1
|
Roohy F, Moghanibashi M, Tahmasebi S. Bioinformatic and experimental analyses of GATA3 and its regulatory miRNAs in breast Cancer. Discov Oncol 2024; 15:588. [PMID: 39448444 PMCID: PMC11502614 DOI: 10.1007/s12672-024-01479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND GATA binding protein 3 (GATA3) is a transcription factor that plays a critical role in the differentiation and function of luminal epithelial cells in the breast. MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression and their dysregulation has been implicated in cancer. The purpose of this study was to investigate the expression of GATA3 and its corresponding targeting miRNAs in breast cancer. MATERIALS AND METHODS In this study, we used bioinformatic tools, including the miRWalk database and RNA Hybrid online tool, to identify potential miRNAs that target the GATA3 mRNA. Then, we collected frozen tissue specimens from 67 breast cancer patients and 67 adjacent normal breast tissue samples and evaluated the expression levels of GATA3, hsa-miR-433-3p, and hsa-miR-144-3p using quantitative RT-PCR. RESULTS We found that hsa-miR-433-3p and hsa-miR-144-3p are potential miRNAs that target the GATA3 mRNA, and we found that both were significantly downregulated in breast cancer tissues relative to adjacent normal breast tissues (P < 0.0001). We also observed a significant upregulation of the GATA3 mRNA in breast cancer tissues (P < 0.0001). Additionally, we found that their dysregulation was associated with clinicopathological features such as invasive carcinoma and carcinoma in situ subtypes, tumor grade, estrogen receptor status, progesterone receptor status, and HER2 status. CONCLUSIONS Our study represents the first attempt to investigate the expression of GATA3 and its targeting miRNAs simultaneously in breast cancer. Our findings suggest that dysregulation of these genes may contribute to breast cancer development and progression.
Collapse
Affiliation(s)
- Fatemeh Roohy
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, P.O. Box: 73135-168, Iran.
| | - Sedigheh Tahmasebi
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Huang J, Guo J, Jia R. N6-Methyladenosine Methyltransferase Component KIAA1429 Is a Potential Target of Cancer Therapy. Biomolecules 2024; 14:1319. [PMID: 39456252 PMCID: PMC11506059 DOI: 10.3390/biom14101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotes, has a crucial impact on tumorigenesis. KIAA1429 is the key component of the m6A methyltransferase complex, in which KIAA1429 functions as a scaffold to bridge the catalytic core proteins. KIAA1429 is often overexpressed in malignances, associated with patient prognosis, and required for tumorigenesis. KIAA1429 regulates the expression of a number of tumor-associated genes in an m6A -dependent manner, and thus, contributes to cell proliferation, migration, drug resistance, tumor formation and metastasis. This review focuses on recent progress in the understanding of roles and mechanisms of KIAA1429 in cancers, and offers ideas for potential anti-cancer therapeutic methods by targeting KIAA1429.
Collapse
Affiliation(s)
- Junjun Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.H.); (J.G.)
