1
|
Walters TH, Wiah S, Shekarabi A, Milton M, Reddy S, Zhao P, Mokkarala PS, Potula R, Rawls SM. Clavulanic acid inhibits methamphetamine locomotor sensitization in mice and normalizes methamphetamine-induced changes in glutaminase mRNA levels in the nucleus accumbens. Physiol Behav 2024; 284:114646. [PMID: 39053627 PMCID: PMC11347075 DOI: 10.1016/j.physbeh.2024.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Clavulanic acid (CLAV) is a component of Augmentin® that preserves antibiotic efficacy by inhibiting β-lactamase activity. It also enhances cellular glutamate uptake and is a potential CNS therapeutic. Because increased glutamate transmission in brain reward circuits facilitates methamphetamine (METH) locomotor activation and sensitization, we tested the hypothesis that CLAV inhibits acute and sensitized locomotor responses to METH in mice and investigated effects of CLAV on METH-induced changes in glutaminase, the major glutamate-producing enzyme in the brain. Acute METH (3 mg/kg) produced hyperlocomotion that was reduced by CLAV (20 mg/kg but not 10 mg/kg). Mice injected with METH (3 mg/kg) every other day for 9 d and then challenged with METH 27 d later displayed locomotor sensitization. CLAV (10 mg/kg), when injected 15 min before each METH injection during the 9-d exposure interval, blocked locomotor sensitization induced by METH challenge. In METH-sensitized mice, mRNA levels of both isoforms of glutaminase (GLS and GLS2) were altered in the nucleus accumbens compared to mice exposed to a single injection of METH (i.e., GLS decreased and GLS2 increased). CLAV normalized the METH-induced GLS deficit but not the increase in GLS2. In summary, CLAV reduced acute and sensitized locomotor responses to METH and normalized the METH-induced reduction of GLS gene expression in the NAC. Given that glutaminases belong to the β-lactamase superfamily and CLAV is a β-lactamase inhibitor, our data point toward studying glutaminase as a therapeutic target of CLAV.
Collapse
Affiliation(s)
- Taylor Hawthorne Walters
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mia Milton
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Samhitha Reddy
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Prateek S Mokkarala
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Rose EP, Osterberg VR, Banga JS, Gorbunova V, Unni VK. Alpha-synuclein regulates the repair of genomic DNA double-strand breaks in a DNA-PK cs-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582819. [PMID: 38496612 PMCID: PMC10942394 DOI: 10.1101/2024.02.29.582819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
α-synuclein (αSyn) is a presynaptic and nuclear protein that aggregates in important neurodegenerative diseases such as Parkinson's Disease (PD), Parkinson's Disease Dementia (PDD) and Lewy Body Dementia (LBD). Our past work suggests that nuclear αSyn may regulate forms of DNA double-strand break (DSB) repair in HAP1 cells after DNA damage induction with the chemotherapeutic agent bleomycin1. Here, we report that genetic deletion of αSyn specifically impairs the non-homologous end-joining (NHEJ) pathway of DSB repair using an extrachromosomal plasmid-based repair assay in HAP1 cells. Importantly, induction of a single DSB at a precise genomic location using a CRISPR/Cas9 lentiviral approach also showed the importance of αSyn in regulating NHEJ in HAP1 cells and primary mouse cortical neuron cultures. This modulation of DSB repair is dependent on the activity of the DNA damage response signaling kinase DNA-PKcs, since the effect of αSyn loss-of-function is reversed by DNA-PKcs inhibition. Using in vivo multiphoton imaging in mouse cortex after induction of αSyn pathology, we find an increase in longitudinal cell survival of inclusion-bearing neurons after Polo-like kinase (PLK) inhibition, which is associated with an increase in the amount of aggregated αSyn within inclusions. Together, these findings suggest that αSyn plays an important physiologic role in regulating DSB repair in both a transformed cell line and in primary cortical neurons. Loss of this nuclear function may contribute to the neuronal genomic instability detected in PD, PDD and DLB and points to DNA-PKcs and PLK as potential therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth P. Rose
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, OR 97239
| | - Valerie R. Osterberg
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
| | - Jovin S. Banga
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14620
| | - Vivek K. Unni
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
- OHSU Parkinson Center, Department of Neurology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
3
|
Fevga C, Tesson C, Carreras Mascaro A, Courtin T, van Coller R, Sakka S, Ferraro F, Farhat N, Bardien S, Damak M, Carr J, Ferrien M, Boumeester V, Hundscheid J, Grillenzoni N, Kessissoglou IA, Kuipers DJS, Quadri M, Corvol JC, Mhiri C, Hassan BA, Breedveld GJ, Lesage S, Mandemakers W, Brice A, Bonifati V. PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability. Brain 2023; 146:1496-1510. [PMID: 36073231 PMCID: PMC10115167 DOI: 10.1093/brain/awac326] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.
Collapse
Affiliation(s)
- Christina Fevga
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Christelle Tesson
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Thomas Courtin
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Riaan van Coller
- Department of Neurology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Salma Sakka
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nouha Farhat
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Mariem Damak
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mélanie Ferrien
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jasmijn Hundscheid
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nicola Grillenzoni
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Irini A Kessissoglou
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jean-Christophe Corvol
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Centre d'Investigation Clinique Neurosciences, DMU Neuroscience, Paris, France
| | - Chokri Mhiri
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Bassem A Hassan
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Suzanne Lesage
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Alexis Brice
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Lathakumari S, Seenipandian S, Balakrishnan S, Raj APMS, Sugiyama H, Namasivayam GP, Sivasubramaniam S. Identification of genes responsible for the social skill in the earthworm, Eudrilus eugeniae. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
5
|
Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis 2022; 175:105920. [DOI: 10.1016/j.nbd.2022.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
6
|
Henríquez G, Méndez L, Castañeda E, Wagler A, Jeon S, Narayan M. Preclinical Model to Evaluate Outcomes of Amyloid Cross-Toxicity in the Rodent Brain. ACS Chem Neurosci 2022; 13:2962-2973. [PMID: 36194532 DOI: 10.1021/acschemneuro.2c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The progress of neurodegenerative disorders correlates with the spread of their associated amyloidogenic proteins. Here, we investigated whether amyloid entry into nonconstitutive neurons could drive cross-toxic outcomes. Amyloid β (Aβ) was stereotaxically introduced into the rodent midbrain tegmentum, where it is not endogenously expressed. Postinfusion, rodent motor and sensorimotor capacities were assessed by standard behavioral tests at 3, 6, 9, and 12 months. The longitudinal study revealed no behavioral abnormalities. However, Aβ insult provoked intraneuronal inclusions positive for phosphorylated α-synuclein in dopaminergic neurons and were seen throughout the midbrain, a pathognomonic biomarker suggesting Parkinson's pathogenesis. These findings not only underscore the cross-toxic potential of amyloid proteins but also provide a mechanism by which they disrupt homeostasis in nonconstitutive neurons and cause neuronal corruption, injury, and demise. This study may help reconcile the large incidence of neurodegenerative comorbidity observed clinically.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Lois Méndez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Edward Castañeda
- Department of Psychology, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Amy Wagler
- Department of Mathematical Sciences, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Soyoung Jeon
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
7
|
Eteläinen TS, Kilpeläinen TP, Ignatius A, Auno S, De Lorenzo F, Uhari-Väänänen JK, Julku UH, Myöhänen TT. Removal of proteinase K resistant αSyn species does not correlate with cell survival in a virus vector-based Parkinson's disease mouse model. Neuropharmacology 2022; 218:109213. [PMID: 35964686 DOI: 10.1016/j.neuropharm.2022.109213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 10/31/2022]
Abstract
Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumulation of α-synuclein (αSyn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves αSyn-induced toxicity in various PD models by inducing autophagy and preventing αSyn aggregation. In this study, we wanted to study the effects of PREP inhibition on different αSyn species by using cell culture and in vivo models. We used Neuro2A cells with transient αSyn overexpression and oxidative stress or proteasomal inhibition-induced αSyn aggregation to assess the effect of KYP-2047 on soluble αSyn oligomers and on cell viability. Here, the levels of soluble αSyn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on αSyn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-αSyn mouse model, where the KYP-2047 treatment was initiated two- or four-weeks post injection. KYP-2047 and anle138b protected cells from αSyn toxicity but interestingly, KYP-2047 did not reduce soluble αSyn oligomers. In AAV-A53T-αSyn mouse model, KYP-2047 reduced significantly proteinase K-resistant αSyn oligomers and oxidative damage related to αSyn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole αSyn aggregation process in the pathology of PD and raise an important question about the forms of αSyn that are reasonable targets for PD drug therapy.
Collapse
Affiliation(s)
- Tony S Eteläinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi P Kilpeläinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Adele Ignatius
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Samuli Auno
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Francesca De Lorenzo
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Johanna K Uhari-Väänänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
8
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
9
|
Changes in Tyrosine Hydroxylase Activity and Dopamine Synthesis in the Nigrostriatal System of Mice in an Acute Model of Parkinson's Disease as a Manifestation of Neurodegeneration and Neuroplasticity. Brain Sci 2022; 12:brainsci12060779. [PMID: 35741664 PMCID: PMC9221104 DOI: 10.3390/brainsci12060779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
The progressive degradation of the nigrostriatal system leads to the development of Parkinson’s disease (PD). The synthesis of dopamine, the neurotransmitter of the nigrostriatal system, depends on the rate-limiting enzyme, tyrosine hydroxylase (TH). In this study, we evaluated the synthesis of dopamine during periods of neurodegradation and neuroplasticity in the nigrostriatal system on a model of the early clinical stage of PD. It was shown that the concentration of dopamine correlated with activity of TH, while TH activity did not depend on total protein content either in the SN or in the striatum. Both during the period of neurodegeneration and neuroplasticity, TH activity in SN was determined by the content of P19-TH, and in the striatum it was determined by P31-TH and P40-TH (to a lesser extent). The data obtained indicate a difference in the regulation of dopamine synthesis between DA-neuron bodies and their axons, which must be considered for the further development of symptomatic pharmacotherapy aimed at increasing TH activity.
