1
|
Zhang J, Qin X, Wang C, Zhang Y, Dou Y, Xu S, Liu J, Pan Z. Comparative transcriptome profile analysis of granulosa cells from porcine ovarian follicles during early atresia. Anim Biotechnol 2024; 35:2282090. [PMID: 38006572 DOI: 10.1080/10495398.2023.2282090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
At various stages of ovarian follicular development, more than 99% of follicles will be eliminated through a degenerative process called atresia. The regulatory mechanisms of atresia have been elucidated to some extent, involving hormones, growth factors, cytokines, and other factors. However, the stimuli initiating atresia in follicular granulosa cells remain unknown. In this study, we isolated the granulosa cells from porcine ovarian follicles (3-5 mm diameter) divided into healthy follicles (HFs) and early atretic follicles (EAFs). We applied high-throughput RNA sequencing to identify and compare differentially expressed genes (DEGs) between HFs and EAFs. A total of 31,694 genes were detected, of which 21,806 were co-expressed in six samples, and 243 genes (p < 0.05; FDR < 0.05) were differentially expressed (DEGs), including 123 downregulated and 120 upregulated in EAFs. GO analysis highlighted hormone metabolism, plasma membrane localization, and transporter activity. The pathway analysis indicated that 51 DEGs, involved in steroidogenesis, cell adhesion molecules, and TGF-beta signaling pathways, were highly related to atresia. Additionally, the interaction network of DEGs (p < 0.01; FDR < 0.05) using STRING highlighted LHR, ACACB, and CXCR4 as central nodes. In summary, this transcriptome analysis enriched our knowledge of the shifted mechanisms in granulosa cells during early atresia and provided novel perspectives into the atresia initiation.
Collapse
Affiliation(s)
- Jinbi Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xinxin Qin
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Caixia Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Yuge Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Yizhe Dou
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Jingge Liu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
2
|
Zhang Z, Zhu H, Wang X, Lin S, Ruan C, Wang Q. A novel basement membrane-related gene signature for prognosis of lung adenocarcinomas. Comput Biol Med 2023; 154:106597. [PMID: 36708655 DOI: 10.1016/j.compbiomed.2023.106597] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/01/2022] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) remains a global health concern with its poor prognosis and high mortality. Whether tumor cells invade through the basement membrane (BM) is the key factor to determine the prognosis of LUAD. This study aimed to identify the BM-related gene signatures to improve the overall prognosis of LUAD. MATERIALS & METHODS A series of bioinformatics analyses were conducted based on TCGA and GEO datasets. Unsupervised consistent cluster analysis was performed, and 500 LUAD patients were assigned to two different groups according to expressions of 222 BM-related genes. The differentially expressed genes (DEGs) between the two clusters were identified, and Lasso regression, ROC curve, univariate and multivariate Cox regression analyses and enrichment analysis were conducted. Besides, ssGSEA, CIBERSORT and ESTIMATE algorithmwere were employed to understand the relationship between the tumor microenvironment (TME) and risk scores. Moreover, single cell clustering and trajectory analyses were performed to further understand the significance of BM-related genes. Finally, qRT-PCR was used to verify the prognosis model. RESULTS A total of 31 prognostic BM-related genes were determined for LUAD, and a novel 17-mRNA prognostic model named BMsocre was successfully established to predict the overall survival of LUAD patients. The high BMscore group indicated worse prognosis. Seventeen DEGs were enriched mainly in metabolism, ECM-receptor interaction and immune response. In addition, the high-risk group showed higher TMB and lower immune score. The low-risk group had a better immunotherapeutic response where immune escape was less likely. The BMscore model was verified in our patient cohort. Furthermore, NELL2 was mainly expressed in clusters of T cells, and was identified to play a critical role in T-cell differentiation. CONCLUSIONS A novel BMscore model was successfully established and might be effective for providing guidance to LUAD therapy.
Collapse
Affiliation(s)
- Zhenxing Zhang
- Department of Thoracic and Maxillofacial Surgery (B7X), Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Haoran Zhu
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Shanan Lin
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Chenjin Ruan
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Qiang Wang
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Ha CM, Kim DH, Lee TH, Kim HR, Choi J, Kim Y, Kang D, Park JW, Ojeda SR, Jeong JK, Lee BJ. Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression. Mol Cells 2022; 45:537-549. [PMID: 35950455 PMCID: PMC9385569 DOI: 10.14348/molcells.2022.2051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/23/2022] Open
Abstract
Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-likelike 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.
