1
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Naeimzadeh Y, Tajbakhsh A, Fallahi J. Understanding the prion-like behavior of mutant p53 proteins in triple-negative breast cancer pathogenesis: The current therapeutic strategies and future directions. Heliyon 2024; 10:e26260. [PMID: 38390040 PMCID: PMC10881377 DOI: 10.1016/j.heliyon.2024.e26260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Breast cancer (BC) is viewed as a significant public health issue and is the primary cause of cancer-related deaths among women worldwide. Triple-negative breast cancer (TNBC) is a particularly aggressive subtype that predominantly affects young premenopausal women. The tumor suppressor p53 playsa vital role in the cellular response to DNA damage, and its loss or mutations are commonly present in many cancers, including BC. Recent evidence suggests that mutant p53 proteins can aggregate and form prion-like structures, which may contribute to the pathogenesis of different types of malignancies, such as BC. This review provides an overview of BC molecular subtypes, the epidemiology of TNBC, and the role of p53 in BC development. We also discuss the potential implications of prion-like aggregation in BC and highlight future research directions. Moreover, a comprehensive analysis of the current therapeutic approaches targeting p53 aggregates in BC treatment is presented. Strategies including small molecules, chaperone inhibitors, immunotherapy, CRISPR-Cas9, and siRNA are discussed, along with their potential benefits and drawbacks. The use of these approaches to inhibit p53 aggregation and degradation represents a promising target for cancer therapy. Future investigations into the efficacy of these approaches against various p53 mutations or binding to non-p53 proteins should be conducted to develop more effective and personalized therapies for BC treatment.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| |
Collapse
|
3
|
Tam HH, Zhu D, Ho SSK, Vong HW, Wong VKW, Mok SWF, Wong IN. Potential enhancement of post-stroke angiogenic response by targeting the oligomeric aggregation of p53 protein. Front Cell Neurosci 2023; 17:1193362. [PMID: 37534043 PMCID: PMC10393283 DOI: 10.3389/fncel.2023.1193362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Tumor suppressor gene p53 and its aggregate have been found to be involved in many angiogenesis-related pathways. We explored the possible p53 aggregation formation mechanisms commonly occur after ischemic stroke, such as hypoxia and the presence of reactive oxygen species (ROS). The angiogenic pathways involving p53 mainly occur in nucleus or cytoplasm, with one exception that occurs in mitochondria. Considering the high mitochondrial density in brain and endothelial cells, we proposed that the cyclophilin D (CypD)-dependent vascular endothelial cell (VECs) necrosis pathway occurring in the mitochondria is one of the major factors that affects angiogenesis. Hence, targeting p53 aggregation, a key intermediate in the pathway, could be an alternative therapeutic target for post-stroke management.
Collapse
Affiliation(s)
- Hoi Hei Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Dongxing Zhu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Institute of Cardiovascular Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Samuel Sze King Ho
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Heng Wai Vong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Simon Wing-Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
4
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
5
|
Naeem A, Knoer G, Avantaggiati ML, Rodriguez O, Albanese C. Provocative non-canonical roles of p53 and AKT signaling: A role for Thymosin β4 in medulloblastoma. Int Immunopharmacol 2023; 116:109785. [PMID: 36720193 DOI: 10.1016/j.intimp.2023.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
The PI3K/AKT and p53 pathways are key regulators of cancer cell survival and death, respectively. Contrary to their generally accepted roles, several lines of evidence, including ours in medulloblastoma, the most common childhood brain cancer, highlight non-canonical functions for both proteins and show a complex context-dependent dynamic behavior in determining cell fate. Interestingly, p53-mediated cell survival and AKT-mediated cell death can dominate in certain conditions, and these interchangeable physiological functions may potentially be manipulated for better clinical outcomes. This review article presents studies in which p53 and AKT behave contrary to their well-established functions. We discuss the factors and circumstances that may be involved in mediating these changes and the implications of these unique roles of p53 and AKT in devising therapeutic strategies. Lastly, based on our recent finding of Thymosin beta 4-mediated chemosensitivity via an AKT-p53 interaction in medulloblastoma cells, we also discuss the possible implications of Thymosin beta-4 in enhancing drug sensitivity in this deadly childhood disease.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Health Research Governance Department, Ministry of Public Health, Qatar.
| | - Grace Knoer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Radiology, Georgetown University Medical Center, Washington, DC 20057, USA; Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
6
|
The chameleonic behavior of p53 in health and disease: the transition from a client to an aberrant condensate scaffold in cancer. Essays Biochem 2022; 66:1023-1033. [DOI: 10.1042/ebc20220064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
In 1972, the Weber statement, “The multiplicity of interactions and the variety of effects that follow from them show that multimer proteins are unlikely to be limited to a minimal number of allowed conformations,” first addressed the dynamic nature of proteins. This idea serves as a foundation for understanding why several macromolecules, such as p53, exhibit the properties of a molecular chameleon. Functionally competent states comprise a myriad of p53 three-dimensional arrangements depending on the stimuli. For instance, the interaction of p53 with nuclear components could induce liquid–liquid phase separation (LLPS) and the formation of membraneless organelles. The functional or deleterious role of p53 in liquid droplets is still unclear. Functional aspects display p53 interconverting between droplets and tetramer with its functional abilities maintained. In contrast, the aberrant phase separation is likely to fuel the aggregation path, usually associated with the onset and progression of age-related neurodegenerative diseases and cancer. Here, we gathered the most relevant aspects that lead p53 to phase separation and the resulting structural effects, attempting to understand p53’s functional and disease-relevant processes. Aberrant phase separation and aggregation of mutant p53 have become important therapeutic targets against cancer.
Collapse
|
7
|
Pandit S. 1 H, 15 N and 13 C chemical shift assignments of the N-terminal domain of the two isoforms of the human apolipoprotein E. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:191-196. [PMID: 35451799 DOI: 10.1007/s12104-022-10078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Apolipoprotein E (ApoE) is one of the major lipid transporters in humans. It is also implicated in pathological conditions like Alzheimer's and cardiovascular diseases. The N-terminal domain of ApoE binds low-density lipoprotein receptors (LDLR) while the C-terminal domain binds to the lipid. I report the backbone and aliphatic side-chain NMR chemical shifts of the N-terminal domain of two isoforms of ApoE, namely ApoE3 NTD (BMRB No. 51,122) and ApoE4 NTD (BMRB No. 51,123) at pH 3.5 (20 °C).