Collapse
|
10
|
Xu X, He X, Zhang Z, Chen Y, Li J, Ma S, Huang Q, Li M. CREB Inactivation by HDAC1/PP1γ Contributes to Dopaminergic Neurodegeneration in Parkinson's Disease. J Neurosci 2022; 42:4594-4604. [PMID: 35501151 PMCID: PMC9172078 DOI: 10.1523/jneurosci.1419-21.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding the pathogenesis of nigral dopaminergic neurodegeneration is critical for developing mechanism-based treatments for Parkinson's disease (PD). In the nigral dopaminergic neurons of postmortem human PD brains, we found that CREB, a well-recognized pro-survival transcription factor in neurons, was inactivated by dephosphorylation at Ser133. CREB dephosphorylation correlated with decreased expression of NURR1, one of its target genes crucial for dopaminergic neuron survival, confirming that CREB function was impaired in nigral dopaminergic neurons in PD. An MPTP mouse model was used to further elucidate the mechanism underlying CREB dephosphorylation. Protein phosphatase 1γ (PP1γ), which dephosphorylates CREB, was constitutively associated with histone deacetylase 1 (HDAC1). HDAC1 promotes CREB Ser133 dephosphorylation via a stable interaction with PP1γ. We found that CREB interacted with the HDAC1/PP1γ complex during dopaminergic neurodegeneration. Importantly, increased CREB/HDAC1 interaction occurred in the nigral dopaminergic neurons of PD patients as demonstrated using a proximity ligation assay. Disrupting CREB/HDAC1 interaction via either overexpression of GAL4 M1, a CREB mutant, or administration of trichostatin A, a pan-HDAC inhibitor, restored the expression levels of phospho-CREB (Ser133) and NURR1, and protected nigral dopaminergic neurons in the MPTP-treated mouse brain. Collectively, our results demonstrated that HDAC1/PP1γ-mediated CREB inactivation contributed to dopaminergic neuronal degeneration. Disruption of CREB/HDAC1 interaction has the potential to be a new approach for PD therapy.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the most common movement disorder attributed to the progressive loss of dopaminergic neurons in the substantia nigra. Understanding the pathogenesis of nigral dopaminergic neurodegeneration is critical for developing mechanism-based treatments for PD. We found in nigral dopaminergic neurons of postmortem human PD brains that CREB, a well-recognized pro-survival transcription factor in neurons, was inactivated by dephosphorylation at Ser133. HDAC1, constitutively associated with PP1γ, interacted with CREB to mediate its dephosphorylation during dopaminergic neurodegeneration. Disrupting CREB/HDAC1 interaction restored CREB activity and protected nigral dopaminergic neurons in the MPTP mouse brains. This work suggests that disruption of the CREB/HDAC1 interaction to restore CREB activity may be a potential therapeutic approach in PD.
Collapse
Affiliation(s)
- Xiaoyi Xu
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin He
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zeyan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanyi Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
11
|
Kawahata I, Finkelstein DI, Fukunaga K. Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. Int J Mol Sci 2022; 23:ijms23116216. [PMID: 35682892 PMCID: PMC9181156 DOI: 10.3390/ijms23116216] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause hereditary Parkinson’s disease. Highly phosphorylated and abnormally aggregated α-synuclein is a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson’s disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy bodies of patients with Parkinson’s disease is phosphorylated at Ser129, which is presumed to be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from phosphorylation are not fully understood in α-synucleinopathy. Consequently, this review focuses on the pathogenic impact of α-synuclein phosphorylation and its kinases during the neurodegeneration process in α-synucleinopathy.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| |
Collapse
|
12
|
Kawahata I, Fukunaga K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J Pharmacol Sci 2022; 148:248-254. [DOI: 10.1016/j.jphs.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
|
13
|
Nemutlu Samur D, Akçay G, Yıldırım S, Özkan A, Çeker T, Derin N, Tanrıöver G, Aslan M, Ağar A, Özbey G. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson's disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology 2022; 208:108977. [PMID: 35092748 DOI: 10.1016/j.neuropharm.2022.108977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by motor and non-motor symptoms associated with dopaminergic and non-dopaminergic injury. Vortioxetine is a multimodal serotonergic antidepressant with potential procognitive effects. This study aimed to explore the effects of vortioxetine on motor functions, spatial learning and memory, and depression-like behavior in the rotenone-induced rat model of PD. Male Sprague-Dawley rats were daily administered with the rotenone (2 mg·kg-1, s.c.) and/or vortioxetine (10 mg·kg-1, s.c.) for 28 days. Motor functions (rotarod, catalepsy, open-field), depression-like behaviors (sucrose preference test), anxiety (elevated plus maze), and spatial learning and memory abilities (novel object recognition and Morris water maze) were evaluated in behavioral tests. Then immunohistochemical, neurochemical, and biochemical analysis on specific brain areas were performed. Vortioxetine treatment markedly reduced rotenone-induced neurodegeneration, improved motor and cognitive dysfunction, decreased depression-like behaviors without affecting anxiety-like parameters. Vortioxetine also restored the impaired inflammatory response and affected neurotransmitter levels in brain tissues. Interestingly, vortioxetine was thought to trigger a sort of dysfunction in basal ganglia as evidenced by increased Toll-like receptor-2 (TLR-2) and decreased TH immunoreactivity only in substantia nigra tissue of PD rats compared to the control group. The present study indicates that vortioxetine has beneficial effects on motor dysfunction as well as cognitive impairment associated with neurodegeneration in the rotenone-induced PD model. Possible mechanisms underlying these beneficial effects cover TLR-2 inhibition and neurochemical restoration of vortioxetine.
Collapse
Affiliation(s)
- Dilara Nemutlu Samur
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey.
| | - Güven Akçay
- Akdeniz University, Faculty of Medicine, Department of Biophysics, 07058, Antalya, Turkey
| | - Sendegül Yıldırım
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Ayşe Özkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07058, Antalya, Turkey
| | - Tuğçe Çeker
- Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07058, Antalya, Turkey
| | - Narin Derin
- Akdeniz University, Faculty of Medicine, Department of Biophysics, 07058, Antalya, Turkey
| | - Gamze Tanrıöver
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Mutay Aslan
- Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07058, Antalya, Turkey
| | - Aysel Ağar
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07058, Antalya, Turkey
| | - Gül Özbey
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey.
| |
Collapse
|
14
|
Li ZF, Cui L, Jin MM, Hu DY, Hou XG, Liu SS, Zhang X, Zhu JH. A Matrigel-based 3D construct of SH-SY5Y cells models the α-synuclein pathologies of Parkinson's disease. Dis Model Mech 2022; 15:273997. [PMID: 35023548 PMCID: PMC8922027 DOI: 10.1242/dmm.049125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is associated with α-synuclein-based Lewy body pathology, which has been difficult to observe in conventional two-dimensional (2D) cell culture and even in animal models. We herein aimed to develop a three-dimensional (3D) cellular model of PD to recapitulate the α-synuclein pathologies. All-trans-retinoic acid-differentiated human SH-SY5Y cells and Matrigel were optimized for 3D construction. The 3D cultured cells displayed higher tyrosine hydroxylase expression than 2D cells and improved dopaminergic-like phenotypes, as suggested by RNA-sequencing analyses. Multiple forms of α-synuclein, including monomer, and low- and high-molecular mass oligomers, were differentially present in the 2D and 3D cells, but mostly remained unchanged upon N-methyl-4-phenyl pyridine or rotenone treatment. Phosphorylated α-synuclein was accumulated, and detergent-insoluble α-synuclein fraction was observed, in the neurotoxin-treated 3D cells. Importantly, Lewy body-like inclusions were captured in the 3D system, including proteinase K-resistant α-synuclein aggregates, ubiquitin aggregation, and β-amyloid and β-sheet protein deposition. The study provides a unique and convenient 3D model of PD that recapitulates critical α-synuclein pathologies and should be useful in multiple PD-associated applications. Summary: This study provides a convenient 3D model of Parkinson's disease (PD), which recapitulates α-synuclein pathologies in human cells and could be used to investigate PD mechanisms and screen drugs.
