biochemical characteristics. These results lay the foundation for a functional study of TgAPN3 and constitute its putative identification as a drug target.
Collapse
|
23
|
Maluch I, Czarna J, Drag M. Applications of Unnatural Amino Acids in Protease Probes. Chem Asian J 2019; 14:4103-4113. [PMID: 31593336 DOI: 10.1002/asia.201901152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Since proteases are involved in a wide range of physiological and disease states, the development of novel tools for imaging proteolytic enzyme activity is attracting increasing interest from scientists. Peptide substrates containing proteinogenic amino acids are often the first line of defining enzyme specificity. This Minireview outlines examples of major recent advances in probing proteases using unnatural amino acid residues, which greatly expands the possibilities for designing substrate probes and inhibitory activity-based probes. This approach already yielded innovative probes that selectively target only one active protease within the group of enzymes exhibiting similar specificity both in cellular assays and in bioimaging research.
Collapse
Affiliation(s)
- Izabela Maluch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Justyna Czarna
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
24
|
Phosphonic Acid Analogues of Phenylglycine as Inhibitors of Aminopeptidases: Comparison of Porcine Aminopeptidase N, Bovine Leucine Aminopeptidase, Tomato Acidic Leucine Aminopeptidase and Aminopeptidase from Barley Seeds. Pharmaceuticals (Basel) 2019; 12:ph12030139. [PMID: 31533309 PMCID: PMC6789573 DOI: 10.3390/ph12030139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022] Open
Abstract
The inhibitory activity of 14 racemic phosphonic acid analogs of phenylglycine, substituted in aromatic rings, towards porcine aminopeptidase N (pAPN) and barley seed aminopeptidase was determined experimentally. The obtained patterns of the inhibitory activity against the two enzymes were similar. The obtained data served as a basis for studying the binding modes of these inhibitors by pAPN using molecular modeling. It was found that their aminophosphonate fragments were bound in a highly uniform manner and that the difference in their affinities most likely resulted from the mode of substitution of their phenyl rings. The obtained binding modes towards pAPN were compared, with these predicted for bovine lens leucine aminopeptidase (blLAP) and tomato acidic leucine aminopeptidase (tLAPA). The performed studies indicated that the binding manner of the phenylglycine analogs to biLAP and tLAPA are significantly similar and differ slightly from that predicted for pAPN.
Collapse
|
25
|
Lee J, Vinh NB, Drinkwater N, Yang W, Kannan Sivaraman K, Schembri LS, Gazdik M, Grin PM, Butler GS, Overall CM, Charman SA, McGowan S, Scammells PJ. Novel Human Aminopeptidase N Inhibitors: Discovery and Optimization of Subsite Binding Interactions. J Med Chem 2019; 62:7185-7209. [PMID: 31251594 DOI: 10.1021/acs.jmedchem.9b00757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aminopeptidase N (APN/CD13) is a zinc-dependent M1 aminopeptidase that contributes to cancer progression by promoting angiogenesis, metastasis, and tumor invasion. We have previously identified hydroxamic acid-containing analogues that are potent inhibitors of the APN homologue from the malarial parasite Plasmodium falciparum M1 aminopeptidase (PfA-M1). Herein, we describe the rationale that underpins the repurposing of PfA-M1 inhibitors as novel APN inhibitors. A series of novel hydroxamic acid analogues were developed using a structure-based design approach and evaluated their inhibition activities against APN. N-(2-(Hydroxyamino)-2-oxo-1-(3',4',5'-trifluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-(methylsulfonamido)benzamide (6ad) proved to be an extremely potent inhibitor of APN activity in vitro, selective against other zinc-dependent enzymes such as matrix metalloproteases, and possessed limited cytotoxicity against Ad293 cells and favorable physicochemical and metabolic stability properties. The combined results indicate that compound 6ad may be a useful lead for the development of anticancer agents.