| |
Collapse
|
3
|
Qian T, Bai F, Zhang S, Xu Y, Wang Y, Yuan S, Liu X, Du Y, Peng B, Zhu WG, Xu X, Pei XH. USP11 deubiquitinates E-cadherin and maintains the luminal fate of mammary tumor cells to suppress breast cancer. J Biol Chem 2024; 300:107768. [PMID: 39270819 PMCID: PMC11497446 DOI: 10.1016/j.jbc.2024.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Basal-like breast cancer may originate from luminal epithelial or cancerous cells. Inadequately repaired DNA damage impairs luminal differentiation and promotes aberrant luminal to basal trans-differentiation in mammary epithelial cells (MECs). Ubiquitin-specific peptidase 11 (USP11), a deubiquitinase, plays a critical role in DNA damage repair. The role of USP11 in controlling mammary cell differentiation and tumorigenesis remains poorly understood. We generated Usp11 knockout mice and breast cancer cell lines expressing wild-type (WT) and mutant forms of USP11. By using these mutant mice, cell lines, and human USP11-deficient and -proficient breast cancer tissues, we tested how USP11 controls mammary cell fate. We generated Usp11 knock-out mice and found that deletion of Usp11 reduced the expression of E-cadherin and promoted DNA damage in MECs. Overexpression of WT USP11, but not a deubiquitinase-inactive mutant form of USP11, promoted luminal differentiation, enhanced DNA damage repair, and suppressed tumorigenesis in mice. Mechanistically, we found that USP11 enhanced the protein expression of E-cadherin dependent on its deubiquitinase activity and that USP11 deubiquitinated E-cadherin at K738. We discovered that USP11 is bound to E-cadherin through its C-terminal region. In human breast cancers, expression of USP11 was positively correlated with that of E-cadherin, and high USP11 predicted better recurrence-free survival. Our findings provide compelling genetic and biochemical evidence that USP11 not only promotes DNA damage repair but also deubiquitinates E-cadherin and maintains the luminal feature of mammary tumor cells, thereby suppressing luminal breast cancer.
Collapse
Affiliation(s)
- Tao Qian
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Department of Pathology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Shiwen Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuping Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuchan Wang
- Gansu Dian Medical Laboratory, Lanzhou, China
| | - Shuping Yuan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yaru Du
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Sandström J, Bomanson J, Pérez-Tenorio G, Jönsson C, Nordenskjöld B, Fornander T, Lindström LS, Stål O. GATA3 and markers of epithelial-mesenchymal transition predict long-term benefit from tamoxifen in ER-positive breast cancer. NPJ Breast Cancer 2024; 10:78. [PMID: 39242600 PMCID: PMC11379893 DOI: 10.1038/s41523-024-00688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
GATA binding protein 3 (GATA3) is essential for normal development of the mammary gland and associated with ER-positive breast cancer. Loss of GATA3 has been associated with epithelial-mesenchymal transition (EMT) in experimental studies. We investigated tumoral GATA3 in a cohort of postmenopausal patients with lymph-node negative breast cancer, randomized to adjuvant tamoxifen or control. Nuclear GATA3 expression was assessed with immunohistochemistry and GATA3 gene expression with Agilent microarrays. High GATA3 nuclear expression was associated with a lower rate of distant recurrence in ER-positive breast cancer (HR = 0.60, 95% CI 0.39-0.93). Low gene expression of GATA3 was associated with limited long-term benefit from adjuvant tamoxifen (interaction: p = 0.033). GATA3 gene expression was associated with the epithelial markers CDH1 (E-cadherin) and FOXA1, whereas negatively associated with several mesenchymal markers. Low expression of CDH1 was associated with marginal tamoxifen benefit (HR = 0.80 (0.43-1.49)), whereas patients with higher expression showed a significant benefit (HR = 0.33 (0.20-0.55), interaction: p = 0.029). In ER-positive breast cancer, diminished expression of GATA3 is associated with markers of EMT and poor long-term benefit from tamoxifen.
Collapse
Affiliation(s)
- Josefine Sandström
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Jens Bomanson
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Carolin Jönsson
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Linda S Lindström
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Olle Stål
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden.
| |
Collapse
|
5
|
Saotome M, Poduval D, Grimm SA, Nagornyuk A, Gunarathna S, Shimbo T, Wade P, Takaku M. Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4. Nucleic Acids Res 2024; 52:3607-3622. [PMID: 38281186 PMCID: PMC11039999 DOI: 10.1093/nar/gkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor-DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.
Collapse
Affiliation(s)
- Mika Saotome
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Deepak B Poduval
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sara A Grimm
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Aerica Nagornyuk
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sakuntha Gunarathna
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Takashi Shimbo
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Motoki Takaku
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
6
|
Wang X, Bai F, Liu X, Peng B, Xu X, Zhang H, Fu L, Zhu WG, Wang B, Pei XH. GATA3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in breast cancer. BMC Biol 2024; 22:85. [PMID: 38627785 PMCID: PMC11020915 DOI: 10.1186/s12915-024-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.