Collapse
Affiliation(s)
- Zhao-Feng Li
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Cui
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mi-Mi Jin
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong-Yan Hu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Gang Hou
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shu-Shu Liu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Hong Zhu
- Institute of Nutrition and Diseases, Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Neurology and Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Trophoblast glycoprotein is a new candidate gene for Parkinson’s disease. NPJ Parkinsons Dis 2021; 7:110. [PMID: 34876581 PMCID: PMC8651753 DOI: 10.1038/s41531-021-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractParkinson’s disease (PD) is a movement disorder caused by progressive degeneration of the midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta (SNc). Despite intense research efforts over the past decades, the etiology of PD remains largely unknown. Here, we discovered the involvement of trophoblast glycoprotein (Tpbg) in the development of PD-like phenotypes in mice. Tpbg expression was detected in the ventral midbrain during embryonic development and in mDA neurons in adulthood. Genetic ablation of Tpbg resulted in mild degeneration of mDA neurons in aged mice (12–14 months) with behavioral deficits reminiscent of PD symptoms. Through in silico analysis, we predicted potential TPBG-interacting partners whose functions were relevant to PD pathogenesis; this result was substantiated by transcriptomic analysis of the SNc of aged Tpbg knockout mice. These findings suggest that Tpbg is a new candidate gene associated with PD and provide a new insight into PD pathogenesis.
Collapse
|
16
|
Brown JM, Baker LS, Seroogy KB, Genter MB. Intranasal Carnosine Mitigates α-Synuclein Pathology and Motor Dysfunction in the Thy1-aSyn Mouse Model of Parkinson's Disease. ACS Chem Neurosci 2021; 12:2347-2359. [PMID: 34138535 PMCID: PMC9996643 DOI: 10.1021/acschemneuro.1c00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Early symptoms include motor dysfunction and impaired olfaction. Toxic aggregation of α-synuclein (aSyn) in the olfactory bulb (OB) and substantia nigra pars compacta (SNpc) is a hallmark of PD neuropathology. Intranasal (IN) carnosine (2 mg/d for 8 weeks) was previously demonstrated to improve motor behavior and mitochondrial function in Thy1-aSyn mice, a model of PD. The present studies evaluated the efficacy of IN carnosine at a higher dose in slowing progression of motor deficits and aSyn accumulation in Thy1-aSyn mice. After baseline neurobehavioral assessments, IN carnosine was administered (0.0, 2.0, or 4.0 mg/day) to wild-type and Thy1-aSyn mice for 8 weeks. Olfactory and motor behavioral measurements were repeated prior to end point tissue collection. Brain sections were immunostained for aSyn and tyrosine hydroxylase (TH). Immunopositive cells were counted using design-based stereology in the SNpc and OB mitral cell layer (MCL). Behavioral assessments revealed a dose-dependent improvement in motor function with increasing carnosine dose. Thy1-aSyn mice treated with 2.0 or 4.0 mg/d IN carnosine exhibited fewer aSyn-positive (aSyn(+)) cell bodies in the SNpc compared to vehicle-treated mice. Moreover, the number of aSyn(+) cell bodies in carnosine-treated Thy1-aSyn mice was reduced to vehicle-treated wild-type levels in the SNpc. Carnosine treatment did not affect the number of aSyn(+) cell bodies in the OB-MCL or the number of TH(+) cells in the SNpc. In summary, intranasal carnosine treatment decreased aSyn accumulation in the SNpc, which may underlie its mitigation of motor deficits in the Thy1-aSyn mice.
Collapse
Affiliation(s)
- Josephine M Brown
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| | - Lauren S Baker
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| | - Kim B Seroogy
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0536, United States
| | - Mary Beth Genter
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| |
Collapse
|
17
|
Vecchio LM, Sullivan P, Dunn AR, Bermejo MK, Fu R, Masoud ST, Gregersen E, Urs NM, Nazari R, Jensen PH, Ramsey A, Goldstein DS, Miller GW, Salahpour A. Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. J Neurochem 2021; 158:960-979. [PMID: 33991113 PMCID: PMC8376767 DOI: 10.1111/jnc.15432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
In Parkinson's disease, dopamine‐containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate‐limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build‐up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH‐over‐expressing mice (TH‐HI) using a BAC‐transgenic approach that results in over‐expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH‐HI mice had a 3‐fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH‐HI mice showed increased striatal production of H2O2 and reduced glutathione levels. In addition, TH‐HI mice had elevated striatal levels of the neurotoxic dopamine metabolites 3,4‐dihydroxyphenylacetaldehyde and 5‐S‐cysteinyl‐dopamine and were more susceptible than wild‐type mice to the effects of amphetamine and methamphetamine. These results demonstrate that increased TH alone is sufficient to produce oxidative stress in vivo, build up autotoxic dopamine metabolites, and augment toxicity.
Collapse
Affiliation(s)
- Laura M Vecchio
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patricia Sullivan
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Dunn
- The Jackson Laboratory. Bar Harbor, Maine, USA
| | - Marie Kristel Bermejo
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rong Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shababa T Masoud
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus C., Denmark
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainsville, FL, USA
| | - Reza Nazari
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus C., Denmark
| | - Amy Ramsey
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Centre, New York, NY, USA
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
19
|
García‐Sanz P, M.F.G. Aerts J, Moratalla R. The Role of Cholesterol in α-Synuclein and Lewy Body Pathology in GBA1 Parkinson's Disease. Mov Disord 2021; 36:1070-1085. [PMID: 33219714 PMCID: PMC8247417 DOI: 10.1002/mds.28396] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease where dopaminergic neurons in the substantia nigra are lost, resulting in a decrease in striatal dopamine and, consequently, motor control. Dopaminergic degeneration is associated with the appearance of Lewy bodies, which contain membrane structures and proteins, including α-synuclein (α-Syn), in surviving neurons. PD displays a multifactorial pathology and develops from interactions between multiple elements, such as age, environmental conditions, and genetics. Mutations in the GBA1 gene represent one of the major genetic risk factors for PD. This gene encodes an essential lysosomal enzyme called β-glucocerebrosidase (GCase), which is responsible for degrading the glycolipid glucocerebroside into glucose and ceramide. GCase can generate glucosylated cholesterol via transglucosylation and can also degrade the sterol glucoside. Although the molecular mechanisms that predispose an individual to neurodegeneration remain unknown, the role of cholesterol in PD pathology deserves consideration. Disturbed cellular cholesterol metabolism, as reflected by accumulation of lysosomal cholesterol in GBA1-associated PD cellular models, could contribute to changes in lipid rafts, which are necessary for synaptic localization and vesicle cycling and modulation of synaptic integrity. α-Syn has been implicated in the regulation of neuronal cholesterol, and cholesterol facilitates interactions between α-Syn oligomers. In this review, we integrate the results of previous studies and describe the cholesterol landscape in cellular homeostasis and neuronal function. We discuss its implication in α-Syn and Lewy body pathophysiological mechanisms underlying PD, focusing on the role of GCase and cholesterol. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patricia García‐Sanz
- Instituto Cajal, CSICMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| | - Johannes M.F.G. Aerts
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden UniversityFaculty of ScienceLeidenthe Netherlands
| | - Rosario Moratalla
- Instituto Cajal, CSICMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
20
|
Iyer M, Subramaniam MD, Venkatesan D, Cho SG, Ryding M, Meyer M, Vellingiri B. Role of RhoA-ROCK signaling in Parkinson's disease. Eur J Pharmacol 2020; 894:173815. [PMID: 33345850 DOI: 10.1016/j.ejphar.2020.173815] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a complex and widespread neurodegenerative disease characterized by depletion of midbrain dopaminergic (DA) neurons. Key issues are the development of therapies that can stop or reverse the disease progression, identification of dependable biomarkers, and better understanding of the pathophysiological mechanisms of PD. RhoA-ROCK signals appear to have an important role in PD symptoms, making it a possible approach for PD treatment strategies. Activation of RhoA-ROCK (Rho-associated coiled-coil containing protein kinase) appears to stimulate various PD risk factors including aggregation of alpha-synuclein (αSyn), dysregulation of autophagy, and activation of apoptosis. This manuscript reviews current updates about the biology and function of the RhoA-ROCK pathway and discusses the possible role of this signaling pathway in causing the pathogenesis of PD. We conclude that inhibition of the RhoA-ROCK signaling pathway may have high translational potential and could be a promising therapeutic target in PD.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
21
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
22
|
Marchand A, Drouyer M, Sarchione A, Chartier-Harlin MC, Taymans JM. LRRK2 Phosphorylation, More Than an Epiphenomenon. Front Neurosci 2020; 14:527. [PMID: 32612495 PMCID: PMC7308437 DOI: 10.3389/fnins.2020.00527] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene are linked to autosomal dominant Parkinson's disease (PD), and genetic variations at the LRRK2 locus are associated with an increased risk for sporadic PD. This gene encodes a kinase that is physiologically multiphosphorylated, including clusters of both heterologous phosphorylation and autophosphorylation sites. Several pieces of evidence indicate that LRRK2's phosphorylation is important for its pathological and physiological functioning. These include a reduced LRRK2 heterologous phosphorylation in PD brains or after pharmacological inhibition of LRRK2 kinase activity as well as the appearance of subcellular LRRK2 accumulations when this protein is dephosphorylated at heterologous phosphosites. Nevertheless, the regulatory mechanisms governing LRRK2 phosphorylation levels and the cellular consequences of changes in LRRK2 phosphorylation remain incompletely understood. In this review, we present current knowledge on LRRK2 phosphorylation, LRRK2 phosphoregulation, and how LRRK2 phosphorylation changes affect cellular processes that may ultimately be linked to PD mechanisms.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
23
|