Collapse
Affiliation(s)
| | | | - Nyssa Drinkwater
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | - Wei Yang
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | - Komagal Kannan Sivaraman
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | | | | | | | | | | | | | - Sheena McGowan
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | | |
Collapse
|
26
|
de Vries LE, Sanchez MI, Groborz K, Kuppens L, Poreba M, Lehmann C, Nevins N, Withers-Martinez C, Hirst DJ, Yuan F, Arastu-Kapur S, Horn M, Mares M, Bogyo M, Drag M, Deu E. Characterization of P. falciparum dipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptide-based substrates and covalent inhibitors. FEBS J 2019; 286:3998-4023. [PMID: 31177613 PMCID: PMC6851853 DOI: 10.1111/febs.14953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
Abstract
Malarial dipeptidyl aminopeptidases (DPAPs) are cysteine proteases important for parasite development thus making them attractive drug targets. In order to develop inhibitors specific to the parasite enzymes, it is necessary to map the determinants of substrate specificity of the parasite enzymes and its mammalian homologue cathepsin C (CatC). Here, we screened peptide-based libraries of substrates and covalent inhibitors to characterize the differences in specificity between parasite DPAPs and CatC, and used this information to develop highly selective DPAP1 and DPAP3 inhibitors. Interestingly, while the primary amino acid specificity of a protease is often used to develop potent inhibitors, we show that equally potent and highly specific inhibitors can be developed based on the sequences of nonoptimal peptide substrates. Finally, our homology modelling and docking studies provide potential structural explanations of the differences in specificity between DPAP1, DPAP3, and CatC, and between substrates and inhibitors in the case of DPAP3. Overall, this study illustrates that focusing the development of protease inhibitors solely on substrate specificity might overlook important structural features that can be exploited to develop highly potent and selective compounds.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mateo I Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Katarzyna Groborz
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Laurie Kuppens
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| | - Marcin Poreba
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Christine Lehmann
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| | - Neysa Nevins
- Computational Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | | | - David J Hirst
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Stevenage, UK
| | - Fang Yuan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirin Arastu-Kapur
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mares
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcin Drag
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
27
|
Onbaşilar EE, Erdoğan M, Erol S, Kahraman M, Güngör ÖF. Comparison of Some Relative Gene Expressions in the Yolk Sac Membrane and Small Intestine of the Embryos in the Layer Hybrid and Pure Breeds. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2018-0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - S Erol
- Republic of Turkey Ministry of Food Agriculture and Livestock, Turkey
| | - M Kahraman
- Republic of Turkey Ministry of Food Agriculture and Livestock, Turkey
| | - ÖF Güngör
- Republic of Turkey Ministry of Food Agriculture and Livestock, Turkey
| |
Collapse
|
28
|
Węglarz-Tomczak E, Talma M, Giurg M, Westerhoff HV, Janowski R, Mucha A. Neutral metalloaminopeptidases APN and MetAP2 as newly discovered anticancer molecular targets of actinomycin D and its simple analogs. Oncotarget 2018; 9:29365-29378. [PMID: 30034623 PMCID: PMC6047675 DOI: 10.18632/oncotarget.25532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
The potent transcription inhibitor Actinomycin D is used with several cancers. Here, we report the discovery that this naturally occurring antibiotic inhibits two human neutral aminopeptidases, the cell-surface alanine aminopeptidase and intracellular methionine aminopeptidase type 2. These metallo-containing exopeptidases participate in tumor cell expansion and motility and are targets for anticancer therapies. We show that the peptide portions of Actinomycin D and Actinomycin X2 are not required for effective inhibition, but the loss of these regions changes the mechanism of interaction. Two structurally less complex Actinomycin D analogs containing the phenoxazone chromophores, Questiomycin A and Actinocin, appear to be competitive inhibitors of both aminopeptidases, with potencies similar to the non-competitive macrocyclic parent compound (Ki in the micromolar range). The mode of action for all four compounds and both enzymes was demonstrated by molecular modeling and docking in the corresponding active sites. This knowledge gives new perspectives to Actinomycin D's action on tumors and suggests new avenues and molecules for medical applications.