Collapse
Affiliation(s)
- Xuejie Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen, 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Fu
- Department of Pharmacology, Shenzhen University Medical School, Shenzhen, 518039, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China.
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
- Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
7
|
Yadollahi Farsani M, Amini Farsani Z, Teimuri S, Kolahdouzan M, Eshraghi Samani R, Teimori H. Deregulation of miR-1245b-5p and miR-92a-3p and their potential target gene, GATA3, in epithelial-mesenchymal transition pathway in breast cancer. Cancer Rep (Hoboken) 2024; 7:e1955. [PMID: 38173189 PMCID: PMC10849934 DOI: 10.1002/cnr2.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small molecules that have prominent roles in tumor development and metastasis and can be used for diagnostic and therapeutic purposes. This study evaluated the expression of miR-92a-3p and miR-1245b-5p and their potential target gene, GATA3 in patients with breast cancer (BC). MATERIALS AND METHODS In the search for BC-related microRNAs, miR-124b-5p and miR-92a-3p were selected using Medline through PubMed, miR2disease, miRcancer and miRTarBase. Moreover, target gene GATA3 and their possible interaction in the regulating epithelial-mesenchymal transition (EMT) and invasion was evaluated using in silico tools including miRTarBase, TargetScan, STRING-db, and Cytoscape. The expression level of miR-92a-3p, miR1245b-5p, and GATA3 were assessed on extracted RNAs of tumor and nontumor tissues from 36 patients with BC using qPCR. Additionally, clinical-pathologic characteristics, such as tumor grade, tumor stage, lymph node were taken into consideration and the diagnostic power of these miRNAs and GATA3 was evaluated using the ROC curve analysis. RESULTS In silico evaluation of miR-92a-3p and miR-1245b-5p supports their potential association with EMT and invasion signaling pathways in BC pathogenesis. Comparing tumor tissues to nontumor tissues, we found a significant downregulation of miR-1245b-5p and miR-92a-3p and upregulation of GATA3. Patients with BC who had decreased miR-92a-3p expression also had higher rates of advanced stage/grade and ER expression, whereas decreased miR-1245b-5p expression was only linked to ER expression and was not associated with lymph node metastasis. The AUC of miR-1245b-5p, miR-92a-3p, and GATA3 using ROC curve was determined 0.6449 (p = .0239), 0.5980 (p = .1526), and 0.7415 (p < .0001), respectively, which showed a significant diagnostic accuracy of miR-1245b-5p and GATA3 between the BC patients and healthy individuals. CONCLUSION MiR-1245b-5p, miR-92a-3p, and GATA3 gene contribute to BC pathogenesis and they may be having potential regulatory roles in signaling pathways involved in invasion and EMT pathways in BC pathogenesis, as a result of these findings. More research is needed to determine the regulatory mechanisms that they control.