Kawahata I, Fukunaga K. Degradation of Tyrosine Hydroxylase by the Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease and Dopa-Responsive Dystonia. Int J Mol Sci 2020; 21:ijms21113779. [PMID: 32471089 PMCID: PMC7312529 DOI: 10.3390/ijms21113779] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nigrostriatal dopaminergic systems govern physiological functions related to locomotion, and their dysfunction leads to movement disorders, such as Parkinson’s disease and dopa-responsive dystonia (Segawa disease). Previous studies revealed that expression of the gene encoding nigrostriatal tyrosine hydroxylase (TH), a rate-limiting enzyme of dopamine biosynthesis, is reduced in Parkinson’s disease and dopa-responsive dystonia; however, the mechanism of TH depletion in these disorders remains unclear. In this article, we review the molecular mechanism underlying the neurodegeneration process in dopamine-containing neurons and focus on the novel degradation pathway of TH through the ubiquitin-proteasome system to advance our understanding of the etiology of Parkinson’s disease and dopa-responsive dystonia. We also introduce the relation of α-synuclein propagation with the loss of TH protein in Parkinson’s disease as well as anticipate therapeutic targets and early diagnosis of these diseases.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| | - Kohji Fukunaga
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| |
Collapse
|
24
|
Teil M, Arotcarena ML, Faggiani E, Laferriere F, Bezard E, Dehay B. Targeting α-synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules 2020; 10:biom10030391. [PMID: 32138193 PMCID: PMC7175302 DOI: 10.3390/biom10030391] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's Disease (PD) is characterized both by the loss of dopaminergic neurons in the substantia nigra and the presence of cytoplasmic inclusions called Lewy Bodies. These Lewy Bodies contain the aggregated α-synuclein (α-syn) protein, which has been shown to be able to propagate from cell to cell and throughout different regions in the brain. Due to its central role in the pathology and the lack of a curative treatment for PD, an increasing number of studies have aimed at targeting this protein for therapeutics. Here, we reviewed and discussed the many different approaches that have been studied to inhibit α-syn accumulation via direct and indirect targeting. These analyses have led to the generation of multiple clinical trials that are either completed or currently active. These clinical trials and the current preclinical studies must still face obstacles ahead, but give hope of finding a therapy for PD with time.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Florent Laferriere
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
25
|
Camp SM, Marciniak A, Chiang ET, Garcia AN, Bittman R, Polt R, Perez RG, Dudek SM, Garcia JGN. Sphingosine-1-phosphate receptor-independent lung endothelial cell barrier disruption induced by FTY720 regioisomers. Pulm Circ 2020; 10:10.1177_2045894020905521. [PMID: 32095229 PMCID: PMC7011338 DOI: 10.1177/2045894020905521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Vascular permeability is a hallmark of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury pathobiology; however, the mechanisms underlying this vascular dysregulation remain unclear, thereby impairing the development of desperately needed effective therapeutics. We have shown that sphingosine-1-phosphate (S1P) and 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720) analogues are useful tools for exploring vascular barrier regulation mechanisms. OBJECTIVE To experimentally define the effects of FTY720 regioisomers on lung endothelial cell barrier regulation. METHODS Specific barrier-regulatory receptor and kinase inhibitors were utilized to probe signaling mechanisms involved in FTY720 regioisomer-mediated human lung endothelial cell barrier responses (trans-endothelial electrical resistance, TER). Docking simulations with the S1P1 receptor were performed to further evaluate FTY720 regioisomer signaling. RESULTS FTY720 regioisomers produced potent endothelial cell barrier disruption reflected by declines in TER alterations. Pharmacologic inhibition of Gi-coupled S1P receptors (S1P1, S1P2, S1P3) failed to alter FTY720 regioisomer-mediated barrier disruption; findings that were corroborated by docking simulations demonstrating FTY720 regiosomers were repelled from S1P1 docking, in contrast to strong S1P1 binding elicited by S1P. Inhibition of either the barrier-disrupting PAR-1 receptor, the VEGF receptor, Rho-kinase, MAPK, NFkB, or PI3K failed to alter FTY720 regioisomer-induced endothelial cell barrier disruption. While FTY720 regioisomers significantly increased protein phosphatase 2 (PP2A) activity, PP2A inhibitors failed to alter FTY720 regioisomer-induced endothelial cell barrier disruption. CONCLUSIONS Together, these results imply a vexing model of pulmonary vascular barrier dysregulation in response to FTY720-related compounds and highlight the need for further insights into mechanisms of vascular integrity required to promote the development of novel therapeutic tools to prevent or reverse the pulmonary vascular leak central to ARDS outcomes.
Collapse
Affiliation(s)
- Sara M. Camp
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Alexander Marciniak
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Eddie T. Chiang
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Alexander N. Garcia
- Department of Radiation Oncology, The University of Arizona, Tucson, AZ, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Ruth G. Perez
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neuroscience, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Steven M. Dudek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G. N. Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
26
|
Kilpeläinen T, Julku UH, Svarcbahs R, Myöhänen TT. Behavioural and dopaminergic changes in double mutated human A30P*A53T alpha-synuclein transgenic mouse model of Parkinson´s disease. Sci Rep 2019; 9:17382. [PMID: 31758049 PMCID: PMC6874660 DOI: 10.1038/s41598-019-54034-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022] Open
Abstract
Alpha-synuclein (aSyn) is the main component of Lewy bodies, the histopathological marker in Parkinson's disease (PD), and point mutations and multiplications of the aSyn coding SNCA gene correlate with early onset PD. Therefore, various transgenic mouse models overexpressing native or point-mutated aSyn have been developed. Although these models show highly increased aSyn expression they rarely capture dopaminergic cell loss and show a behavioural phenotype only at old age, whereas SNCA mutations are risk factors for PD with earlier onset. The aim of our study was to re-characterize a transgenic mouse strain carrying both A30P and A53T mutated human aSyn. Our study revealed decreased locomotor activity for homozygous transgenic mice starting from 3 months of age which was different from previous studies with this mouse strain that had behavioural deficits starting only after 7-9 months. Additionally, we found a decreased amphetamine response in locomotor activity and decreased extracellular dopaminergic markers in the striatum and substantia nigra with significantly elevated levels of aSyn oligomers. In conclusion, homozygous transgenic A30P*A53T aSyn mice capture several phenotypes of PD with early onset and could be a useful tool for aSyn studies.
Collapse
Affiliation(s)
- Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
27
|
Vidal-Martinez G, Segura-Ulate I, Yang B, Diaz-Pacheco V, Barragan JA, De-Leon Esquivel J, Chaparro SA, Vargas-Medrano J, Perez RG. FTY720-Mitoxy reduces synucleinopathy and neuroinflammation, restores behavior and mitochondria function, and increases GDNF expression in Multiple System Atrophy mouse models. Exp Neurol 2019; 325:113120. [PMID: 31751571 DOI: 10.1016/j.expneurol.2019.113120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/25/2022]
Abstract
Multiple system atrophy (MSA) is a fatal disorder with no effective treatment. MSA pathology is characterized by α-synuclein (aSyn) accumulation in oligodendrocytes, the myelinating glial cells of the central nervous system (CNS). aSyn accumulation in oligodendrocytes forms the pathognomonic glial cytoplasmic inclusions (GCIs) of MSA. MSA aSyn pathology is also associated with motor and autonomic dysfunction, including an impaired ability to sweat. MSA patients have abnormal CNS expression of glial-cell-line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Our prior studies using the parent compound FTY720, a food and drug administration (FDA) approved immunosuppressive for multiple sclerosis, reveal that FTY720 protects parkinsonian mice by increasing BDNF. Our FTY720-derivative, FTY720-Mitoxy, is known to increase expression of oligodendrocyte BDNF, GDNF, and nerve growth factor (NGF) but does not reduce levels of circulating lymphocytes as it is not phosphorylated so cannot modulate sphingosine 1 phosphate receptors (S1PRs). To preclinically assess FTY720-Mitoxy for MSA, we used mice expressing human aSyn in oligodendrocytes under a 2,' 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter. CNP-aSyn transgenic (Tg) mice develop motor dysfunction between 7 and 9 mo, and progressive GCI pathology. Using liquid chromatography-mass spectrometry (LC-MS/MS) and enzymatic assays, we confirmed that FTY720-Mitoxy was stable and active. Vehicle or FTY720-Mitoxy (1.1 mg/kg/day) was delivered to wild type (WT) or Tg littermates from 8.5-11.5 mo by osmotic pump. We behaviorally assessed their movement by rotarod and sweat production by starch‑iodine test. Postmortem tissues were evaluated by qPCR for BDNF, GDNF, NGF and GDNF-receptor RET mRNA and for aSyn, BDNF, GDNF, and Iba1 protein by immunoblot. MicroRNAs (miRNAs) were also assessed by qPCR. FTY720-Mitoxy normalized movement, sweat function and soleus muscle mass in 11.5 mo Tg MSA mice. FTY720-Mitoxy also increased levels of brain GDNF and reduced brain miR-96-5p, a miRNA that acts to decrease GDNF expression. Moreover, FTY720-Mitoxy blocked aSyn pathology measured by sequential protein extraction and immunoblot, and microglial activation assessed by immunohistochemistry and immunoblot. In the 3-nitropropionic acid (3NP) toxin model of MSA, FTY720-Mitoxy protected movement and mitochondria in WT and CNP-aSyn Tg littermates. Our data confirm potent in vivo protection by FTY720-Mitoxy, supporting its further evaluation as a potential therapy for MSA and related synucleinopathies.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Ismael Segura-Ulate
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Barbara Yang
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Valeria Diaz-Pacheco
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Jose A Barragan
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Jocelyn De-Leon Esquivel
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Stephanie A Chaparro
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Javier Vargas-Medrano
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Ruth G Perez
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America.
| |
Collapse
|
28
|
FTY720 Improves Behavior, Increases Brain Derived Neurotrophic Factor Levels and Reduces α-Synuclein Pathology in Parkinsonian GM2+/- Mice. Neuroscience 2019; 411:1-10. [PMID: 31129200 DOI: 10.1016/j.neuroscience.2019.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.