Collapse
Affiliation(s)
- Subhendu Pandit
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, 500107, Hyderabad, India.
| |
Collapse
|
8
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. p53 amyloid aggregation in cancer: function, mechanism, and therapy. Exp Hematol Oncol 2022; 11:66. [PMID: 36171607 PMCID: PMC9520902 DOI: 10.1186/s40164-022-00317-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Similar to neurodegenerative diseases, the concept that tumors are prion like diseases has been proposed in recent years. p53, the most well-known tumor suppressor, has been extensively studied for its expression, mutation, and function in various tumors. Currently, an interesting phenomenon of p53 prion-like aggregation has been found in several tumors, and studies have found that its pathological aggregation may lead to functional alterations and ultimately affect tumor progression. It has been demonstrated that the mechanism of p53 aggregation involves its mutation, domains, isoform, etc. In addition to p53 itself, some other factors, including Zn2+ concentration, pH, temperature and chaperone abnormalities, can also contribute to p53 aggregation. Although there are some studies about the mechanism and role of p53 aggregation and amyloidosis in tumors, there still exist some controversies. In this paper, we review the mechanism of p53 amyloid fibril structure and discuss the characteristics and effects of p53 amyloid aggregation, as well as the pathogenic mechanism leading to the occurrence of aggregation in tumors. Finally, we summarize the various inhibitors targeting p53 aggregation and prion-like behavior. In conclusion, a comprehensive understanding of p53 aggregation can expand our understanding of the causes leading its loss of physiological function and that targeting p53 aggregation might be a promising therapeutic strategy for tumor therapy.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
10
|
Agarwal N, Jaiswal N, Gulati K, Gangele K, Nagar N, Kumar D, Poluri KM. Molecular Insights into Conformational Heterogeneity and Enhanced Structural Integrity of Helicobacter pylori DNA Binding Protein Hup at Low pH. Biochemistry 2021; 60:3236-3252. [PMID: 34665609 DOI: 10.1021/acs.biochem.1c00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The summarized amalgam of internal relaxation modulations and external forces like pH, temperature, and solvent conditions determine the protein structure, stability, and function. In a free-energy landscape, although conformers are arranged in vertical hierarchy, there exist several adjacent parallel sets with conformers occupying equivalent energy cleft. Such conformational states are pre-requisites for the functioning of proteins that have oscillating environmental conditions. As these conformational changes have utterly small re-arrangements, nuclear magnetic resonance (NMR) spectroscopy is unique in elucidating the structure-dynamics-stability-function relationships for such conformations. Helicobacter pylori survives and causes gastric cancer at extremely low pH also. However, least is known as to how the genome of the pathogen is protected from reactive oxygen species (ROS) scavenging in the gut at low pH under acidic stress. In the current study, biophysical characteristics of H. pylori DNA binding protein (Hup) have been elucidated at pH 2 using a combination of circular dichroism, fluorescence, NMR spectroscopy, and molecular dynamics simulations. Interestingly, the protein was found to have conserved structural features, differential backbone dynamics, enhanced stability, and DNA binding ability at low pH as well. In summary, the study suggests the partaking of Hup protein even at low pH in DNA protection for maintaining the genome integrity.
Collapse
Affiliation(s)
- Nipanshu Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| | - Nancy Jaiswal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| | - Krishnakant Gangele
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| |
Collapse
|
11
|
Akter R, Rahman MH, Kaushik D, Mittal V, Uivarosan D, Nechifor AC, Behl T, Karthika C, Stoicescu M, Munteanu MA, Bustea C, Bungau S. Chemo-Preventive Action of Resveratrol: Suppression of p53-A Molecular Targeting Approach. Molecules 2021; 26:molecules26175325. [PMID: 34500758 PMCID: PMC8433711 DOI: 10.3390/molecules26175325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Extensive experimental, clinical, and epidemiological evidence has explained and proven that products of natural origin are significantly important in preventing and/or ameliorating various disorders, including different types of cancer that researchers are extremely focused on. Among these studies on natural active substances, one can distinguish the emphasis on resveratrol and its properties, especially the potential anticancer role. Resveratrol is a natural product proven for its therapeutic activity, with remarkable anti-inflammatory properties. Various other benefits/actions have also been reported, such as cardioprotective, anti-ageing, antioxidant, etc. and its rapid digestion/absorption as well. This review aims to collect and present the latest published studies on resveratrol and its impact on cancer prevention, molecular signals (especially p53 protein participation), and its therapeutic prospects. The most recent information regarding the healing action of resveratrol is presented and concentrated to create an updated database focused on this topic presented above.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Correspondence: (M.H.R.); (S.B.)
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Cristiana Bustea
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (M.H.R.); (S.B.)
| |
Collapse
|
12
|
Petronilho EC, Pedrote MM, Marques MA, Passos YM, Mota MF, Jakobus B, de Sousa GDS, Pereira da Costa F, Felix AL, Ferretti GDS, Almeida FP, Cordeiro Y, Vieira TCRG, de Oliveira GAP, Silva JL. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem Sci 2021; 12:7334-7349. [PMID: 34163823 PMCID: PMC8171334 DOI: 10.1039/d1sc01739j] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy. Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).![]()
Collapse
Affiliation(s)
- Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yulli M Passos
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Benjamin Jakobus
- Modal Informática Ltda Almeida Godinho, 19, 304 Rio de Janeiro RJ 22741-140 Brazil
| | - Gileno Dos Santos de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Filipe Pereira da Costa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Adriani L Felix
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Fernando P Almeida
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| |
Collapse
|
13
|
Cattani G, Bocedi A, Gambardella G, Iavarone F, Boroumand M, Castagnola M, Ricci G. Trypsinogen and chymotrypsinogen: the mysterious hyper-reactivity of selected cysteines is still present after their divergent evolution. FEBS J 2021; 288:6003-6018. [PMID: 33876866 DOI: 10.1111/febs.15886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/11/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
An enigmatic and never described hyper-reactivity of most of the cysteines resident in the reduced, molten globule-like intermediate of a few proteins has been recently discovered. In particular, all ten cysteines of chymotrypsinogen showed hundred times increased reactivity against hydrophobic reagents. A single cysteine (Cys1) was also found thousand times more reactive toward GSSG, making speculate that a single glutathionylation could represent the primordial event of its oxidative folding. In the present study, we compare these kinetic properties with those present in trypsinogen taken in its reduced, molten globule-like intermediate and identify the origin of these unusual properties. Despite the divergent evolution of these two proteins, the different amount of disulfides and the very different 3D localization of three disulfides, their hyper-reactivity toward hydrophobic thiol reagents and disulfides is very similar. Mass spectrometry identifies two cysteines in trypsinogen, Cys148 and Cys197, 800 times more reactive toward GSSG than an unperturbed protein cysteine. These results point toward a stringent and accurate preservation of these peculiar kinetic properties during a divergent evolution suggesting some important role, which at the present can only be hypothesized. Similar extraordinary hyper-reactivity has been found also in albumin, ribonuclease, and lysozyme confirming that it cannot be considered a kinetic singularity of a single protein. Interestingly, the very flexible and fluctuating structures like those typical of the molten globule status prove capable of enabling sophisticated actions typical of enzymes such as binding to GSSG with relevant specificity and high affinity (KD = 0.4 mm) and accelerating the reaction of its cysteines by thousands of times.