Collapse
Affiliation(s)
- Ewelina Węglarz-Tomczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mirosław Giurg
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
29
|
Bhagwat SR, Hajela K, Kumar A. Proteolysis to Identify Protease Substrates: Cleave to Decipher. Proteomics 2018; 18:e1800011. [DOI: 10.1002/pmic.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sonali R. Bhagwat
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| | - Krishnan Hajela
- School of Life Sciences; Devi Ahilya Vishwavidyalaya; Indore 452001 India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| |
Collapse
|
30
|
Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nat Protoc 2017; 12:2189-2214. [PMID: 28933778 DOI: 10.1038/nprot.2017.091] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many biologically and chemically based approaches have been developed to design highly active and selective protease substrates and probes. It is, however, difficult to find substrate sequences that are truly selective for any given protease, as different proteases can demonstrate a great deal of overlap in substrate specificities. In some cases, better enzyme selectivity can be achieved using peptide libraries containing unnatural amino acids such as the hybrid combinatorial substrate library (HyCoSuL), which uses both natural and unnatural amino acids. HyCoSuL is a combinatorial library of tetrapeptides containing amino acid mixtures at the P4-P2 positions, a fixed amino acid at the P1 position, and an ACC (7-amino-4-carbamoylmethylcoumarin) fluorescent tag occupying the P1' position. Once the peptide is recognized and cleaved by a protease, the ACC is released and produces a readable fluorescence signal. Here, we describe the synthesis and screening of HyCoSuL for human caspases and legumain. We also discuss possible modifications and adaptations of this approach that make it a useful tool for developing highly active and selective reagents for a wide variety of proteolytic enzymes. The protocol can be divided into three major parts: (i) solid-phase synthesis of the fluorescence-labeled HyCoSuL, (ii) screening of protease P4-P2 preferences, and (iii) synthesis of the optimized activity probes equipped with an AOMK (acyloxymethyl ketone) reactive group and a biotin label for easy detection. Beginning with the library design, the entire protocol can be completed in 4-8 weeks (HyCoSuL synthesis: 3-5 weeks; HyCoSuL screening per enzyme: 4-8 d; and activity-based probe synthesis: 1-2 weeks).
Collapse
|
31
|
Li Q, Jia H, Cao S, Zhang Z, Zheng J, Zhang Y. Biochemical characterization of aminopeptidase N2 from Toxoplasma gondii. J Vet Med Sci 2017; 79:1404-1411. [PMID: 28701624 PMCID: PMC5573830 DOI: 10.1292/jvms.17-0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aminopeptidase N (APN) is a member of the highly conserved M1 family of metalloproteases, and is considered to be a valuable target for the treatment of a variety of diseases, e.g., cancer, malaria, and coccidiosis. In this study, we identified an APN gene (TgAPN2) in the Toxoplasma gondii genome, and performed a biochemical characterization of the recombinant TgAPN2 (rTgAPN2) protein. Active rTgAPN2 was first produced and purified in Escherichia coli. The catalytic activity of the enzyme was verified using a specific fluorescent substrate, H-Ala-MCA; the rTgAPN2 was relatively active in the absence of added metal ions. The addition of some metal ions, especially Zn2+, inhibited the activity of the recombinant enzyme. The activity of rTgAPN2 was reduced in the presence of the EDTA chelator in the absence of added metal ions. The optimum pH for enzyme activity was 8.0; the enzyme was active in the 3-10 pH range. The substrate preference of rTgAPN2 was evaluated. The enzyme showed a preference for substrates containing N-terminal Ala and Arg residues. Finally, bestatin and amastatin were shown to inhibit the activity of the enzyme. In conclusion, rTgAPN2 shared general characteristics with the M1 family of aminopeptidases but also had some unique characteristics. This provides a basis for the function of aminopeptidases and the study of drug targets.