Collapse
|
29
|
Dunkley PR, Dickson PW. Tyrosine hydroxylase phosphorylation
in vivo. J Neurochem 2019; 149:706-728. [DOI: 10.1111/jnc.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Peter R. Dunkley
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| | - Phillip W. Dickson
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| |
Collapse
|
30
|
Gil-Tommee C, Vidal-Martinez G, Annette Reyes C, Vargas-Medrano J, Herrera GV, Martin SM, Chaparro SA, Perez RG. Parkinsonian GM2 synthase knockout mice lacking mature gangliosides develop urinary dysfunction and neurogenic bladder. Exp Neurol 2019; 311:265-273. [PMID: 30393144 PMCID: PMC6319267 DOI: 10.1016/j.expneurol.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/14/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder that reduces a patients' quality of life by the relentless progression of motor and non-motor symptoms. Among the non-motor symptoms is a condition called neurogenic bladder that is associated with detrusor muscle underactivity or overactivity occurring from neurologic damage. In Parkinson's disease, Lewy-body-like protein aggregation inside neurons typically contributes to pathology. This is associated with dopaminergic neuron loss in substantia nigra pars compacta (SNc) and in ventral tegmental area (VTA), both of which play a role in micturition. GM1 gangliosides are mature glycosphingolipids that enhance normal myelination and are reduced in Parkinson's brain. To explore the role of mature gangliosides in vivo, we obtained GM2 Synthase knockout (KO) mice, which develop parkinsonian pathology including a loss of SNc dopaminergic neurons, which we reconfirmed. However, bladder function and innervation have never been assessed in this model. We compared GM2 Synthase KO and wild type (WT) littermates' urination patterns from 9 to 19 months of age by counting small and large void spots produced during 1 h tests. Because male and female mice had different patterns, we evaluated data by sex and genotype. Small void spots were significantly increased in 12-16 month GM2 Synthase KO females, consistent with overactive bladder. Similarly, at 9-12 month GM2 KO males tended to have more small void spots than WT males. As GM2 Synthase KO mice aged, both females and males had fewer small and large void spots, consistent with detrusor muscle underactivity. Ultrasounds confirmed bladder enlargement in GM2 Synthase KO mice compared to WT mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed significant dopaminergic loss in GM2 Synthase KO VTA and SNc, and a trend toward TH loss in the GM2 KO periaqueductal gray (PAG) micturition centers. Levels of the nerve growth factor precursor, proNGF, were significantly increased in GM2 Synthase KO bladders and transmission electron micrographs showed atypical myelination of pelvic ganglion innervation in GM2 Synthase KO bladders. Cumulatively, our findings provide the first evidence that mature ganglioside loss affects micturition center TH neurons as well as proNGF dysregulation and abnormal innervation of the bladder. Thus, identifying therapies that will counteract these effects should be beneficial for those suffering from Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Carolina Gil-Tommee
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Guadalupe Vidal-Martinez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - C Annette Reyes
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Gloria V Herrera
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Silver M Martin
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Stephanie A Chaparro
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA..
| |
Collapse
|
31
|
Vidal-Martinez G, Yang B, Vargas-Medrano J, Perez RG. Could α-Synuclein Modulation of Insulin and Dopamine Identify a Novel Link Between Parkinson's Disease and Diabetes as Well as Potential Therapies? Front Mol Neurosci 2018; 11:465. [PMID: 30622456 PMCID: PMC6308185 DOI: 10.3389/fnmol.2018.00465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Characterizing the normal function(s) of the protein α-Synuclein (aSyn) has the potential to illuminate links between Parkinson’s disease (PD) and diabetes and also point the way toward new therapies for these disorders. Here we provide a perspective for consideration based on our discovery that aSyn normally acts to inhibit insulin secretion from pancreatic β-cells by interacting with the Kir6.2 subunit of the ATP-sensitive potassium channel (K-ATP). It is also known that K-ATP channels act to inhibit brain dopamine secretion, and we have also shown that aSyn is a normal inhibitor of dopamine synthesis. The finding, that aSyn modulates Kir6.2 and other proteins involved in dopamine and insulin secretion, suggests that aSyn interacting proteins may be negatively impacted when aSyn aggregates inside cells, whether in brain or pancreas. Furthermore, identifying therapies for PD that can counteract dysfunction found in diabetes, would be highly beneficial. One such compound may be the multiple sclerosis drug, FTY720, which like aSyn can stimulate the activity of the catalytic subunit of protein phosphatase 2A (PP2Ac) as well as insulin secretion. In aging aSyn transgenic mice given long term oral FTY720, the mice had reduced aSyn pathology and increased levels of the protective molecule, brain derived neurotrophic factor (BDNF) (Vidal-Martinez et al., 2016). In collaboration with medicinal chemists, we made two non-immunosuppressive FTY720s that also enhance PP2Ac activity, and BDNF expression (Vargas-Medrano et al., 2014; Enoru et al., 2016; Segura-Ulate et al., 2017a). FTY720 and our novel FTY720-based-derivatives, may thus have therapeutic potential for both diabetes and PD.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Barbara Yang
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
32
|
Mazhar S, Taylor SE, Sangodkar J, Narla G. Targeting PP2A in cancer: Combination therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:51-63. [PMID: 30401535 DOI: 10.1016/j.bbamcr.2018.08.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
The serine/threonine phosphatase PP2A regulates a vast portion of the phosphoproteome including pathways involved in apoptosis, proliferation and DNA damage response and PP2A inactivation is a vital step in malignant transformation. Many groups have explored the therapeutic venue of combining PP2A reactivation with kinase inhibition to counteract the very changes in tumor suppressors and oncogenes that lead to cancer development. Conversely, inhibition of PP2A to complement chemotherapy and radiation-induced cancer cell death is also an area of active investigation. Here we review the studies that utilize PP2A targeted agents as combination therapy in cancer. A potential role for PP2A in tumor immunity is also highlighted.
Collapse
Affiliation(s)
- Sahar Mazhar
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah E Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jaya Sangodkar
- Division of Genetic Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Goutham Narla
- Division of Genetic Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Gong S, Zhang J, Guo Z, Fu W. Senkyunolide A protects neural cells against corticosterone-induced apoptosis by modulating protein phosphatase 2A and α-synuclein signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1865-1879. [PMID: 29983543 PMCID: PMC6025771 DOI: 10.2147/dddt.s161748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Depression is characterized by a pathological injury to the hippocampal neurons. Senkyunolide A (SenA) is one of the major active components of Dan-zhi-xiao-yao-san, which is widely used in the treatment of depression-related disorders. Materials and methods In the present study, it was hypothesized that the antidepressant effect of Dan-zhi-xiao-yao-san depended on the function of SenA and the authors attempted to reveal the molecular mechanism associated with the treatment. An in vitro depression model was induced using corticosterone (Cort), and the effect of SenA on the cell viability, apoptosis, and protein phosphatase 2A/α-synuclein (PP2A/α-syn) signaling was detected. To validate the mechanism driving the therapeutic effect of SenA, activity of PP2A and α-syn was modulated and the effect on neural cells was evaluated. Results The results showed that SenA protects Cort-induced cell apoptosis in PC12 cells. In addition, SenA increased Cort-induced reduction of PP2A activity, while it decreased the expression of p-PP2A, α-syn, and p-α-syn (Ser129). Further, modulation of PP2A activity with specific inhibitor okadaic acid (OA) increased Cort-induced cell apoptosis, while PP2A activator D-erythro-sphingosine (SPH) exhibited an opposite effect. The neuroprotective effects of SenA on neural cells also depended on inhibition of α-syn function, the regulation of which would influence the activity of PP2A in a negative loop. Conclusion Collectively, the results suggested that the neuroprotective effects of SenA were exerted by modulating activities of PP2A activities and α-syn. The findings partially explained the mechanism associated with the neuroprotective effect of SenA.
Collapse
Affiliation(s)
- Shenglan Gong
- South China Research Center for Acupuncture and Moxibustion, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China,
| | - Jin Zhang
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhouke Guo
- Department of Neurology and Psychology, Shenzhen Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, People's Republic of China,
| | - Wenjun Fu
- South China Research Center for Acupuncture and Moxibustion, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China,
| |
Collapse
|
34
|
Tian H, Lu Y, Liu J, Liu W, Lu L, Duan C, Gao G, Yang H. Leucine Carboxyl Methyltransferase Downregulation and Protein Phosphatase Methylesterase Upregulation Contribute Toward the Inhibition of Protein Phosphatase 2A by α-Synuclein. Front Aging Neurosci 2018; 10:173. [PMID: 29950985 PMCID: PMC6008559 DOI: 10.3389/fnagi.2018.00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
The pathology of Parkinson's disease (PD) is characterized by intracellular neurofibrillary tangles of phosphorylated α-synuclein (α-syn). Protein phosphatase 2A (PP2A) is responsible for α-syn dephosphorylation. Previous work has demonstrated that α-syn can regulate PP2A activity. However, the mechanisms underlying α-syn regulation of PP2A activity are not well understood. In this study, we found that α-syn overexpression induced increased α-syn phosphorylation at serine 129 (Ser129), and PP2A inhibition, in vitro and in vivo. α-syn overexpression resulted in PP2A demethylation. This demethylation was mediated via downregulated leucine carboxyl methyltransferase (LCMT-1) expression, and upregulated protein phosphatase methylesterase (PME-1) expression. Furthermore, LCMT-1 overexpression, or PME-1 inhibition, reversed α-syn-induced increases in α-syn phosphorylation and apoptosis. In addition to post-translational modifications of the catalytic subunit, regulatory subunits are involved in the regulation of PP2A activity. We found that the levels of regulatory subunits which belong to the PPP2R2 subfamily, not the PPP2R5 subfamily, were downregulated in the examined brain regions of transgenic mice. Our work identifies a novel mechanism to explain how α-syn regulates PP2A activity, and provides the optimization of PP2A methylation as a new target for PD treatment.