Collapse
Affiliation(s)
- Giada Cattani
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| |
Collapse
|
14
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
15
|
Apolipoprotein E4 exhibits intermediates with domain interaction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140535. [PMID: 32882410 DOI: 10.1016/j.bbapap.2020.140535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
ApoE4(C112R) is the strongest risk factor for Alzheimer's disease, while apoE3(C112) is considered normal. The C112R substitution is believed to alter the interactions between the N-terminal (NTD) and the C-terminal domain (CTD) leading to major functional differences. Here we investigate how the molecular property of the residue at position 112 affects domain interaction using an array of C112X substitutions with arginine, alanine, threonine, valine, leucine and isoleucine as 'X'. We attempt to determine the free energy of domain interaction (∆GINT) from stabilities of the NTD (∆GNTD) and CTD (∆GCTD) in the full-length apoE, and the stabilities of fragments of the NTD (∆GNTF) and CTD (∆GCTF), using the relationship, ∆GINT = ∆GNTD + ∆GCTD - ∆GNTF - ∆GCTF. We find that although ∆GNTD is strongly dependent on the C112X substitutions, ∆GNTD - ∆GNTF is small. Furthermore, ∆GCTD remains nearly the same as ∆GCTF. Therefore, ∆GINT is estimated to be small and similar for the apoE isoforms. However, stability of domain interaction monitored by urea dependent changes in interdomain Forster Resonance Energy Transfer (FRET) is found to be strongly dependent on C112X substitutions. ApoE4 exhibits the highest mid-point of denaturation of interdomain FRET. To resolve the apparently contradictory observations, we hypothesize that higher interdomain FRET in apoE4 in urea may involve 'intermediate' states. Enhanced fluorescence of bis-ANS and susceptibility to proteolytic cleavage support that apoE4, specifically, the NTD of apoE4 harbor 'intermediates' in both native and mildly denaturing conditions. The intermediates could hold key to the pathological functions of apoE4.
Collapse
|
16
|
Bromley D, Daggett V. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Protein Sci 2020; 29:1983-1999. [PMID: 32715544 DOI: 10.1002/pro.3921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The p53 protein is a commonly studied cancer target because of its role in tumor suppression. Unfortunately, it is susceptible to mutation-associated loss of function; approximately 50% of cancers are associated with mutations to p53, the majority of which are located in the central DNA-binding domain. Here, we report molecular dynamics simulations of wild-type (WT) p53 and 20 different mutants, including a stabilized pseudo-WT mutant. Our findings indicate that p53 mutants tend to exacerbate latent structural-disruption tendencies, or vulnerabilities, already present in the WT protein, suggesting that it may be possible to develop cancer therapies by targeting a relatively small set of structural-disruption motifs rather than a multitude of effects specific to each mutant. In addition, α-sheet secondary structure formed in almost all of the proteins. α-Sheet has been hypothesized and recently demonstrated to play a role in amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re-consideration of cancer as an amyloid disease.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
| | - Valerie Daggett
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Structural and conformational behavior of MurE ligase from Salmonella enterica serovar Typhi at different temperature and pH conditions. Int J Biol Macromol 2020; 150:389-399. [DOI: 10.1016/j.ijbiomac.2020.01.306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
|
18
|
Mendes LFS, Batista MRB, Judge PJ, Watts A, Redfield C, Costa-Filho AJ. Conformational flexibility of GRASPs and their constituent PDZ subdomains reveals structural basis of their promiscuous interactome. FEBS J 2020; 287:3255-3272. [PMID: 31920006 DOI: 10.1111/febs.15206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
Abstract
The Golgi complex is a central component of the secretory pathway, responsible for several critical cellular functions in eukaryotes. The complex is organized by the Golgi matrix that includes the Golgi reassembly and stacking protein (GRASP), which was shown to be involved in cisternae stacking and lateral linkage in metazoan. GRASPs also have critical roles in other processes, with an unusual ability to interact with several different binding partners. The conserved N terminus of the GRASP family includes two PSD-95, DLG, and ZO-1 (PDZ) domains. Previous crystallographic studies of orthologues suggest that PDZ1 and PDZ2 have similar conformations and secondary structure content. However, PDZ1 alone mediates nearly all interactions between GRASPs and their partners. In this work, NMR, synchrotron radiation CD, and molecular dynamics (MD) were used to examine the structure, flexibility, and stability of the two constituent PDZ domains. GRASP PDZs are structured in an unusual β3 α1 β4 β5 α2 β6 β1 β2 secondary structural arrangement and NMR data indicate that the PDZ1 binding pocket is formed by a stable β2 -strand and a more flexible and unstable α2 -helix, suggesting an explanation for the higher PDZ1 promiscuity. The conformational free energy profiles of the two PDZ domains were calculated using MD simulations. The data suggest that, after binding, the protein partner significantly reduces the conformational space that GRASPs can access by stabilizing one particular conformation, in a partner-dependent fashion. The structural flexibility of PDZ1, modulated by PDZ2, and the coupled, coordinated movement between the two PDZs enable GRASPs to interact with multiple partners, allowing them to function as promiscuous, multitasking proteins.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry, University of Oxford, UK
| | - Mariana R B Batista
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| | - Peter J Judge
- Department of Biochemistry, University of Oxford, UK
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, UK
| | | | - Antonio J Costa-Filho
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Pedrote MM, Motta MF, Ferretti GDS, Norberto DR, Spohr TCLS, Lima FRS, Gratton E, Silva JL, de Oliveira GAP. Oncogenic Gain of Function in Glioblastoma Is Linked to Mutant p53 Amyloid Oligomers. iScience 2020; 23:100820. [PMID: 31981923 PMCID: PMC6976948 DOI: 10.1016/j.isci.2020.100820] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated p53 mutations endow cells with malignant phenotypes, including chemoresistance. Amyloid-like oligomers of mutant p53 transform this tumor suppressor into an oncogene. However, the composition and distribution of mutant p53 oligomers are unknown and the mechanism involved in the conversion is sparse. Here, we report accumulation of a p53 mutant within amyloid-like p53 oligomers in glioblastoma-derived cells presenting a chemoresistant gain-of-function phenotype. Statistical analysis from fluorescence fluctuation spectroscopy, pressure-induced measurements, and thioflavin T kinetics demonstrates the distribution of oligomers larger than the active tetrameric form of p53 in the nuclei of living cells and the destabilization of native-drifted p53 species that become amyloid. Collectively, these results provide insights into the role of amyloid-like mutant p53 oligomers in the chemoresistance phenotype of malignant and invasive brain tumors and shed light on therapeutic options to avert cancer. Amyloid oligomers transform p53 tumor suppressor into an oncogene Amyloid-like mutant p53 oligomers occur in chemoresistant glioblastoma cells p53 oligomer larger than tetramers is detected in the nuclei of living cells Gain-of-function p53 phenotypes is attributed to p53 amyloid oligomers