Collapse
Affiliation(s)
- Chang Man Ha
- Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute, Daegu 41068, Korea
| | - Dong Hee Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Han Rae Kim
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Jungil Choi
- Bioenvironmental Science & Technology Division, Korea Institute of Toxicology, Jinju 52834, Korea
| | - Yoonju Kim
- Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute, Daegu 41068, Korea
| | - Dasol Kang
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| |
Collapse
|
4
|
Zhao J, Wei G, Zhu J, Liu D, Qin B. Expression analysis of nel during zebrafish embryonic development. Gene Expr Patterns 2022; 45:119258. [PMID: 35691514 DOI: 10.1016/j.gep.2022.119258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Nel is a multimeric extracellular glycoprotein which predominantly expressed in the nervous system and play an important role in neural development and functions. There are three nel paralogues included nell2a, nell2b, and nell3 in zebrafish, while systematic expression analysis of the nel family is still lacking. In this study, we performed a phylogenetic analysis on 7 species, in different species the nell2a are highly conserved, as is nell2b. Then, the expression profiles of nell2a, nell2b and nell3 were detected by in situ hybridization in zebrafish embryo, and the result showed that nel genes highly enriched in the central nervous system, but distributed in different regions of the brain. In addition, nell2a is also expressed in the olfactory pit, spinal cord, otic vesicle and retina (ganglion cell layer), nell2b was detected to express in gill arches, olfactory epithelium, olfactory pit, spinal cord, photoreceptor and retina (ganglion cell layer), it should be noted that the expression of nell3 is special, was only detected at 96 hpf in the brain and spinal cord of zebrafish. Overall, our results indicate that nell2a and nell2b genes are expressed in the nervous system and eyes of zebrafish embryo, while nell3 is expressed in different regions in the nervous system. The phylogenetic analysis also shows that nell3 sequences are significantly different from nell2a and nell2b. This study provides new evidence to better understand the role of nel in zebrafish embryo development.
Collapse
Affiliation(s)
- Jinxiang Zhao
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Guanyun Wei
- School of Life Science, Nantong Laboratory of Development and Diseases; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiang Zhu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Bing Qin
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China; Suqian Clinical College of Xuzhou Medical University, Suqian, China.
| |
Collapse
|
5
|
Lee BJ, Jeong JK. Positioning-dependent bidirectional NELL2 signaling in the brain. Front Endocrinol (Lausanne) 2022; 13:1049595. [PMID: 36329889 PMCID: PMC9623028 DOI: 10.3389/fendo.2022.1049595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| |
Collapse
|
6
|
Niu W, Jiang L. A seven-gene prognostic model related to immune checkpoint PD-1 revealing overall survival in patients with lung adenocarcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6136-6154. [PMID: 34517527 DOI: 10.3934/mbe.2021307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND We aimed to identify the immune checkpoint Programmed cell death 1 (PD-1)-related gene signatures to predict the overall survival of lung adenocarcinoma (LUAD). METHODS RNA-seq datasets associated with LUAD as well as clinical information were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Based on the expression level of PD-1, Kaplan-Meier (K-M) survival analysis was performed to divide samples into PD-1 high- and low- expression groups. Then, differentially expressed genes (DEGs) between high- and low- expression groups were identified. Meanwhile, samples were divided into the high and low immune infiltration groups according to score of immune cell, followed by screening of DEGs between these two groups. Subsequently, DEGs related to both PD-1 expression and immune infiltration was integrated to obtain the overlapping genes. Lasso COX regressions were implemented to construct prognostic signatures. The prognostic model was validated using an independent GEO dataset and TCGA cohorts. In addition, the predictive ability of the seven-gene prognostic model with other molecular biomarkers was compared. RESULTS A seven-gene signature (DPT, ITGAD, CLECL1, SYT13, DUSP26, AMPD1, and NELL2) related to PD-1 was developed through Lasso Cox regression. Univariate and multivariate regression analyses indicated that the constructed risk model was an independent prognostic factor. K-M survival analysis indicated that patients in the high risk group had significantly worse prognosis than those in the low risk group. Further, the results of validation analysis showed that this model was reliable and effective. CONCLUSIONS The constructed prognostic model can predict overall survival in LUAD patients with great predictive performance, and it may be applied for diagnosis and adjuvant treatment of LUAD in clinical trials.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemotherapy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Lianping Jiang
- Department of Chemotherapy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| |
Collapse
|
7
|
NELL2 modulates cell proliferation and apoptosis via ERK pathway in the development of benign prostatic hyperplasia. Clin Sci (Lond) 2021; 135:1591-1608. [PMID: 34195782 DOI: 10.1042/cs20210476] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a quite common illness but its etiology and mechanism remain unclear. Neural epidermal growth factor-like like 2 (NELL2) plays multifunctional roles in neural cell growth and is strongly linked to the urinary tract disease. Current study aims to determine the expression, functional activities and underlying mechanism of NELL2 in BPH. Human prostate cell lines and tissues from normal human and BPH patients were utilized. Immunohistochemical staining, immunofluorescent staining, RT-polymerase chain reaction (PCR) and Western blotting were performed. We further generated cell models with NELL2 silenced or overexpressed. Subsequently, proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry analysis. The epithelial-mesenchymal transition (EMT) and fibrosis process were also analyzed. Our study revealed that NELL2 was up-regulated in BPH samples and localized in the stroma and the epithelium compartments of human prostate tissues. NELL2 deficiency induced a mitochondria-dependent cell apoptosis, and inhibited cell proliferation via phosphorylating extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Additionally, suppression of ERK1/2 with U0126 incubation could significantly reverse NELL2 deficiency triggered cell apoptosis. Consistently, overexpression of NELL2 promoted cell proliferation and inhibited cell apoptosis. However, NELL2 interference was observed no effect on EMT and fibrosis process. Our novel data demonstrated that up-regulation of NELL2 in the enlarged prostate could contribute to the development of BPH through enhancing cell proliferation and inhibited a mitochondria-dependent cell apoptosis via the ERK pathway. The NELL2-ERK system might represent an important target to facilitate the development of future therapeutic approaches in BPH.