Collapse
Affiliation(s)
- Qingwei Li
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150001, China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jun Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
32
|
Joshi S, Chen L, Winter MB, Lin YL, Yang Y, Shapovalova M, Smith PM, Liu C, Li F, LeBeau AM. The Rational Design of Therapeutic Peptides for Aminopeptidase N using a Substrate-Based Approach. Sci Rep 2017; 7:1424. [PMID: 28465619 PMCID: PMC5431086 DOI: 10.1038/s41598-017-01542-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/31/2017] [Indexed: 01/11/2023] Open
Abstract
The M1 family of metalloproteases represents a large number of exopeptidases that cleave single amino acid residues from the N-terminus of peptide substrates. One member of this family that has been well studied is aminopeptidase N (APN), a multifunctional protease known to cleave biologically active peptides and aide in coronavirus entry. The proteolytic activity of APN promotes cancer angiogenesis and metastasis making it an important target for cancer therapy. To understand the substrate specificity of APN for the development of targeted inhibitors, we used a global substrate profiling method to determine the P1-P4' amino acid preferences. The key structural features of the APN pharmacophore required for substrate recognition were elucidated by x-ray crystallography. By combining these substrate profiling and structural data, we were able to design a selective peptide inhibitor of APN that was an effective therapeutic both in vitro and in vivo against APN-expressing prostate cancer models.
Collapse
Affiliation(s)
- Shilvi Joshi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Lang Chen
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94153, USA
| | - Yi-Lun Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Yang Yang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Mariya Shapovalova
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Paige M Smith
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Chang Liu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
33
|
Kasperkiewicz P, Poreba M, Groborz K, Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 2017; 284:1518-1539. [PMID: 28052575 PMCID: PMC7164106 DOI: 10.1111/febs.14001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Proteases are enzymes that hydrolyze the peptide bond of peptide substrates and proteins. Despite significant progress in recent years, one of the greatest challenges in the design and testing of substrates, inhibitors and activity‐based probes for proteolytic enzymes is achieving specificity toward only one enzyme. This specificity is particularly important if the enzyme is present with other enzymes with a similar catalytic mechanism and substrate specificity but completely different functionality. The cross‐reactivity of substrates, inhibitors and activity‐based probes with other enzymes can significantly impair or even prevent investigations of a target protease. In this review, we describe important concepts and the latest challenges, focusing mainly on peptide‐based substrate specificity techniques used to distinguish individual enzymes within major protease families.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
34
|
A multi-step peptidolytic cascade for amino acid recovery in chloroplasts. Nat Chem Biol 2016; 13:15-17. [PMID: 27820795 DOI: 10.1038/nchembio.2227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
Plastids (including chloroplasts) are subcellular sites for a plethora of proteolytic reactions, required in functions ranging from protein biogenesis to quality control. Here we show that peptides generated from pre-protein maturation within chloroplasts of Arabidopsis thaliana are degraded to amino acids by a multi-step peptidolytic cascade consisting of oligopeptidases and aminopeptidases, effectively allowing the recovery of single amino acids within these organelles.
Collapse
|
35
|
Węglarz-Tomczak E, Staszewska K, Talma M, Mucha A. Enantiomeric α,β-diaminoethylphosphonic acids as potent inhibitors of aminopeptidases—stereoselective synthesis and biological activity. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Structure and substrate fingerprint of aminopeptidase P from Plasmodium falciparum. Biochem J 2016; 473:3189-204. [DOI: 10.1042/bcj20160550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Malaria is one of the world's most prevalent parasitic diseases, with over 200 million cases annually. Alarmingly, the spread of drug-resistant parasites threatens the effectiveness of current antimalarials and has made the development of novel therapeutic strategies a global health priority. Malaria parasites have a complicated lifecycle, involving an asymptomatic ‘liver stage’ and a symptomatic ‘blood stage’. During the blood stage, the parasites utilise a proteolytic cascade to digest host hemoglobin, which produces free amino acids absolutely necessary for parasite growth and reproduction. The enzymes required for hemoglobin digestion are therefore attractive therapeutic targets. The final step of the cascade is catalyzed by several metalloaminopeptidases, including aminopeptidase P (APP). We developed a novel platform to examine the substrate fingerprint of APP from Plasmodium falciparum (PfAPP) and to show that it can catalyze the removal of any residue immediately prior to a proline. Further, we have determined the crystal structure of PfAPP and present the first examination of the 3D structure of this essential malarial enzyme. Together, these analyses provide insights into potential mechanisms of inhibition that could be used to develop novel antimalarial therapeutics.