Collapse
Affiliation(s)
- Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Michelle F Motta
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Douglas R Norberto
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas. Av. dos Estados, 5001 Sta. Terezinha, Santo André, São Paulo 21941-590, Brazil
| | - Tania C L S Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, CA 92697-2717, USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
20
|
Navalkar A, Ghosh S, Pandey S, Paul A, Datta D, Maji SK. Prion-like p53 Amyloids in Cancer. Biochemistry 2019; 59:146-155. [DOI: 10.1021/acs.biochem.9b00796] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Saikat Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| |
Collapse
|
21
|
Baliga C, Selmke B, Worobiew I, Borbat P, Sarma SP, Trommer WE, Varadarajan R, Aghera N. CcdB at pH 4 Forms a Partially Unfolded State with a Dry Core. Biophys J 2019; 116:807-817. [PMID: 30777307 DOI: 10.1016/j.bpj.2019.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
pH is an important factor that affects the protein structure, stability, and activity. Here, we probe the nature of the low-pH structural form of the homodimeric CcdB (controller of cell death B) protein. Characterization of CcdB protein at pH 4 and 300 K using circular dichroism spectroscopy, 8-anilino-1-naphthalene-sulphonate binding, and Trp solvation studies suggests that it forms a partially unfolded state with a dry core at equilibrium under these conditions. CcdB remains dimeric at pH 4 as shown by multiple techniques, such as size-exclusion chromatography coupled to multiangle light scattering, analytical ultracentrifugation, and electron paramagnetic resonance. Comparative analysis using two-dimensional 15N-1H heteronuclear single-quantum coherence NMR spectra of CcdB at pH 4 and 7 suggests that the pH 4 and native state have similar but nonidentical structures. Hydrogen-exchange-mass-spectrometry studies demonstrate that the pH 4 state has substantial but anisotropic changes in local stability with core regions close to the dimer interface showing lower protection but some other regions showing higher protection relative to pH 7.
Collapse
Affiliation(s)
- Chetana Baliga
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Benjamin Selmke
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Irina Worobiew
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Peter Borbat
- Department of Chemistry and Chemical Biology, ACERT National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
22
|
Clark AM, Ponniah K, Warden MS, Raitt EM, Yawn AC, Pascal SM. pH-Induced Folding of the Caspase-Cleaved Par-4 Tumor Suppressor: Evidence of Structure Outside of the Coiled Coil Domain. Biomolecules 2018; 8:biom8040162. [PMID: 30518159 PMCID: PMC6316887 DOI: 10.3390/biom8040162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate apoptosis response-4 (Par-4) is a 38 kDa largely intrinsically disordered tumor suppressor protein that functions in cancer cell apoptosis. Par-4 down-regulation is often observed in cancer while up-regulation is characteristic of neurodegenerative conditions such as Alzheimer’s disease. Cleavage of Par-4 by caspase-3 activates tumor suppression via formation of an approximately 25 kDa fragment (cl-Par-4) that enters the nucleus and inhibits Bcl-2 and NF-ƙB, which function in pro-survival pathways. Here, we have investigated the structure of cl-Par-4 using biophysical techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and intrinsic tyrosine fluorescence. The results demonstrate pH-dependent folding of cl-Par-4, with high disorder and aggregation at neutral pH, but a largely folded, non-aggregated conformation at acidic pH.
Collapse
Affiliation(s)
- Andrea M Clark
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Emily M Raitt
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Andrea C Yawn
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
23
|
Hasan S, Fatma S, Zaman M, Khan RH, Naeem A. Carboxylic acids of different nature induces aggregation of hemoglobin. Int J Biol Macromol 2018; 118:1584-1593. [DOI: 10.1016/j.ijbiomac.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 01/28/2023]
|
24
|
Ferraz da Costa DC, Campos NPC, Santos RA, Guedes-da-Silva FH, Martins-Dinis MMDC, Zanphorlin L, Ramos C, Rangel LP, Silva JL. Resveratrol prevents p53 aggregation in vitro and in breast cancer cells. Oncotarget 2018; 9:29112-29122. [PMID: 30018739 PMCID: PMC6044377 DOI: 10.18632/oncotarget.25631] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
One potential target for cancer therapeutics is the tumor suppressor p53, which is mutated in more than 50% of malignant tumors. Loss of function (LoF), dominant negative (DN) and gain of function (GoF) mutations in p53 are associated with amyloid aggregation. We tested the potential of resveratrol, a naturally occurring polyphenol, to interact and prevent the aggregation of wild-type and mutant p53 in vitro using fluorescence spectroscopy techniques and in human breast cancer cells (MDA-MB-231, HCC-70 and MCF-7) using immunofluorescence co-localization assays. Based on our data, an interaction occurs between resveratrol and the wild-type p53 core domain (p53C). In addition, resveratrol and its derivatives pterostilbene and piceatannol inhibit mutant p53C aggregation in vitro. Additionally, resveratrol reduces mutant p53 protein aggregation in MDA-MB-231 and HCC-70 cells but not in the wild-type p53 cell line MCF-7. To verify the effects of resveratrol on tumorigenicity, cell proliferation and cell migration assays were performed using MDA-MB-231 cells. Resveratrol significantly reduced the proliferative and migratory capabilities of these cells. Our study provides evidence that resveratrol directly modulates p53, enhancing our understanding of the mechanisms involved in p53 aggregation and its potential as a therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Danielly C Ferraz da Costa
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Nathali P C Campos
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ronimara A Santos
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, RJ, Brazil
| | - Francisca Hildemagna Guedes-da-Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mafalda Maria D C Martins-Dinis
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Letícia Zanphorlin
- Instituto de Química, Universidade de Campinas, Campinas 13083-970, SP, Brazil
| | - Carlos Ramos
- Instituto de Química, Universidade de Campinas, Campinas 13083-970, SP, Brazil
| | - Luciana P Rangel
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Jerson L Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
25
|
Pedrote MM, de Oliveira GAP, Felix AL, Mota MF, Marques MDA, Soares IN, Iqbal A, Norberto DR, Gomes AMO, Gratton E, Cino EA, Silva JL. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer. J Biol Chem 2018; 293:11374-11387. [PMID: 29853637 PMCID: PMC6065177 DOI: 10.1074/jbc.ra118.003285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with subdenaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, probably representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. p53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53.