Collapse
Affiliation(s)
- Hao Tian
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Yongquan Lu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Jia Liu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Weijin Liu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Lingling Lu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Chunli Duan
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Ge Gao
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Hui Yang
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| |
Collapse
|
35
|
Johnson M, Salvatore M, Maiolo S, Bobrovskaya L. Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: Evidence from clinical studies and neurotoxin models. Prog Neurobiol 2018; 165-167:1-25. [DOI: 10.1016/j.pneurobio.2018.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
|
36
|
Post MR, Lieberman OJ, Mosharov EV. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease? Front Neurosci 2018; 12:161. [PMID: 29593491 PMCID: PMC5861202 DOI: 10.3389/fnins.2018.00161] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Several lines of evidence place alpha-synuclein (aSyn) at the center of Parkinson's disease (PD) etiology, but it is still unclear why overexpression or mutated forms of this protein affect some neuronal populations more than others. Susceptible neuronal populations in PD, dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the locus coeruleus (LC), are distinguished by relatively high cytoplasmic concentrations of dopamine and calcium ions. Here we review the evidence for the multi-hit hypothesis of neurodegeneration, including recent papers that demonstrate synergistic interactions between aSyn, calcium ions and dopamine that may lead to imbalanced protein turnover and selective susceptibility of these neurons. We conclude that decreasing the levels of any one of these toxicity mediators can be beneficial for the survival of SNpc and LC neurons, providing multiple opportunities for targeted drug interventions aimed at modifying the course of PD.
Collapse
Affiliation(s)
- Michael R Post
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Ori J Lieberman
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Eugene V Mosharov
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
37
|
Abstract
α-Synuclein is an abundant neuronal protein that is highly enriched in presynaptic nerve terminals. Genetics and neuropathology studies link α-synuclein to Parkinson's disease (PD) and other neurodegenerative disorders. Accumulation of misfolded oligomers and larger aggregates of α-synuclein defines multiple neurodegenerative diseases called synucleinopathies, but the mechanisms by which α-synuclein acts in neurodegeneration are unknown. Moreover, the normal cellular function of α-synuclein remains debated. In this perspective, we review the structural characteristics of α-synuclein, its developmental expression pattern, its cellular and subcellular localization, and its function in neurons. We also discuss recent progress on secretion of α-synuclein, which may contribute to its interneuronal spread in a prion-like fashion, and describe the neurotoxic effects of α-synuclein that are thought to be responsible for its role in neurodegeneration.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Manu Sharma
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Thomas C Südhof
- Departments of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, California 94305
- Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
38
|
Kim S, Lim J, Bang Y, Moon J, Kwon MS, Hong JT, Jeon J, Seo H, Choi HJ. Alpha-Synuclein Suppresses Retinoic Acid-Induced Neuronal Differentiation by Targeting the Glycogen Synthase Kinase-3β/β-Catenin Signaling Pathway. Mol Neurobiol 2018; 55:1607-1619. [PMID: 28190238 DOI: 10.1007/s12035-016-0370-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/28/2016] [Indexed: 11/27/2022]
Abstract
Alpha-synuclein (α-SYN) is expressed during neuronal development and is mainly involved in the modulation of synaptic transmission. Missense mutations and amplifications of this gene have been associated with the pathogenesis of Parkinson's disease. Here, we evaluate whether α-SYN plays a detrimental role in the phenotypic and morphological regulation of neurons. We also identify the underlying mechanisms of this process in all-trans-retinoic acid (RA)-induced differentiated SH-SY5Y cells, which represents dopaminergic (DAergic) phenotype. Our results indicate that overexpression of wild-type or mutant A53T α-SYN attenuated the RA-induced upregulation of tyrosine hydroxylase and dopamine transporter as well as neurite outgrowth in SH-SY5Y cells. In addition, GSK-3β inactivation and downstream β-catenin stabilization were associated with RA-induced differentiation, which was attenuated by α-SYN. Moreover, protein phosphatase 2A was positively regulated by α-SYN and was implicated in the α-SYN-mediated interference with RA signaling. The results obtained from SH-SY5Y cells were verified in primary cultures of mesencephalic DAergic neurons from A53T α-SYN transgenic mice, which represent high levels of α-SYN and protein phosphatase 2A in the midbrain. The number and length of neurites in tyrosine hydroxylase-positive as well as Tau-positive cells from A53T α-SYN transgenic mice were significantly lower than those in littermate controls. The current results provide novel insight into the role of α-SYN in the regulation of neuronal differentiation, including DAergic neurons. Identifying the signaling pathway involved in the α-SYN-mediated dysregulation of neuronal differentiation could lead to a better understanding of the developmental processes underlying α-SYN-related pathologies and facilitate the discovery of specifically targeted therapeutics.
Collapse
Affiliation(s)
- Sasuk Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Juhee Lim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Jisook Moon
- Department of Bioengineering, College of Life Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, CHA University, Seongnam, 13488, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeha Jeon
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
39
|
Curry DW, Stutz B, Andrews ZB, Elsworth JD. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2018; 8:161-181. [PMID: 29614701 PMCID: PMC6004921 DOI: 10.3233/jpd-171296] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.
Collapse
Affiliation(s)
- Daniel W Curry
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bernardo Stutz
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zane B Andrews
- Department of Physiology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, VIC, Australia
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Suárez I, Bodega G, Rubio M, Fernández B. Reduced TH expression and α-synuclein accumulation contribute towards nigrostriatal dysfunction in experimental hepatic encephalopathy. Restor Neurol Neurosci 2017; 35:469-481. [PMID: 28984618 DOI: 10.3233/rnn-170728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The present work examines α-synuclein expression in the nigrostriatal system of a rat chronic hepatic encephalopathy model induced by portacaval anastomosis (PCA). There is evidence that dopaminergic dysfunction in disease conditions is strongly associated with such expression. Possible relationships among dopaminergic neurons, astroglial cells and α-synuclein expression were sought. METHODS Brain tissue samples from rats at 1 and 6 months post-PCA, and controls, were analysed immunohistochemically using antibodies against tyrosine hydroxylase (TH), α-synuclein, glial fibrillary acidic protein (GFAP) and ubiquitin (Ub). RESULTS In the control rats, TH immunoreactivity was detected in the neuronal cell bodies and processes in the substantia nigra pars compacta (SNc). A dense TH-positive network of neurons was also seen in the striatum. In the PCA-exposed rats, however, a reduction in TH-positive neurons was seen at both 1 and 6 months in the SNc, as well as a reduction in TH-positive fibres in the striatum. This was coincident with the appearance of α-synuclein-immunoreactive neurons in the SNc; some of the TH-positive neurons also showed α-synuclein immunoreactivity. In addition, α-synuclein accumulation was seen in the SNc and striatum at both 1 and 6 months post-PCA, whereas α-synuclein was only mildly expressed in the nigrostriatal pathway of the controls. Astrogliosis was also seen following PCA, as revealed by increased GFAP expression from 1 month to 6 months post-PCA in both the SN and striatum. The astroglial activation level in the SN paralleled the reduced neuronal expression of TH throughout PCA exposure. CONCLUSION α-synuclein accumulation following PCA may induce dopaminergic dysfunction via the downregulation of TH, as well as astroglial activation.