Collapse
|
37
|
Cacidases: caspases can cleave after aspartate, glutamate and phosphoserine residues. Cell Death Differ 2016; 23:1717-26. [PMID: 27367566 DOI: 10.1038/cdd.2016.62] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Caspases are a family of proteases found in all metazoans, including a dozen in humans, that drive the terminal stages of apoptosis as well as other cellular remodeling and inflammatory events. Caspases are named because they are cysteine class enzymes shown to cleave after aspartate residues. In the past decade, we and others have developed unbiased proteomic methods that collectively identified ~2000 native proteins cleaved during apoptosis after the signature aspartate residues. Here, we explore non-aspartate cleavage events and identify 100s of substrates cleaved after glutamate in both human and murine apoptotic samples. The extended consensus sequence patterns are virtually identical for the aspartate and glutamate cleavage sites suggesting they are cleaved by the same caspases. Detailed kinetic analyses of the dominant apoptotic executioner caspases-3 and -7 show that synthetic substrates containing DEVD↓ are cleaved only twofold faster than DEVE↓, which is well within the 500-fold range of rates that natural proteins are cut. X-ray crystallography studies confirm that the two acidic substrates bind in virtually the same way to either caspases-3 or -7 with minimal adjustments to accommodate the larger glutamate. Lastly, during apoptosis we found 121 proteins cleaved after serine residues that have been previously annotated to be phosphorylation sites. We found that caspase-3, but not caspase-7, can cleave peptides containing DEVpS↓ at only threefold slower rate than DEVD↓, but does not cleave the unphosphorylated serine peptide. There are only a handful of previously reported examples of proteins cleaved after glutamate and none after phosphorserine. Our studies reveal a much greater promiscuity for cleaving after acidic residues and the name 'cacidase' could aptly reflect this broader specificity.
Collapse
|
38
|
Palomo V, Díaz SA, Stewart MH, Susumu K, Medintz IL, Dawson PE. 3,4-Dihydroxyphenylalanine Peptides as Nonperturbative Quantum Dot Sensors of Aminopeptidase. ACS NANO 2016; 10:6090-9. [PMID: 27206058 PMCID: PMC4968404 DOI: 10.1021/acsnano.6b01682] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fluorescence-based assays for hydrolases that cleave within the substrate (endopeptidases) are common, while developing substrates for proteases that selectively cleave from peptide termini (exopeptidases) is more challenging, since the termini are specifically recognized by the enzyme and cannot be modified to facilitate a Förster resonance energy transfer (FRET)-based approach. The development of a robust system that enables the quenching of fluorescent particles by simple amino acid side chains would find broad utility for peptide sensors and would be advantageous for exopeptidases. Here we describe a quantum dot (QD)-based electron transfer (ET) sensor that is able to allow direct, quantitative monitoring of both exopeptidase and endopeptidase activity. The incorporation of 3,4-dihydroxyphenylalanine (DOPA) into the sequence of a peptide allows for the quenching of QD photoluminescence through an ET mechanism. DOPA is a nonproteinogenic amino acid that can replace a phenylalanine or tyrosine residue in a peptide sequence without severely altering structural properties, allowing for its introduction at multiple positions within a biologically active peptide substrate. Consequently, the quenching system presented here is ideally suited for incorporation into diverse peptide substrates for enzyme recognition, digestion, and activity sensing. Our findings suggest a broad utility of a small ET-capable amino acid side chain in detecting enzyme activity through ET-mediated QD luminescence quenching.