Collapse
Affiliation(s)
- Murilo M Pedrote
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908.
| | - Adriani L Felix
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Michelle F Mota
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Mayra de A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Iaci N Soares
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Douglas R Norberto
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Andre M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, California 92697-2717
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| |
Collapse
|
26
|
Silva JL, Cino EA, Soares IN, Ferreira VF, A. P. de Oliveira G. Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer. Acc Chem Res 2018; 51:181-190. [PMID: 29260852 DOI: 10.1021/acs.accounts.7b00473] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prion-like behavior of several amyloidogenic proteins has been demonstrated in recent years. Despite having functional roles in some cases, irregular aggregation can have devastating consequences. The most commonly known amyloid diseases are Alzheimer's, Parkinson's, and Transmissible Spongiform Encephalopathies (TSEs). The pathophysiology of prion-like diseases involves the structural transformation of wild-type (wt) proteins to transmissible forms that can convert healthy proteins, generating aggregates. The mutant form of tumor suppressor protein, p53, has recently been shown to exhibit prion-like properties. Within the context of p53 aggregation and the search for ways to avert it, this review emphasizes discoveries, approaches, and research from our laboratory and others. Although its standard functions are strongly connected to tumor suppression, p53 mutants and aggregates are involved in cancer progression. p53 aggregates are heterogeneous assemblies composed of amorphous aggregates, oligomers, and amyloid-like fibrils. Evidence of these structures in tumor tissues, the in vitro capability for p53 mutants to coaggregate with wt protein, and the detection of cell-to-cell transmission indicate that cancer has the basic characteristics of prion and prion-like diseases. Various approaches aim to restore p53 functions in cancer. Methods include the use of small-molecule and peptide stabilizers of mutant p53, zinc administration, gene therapy, alkylating and DNA intercalators, and blockage of p53-MDM2 interaction. A primary challenge in developing small-molecule inhibitors of p53 aggregation is the large number of p53 mutations. Another issue is the inability to recover p53 function by dissociating mature fibrils. Consequently, efforts have emerged to target the intermediate species of the aggregation reaction. Φ-value analysis has been used to characterize the kinetics of the early phases of p53 aggregation. Our experiments using high hydrostatic pressure (HHP) and chemical denaturants have helped to clarify excited conformers of p53 that are prone to aggregation. Molecular dynamics (MD) and phasor analysis of single Trp fluorescence signals point toward the presence of preamyloidogenic conformations of p53, which are not observed for p63 or p73. Exploring the features of competent preamyloidogenic states of wt and different p53 mutants may provide a framework for designing personalized drugs for the restoration of p53 function. Protection of backbone hydrogen bonds (BHBs) has been shown to be an important factor for the stability of amyloidogenic proteins and was employed to identify and stabilize the structural defect resulting from the p53 Y220C mutation. Using MD simulations, we compared BHB protection factors between p53 family members to determine the donor-acceptor pairs in p53 that exhibit lower protection. The identification of structurally vulnerable sites in p53 should provide new insights into rational designs that can rapidly be screened using our experimental methodology. Through continued and combined efforts, the outlook is positive for the development of strategies for regulating p53 amyloid transformation.
Collapse
Affiliation(s)
- Jerson L. Silva
- Instituto
de Bioquı́mica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Elio A. Cino
- Departamento
de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte, Brazil
| | - Iaci N. Soares
- Instituto
de Bioquı́mica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vitor F. Ferreira
- Departamento
de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, 24220-900 Rio de Janeiro, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto
de Bioquı́mica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Department
of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908-0733, United States
| |
Collapse
|
27
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
28
|
Abstract
Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein), and therapeutic perspectives with an emphasis on clinical trial results to date.
Collapse
|
29
|
pH induced single step shift of hydrophobic patches followed by formation of an MG state and an amyloidogenic intermediate in Lima Bean Trypsin Inhibitor (LBTI). Int J Biol Macromol 2017; 103:111-119. [PMID: 28501599 DOI: 10.1016/j.ijbiomac.2017.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022]
Abstract
Lima Bean Trypsin Inhibitor (LBTI) is 83 residues monomeric protein of 9.0 KDa, consisting of six antiparallel β-strands and can undergo concentration dependant dimerization. We have tried to characterize folding intermediates of LBTI under equilibrium denaturation conditions. We have used various spectroscopic and microscopic techniques to understand the folding and misfolding pathways. LBTI forms molten globule structure at pH 2 and amyloidiogenic intermediate state (Ia) at pH 4. pH induced Shifting of surface exposed hydrophobic patches and that followed by withdrawal of the lone tyrosine residue (Y69) towards nonpolar environment have been reported. Denaturation profile of native and molten globule (MG) states of LBTI in presence of guanidine hydrochloride show sigmoidal curves with non-coincidental and irreversible behaviour in both states. Concentration dependent amyloid fibril formation was confirmed by Thioflavin T and Congo Red binding and its morphology was studied by transmission electron microscopy (TEM). This is the first report on biophysical characterization of folding intermediates of LBTI and its aggregation behaviour to the best of our knowledge.
Collapse
|
30
|
Costa DCF, de Oliveira GAP, Cino EA, Soares IN, Rangel LP, Silva JL. Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease? Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023614. [PMID: 27549118 DOI: 10.1101/cshperspect.a023614] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prion diseases are disorders that share several characteristics that are typical of many neurodegenerative diseases. Recently, several studies have extended the prion concept to pathological aggregation in malignant tumors involving misfolded p53, a tumor-suppressor protein. The aggregation of p53 and its coaggregation with p53 family members, p63 and p73, have been shown. Certain p53 mutants exert a dominant-negative regulatory effect on wild-type (WT) p53. The basis for this dominant-negative effect is that amyloid-like mutant p53 converts WT p53 into an aggregated species, leading to a gain-of-function (GoF) phenotype and the loss of its tumor-suppressor function. Recently, it was shown that p53 aggregates can be internalized by cells and can coaggregate with endogenous p53, corroborating the prion-like properties of p53 aggregates. The prion-like behavior of oncogenic p53 mutants provides an explanation for its dominant-negative and GoF properties, including the high metastatic potential of cancer cells carrying p53 mutations. The inhibition of p53 aggregation appears to represent a promising target for therapeutic intervention in patients with malignant tumors.