Collapse
|
8
|
Kim DH, Kim KK, Lee TH, Eom H, Kim JW, Park JW, Jeong JK, Lee BJ. Transcription Factor TonEBP Stimulates Hyperosmolality-Dependent Arginine Vasopressin Gene Expression in the Mouse Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:627343. [PMID: 33796071 PMCID: PMC8008816 DOI: 10.3389/fendo.2021.627343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood. Here, we report a role for tonicity-responsive enhancer binding protein (TonEBP), a transcription factor sensitive to cellular tonicity, in regulating osmosensitive hypothalamic AVP gene transcription. Our immunohistochemical work shows that hypothalamic AVP cellular activity, as recognized by c-fos, was enhanced in parallel with an elevation in TonEBP expression within AVP cells following water deprivation. Interestingly, our in vitro investigations found a synchronized pattern of TonEBP and AVP gene expression in response to osmotic stress. Those results indicate a positive correlation between hypothalamic TonEBP and AVP production during dehydration. Promoter and chromatin immunoprecipitation assays confirmed that TonEBP can bind directly to conserved binding motifs in the 5'-flanking promoter regions of the AVP gene. Furthermore, dehydration- and TonEBP-mediated hypothalamic AVP gene activation was reduced in TonEBP haploinsufficiency mice, compared with wild TonEBP homozygote animals. Therefore, our result support the idea that TonEBP is directly necessary, at least in part, for the elevation of AVP transcription in dehydration conditions. Additionally, dehydration-induced reductions in body weight were rescued in TonEBP haploinsufficiency mice. Altogether, our results demonstrate an intracellular machinery within hypothalamic AVP cells that is responsible for dehydration-induced AVP synthesis.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyejin Eom
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| |
Collapse
|
9
|
Kim HR, Kim DH, An JY, Kang D, Park JW, Hwang EM, Seo EJ, Jang IH, Ha CM, Lee BJ. NELL2 Function in Axon Development of Hippocampal Neurons. Mol Cells 2020; 43:581-589. [PMID: 32597395 PMCID: PMC7332358 DOI: 10.14348/molcells.2020.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.
Collapse
Affiliation(s)
- Han Rae Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 4460, Korea
- Present address: Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, D.C. 20037, USA
- These authors contributed equally to this work.
| | - Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 4460, Korea
- These authors contributed equally to this work.
| | - Ji Young An
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 4460, Korea
- These authors contributed equally to this work.
| | - Dasol Kang
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 4460, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 4460, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 079, Korea
| | - Eun Jin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan 50612, Korea
| | - Il Ho Jang
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan 50612, Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 1068, Korea,
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 4460, Korea
| |
Collapse
|
10
|
Tang W, Guo X, Niu L, Song D, Han B, Zhang H. Identification of key molecular targets that correlate with breast cancer through bioinformatic methods. J Gene Med 2020; 22:e3141. [PMID: 31697007 DOI: 10.1002/jgm.3141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study aimed to identify key molecular targets of breast cancer for targeted treatment and to improve the survival rate. METHODS Overlapped difference expression genes in three datasets were identified in a weighted gene co-expression network analysis (WGCNA) module and MetaDE.ES analysis. Combined with the prognosis information [time, death, status and relative survival (RS)] in GSE42568, single-factor Cox regression analysis was used to screen the genes that were significantly related to the prognosis in the target gene set. RESULTS In total, 13 optimal gene combinations with a significantly correlated prognosis were obtained, including SSPN, NELL2, AGTR1, NRIP3, IKZF2, NAT1, CXCL12, NPY1R, PRAME, PPP1R1B, CRISP3, NMU and GSTP1. In addition, there was a significant correlation between the samples given by the prognostic prediction system and the validation dataset (GSE20685 and TCGA), with p values of 0.0299 in GSE20685 and 1.461 × 10-5 in TCGA, and an area under the receiver operating characteristic of 0.942 and 0.923, respectively. RS-related differentially expressed genes between high- and low-risk groups were significantly related to biological processes such as cell period and the hormone stimulation response, and were also significantly involved in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways such as cell period, the peroxisome proliferator-activated receptor signaling pathway and the cancer pathway. CONCLUSIONS By predicting the survival risk of breast cancer patients based on the 13 optimal genes, high-risk patients would be detected early. Accordingly, this would help in the formulation of an appropriate treatment plan for patients.