Collapse
Affiliation(s)
- Isabel Suárez
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain
| | - Miguel Rubio
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain
| | - Benjamín Fernández
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| |
Collapse
|
41
|
Yang W, Wang X, Liu J, Duan C, Gao G, Lu L, Yu S, Yang H. PINK1 suppresses alpha-synuclein-induced neuronal injury: a novel mechanism in protein phosphatase 2A activation. Oncotarget 2017; 9:37-53. [PMID: 29416594 PMCID: PMC5787472 DOI: 10.18632/oncotarget.21554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Alpha-synuclein (α-Syn) and phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced putative kinase (PINK) 1 are proteins found in Lewy bodies, which are a pathological hallmark of Parkinson's disease (PD). PINK1 overexpression suppresses α-Syn-induced phenotypes and increases lifespan and health in an animal model of PD. It has been suggested that the two proteins regulate protein phosphatase (PP) 2A activity, but the underlying mechanisms and neuroprotective action of PP2A against PD-associated pathology are unknown. We found that α-Syn overexpression in SK-N-SH neuroblastoma cells and primary cortical neurons caused mitochondrial dysfunction and cell injury via phosphorylation of PP2A at Tyr307 and inhibition of its activity. Concomitant overexpression of PINK1 reversed this effect and restored the activity. The level of phospho-activated Src was increased in cells overexpressing α-Syn, which was reversed by co-expressing PINK1, suggesting that the latter suppressed α-Syn-induced PP2A inactivation by inhibiting Src activity. Calmodulin/Src complex formation was also enhanced in α-Syn-overexpressing cells, which was reversed by co-expression of PINK1 as a result of reduced mitochondrial Ca2+ releasing. Interestingly, the protective effects of PINK1 in α-Syn induced models were abolished by treatment with the PP2A inhibitor okadaic acid, indicating that PP2A is a target of PINK1. These findings indicate that PINK1 protects against α-Syn-induced neurodegeneration by promoting the dissociation of the calmodulin/Src complex and inhibiting Src, thereby enhancing PP2A activity. This was supported by the observation that PP2A activity was decreased in PD patients, which was negatively correlated with Hoehn and Yahr scores. Our results provide novel insight into the mechanisms underlying neurodegeneration in PD as well as possible avenues for therapeutic intervention in the treatment of this disease.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China.,Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xue Wang
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Jia Liu
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Chunli Duan
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Lingling Lu
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Lek S, Vargas-Medrano J, Villanueva E, Marcus B, Godfrey W, Perez RG. Recombinant α- β- and γ-Synucleins Stimulate Protein Phosphatase 2A Catalytic Subunit Activity in Cell Free Assays. J Vis Exp 2017:55361. [PMID: 28829427 PMCID: PMC5614314 DOI: 10.3791/55361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
α-Synuclein (aSyn), β-Synuclein (bSyn), and γ-Synuclein (gSyn) are members of a conserved family of chaperone-like proteins that are highly expressed in vertebrate neuronal tissues. Of the three synucleins, only aSyn has been strongly implicated in neurodegenerative disorders such as Parkinson's disease, Dementia with Lewy Bodies, and Multiple System Atrophy. In studying normal aSyn function, data indicate that aSyn stimulates the activity of the catalytic subunit of an abundantly expressed dephosphorylating enzyme, PP2Ac in vitro and in vivo. Prior data show that aSyn aggregation in human brain reduces PP2Ac activity in regions with Lewy body pathology, where soluble aSyn has become insoluble. However, because all three synucleins have considerable homology in the amino acid sequences, experiments were designed to test if all can modulate PP2Ac activity. Using recombinant synucleins and recombinant PP2Ac protein, activity was assessed by malachite green colorimetric assay. Data revealed that all three recombinant synucleins stimulated PP2Ac activity in cell-free assays, raising the possibility that the conserved homology between synucleins may endow all three homologs with the ability to bind to and activate the PP2Ac. Co-immunoprecipitation data, however, suggest that PP2Ac modulation likely occurs through endogenous interactions between aSyn and PP2Ac in vivo.
Collapse
Affiliation(s)
- Sovanarak Lek
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso
| | - Ernesto Villanueva
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso
| | - Brian Marcus
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso
| | - Wesley Godfrey
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso;
| |
Collapse
|
43
|
Emamzadeh FN. Role of Apolipoproteins and α-Synuclein in Parkinson's Disease. J Mol Neurosci 2017; 62:344-355. [PMID: 28695482 PMCID: PMC5541107 DOI: 10.1007/s12031-017-0942-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/12/2017] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive brain disorder that interferes with activities of normal life. The main pathological feature of this disease is the loss of more than 80% of dopamine-producing neurons in the substantia nigra (SN). Dopaminergic neuronal cell death occurs when intraneuronal, insoluble, aggregated proteins start to form Lewy bodies (LBs), the most important component of which is a protein called α-synuclein (α-syn). α-Syn structurally contains hexameric repeats of 11 amino acids, which are characteristic of apolipoproteins and thus α-syn can also be considered an apolipoprotein. Moreover, apolipoproteins seem to be involved in the incidence and development of PD. Some apolipoproteins such as ApoD have a neuroprotective role in the brain. In PD, apoD levels increase in glial cells surrounding dopaminergic cells. However, elevated levels of some other apolipoproteins such as ApaA1 and ApoE are reported as a vulnerability factor of PD. At present, when a clinical diagnosis of PD is made, based on symptoms such as shaking, stiff muscles and slow movement, serious damage has already been done to nerve cells of the SN. The diagnosis of PD in its earlier stages, before this irreversible damage, would be of enormous benefit for future treatment strategies designed to slow or halt the progression of PD. This review presents the roles of apolipoproteins and α-syn in PD and how some of them could potentially be used as biomarkers for PD.
Collapse
Affiliation(s)
- Fatemeh Nouri Emamzadeh
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, LA1 4AY, UK.
| |
Collapse
|
44
|
Jorge-Finnigan A, Kleppe R, Jung-Kc K, Ying M, Marie M, Rios-Mondragon I, Salvatore MF, Saraste J, Martinez A. Phosphorylation at serine 31 targets tyrosine hydroxylase to vesicles for transport along microtubules. J Biol Chem 2017. [PMID: 28637871 DOI: 10.1074/jbc.m116.762344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine into l-DOPA, which is the rate-limiting step in the synthesis of catecholamines, such as dopamine, in dopaminergergic neurons. Low dopamine levels and death of the dopaminergic neurons are hallmarks of Parkinson's disease (PD), where α-synuclein is also a key player. TH is highly regulated, notably by phosphorylation of several Ser/Thr residues in the N-terminal tail. However, the functional role of TH phosphorylation at the Ser-31 site (THSer(P)-31) remains unclear. Here, we report that THSer(P)-31 co-distributes with the Golgi complex and synaptic-like vesicles in rat and human dopaminergic cells. We also found that the TH microsomal fraction content decreases after inhibition of cyclin-dependent kinase 5 (Cdk5) and ERK1/2. The cellular distribution of an overexpressed phospho-null mutant, TH1-S31A, was restricted to the soma of neuroblastoma cells, with decreased association with the microsomal fraction, whereas a phospho-mimic mutant, TH1-S31E, was distributed throughout the soma and neurites. TH1-S31E associated with vesicular monoamine transporter 2 (VMAT2) and α-synuclein in neuroblastoma cells, and endogenous THSer(P)-31 was detected in VMAT2- and α-synuclein-immunoprecipitated mouse brain samples. Microtubule disruption or co-transfection with α-synuclein A53T, a PD-associated mutation, caused TH1-S31E accumulation in the cell soma. Our results indicate that Ser-31 phosphorylation may regulate TH subcellular localization by enabling its transport along microtubules, notably toward the projection terminals. These findings disclose a new mechanism of TH regulation by phosphorylation and reveal its interaction with key players in PD, opening up new research avenues for better understanding dopamine synthesis in physiological and pathological states.
Collapse
Affiliation(s)
- Ana Jorge-Finnigan
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; K. G. Jebsen Centre for Neuropsychiatric Disorders, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Rune Kleppe
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; K. G. Jebsen Centre for Neuropsychiatric Disorders, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Kunwar Jung-Kc
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; K. G. Jebsen Centre for Neuropsychiatric Disorders, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Ming Ying
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Michael Marie
- Department of Molecular Biology, University of Bergen, Thormøhlensgaten 55, 5020 Bergen Norway
| | - Ivan Rios-Mondragon
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Michael F Salvatore
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Jaakko Saraste
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Aurora Martinez
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; K. G. Jebsen Centre for Neuropsychiatric Disorders, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
45
|
Nigral injection of a proteasomal inhibitor, lactacystin, induces widespread glial cell activation and shows various phenotypes of Parkinson's disease in young and adult mouse. Exp Brain Res 2017; 235:2189-2202. [PMID: 28439627 DOI: 10.1007/s00221-017-4962-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
Proteinaceous inclusions, called Lewy bodies, are used as a pathological hallmark for Parkinson's disease (PD). Lewy bodies contain insoluble α-synuclein (aSyn) and many other ubiquitinated proteins, suggesting a role for protein degradation system failure in the PD pathogenesis. Indeed, proteasomal dysfunction has been linked to PD but commonly used in vivo toxin models, such as 6-OHDA or MPTP, do not have a significant effect on the proteasomal system or protein aggregation. Therefore, we wanted to study the characteristics of a proteasomal inhibitor, lactacystin, as a PD model on young and adult mice. To study this, we performed stereotactic microinjection of lactacystin above the substantia nigra pars compacta in young (2 month old) and adult (12-14 month old) C57Bl/6 mice. Motor behavior was measured by locomotor activity and cylinder tests, and the markers of neuroinflammation, aSyn, and dopaminergic system were assessed by immunohistochemistry and HPLC. We found that lactacystin induced a Parkinson's disease-like motor phenotype 5-7 days after injection in young and adult mice, and this was associated with widespread neuroinflammation based on glial cell markers, aSyn accumulation in substantia nigra, striatal dopamine decrease, and loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. When comparing young and adult mice, adult mice were more sensitive for dopaminergic degeneration after lactacystin injection that further supports the use of adult mice instead of young when modeling neurodegeneration. Our data showed that lactacystin is useful in modeling various aspects of Parkinson's disease, and taken together, our findings emphasize the role of a protein degradation deficit in Parkinson's disease pathology, and support the use of proteasomal inhibitors as Parkinson's disease models.