Collapse
Affiliation(s)
- Danielly C F Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20550-013, Brazil
| | - Guilherme A P de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Elio A Cino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Iaci N Soares
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luciana P Rangel
- Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
31
|
Narang D, Singh A, Mukhopadhyay S. Stepwise unfolding of human β2-microglobulin into a disordered amyloidogenic precursor at low pH. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:65-76. [DOI: 10.1007/s00249-016-1138-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/20/2016] [Accepted: 05/10/2016] [Indexed: 02/08/2023]
|
32
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Tavakol S. Acidic pH derived from cancer cells may induce failed reprogramming of normal differentiated cells adjacent tumor cells and turn them into cancer cells. Med Hypotheses 2014; 83:668-72. [PMID: 25459130 DOI: 10.1016/j.mehy.2014.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Eelier studies demonstrated the up-regulation of some transcriptional factors such as Oct4, Nanog, Sox2 in undifferentiated cancer cells. These transcriptional regulators are up-regulated in pluripotent cells, as well and are responsible for cell reprogramming in normal cells. It might be said that normal cells adjacent tumor site are undergone of failed cell reprogramming. PRESENTATION OF THE HYPOTHESIS Extracellular pH of cancer cell is acidic and recent studies reveal the role of acidic environment in cell reprogramming of normal cells. This hypothesis deals with the potential role of acidic pH in malignant tumor development through normal cells adjacent cancer cells. It seems that cancer cells are more intelligent and acid release from these cells is not just a by-product but also and more important reason, is a tool to up-regulate cell reprogramming markers, induce epigenetic modification and tumor progress in normal cells adjacent cancer cells. If this is correct, then it could be expected that with alkaline targeting of tumor environment, failed cell reprogramming, aberrant epigenetic modification will decrease in normal cells adjacent cancer cells and afterward metastasis will decrease. TESTING THE HYPOTHESIS It is proposed to investigate altered genetic and epigenetic modification (DNA methylation, histone modification) in cancer, early cancer and cells in vicinity of cancer cells at different pH range of 5.8-7.8. This study is performed to determine whether acidic pH induces reprogramming, global hypomethylation and promoter hypermethylation in cancer cells and cells in vicinity of cancer cells at different pH values. IMPLICATIONS OF THE HYPOTHESIS This hypothesis deal with the ability of acidic pH to convert normal cells adjacent cancer cells to cancerous cells and its inductive potential on genetic and epigenetic modification of normal cells adjacent cancer cells and will further emphasize the important of extracellular acidic targeting in cancer therapy.
Collapse
Affiliation(s)
- Shima Tavakol
- Razi Drug Research Center (RDRC), Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Advanced Medical Sciences and Technologies Assosiation, Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Role of pH in structural changes for Pin1 protein: an insight from molecular dynamics study. J Mol Model 2014; 20:2376. [DOI: 10.1007/s00894-014-2376-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/01/2014] [Indexed: 02/04/2023]
|
35
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
36
|
Gonçalves KM, Barbosa LR, Lima LMT, Cortines JR, Kalume DE, Leal IC, Mariz e Miranda LS, de Souza RO, Cordeiro Y. Conformational dissection of Thermomyces lanuginosus lipase in solution. Biophys Chem 2014; 185:88-97. [DOI: 10.1016/j.bpc.2013.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 01/05/2023]
|
37
|
Pressure–temperature folding landscape in proteins involved in neurodegenerative diseases and cancer. Biophys Chem 2013; 183:9-18. [DOI: 10.1016/j.bpc.2013.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 01/02/2023]
|
38
|
Blacklock K, Verkhivker GM. Experimentally Guided Structural Modeling and Dynamics Analysis of Hsp90–p53 Interactions: Allosteric Regulation of the Hsp90 Chaperone by a Client Protein. J Chem Inf Model 2013; 53:2962-78. [DOI: 10.1021/ci400434g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kristin Blacklock
- School
of Computational Sciences and Crean School of Health and Life Sciences,
Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- School
of Computational Sciences and Crean School of Health and Life Sciences,
Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Pharmacology, University of California San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| |
Collapse
|
39
|
Wang JZ, Ren SY, Zhu GF, Xi L, Han YG, Luo Y, Du LF. Hg2+ interference with the structure of tobacco etch virus protease (TEVp) and its implications for biological engineering. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.08.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
40
|
Iram A, Alam T, Khan JM, Khan TA, Khan RH, Naeem A. Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products. PLoS One 2013; 8:e72075. [PMID: 23991043 PMCID: PMC3753358 DOI: 10.1371/journal.pone.0072075] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023] Open
Abstract
Conformational alterations of bovine hemoglobin (Hb) upon sequential addition of glyoxal over a range of 0–90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG) state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD) and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT) fluorescence and red shifted Congo Red (CR) absorbance. On incubating Hb with 30% v/v glyoxal for 0–20 days, advanced glycation end products (AGEs) were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington's.
Collapse
Affiliation(s)
- Afshin Iram
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Tauqeer Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Javed M. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Taqi A. Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rizwan H. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
- * E-mail:
| |
Collapse
|
41
|
Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep 2013; 33:BSR20130065. [PMID: 24003888 PMCID: PMC3728989 DOI: 10.1042/bsr20130065] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
p53 is a key protein that participates in cell-cycle control, and its malfunction can lead to cancer. This tumour suppressor protein has three main domains; the N-terminal transactivation domain, the CTD (C-terminal domain) and the core domain (p53C) that constitutes the sequence-specific DBD (DNA-binding region). Most p53 mutations related to cancer development are found in the DBD. Aggregation of p53 into amyloid oligomers and fibrils has been shown. Moreover, amyloid aggregates of both the mutant and WT (wild-type) forms of p53 were detected in tumour tissues. We propose that if p53 aggregation occurred, it would be a crucial aspect of cancer development, as p53 would lose its WT functions in an aggregated state. Mutant p53 can also exert a dominant-negative regulatory effect on WT p53. Herein, we discuss the dominant-negative effect in light of p53 aggregation and the fact that amyloid-like mutant p53 can convert WT p53 into more aggregated species, leading into gain of function in addition to the loss of tumour suppressor function. In summary, the results obtained in the last decade indicate that cancer may have characteristics in common with amyloidogenic and prion diseases.
Collapse
|
42
|
Chemes LB, Noval MG, Sánchez IE, de Prat-Gay G. Folding of a cyclin box: linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor AB pocket domain. J Biol Chem 2013; 288:18923-38. [PMID: 23632018 DOI: 10.1074/jbc.m113.467316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a "hub" protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways.