Collapse
Affiliation(s)
- Wan Tang
- The Third Operating Room, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xianmin Guo
- The Third Operating Room, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Liang Niu
- The Third Operating Room, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dong Song
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bing Han
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Haipeng Zhang
- Department of Gynaecology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
11
|
Piqué DG, Montagna C, Greally JM, Mar JC. A novel approach to modelling transcriptional heterogeneity identifies the oncogene candidate CBX2 in invasive breast carcinoma. Br J Cancer 2019; 120:746-753. [PMID: 30820027 PMCID: PMC6462018 DOI: 10.1038/s41416-019-0387-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/20/2018] [Accepted: 01/09/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Oncogenes promote the development of therapeutic targets against subsets of cancers. Only several hundred oncogenes have been identified, primarily via mutation-based approaches, in the human genome. Transcriptional overexpression is a less-explored mechanism through which oncogenes can arise. METHODS Here, a new statistical approach, termed oncomix, which captures transcriptional heterogeneity in tumour and adjacent normal (i.e., tumour-free) mRNA expression profiles, was developed to identify oncogene candidates that were overexpressed in a subset of breast tumours. RESULTS Intronic DNA methylation was strongly associated with the overexpression of chromobox 2 (CBX2), an oncogene candidate that was identified using our method but not through prior analytical approaches. CBX2 overexpression in breast tumours was associated with the upregulation of genes involved in cell cycle progression and with poorer 5-year survival. The predicted function of CBX2 was confirmed in vitro, providing the first experimental evidence that CBX2 promotes breast cancer cell growth. CONCLUSIONS Oncomix is a novel approach that captures transcriptional heterogeneity between tumour and adjacent normal tissue, and that has the potential to uncover therapeutic targets that benefit subsets of cancer patients. CBX2 is an oncogene candidate that should be further explored as a potential drug target for aggressive types of breast cancer.
Collapse
Affiliation(s)
- Daniel G Piqué
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Jessica C Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD, 4072, Australia.
| |
Collapse
|
12
|
Truong TH, Hu H, Temiz NA, Hagen KM, Girard BJ, Brady NJ, Schwertfeger KL, Lange CA, Ostrander JH. Cancer Stem Cell Phenotypes in ER + Breast Cancer Models Are Promoted by PELP1/AIB1 Complexes. Mol Cancer Res 2018; 16:707-719. [PMID: 29348189 PMCID: PMC5882512 DOI: 10.1158/1541-7786.mcr-17-0598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Proline, glutamic acid, leucine-rich protein 1 (PELP1) is overexpressed in approximately 80% of invasive breast tumors. PELP1 dynamically shuttles between the nucleus and cytoplasm, but is primarily nuclear in normal breast tissue. However, altered localization of PELP1 to the cytoplasm is an oncogenic event that promotes breast cancer initiation and progression. Herein, interacting partners unique to cytoplasmic PELP1 and the mechanisms by which these interactions promote oncogenic PELP1 signaling were sought. AIB1 (amplified in breast cancer 1; also known as SRC-3 or NCOA3) was identified as a novel binding partner of cytoplasmic PELP1 in both estrogen receptor-positive (ER+) and ER-negative cell lines. Cytoplasmic PELP1 expression elevated basal phosphorylation levels (i.e., activation) of AIB1 at Thr24, enhanced ALDH+ tumorsphere formation, and upregulated specific target genes independently of hormone stimulation. Direct manipulation of AIB1 levels using shRNA abrogated cytoplasmic PELP1-induced tumorsphere formation and downregulated cytoplasmic PELP1-specific target genes. SI-2, an AIB1 inhibitor, limited the PELP1/AIB1 interaction and decreased cytoplasmic PELP1-induced tumorsphere formation. Similar results were observed in a murine-derived MMTV-AIB1 tumor cell line. Furthermore, in vivo syngeneic tumor studies revealed that PELP1 knockdown resulted in increased survival of tumor-bearing mice as compared with mice injected with control cells.Implications: These data demonstrate that cytoplasmic PELP1/AIB1-containing complexes function to promote advanced cancer phenotypes, including outgrowth of stem-like cells, associated with estrogen-independent breast cancer progression. Mol Cancer Res; 16(4); 707-19. ©2018 AACR.
Collapse
Affiliation(s)
- Thu H Truong
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsiangyu Hu
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nuri A Temiz
- Masonic Cancer Center, Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Kyla M Hagen
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Brian J Girard
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas J Brady
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Julie H Ostrander
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
13
|
Jeong JK, Kim JG, Kim HR, Lee TH, Park JW, Lee BJ. A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats. Mol Cells 2017; 40:186-194. [PMID: 28301916 PMCID: PMC5386956 DOI: 10.14348/molcells.2017.2278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 12/02/2022] Open
Abstract
A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an im-munohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University,
USA
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012,
Korea
| | - Han Rae Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| |
Collapse
|
14
|
Shi L, Lin Q, Su B. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates. BMC Evol Biol 2015; 15:127. [PMID: 26123139 PMCID: PMC4487212 DOI: 10.1186/s12862-015-0398-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/29/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. RESULTS In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. CONCLUSIONS Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China.
| | - Qiang Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China.