Collapse
Affiliation(s)
- Valle Palomo
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037 (USA)
| | - Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375 (USA)
| | - Michael H. Stewart
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, D.C., 20375 (USA)
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, D.C., 20375 (USA)
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375 (USA)
| | - Philip E. Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037 (USA)
| |
Collapse
|
39
|
Węglarz-Tomczak E, Berlicki Ł, Pawełczak M, Nocek B, Joachimiak A, Mucha A. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases. Eur J Med Chem 2016; 117:187-96. [PMID: 27100031 DOI: 10.1016/j.ejmech.2016.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
N'-substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki = 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2-diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region.
Collapse
Affiliation(s)
- Ewelina Węglarz-Tomczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | - Bogusław Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
40
|
Gladysz R, Lambeir AM, Joossens J, Augustyns K, Van der Veken P. Substrate Activity Screening (SAS) and Related Approaches in Medicinal Chemistry. ChemMedChem 2016; 11:467-76. [PMID: 26845065 DOI: 10.1002/cmdc.201500569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 12/24/2022]
Abstract
Substrate activity screening (SAS) was presented a decade ago by Ellman and co-workers as a straightforward methodology for the identification of fragment-sized building blocks for enzyme inhibitors. Ever since, SAS and variations derived from it have been successfully applied to the discovery of inhibitors of various families of enzymatically active drug targets. This review covers key achievements and challenges of SAS and related methodologies, including the modified substrate activity screening (MSAS) approach. Special attention is given to the kinetic and thermodynamic aspects of these methodologies, as a thorough understanding thereof is crucial for successfully transforming the identified fragment-sized hits into potent inhibitors.
Collapse
Affiliation(s)
- Rafaela Gladysz
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jurgen Joossens
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Koen Augustyns
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Pieter Van der Veken
- Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
41
|
Komatsu T, Urano Y. Evaluation of enzymatic activities in living systems with small-molecular fluorescent substrate probes. ANAL SCI 2016; 31:257-65. [PMID: 25864668 DOI: 10.2116/analsci.31.257] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we aim to present an overview of how small-molecular fluorescent substrate probes for studying enzymatic functions are developed and how they are used in biological applications, under the following four headings: (1) History of Visual Detection of Enzymatic Activities, (2) Strategies to Design Fluorescent Substrate Probes to Measure Enzymatic Activities, (3) Development of Fluorescent Substrate Probes Suitable for Biological Studies, and (4) Biological Applications of Fluorescent Substrate Probes for Studying Enzymes.
Collapse
Affiliation(s)
- Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, 2) JST PRESTO, 4-1-9-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
42
|
Modak JK, Rut W, Wijeyewickrema LC, Pike RN, Drag M, Roujeinikova A. Structural basis for substrate specificity of Helicobacter pylori M17 aminopeptidase. Biochimie 2015; 121:60-71. [PMID: 26616008 DOI: 10.1016/j.biochi.2015.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 11/25/2022]
Abstract
The M17 aminopeptidase from the carcinogenic gastric bacterium Helicobacter pylori (HpM17AP) is an important housekeeping enzyme involved in catabolism of endogenous and exogenous peptides. It is implicated in H. pylori defence against the human innate immune response and in the mechanism of metronidazole resistance. Bestatin inhibits HpM17AP and suppresses H. pylori growth. To address the structural basis of catalysis and inhibition of this enzyme, we have established its specificity towards the N-terminal amino acid of peptide substrates and determined the crystal structures of HpM17AP and its complex with bestatin. The position of the D-phenylalanine moiety of the inhibitor with respect to the active-site metal ions, bicarbonate ion and with respect to other M17 aminopeptidases suggested that this residue binds to the S1 subsite of HpM17AP. In contrast to most characterized M17 aminopeptidases, HpM17AP displays preference for L-Arg over L-Leu residues in peptide substrates. Compared to very similar homologues from other bacteria, a distinguishing feature of HpM17AP is a hydrophilic pocket at the end of the S1 subsite that is likely to accommodate the charged head group of the L-Arg residue of the substrate. The pocket is flanked by a sodium ion (not present in M17 aminopeptidases that show preference for L-Leu) and its coordinating water molecules. In addition, the structure suggests that variable loops at the entrance to, and in the middle of, the substrate-binding channel are important determinants of substrate specificity of M17 aminopeptidases.