Collapse
Affiliation(s)
- Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A. Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 2012; 7:e51426. [PMID: 23251530 PMCID: PMC3520893 DOI: 10.1371/journal.pone.0051426] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes.
Collapse
Affiliation(s)
- Milena Wiech
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- The Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Maciej B. Olszewski
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- The Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Bartosz Wawrzynow
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Wang JZ, Xi L, Zhu GF, Han YG, Luo Y, Wang M, Du LF. The acidic pH-induced structural changes in Pin1 as revealed by spectral methodologies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 98:199-206. [PMID: 22986147 DOI: 10.1016/j.saa.2012.07.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Pin1 is closely associated with the pathogenesis of cancers and Alzheimer's disease (AD). Previously, we have shown the characteristics of the thermal denaturation of Pin1. Herein, the acid-induced denaturation of Pin1 was determined by means of fluorescence emission, synchronous fluorescence, far-UV CD, ANS fluorescence and RLS spectroscopies. The fluorescence emission spectra and the synchronous fluorescence spectra suggested the partially reversible unfolding (approximately from pH 7.0 to 4.0) and refolding (approximately from pH 4.0 to 1.0) of the structures around the chromophores in Pin1, apparently with an intermediate state at about pH 4.0-4.5. The far-UV CD spectra indicated that acidic pH (below pH 4.0) induced the structural transition from α-helix and random coils to β-sheet in Pin1. The ANS fluorescence and the RLS spectra further suggested the exposure of the hydrophobic side-chains of Pin1 and the aggregation of it especially below pH 2.3, and the aggregation possibly resulted in the formation of extra intermolecular β-sheet. The present work primarily shows that acidic pH can induce kinds of irreversible structural changes in Pin1, such as the exposure of the hydrophobic side-chains, the transition from α-helix to β-sheet and the aggregation of Pin1, and also explains why Pin1 loses most of its activity below pH 5.0. The results emphasize the important role of decreased pH in the pathogenesis of some Pin1-related diseases, and support the therapeutic approach for them by targeting acidosis and modifying the intracellular pH gradients.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Ferraz da Costa DC, Casanova FA, Quarti J, Malheiros MS, Sanches D, dos Santos PS, Fialho E, Silva JL. Transient transfection of a wild-type p53 gene triggers resveratrol-induced apoptosis in cancer cells. PLoS One 2012; 7:e48746. [PMID: 23152798 PMCID: PMC3495968 DOI: 10.1371/journal.pone.0048746] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022] Open
Abstract
Resveratrol is a promising chemopreventive agent that mediates many cellular targets involved in cancer signaling pathways. p53 has been suggested to play a role in the anticancer properties of resveratrol. We investigated resveratrol-induced cytotoxicity in H1299 cells, which are non-small lung cancer cells that have a partial deletion of the gene that encodes the p53 protein. The results for H1299 cells were compared with those for three cell lines that constitutively express wild-type p53: breast cancer MCF-7, adenocarcinomic alveolar basal epithelia A549 and non-small lung cancer H460. Cell viability assays revealed that resveratrol reduced the viability of all four of these cell lines in a dose- and time-dependent manner. MCF-7, A549 and H460 cells were more sensitive to resveratrol than were H1299 cells when exposed to the drug for 24 h at concentrations above 100 µM. Resveratrol also increased the p53 protein levels in MCF-7 cells without altering the p53 mRNA levels, suggesting a post-translational modulation of the protein. The resveratrol-induced cytotoxicity in these cells was partially mediated by p53 and involved the activation of caspases 9 and 7 and the cleavage of PARP. In H1299 cells, resveratrol-induced cytotoxicity was less pronounced and (in contrast to MCF-7 cells) cell death was not accompanied by caspase activation. These findings are consistent with the observation that MCF-7 cells were positively labeled by TUNEL following exposure to 100 µM resveratrol whereas H1299 cells under similar conditions were not labeled by TUNEL. The transient transfection of a wild-type p53-GFP gene caused H1299 cells to become more responsive to the pro-apoptotic properties of resveratrol, similarly to findings in the p53-positive MCF-7 cells. Our results suggest a possible therapeutic strategy based on the use of resveratrol for the treatment of tumors that are typically unresponsive to conventional therapies because of the loss of normal p53 function.
Collapse
Affiliation(s)
- Danielly Cristiny Ferraz da Costa
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Alves Casanova
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Quarti
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maitê Santos Malheiros
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Sanches
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Souza dos Santos
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Fialho
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Ano Bom APD, Rangel LP, Costa DCF, de Oliveira GAP, Sanches D, Braga CA, Gava LM, Ramos CHI, Cepeda AOT, Stumbo AC, De Moura Gallo CV, Cordeiro Y, Silva JL. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem 2012; 287:28152-62. [PMID: 22715097 PMCID: PMC3431633 DOI: 10.1074/jbc.m112.340638] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over 50% of all human cancers lose p53 function. To evaluate the role of aggregation in cancer, we asked whether wild-type (WT) p53 and the hot-spot mutant R248Q could aggregate as amyloids under physiological conditions and whether the mutant could seed aggregation of the wild-type form. The central domains (p53C) of both constructs aggregated into a mixture of oligomers and fibrils. R248Q had a greater tendency to aggregate than WT p53. Full-length p53 aggregated into amyloid-like species that bound thioflavin T. The amyloid nature of the aggregates was demonstrated using x-ray diffraction, electron microscopy, FTIR, dynamic light scattering, cell viabilility assay, and anti-amyloid immunoassay. The x-ray diffraction pattern of the fibrillar aggregates was consistent with the typical conformation of cross β-sheet amyloid fibers with reflexions of 4.7 Å and 10 Å. A seed of R248Q p53C amyloid oligomers and fibrils accelerated the aggregation of WT p53C, a behavior typical of a prion. The R248Q mutant co-localized with amyloid-like species in a breast cancer sample, which further supported its prion-like effect. A tumor cell line containing mutant p53 also revealed massive aggregation of p53 in the nucleus. We conclude that aggregation of p53 into a mixture of oligomers and fibrils sequestrates the native protein into an inactive conformation that is typical of a prionoid. This prion-like behavior of oncogenic p53 mutants provides an explanation for the negative dominance effect and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Ana P D Ano Bom
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Filipe V, Kükrer B, Hawe A, Jiskoot W. Transient molten globules and metastable aggregates induced by brief exposure of a monoclonal IgG to low pH. J Pharm Sci 2012; 101:2327-39. [PMID: 22517069 DOI: 10.1002/jps.23157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/16/2012] [Accepted: 03/29/2012] [Indexed: 01/15/2023]
Abstract
The presence of aggregates in therapeutic protein formulations is of great concern due to quality, safety, and efficacy issues. Nonetheless, the mechanisms and kinetics of protein aggregation are only partly understood. In this study, metastable immunoglobulin G (IgG) aggregates induced by a brief exposure to pH 1 were kept at 4°C and analyzed over time by size-exclusion chromatography (SEC), nanoparticle tracking analysis, light obscuration, dynamic light scattering, fluorescence spectroscopy, and circular dichroism. The results show the formation of polydisperse aggregates (from dimers to 10-μm particles) shortly after the pH-shift stress. These aggregates increased in size and number over time until a pseudo-equilibrium was reached after 5-7 days. The presence of transient, partially unfolded monomers (molten globules) was detected by SEC with online fluorescent dye detection. The molten globules seemed to either refold into the native state or become involved in aggregation pathways. Seeding pH-shift-induced aggregates into unstressed IgG did not accelerate aggregation during incubation for 3 weeks at 55°C. These results reinforce the role of partially unfolded species in the aggregation of therapeutic proteins. We conclude that the formation of pH-shift-induced IgG aggregates is likely driven by downhill polymerization, as a consequence of successive additions of molten globular monomers.