| |
Collapse
|
15
|
Kim DY, Kim HR, Kim KK, Park JW, Lee BJ. NELL2 function in the protection of cells against endoplasmic reticulum stress. Mol Cells 2014; 38:145-50. [PMID: 25537860 PMCID: PMC4332037 DOI: 10.14348/molcells.2015.2216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 01/21/2023] Open
Abstract
Continuous intra- and extracellular stresses induce disorder of Ca(2+) homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Han Rae Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
16
|
Arstikaitis J, Gagné F, Cyr DG. Exposure of fathead minnows to municipal wastewater effluent affects intracellular signaling pathways in the liver. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:1-10. [PMID: 24747326 DOI: 10.1016/j.cbpc.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022]
Abstract
Municipal wastewater effluent can impact its receiving environment. In the St. Lawrence River, male fish living downstream from Montreal exhibit increased hepatic vitellogenin, intersex, delayed spermatogenesis and altered immune function. Few studies have examined genome-wide effects associated with municipal effluent exposure in fish to decipher the mechanisms of toxicity. The present objective was to identify hepatic cellular signaling pathways in fathead minnows following exposure to municipal wastewater effluent. Immature minnows were exposed for 21 days to either 0% (Control) or 20% municipal effluent, the highest concentration in the St. Lawrence River. Hepatic RNA was extracted and used to hybridize a fathead minnow oligonucleotide microarray containing approximately 15k gene sequences. A total of 1300 genes were differentially expressed, of which 309 genes had more than 2-fold change in expression level between control and MWWE-exposed fish. Of those, 118 were up-regulated and 191 were down-regulated. Altered genes grouped according to function, indicated effects on various signaling pathways, apoptosis, immune responses, and cellular metabolism. Pathway analysis software predicted at least 5 signaling pathways that were altered by treatment: cell adhesion, inflammation, various kinases, estrogen receptor signaling and WNT signaling. Various components of the canonical Wnt pathway were dramatically down-regulated, while several other genes involved in the non-canonical Wnt pathway, such as Wnt4, LRP6, and PPP2R5E, which are known to inhibit the canonical Wnt pathway, were increased. These results indicate that municipal wastewater effluent from Montreal can target and inhibit various signaling including those implicated in hepatic Wnt signaling pathway in fathead minnows.
Collapse
Affiliation(s)
- Jennifer Arstikaitis
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada
| | - François Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada; Centre Saint-Laurent, Environment Canada, Montreal, Québec H2Y 2E7, Canada
| | - Daniel G Cyr
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada.
| |
Collapse
|
17
|
Kim DH, Kim HR, Choi EJ, Kim DY, Kim KK, Kim BS, Park JW, Lee BJ. Neural epidermal growth factor-like like protein 2 (NELL2) promotes aggregation of embryonic carcinoma P19 cells by inducing N-cadherin expression. PLoS One 2014; 9:e85898. [PMID: 24465772 PMCID: PMC3897553 DOI: 10.1371/journal.pone.0085898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons. In this study, we identified NELL2 function during neural differentiation of mouse embryonic carcinoma P19 cells. Endogenous expression of NELL2 in the P19 cells increased in parallel with the neuronal differentiation induced by retinoic acid (RA). We found that the mouse NELL2 promoter contains RA response elements (RAREs) and that treatment with RA increased NELL2 promoter activity. Transfection of P19 cells with NELL2 expression vectors induced a dramatic increase in cell aggregation, resulting in the facilitation of neural differentiation. Moreover, NELL2 significantly increased N-cadherin expression in the P19 cell. These data suggest that NELL2 plays an important role in the regulation of neuronal differentiation via control of N-cadherin expression and cell aggregation.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Han Rae Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Eun Jung Choi
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Dong Yeol Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byung Sam Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- * E-mail:
| |
Collapse
|
18
|
Kim DH, Roh YG, Lee HH, Lee SY, Kim SI, Lee BJ, Leem SH. The E2F1 oncogene transcriptionally regulates NELL2 in cancer cells. DNA Cell Biol 2013; 32:517-23. [PMID: 23829315 DOI: 10.1089/dna.2013.1974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NELL2 was first identified as a mammalian homolog of the chicken NEL protein. It was expressed in neurons and has been suggested to play a role in cell survival. However, no clear evidence has yet been available for functions of NELL2. In this study, we found two E2F1 binding sites located in the NELL2 promoter region. We examined the expression of NELL2 and E2F1 in human breast cancer cells (MDA-MB231, MCF7) and bladder cancer cells (5637, UC5). In MDA-MB231 and 5637, the expression levels of NELL2 and E2F1 were higher. To examine the interaction between E2F1 and NELL2, the binding activity was checked by a promoter assay and chromatin immunoprecipitation. From the results, we suggest that NELL2 is a novel target gene of E2F1, which is a key regulator of cell proliferation. We reveal that expression of NELL2 is regulated by E2F1, specifically, mRNA and protein levels of NELL2 are elevated upon activation of exogenous E2F1. Moreover, cells overexpressing NELL2 increased their invasive ability and an enhancement of the effect was observed when NELL2 and E2F1 were coexpressed in MDA-MB231 cells. Therefore, we suggest a novel activity for NELL2 in cancer progression through the regulation of E2F1.