Collapse
Affiliation(s)
- Joyanta K Modak
- Infection and Immunity Program, Monash Biomedical Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Lakshmi C Wijeyewickrema
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Robert N Pike
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedical Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
43
|
Activity profiling of aminopeptidases in cell lysates using a fluorogenic substrate library. Biochimie 2015; 122:31-7. [PMID: 26449746 DOI: 10.1016/j.biochi.2015.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
Aminopeptidases are exopeptidases that process peptide bonds at the N-terminus of protein substrates, and they are involved in controlling several metabolic pathways. Due to their involvement in diseases such as cancer or rheumatoid arthritis, their presence can also be used as a predictive biomarker. Here, we used a library of fluorogenic substrates containing natural and unnatural amino acids to reliably measure the aminopeptidase N (APN) activity in cell lysates obtained from human, pig and rat kidneys. We compared our results to the substrate specificity profile of isolated APN. Our data strongly support the observation that fluorogenic substrates can be successfully used to identify aminopeptidases and to measure their activity in cell lysates. Moreover, in contrast to assays using single substrates, which can result in overlapping specificity due to cleavage by several aminopeptidases, our library fingerprint can provide information about single enzymes.
Collapse
|
44
|
Yoshioka K, Komatsu T, Nakada A, Onagi J, Kuriki Y, Kawaguchi M, Terai T, Ueno T, Hanaoka K, Nagano T, Urano Y. Identification of Tissue-Restricted Bioreaction Suitable for in Vivo Targeting by Fluorescent Substrate Library-Based Enzyme Discovery. J Am Chem Soc 2015; 137:12187-90. [DOI: 10.1021/jacs.5b05884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Toru Komatsu
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | | | | | | | | | - Yasuteru Urano
- CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
45
|
Design and Synthesis of Activity-Based Probes and Inhibitors for Bleomycin Hydrolase. ACTA ACUST UNITED AC 2015; 22:995-1001. [PMID: 26256478 DOI: 10.1016/j.chembiol.2015.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 11/22/2022]
Abstract
Bleomycin hydrolase (BLMH) is a neutral cysteine aminopeptidase that has been ascribed roles in many physiological and pathological processes, yet its primary biological function remains enigmatic. In this work, we describe the results of screening of a library of fluorogenic substrates to identify non-natural amino acids that are optimally recognized by BLMH. This screen identified several substrates with kcat/KM values that are substantially improved over the previously reported fluorogenic substrates for this enzyme. The substrate sequences were used to design activity-based probes that showed potent labeling of recombinant BLMH as well as endogenously expressed BLMH in cell extracts, and in intact cells. Importantly, we identify potent BLMH inhibitors that are able to fully inhibit endogenous BLMH activity in intact cells. These probes and inhibitors will be valuable new reagents to study BLMH function in cellular and animal models of human diseases where BLMH is likely to be involved.
Collapse
|
46
|
Ganji RJ, Reddi R, Gumpena R, Marapaka AK, Arya T, Sankoju P, Bhukya S, Addlagatta A. Structural basis for the inhibition of M1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with E. coli aminopeptidase N. Protein Sci 2015; 24:823-31. [PMID: 25644575 DOI: 10.1002/pro.2653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 02/05/2023]
Abstract
Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases.