Collapse
Affiliation(s)
- Vasco Filipe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | | | | | | |
Collapse
|
48
|
Barakat K, Issack BB, Stepanova M, Tuszynski J. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant. PLoS One 2011; 6:e27651. [PMID: 22110706 PMCID: PMC3218007 DOI: 10.1371/journal.pone.0027651] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/21/2011] [Indexed: 12/20/2022] Open
Abstract
Background The protein p53 plays an active role in the regulation of cell cycle. In about half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain. Interestingly, a number of these mutations possess temperature-induced DNA-binding characteristics. A striking example is the mutation of Arg248 into glutamine or tryptophan. These mutants are defective for binding to DNA at 310 K although they have been shown to bind specifically to several p53 response elements at sub-physiological temperatures (298–306 K). Methodology/Principal Findings This important experimental finding motivated us to examine the effects of temperature on the structure and configuration of R248Q mutant and compare it to the wild type protein. Our aim is to determine how and where structural changes of mutant variants take place due to temperature changes. To answer these questions, we compared the mutant to the wild-type proteins from two different aspects. First, we investigated the systems at the atomistic level through their DNA-binding affinity, hydrogen bond networks and spatial distribution of water molecules. Next, we assessed changes in their long-lived conformational motions at the coarse-grained level through the collective dynamics of their side-chain and backbone atoms separately. Conclusions The experimentally observed effect of temperature on the DNA-binding properties of p53 is reproduced. Analysis of atomistic and coarse-grained data reveal that changes in binding are determined by a few key residues and provide a rationale for the mutant-loss of binding at physiological temperatures. The findings can potentially enable a rescue strategy for the mutant structure.
Collapse
Affiliation(s)
- Khaled Barakat
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Engineering Mathematics and Physics, Fayoum University, Fayoum, Egypt
| | - Bilkiss B. Issack
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
49
|
Domenici F, Frasconi M, Mazzei F, D'Orazi G, Bizzarri AR, Cannistraro S. Azurin modulates the association of Mdm2 with p53: SPR evidence from interaction of the full-length proteins. J Mol Recognit 2011; 24:707-14. [PMID: 21584881 DOI: 10.1002/jmr.1105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tumour suppressor p53 plays a crucial role in cell stress response and its anticancer activity is mainly down-regulated by the oncoprotein Mdm2 that, upon binding to p53, blocks its transcriptional activity and promotes its ubiquitin-dependent degradation. Targeting Mdm2-p53 interaction is believed to be the most direct of all p53-activating strategies to treat tumours in which p53 has retained its wild-type function. The bacterial protein Azurin has been shown to bind p53, inhibiting cancer cell proliferation likely through a post-translational increasing of the p53 level. This apparent antagonist action with respect to the Mdm2-p53 functional interaction suggests that binding of Azurin to p53 might interfere with the Mdm2-p53 association and, thus, preventing p53 from degradation. Toward this end, a detailed kinetic characterization of the binding interaction of these three proteins has been performed by surface plasmon resonance. The occurrence of specific binary interactions of both Azurin and Mdm2 with p53, as investigated more appropriately in their full-length conformation, is ascertained and the corresponding association and dissociation rate constants are measured. Interestingly enough, the three proteins are likely engaged in a ternary interaction, whose kinetics points out that binding of Azurin to p53 causes a significant decrease of the Mdm2-p53 association rate constant and binding affinity, without hindering the accessibility of Mdm2 to the binding pocket of p53. The Azurin-induced p53 conformational change, as demonstrated by circular dichroism, suggests that the protein may affect Mdm2-p53 association through an allosteric mechanism, which could give an useful insight into designing new anticancer drugs.
Collapse
Affiliation(s)
- Fabio Domenici
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Huang T, Niu S, Xu Z, Huang Y, Kong X, Cai YD, Chou KC. Predicting transcriptional activity of multiple site p53 mutants based on hybrid properties. PLoS One 2011; 6:e22940. [PMID: 21857971 PMCID: PMC3152557 DOI: 10.1371/journal.pone.0022940] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
As an important tumor suppressor protein, reactivate mutated p53 was found in many kinds of human cancers and that restoring active p53 would lead to tumor regression. In this work, we developed a new computational method to predict the transcriptional activity for one-, two-, three- and four-site p53 mutants, respectively. With the approach from the general form of pseudo amino acid composition, we used eight types of features to represent the mutation and then selected the optimal prediction features based on the maximum relevance, minimum redundancy, and incremental feature selection methods. The Mathew's correlation coefficients (MCC) obtained by using nearest neighbor algorithm and jackknife cross validation for one-, two-, three- and four-site p53 mutants were 0.678, 0.314, 0.705, and 0.907, respectively. It was revealed by the further optimal feature set analysis that the 2D (two-dimensional) structure features composed the largest part of the optimal feature set and maybe played the most important roles in all four types of p53 mutant active status prediction. It was also demonstrated by the optimal feature sets, especially those at the top level, that the 3D structure features, conservation, physicochemical and biochemical properties of amino acid near the mutation site, also played quite important roles for p53 mutant active status prediction. Our study has provided a new and promising approach for finding functionally important sites and the relevant features for in-depth study of p53 protein and its action mechanism.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - Shen Niu
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhongping Xu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yun Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiangyin Kong
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, People's Republic of China
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
- Gordon Life Science Institute, San Diego, California, United States of America
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
| |
Collapse
|