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Science, College of Natural Sciences, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Rebl A, Verleih M, Köllner B, Korytář T, Goldammer T. Duplicated NELL2 genes show different expression patterns in two rainbow trout strains after temperature and pathogen challenge. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:65-73. [DOI: 10.1016/j.cbpb.2012.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 12/13/2022]
|
20
|
Filali H, Martin-Burriel I, Harders F, Varona L, Serrano C, Acín C, Badiola JJ, Bossers A, Bolea R. Medulla oblongata transcriptome changes during presymptomatic natural scrapie and their association with prion-related lesions. BMC Genomics 2012; 13:399. [PMID: 22897917 PMCID: PMC3495657 DOI: 10.1186/1471-2164-13-399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathogenesis of natural scrapie and other prion diseases is still poorly understood. Determining the variations in the transcriptome in the early phases of the disease might clarify some of the molecular mechanisms of the prion-induced pathology and allow for the development of new biomarkers for diagnosis and therapy. This study is the first to focus on the identification of genes regulated during the preclinical phases of natural scrapie in the ovine medulla oblongata (MO) and the association of these genes with prion deposition, astrocytosis and spongiosis. RESULTS A custom microarray platform revealed that 86 significant probes had expression changes greater than 2-fold. From these probes, we identified 32 genes with known function; the highest number of regulated genes was included in the phosphoprotein-encoding group. Genes encoding extracellular marker proteins and those involved in the immune response and apoptosis were also differentially expressed. In addition, we investigated the relationship between the gene expression profiles and the appearance of the main scrapie-associated brain lesions. Quantitative Real-time PCR was used to validate the expression of some of the regulated genes, thus showing the reliability of the microarray hybridization technology. CONCLUSIONS Genes involved in protein and metal binding and oxidoreductase activity were associated with prion deposition. The expression of glial fibrillary acidic protein (GFAP) was associated with changes in the expression of genes encoding proteins with oxidoreductase and phosphatase activity, and the expression of spongiosis was related to genes encoding extracellular matrix components or transmembrane transporters. This is the first genome-wide expression study performed in naturally infected sheep with preclinical scrapie. As in previous studies, our findings confirm the close relationship between scrapie and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hicham Filali
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang L, Zhang L, Li Y, Li W, Luo W, Cheng D, Yan H, Ma X, Liu X, Song X, Liang J, Zhao K, Wang L. Data mining in networks of differentially expressed genes during sow pregnancy. Int J Biol Sci 2012; 8:548-60. [PMID: 22532788 PMCID: PMC3334670 DOI: 10.7150/ijbs.4071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/12/2012] [Indexed: 01/02/2023] Open
Abstract
Small to moderate gains in Pig fertility can mean large returns in overall efficiency, and developing methods to improve it is highly desirable. High fertility rates depend on completion of successful pregnancies. To understand the molecular signals associated with pregnancy in sows, expression profiling experiments were conducted to identify differentially expressed genes in ovary and myometrium at different pregnancy periods using the Affymetrix Porcine GeneChipTM. A total of 974, 1800, 335 and 710 differentially expressed transcripts were identified in the myometrium during early pregnancy (EP) and late pregnancy (LP), and in the ovary during EP and LP, respectively. Self-Organizing Map (SOM) clusters indicated the differentially expressed genes belonged to 7 different functional groups. Based on BLASTX searches and Gene Ontology (GO) classifications, 129 unique genes closely related to pregnancy showed differential expression patterns. GO analysis also indicated that there were 21 different molecular function categories, 20 different biological process categories, and 8 different cellular component categories of genes differentially expressed during sow pregnancy. Gene regulatory network reconstruction provided us with an interaction model of known genes such as insulin-like growth factor 2 (IGF2) gene, estrogen receptor (ESR) gene, retinol-binding protein-4 (RBP4) gene, and several unknown candidate genes related to reproduction. Several pitch point genes were selected for association study with reproduction traits. For instance, DPPA5 g.363 T>C was found to associate with litter born weight at later parities in Beijing Black pigs significantly (p < 0.05). Overall, this study contributes to elucidating the mechanism underlying pregnancy processes, which maybe provide valuable information for pig reproduction improvement.