Collapse
|
46
|
Protein Phosphatase 2A: a Double-Faced Phosphatase of Cellular System and Its Role in Neurodegenerative Disorders. Mol Neurobiol 2017; 55:1750-1761. [PMID: 28224476 DOI: 10.1007/s12035-017-0444-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/03/2017] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A), a ubiquitously expressed serine/threonine phosphatase, is a vitally important phosphatase for the cellular system. Structurally, it is constituted of three different subunits, namely catalytic subunit (PP2Ac), structural scaffold subunit (PP2A-A), and regulatory subunit (PP2A-B). All subunits have various isoforms, and catalytic and scaffold subunits are ubiquitously expressed, whereas regulatory subunits are more specific to tissue and cell type. It is the numerous possibilities of PP2A holoenzyme assembly with varying isoform components that make it possess a dual nature of activator or the inhibitory character in different signaling pathways, namely neural developmental pathways, Akt/protein kinase B pathway, NF-kB pathway, MAPK pathway, apoptosis pathway, and cell cycle progression to name a few. Importantly, the expression of PP2A in the brain is highest among the serine phosphatases and is known to actively participate in the neural development process. However, the exact mechanism of action of PP2A is still debated and enunciating the holoenzyme components, especially the regulatory subunit of PP2A involved in regulating neural developmental process is still poorly understood. In this review, we try to throw some light on the involvement of various PP2A holoenzyme forms in the process of neurogenesis and progression of neurodegenerative diseases.
Collapse
|
47
|
Oueslati A. Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We Learned in the Last Decade? JOURNAL OF PARKINSONS DISEASE 2017; 6:39-51. [PMID: 27003784 PMCID: PMC4927808 DOI: 10.3233/jpd-160779] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormal accumulation of proteinaceous intraneuronal inclusions called Lewy bodies (LBs) is the neurpathological hallmark of Parkinson’s disease (PD) and related synucleinopathies. These inclusions are mainly constituted of a presynaptic protein, α-synuclein (α-syn). Over the past decade, growing amounts of studies reported an aberrant accumulation of phosphorylated α-syn at the residue S129 (pS129) in the brain of patients suffering from PD, as well as in transgenic animal models of synucleinopathies. Whereas only a small fraction of α-syn (<4%) is phosphorylated in healthy brains, a dramatic accumulation of pS129 (>90%) has been observed within LBs, suggesting that this post-translational modification may play an important role in the regulation of α-syn aggregation, LBs formation and neuronal degeneration. However, whether phosphorylation at S129 suppresses or enhances α-syn aggregation and toxicity in vivo remains a subject of active debate. The answer to this question has important implications for understanding the role of phosphorylation in the pathogenesis of synucleinopathies and determining if targeting kinases or phosphatases could be a viable therapeutic strategy for the treatment of these devastating neurological disorders. In the present review, we explore recent findings from in vitro, cell-based assays and in vivo studies describing the potential implications of pS129 in the regulation of α-syn physiological functions, as well as its implication in synucleinopathies pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Abid Oueslati
- Correspondence to: Abid Oueslati, Centre de Recherche du CHU de Québec-Université Laval, Axe Neuroscience et Départe-ment de Médecine Moléculaire de l’Université Laval, Québec G1V4G2, Canada. Tel.: +1 4185254444/Ext 49119; Fax: +1 4186542125; E-mail:
| |
Collapse
|
48
|
Yang W, Li X, Li X, Li X, Yu S. Neuronal hemoglobin in mitochondria is reduced by forming a complex with α-synuclein in aging monkey brains. Oncotarget 2016; 7:7441-54. [PMID: 26824991 PMCID: PMC4884930 DOI: 10.18632/oncotarget.7046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
Neuronal hemoglobin (nHb) plays a critical role in maintaining normal mitochondrial functioning in the brain. However, in aging and Parkinson's disease (PD) brains, mitochondrial nHb levels are greatly reduced in neurons that accumulate α-synuclein (α-syn), suggesting a link between the two proteins. In this study, we demonstrate that α-syn and Hb can form a complex in both brain tissue and peripheral red blood cells (RBCs) in aging cynomolgus monkeys. nHb-α-syn complex levels in the mitochondrial fraction of the striatum decreased with age; this was negatively correlated with levels in the cytoplasmic fraction and in RBCs and was accompanied by a reduction in mitochondrial free nHb. In contrast, no changes in nHb-α-syn complex formation or free nHb levels were detected in the cerebellum. In vitro studies using a cultured dopaminergic cell line showed that intracellular accumulation of α-syn caused an elevation in nHb-α-syn complex levels in both mitochondrial and cytoplasmic fractions as well as a reduction in mitochondrial free nHb. nHb overexpression increased free nHb levels in mitochondria, stabilized mitochondrial membrane potential, and reduced α-syn-induced apoptosis. The above results suggest that α-syn forms a complex with nHb in selected regions of the aging brain, thereby decreasing mitochondrial function and increasing the risk of PD.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory for Parkinson's Disease, Beijing, China
| | - Xuran Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory for Parkinson's Disease, Beijing, China
| | - Xin Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory for Parkinson's Disease, Beijing, China
| | - Xuying Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory for Parkinson's Disease, Beijing, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory for Parkinson's Disease, Beijing, China
| |
Collapse
|
49
|
Enoru JO, Yang B, Krishnamachari S, Villanueva E, DeMaio W, Watanyar A, Chinnasamy R, Arterburn JB, Perez RG. Preclinical Metabolism, Pharmacokinetics and In Vivo Analysis of New Blood-Brain-Barrier Penetrant Fingolimod Analogues: FTY720-C2 and FTY720-Mitoxy. PLoS One 2016; 11:e0162162. [PMID: 27611691 PMCID: PMC5017749 DOI: 10.1371/journal.pone.0162162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative aging disorder in which postmortem PD brain exhibits neuroinflammation, as well as synucleinopathy-associated protein phosphatase 2A (PP2A) enzymatic activity loss. Based on our translational research, we began evaluating the PD-repurposing-potential of an anti-inflammatory, neuroprotective, and PP2A stimulatory oral drug that is FDA-approved for multiple sclerosis, FTY720 (fingolimod, Gilenya®). We also designed two new FTY720 analogues, FTY720-C2 and FTY720-Mitoxy, with modifications that affect drug potency and mitochondrial localization, respectively. Herein, we describe the metabolic stability and metabolic profiling of FTY720-C2 and FTY720-Mitoxy in liver microsomes and hepatocytes. Using mouse, rat, dog, monkey, and human liver microsomes the intrinsic clearance of FTY720-C2 was 22.5, 79.5, 6.0, 20.2 and 18.3 μL/min/mg; and for FTY720-Mitoxy was 1.8, 7.8, 1.4, 135.0 and 17.5 μL/min/mg, respectively. In hepatocytes, both FTY720-C2 and FTY720-Mitoxy were metabolized from the octyl side chain, generating a series of carboxylic acids similar to the parent FTY720, but without phosphorylated metabolites. To assess absorption and distribution, we gave equivalent single intravenous (IV) or oral doses of FTY720-C2 or FTY720-Mitoxy to C57BL/6 mice, with two mice per time point evaluated. After IV delivery, both FTY720-C2 and FTY720-Mitoxy were rapidly detected in plasma and brain; and reached peak concentrations at the first sampling time points. After oral dosing, FTY720-C2 was present in plasma and brain, although FTY720-Mitoxy was not orally bioavailable. Brain-to-plasma ratio of both compounds increased time-dependently, suggesting a preferential partitioning to the brain. PP2A activity in mouse adrenal gland increased ~2-fold after FTY720-C2 or FTY720-Mitoxy, as compared to untreated controls. In summary, FTY720-C2 and FTY720-Mitoxy both (i) crossed the blood-brain-barrier; (ii) produced metabolites similar to FTY720, except without phosphorylated species that cause S1P1-mediated-immunosuppression; and (iii) stimulated in vivo PP2A activity, all of which encourage additional preclinical assessment.
Collapse
Affiliation(s)
- Julius O. Enoru
- In Vitro and Molecular Metabolism Laboratory, Ricerca Biosciences LLC, Concord, Ohio, United States of America
| | - Barbara Yang
- Department of Biomedical Sciences, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Sesha Krishnamachari
- Department of Biomedical Sciences, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Ernesto Villanueva
- Department of Biomedical Sciences, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - William DeMaio
- In Vitro and Molecular Metabolism Laboratory, Ricerca Biosciences LLC, Concord, Ohio, United States of America
| | - Adiba Watanyar
- In Vitro and Molecular Metabolism Laboratory, Ricerca Biosciences LLC, Concord, Ohio, United States of America
| | - Ramesh Chinnasamy
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Jeffrey B. Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Ruth G. Perez
- Department of Biomedical Sciences, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Vidal-Martínez G, Vargas-Medrano J, Gil-Tommee C, Medina D, Garza NT, Yang B, Segura-Ulate I, Dominguez SJ, Perez RG. FTY720/Fingolimod Reduces Synucleinopathy and Improves Gut Motility in A53T Mice: CONTRIBUTIONS OF PRO-BRAIN-DERIVED NEUROTROPHIC FACTOR (PRO-BDNF) AND MATURE BDNF. J Biol Chem 2016; 291:20811-21. [PMID: 27528608 PMCID: PMC5034069 DOI: 10.1074/jbc.m116.744029] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/06/2022] Open
Abstract
Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martínez
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Javier Vargas-Medrano
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Carolina Gil-Tommee
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - David Medina
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Nathan T Garza
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Barbara Yang
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Ismael Segura-Ulate
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Samantha J Dominguez
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Ruth G Perez
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| |
Collapse
|