Collapse
Affiliation(s)
- Roopa Jones Ganji
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jamali H, Khan HA, Stringer JR, Chowdhury S, Ellman JA. Identification of multiple structurally distinct, nonpeptidic small molecule inhibitors of protein arginine deiminase 3 using a substrate-based fragment method. J Am Chem Soc 2015; 137:3616-21. [PMID: 25742366 PMCID: PMC4447334 DOI: 10.1021/jacs.5b00095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The protein arginine deiminases (PADs) are a family of enzymes that catalyze the post-translational hydrolytic deimination of arginine residues. Four different enzymologically active PAD subtypes have been characterized and exhibit tissue-specific expression and association with a number of different diseases. In this Article we describe the development of an approach for the reliable discovery of low molecular weight, nonpeptidic fragment substrates of the PADs that then can be optimized and converted to mechanism-based irreversible PAD inhibitors. The approach is demonstrated by the development of potent and selective inhibitors of PAD3, a PAD subtype implicated in the neurodegenerative response to spinal cord injury. Multiple structurally distinct inhibitors were identified with the most potent inhibitors having >10,000 min(-1) M(-1) k(inact)/K(I) values and ≥10-fold selectivity for PAD3 over PADs 1, 2, and 4.
Collapse
Affiliation(s)
- Haya Jamali
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hasan A. Khan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
48
|
Vassiliou S, Węglarz-Tomczak E, Berlicki Ł, Pawełczak M, Nocek B, Mulligan R, Joachimiak A, Mucha A. Structure-guided, single-point modifications in the phosphinic dipeptide structure yield highly potent and selective inhibitors of neutral aminopeptidases. J Med Chem 2014; 57:8140-51. [PMID: 25192493 PMCID: PMC4331105 DOI: 10.1021/jm501071f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Seven crystal structures of alanyl aminopeptidase from Neisseria meningitides (the etiological agent of meningitis, NmAPN) complexed with organophosphorus compounds were resolved to determine the optimal inhibitor-enzyme interactions. The enantiomeric phosphonic acid analogs of Leu and hPhe, which correspond to the P1 amino acid residues of well-processed substrates, were used to assess the impact of the absolute configuration and the stereospecific hydrogen bond network formed between the aminophosphonate polar head and the active site residues on the binding affinity. For the hPhe analog, an imperfect stereochemical complementarity could be overcome by incorporating an appropriate P1 side chain. The constitution of P1'-extended structures was rationally designed and the lead, phosphinic dipeptide hPhePψ[CH2]Phe, was modified in a single position. Introducing a heteroatom/heteroatom-based fragment to either the P1 or P1' residue required new synthetic pathways. The compounds in the refined structure were low nanomolar and subnanomolar inhibitors of N. meningitides, porcine and human APNs, and the reference leucine aminopeptidase (LAP). The unnatural phosphinic dipeptide analogs exhibited a high affinity for monozinc APNs associated with a reasonable selectivity versus dizinc LAP. Another set of crystal structures containing the NmAPN dipeptide ligand were used to verify and to confirm the predicted binding modes; furthermore, novel contacts, which were promising for inhibitor development, were identified, including a π-π stacking interaction between a pyridine ring and Tyr372.
Collapse
Affiliation(s)
- Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens , Panepistimiopolis, Zografou, 15701 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bremmer SC, McNeil AJ, Soellner MB. Enzyme-triggered gelation: targeting proteases with internal cleavage sites. Chem Commun (Camb) 2014; 50:1691-3. [PMID: 24394494 DOI: 10.1039/c3cc48132h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A generalizable method for detecting protease activity via gelation is described. A recognition sequence is used to target the protease of interest while a second protease is used to remove the residual residues from the gelator scaffold. Using this approach, selective assays for both MMP-9 and PSA are demonstrated.
Collapse
Affiliation(s)
- Steven C Bremmer
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109-1055, USA.
| | | | | |
Collapse
|
50
|
Gladysz R, Cleenewerck M, Joossens J, Lambeir AM, Augustyns K, Van der Veken P. Repositioning the Substrate Activity Screening (SAS) Approach as a Fragment-Based Method for Identification of Weak Binders. Chembiochem 2014; 15:2238-47. [DOI: 10.1002/cbic.201402192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/06/2022]
|