Collapse
Affiliation(s)
- Ligang Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Munemasa Y, Chang CS, Kwong JMK, Kyung H, Kitaoka Y, Caprioli J, Piri N. The neuronal EGF-related gene Nell2 interacts with Macf1 and supports survival of retinal ganglion cells after optic nerve injury. PLoS One 2012; 7:e34810. [PMID: 22496866 PMCID: PMC3319615 DOI: 10.1371/journal.pone.0034810] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
Nell2 is a neuron-specific protein containing six epidermal growth factor-like domains. We have identified Nell2 as a retinal ganglion cell (RGC)-expressed gene by comparing mRNA profiles of control and RGC-deficient rat retinas. The aim of this study was to analyze Nell2 expression in wild-type and optic nerve axotomized retinas and evaluate its potential role in RGCs. Nell2-positive in situ and immunohistochemical signals were localized to irregularly shaped cells in the ganglion cell layer (GCL) and colocalized with retrogradely-labeled RGCs. No Nell2-positive cells were detected in 2 weeks optic nerve transected (ONT) retinas characterized with approximately 90% RGC loss. RT-PCR analysis showed a dramatic decrease in the Nell2 mRNA level after ONT compared to the controls. Immunoblot analysis of the Nell2 expression in the retina revealed the presence of two proteins with approximate MW of 140 and 90 kDa representing glycosylated and non-glycosylated Nell2, respectively. Both products were almost undetectable in retinal protein extracts two weeks after ONT. Proteome analysis of Nell2-interacting proteins carried out with MALDI-TOF MS (MS) identified microtubule-actin crosslinking factor 1 (Macf1), known to be critical in CNS development. Strong Macf1 expression was observed in the inner plexiform layer and GCL where it was colocalizied with Thy-1 staining. Since Nell2 has been reported to increase neuronal survival of the hippocampus and cerebral cortex, we evaluated the effect of Nell2 overexpression on RGC survival. RGCs in the nasal retina were consistently more efficiently transfected than in other areas (49% vs. 13%; n = 5, p<0.05). In non-transfected or pEGFP-transfected ONT retinas, the loss of RGCs was approximately 90% compared to the untreated control. In the nasal region, Nell2 transfection led to the preservation of approximately 58% more cells damaged by axotomy compared to non-transfected (n = 5, p<0.01) or pEGFP-transfected controls (n = 5, p<0.01).
Collapse
Affiliation(s)
- Yasunari Munemasa
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department Ophthalmology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Chang-Sheng Chang
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacky M. K. Kwong
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Haksu Kyung
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yasushi Kitaoka
- Department Ophthalmology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Joseph Caprioli
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Natik Piri
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lenz KM, Nugent BM, McCarthy MM. Sexual differentiation of the rodent brain: dogma and beyond. Front Neurosci 2012; 6:26. [PMID: 22363256 PMCID: PMC3282918 DOI: 10.3389/fnins.2012.00026] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/04/2012] [Indexed: 11/20/2022] Open
Abstract
Steroid hormones of gonadal origin act on the neonatal brain to produce sex differences that underlie adult reproductive physiology and behavior. Neuronal sex differences occur on a variety of levels, including differences in regional volume and/or cell number, morphology, physiology, molecular signaling, and gene expression. In the rodent, many of these sex differences are determined by steroid hormones, particularly estradiol, and are established by diverse downstream effects. One brain region that is potently organized by estradiol is the preoptic area (POA), a region critically involved in many behaviors that show sex differences, including copulatory and maternal behaviors. This review focuses on the POA as a case study exemplifying the depth and breadth of our knowledge as well as the gaps in understanding the mechanisms through which gonadal hormones produce lasting neural and behavioral sex differences. In the POA, multiple cell types, including neurons, astrocytes, and microglia are masculinized by estradiol. Multiple downstream molecular mediators are involved, including prostaglandins, various glutamate receptors, protein kinase A, and several immune signaling molecules. Moreover, emerging evidence indicates epigenetic mechanisms maintain sex differences in the POA that are organized perinatally and thereby produce permanent behavioral changes. We also review emerging strategies to better elucidate the mechanisms through which genetics and epigenetics contribute to brain and behavioral sex differences.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Program in Neuroscience and Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|
24
|
Alvarez-Díaz S, Valle N, Ferrer-Mayorga G, Lombardía L, Herrera M, Domínguez O, Segura MF, Bonilla F, Hernando E, Muñoz A. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum Mol Genet 2012; 21:2157-65. [PMID: 22328083 DOI: 10.1093/hmg/dds031] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vitamin D deficiency is associated with the high risk of colon cancer and a variety of other diseases. The active vitamin D metabolite 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) regulates gene transcription via its nuclear receptor (VDR), and posttranscriptional regulatory mechanisms of gene expression have also been proposed. We have identified microRNA-22 (miR-22) and several other miRNA species as 1,25(OH)(2)D(3) targets in human colon cancer cells. Remarkably, miR-22 is induced by 1,25(OH)(2)D(3) in a time-, dose- and VDR-dependent manner. In SW480-ADH and HCT116 cells, miR-22 loss-of-function by transfection of a miR-22 inhibitor suppresses the antiproliferative effect of 1,25(OH)(2)D(3). Additionally, miR-22 inhibition increases cell migration per se and decreases the antimigratory effect of 1,25(OH)(2)D(3) in both cell types. In silico analysis shows a significant overlap between genes suppressed by 1,25(OH)(2)D(3) and miR-22 putative target genes. Consistently, miR-22 inhibition abrogates the 1,25(OH)(2)D(3)-mediated suppression of NELL2, OGN, HNRPH1, RERE and NFAT5 genes. In 39 out of 50 (78%) human colon cancer patients, miR-22 expression was found lower in the tumour than in the matched normal tissue and correlated directly with that of VDR. Our results indicate that miR-22 is induced by 1,25(OH)(2)D(3) in human colon cancer cells and it may contribute to its antitumour action against this neoplasia.
Collapse
Affiliation(s)
- Silvia Alvarez-Díaz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), E-28029 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Interference of kallikrein 1b26 (klk1b26) translation by microRNA specifically expressed in female mouse submandibular glands: an additional mechanism for sexual dimorphism of klk1b26 protein in the glands. Biol Sex Differ 2011; 2:13. [PMID: 22085651 PMCID: PMC3284876 DOI: 10.1186/2042-6410-2-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Background Mouse kallikrein 1b26 (klk1b26) protein is more abundant in male submandibular glands (SMGs) than in female ones. This sexual dimorphism has been thought to be due to increased mRNA synthesis stimulated by androgen. However, the klk1b26 protein level in female SMG is far less than that expected from the mRNA level, suggesting an additional mechanism for down-regulation of klk1b26 expression in female SMGs. Methods We examined the effects of small non-coding RNAs in mouse SMGs on in vitro translation of klk1b26 using a reticulocyte lysate system and reverse transcription (RT)-PCR for klk1b26 mRNA. Statistical analyses were performed with a computer package (Microsoft Excel). Results The microRNA (miRNA) preparation from female SMGs, but not male SMGs, interfered with the in vitro translation of the klk1b26 protein and inhibited the RT-PCR for klk1b26 mRNA with forward primers targeting its 5'-terminal region (between the 15th and 40th nucleotide from the 5'-terminal). The miRNA preparation from castrated mouse SMGs showed the inhibitory effect on the klk1b26 translation, but that from a 5α-dihydrotestosterone-treated female mouse SMGs did not. Synthetic miRNAs (miR-325 and miR-1497a), which have partial complementarity with klk1b26 mRNA at its 5'-terminal region (15th to 40th nucleotide position from the 5'-terminal), also interfered with the in vitro klk1b26 translation. When the female miRNA preparation was incubated with a 30-nucleotide-long single-strand oligoDNA (named [15th-44th]ssDNA, whose sequence corresponded to the 15th to 44th position from the 5'-terminal of klk1b26 mRNA) prior to the addition into the in vitro translation system, the inhibitory effect of the miRNA preparation on klk1b26 translation disappeared, while [15th-44th]ssDNA itself had no effect on the translation. Preincubation of the miRNA preparation with another single-strand DNA ([169th-198th]ssDNA, whose sequence corresponded with 169th to 198th position of klk1b26 mRNA) did not show the inhibitory effect. Conclusions The small non-coding RNA, most probably miRNA, specifically expressed in female mouse SMGs interfered with klk1b26 protein synthesis in the in vitro translation system. Therefore sexual dimorphism observed in klk1b26 expression in mouse SMGs is due at least in part to the female-specific small non-coding RNA in SMGs.
Collapse
|
26
|
Ryu BJ, Kim HR, Jeong JK, Lee BJ. Regulation of the female rat estrous cycle by a neural cell-specific epidermal growth factor-like repeat domain containing protein, NELL2. Mol Cells 2011; 32:203-7. [PMID: 21643849 PMCID: PMC3887675 DOI: 10.1007/s10059-011-0086-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022] Open
Abstract
NELL2, a protein containing epidermal growth factor-like repeat domains, is predominantly expressed in the nervous system. In the mammalian brain, NELL2 expression is mostly neuronal. Previously we found that NELL2 is involved in the onset of female puberty by regulating the release of gonadotropin-releasing hormone (GnRH), and in normal male sexual behavior by controlling the development of the sexually dimorphic nucleus of the preoptic area (POA). In this study we investigated the effect of NELL2 on the female rat estrous cycle. NELL2 expression in the POA was highest during the proestrous phase. NELL2 mRNA levels in the POA were increased by estrogen treatment in ovariectomized female rats. Blocking NELL2 synthesis in the female rat hypothalamus decreased the expression of kisspeptin 1, an important regulator of the GnRH neuronal apparatus, and resulted in disruption of the estrous cycle at the diestrous phase. These results indicate that NELL2 is involved in the maintenance of the normal female reproductive cycle in mammals.
Collapse
Affiliation(s)
| | | | | | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
27
|
Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, Ho J, Mombereau C, Brewer A, Lowy E, Nicod J, Groszer M, Baban D, Sahgal N, Cazier JB, Ragoussis J, Davies KE, Geschwind DH, Fisher SE. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet 2011; 7:e1002145. [PMID: 21765815 PMCID: PMC3131290 DOI: 10.1371/journal.pgen.1002145] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/07/2011] [Indexed: 11/19/2022] Open
Abstract
Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.
Collapse
Affiliation(s)
- Sonja C. Vernes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter L. Oliver
- Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Spiteri
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Helen E. Lockstone
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jennifer M. Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joses Ho
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Cedric Mombereau
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Ariel Brewer
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Ernesto Lowy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jérôme Nicod
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthias Groszer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Dilair Baban
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Natasha Sahgal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jean-Baptiste Cazier
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Semel Institute and Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon E. Fisher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|