Collapse
Affiliation(s)
- Mahtab Yadollahi Farsani
- Department of Medical Biotechnology, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Zeinab Amini Farsani
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | | | - Mohsen Kolahdouzan
- Department of Surgery, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Reza Eshraghi Samani
- Department of Surgery, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
8
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168335. [PMID: 37939965 DOI: 10.1016/j.scitotenv.2023.168335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
We investigated the presence of aluminium (Al) in human colon cancer samples and its potential association with biological processes involved in cancer progression, such as epithelial to mesenchymal transition (EMT) and cell death. 25 consecutive colon samples were collected from patients undergoing colonic resection. Both neoplastic and normal mucosa were collected from each patient and subjected to histological, ultrastructural and immunohistochemical analyses. Moreover, colon samples from two Al-positive patients underwent multi-omic analyses, including whole genome sequencing and RNA sequencing (RNAseq). Morin staining, used to identify in situ aluminium bioaccumulation, showed the presence of Al in tumor areas of 24 % of patients. Transmission electron microscopy and energy-dispersive X-ray microanalysis confirmed the presence of Al specifically in intracytoplasmic electrondense nanodeposits adjacent to mitochondria of colon cancer cells. Immunohistochemical analyses for vimentin and nuclear β-catenin were performed to highlight the occurrence of the EMT phenomenon in association to Al bioaccumulation. Al-positive samples showed a significant increase in both the number of vimentin-positive and nuclear β-catenin-positive cancer cells compared to Al-negative samples. Moreover, Al-positive samples exhibited a significant decrease in the number of apoptotic cells, as well as the expression of the anti-apoptotic molecule BCL-2. Multi-omic analyses revealed a higher tumor mutational burden (TMB) in Al-positive colon cancers (n = 2) compared to a control cohort (n = 100). Additionally, somatic mutations in genes associated with EMT (GATA3) and apoptosis (TP53) were observed in Al-positive colon cancers. In conclusion, this study provides the first evidence of Al bioaccumulation in colon cancer and its potential role in modulating molecular pathways involved in cancer progression, such as EMT and apoptosis. Understanding the molecular mechanisms underlying Al toxicity might contribute to improve strategies for prevention, early detection, and targeted therapies for the management of colon cancer patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
9
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
10
|
Popov H, Ghenev P, Stoyanov GS. Role of GATA3 in Early-Stage Urothelial Bladder Carcinoma Local Recurrence. Cureus 2023; 15:e44998. [PMID: 37829946 PMCID: PMC10565122 DOI: 10.7759/cureus.44998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
Background One of the most characteristic features of non-invasive urothelial carcinoma (UC) is its high recurrence rate. Guanine-adenine-thymine-adenine nucleotide sequence-binding protein 3 (GATA3), as a transcription factor, correlates with urothelial differentiation and has been reported with poor prognosis in high-grade UC and recurrence in breast malignancies. As such, we set out to study the specifics of GATA3 in non-invasive UC, emphasizing on prediction for recurrence. Methods The cohort comprised 163 patients, with a follow-up period of five years, including 109 pTa cases and 54 pT1 cases. Immunohistochemical expression of GATA3 was assessed using a histo score (H-score). Kaplan-Meier test was conducted for the time to recurrence, according to the level of expression of GATA3 and the indicators studied. Receiver operating characteristic (ROC) curve analysis was done to determine the role of accuracy and specificity of predictability of the indicators. Results Recurrence within the follow-up period was noted in 41.72% of cases. No recurrence relationship was established for age and gender. GATA3 expression showed a varying H-score. Using ROC curve analysis, a cut-off value of 155 divided UC expression levels into low and high, with a sensitivity of 72.7% and specificity of 78.7% (area under the curve=0.800, 95% confidence interval: 0.696-0.904, p<0.001), further showing an association between high levels of nuclear expression and risk of local recurrence (p<0.0001). Conclusion Herein we have described the sensitivity of high GATA3 expression in non-invasive UC of the urinary bladder and its relation to local recurrence, independent of gender, age, tumor differentiation, and stage.
Collapse
Affiliation(s)
- Hristo Popov
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Peter Ghenev
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | | |
Collapse
|
11
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
12
|
Vergara-Gerónimo CA, León-Del-Rio A, Rodríguez-Dorantes M, Camacho-Carranza R, Ostrosky-Wegman P, Salazar AM. Arsenic reduces the GATA3 expression associated with an increase in proliferation and migration of mammary epithelial cell line MCF-10A. Toxicol Appl Pharmacol 2023; 472:116573. [PMID: 37269932 DOI: 10.1016/j.taap.2023.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Arsenic is associated with the development of breast cancer. However, the molecular mechanisms of arsenic induction of breast cancer are not fully defined. Interaction with zinc finger (ZnF) motifs in proteins is one of the proposed mechanisms of arsenic toxicity. GATA3 is a transcription factor that regulates the transcription of genes associated with cell proliferation, cell differentiation and the epithelial-mesenchymal transition (EMT) in mammary luminal cells. Given that GATA3 possesses two ZnF motifs essential for the function of this protein and that arsenic could alter the function of GATA3 through interaction with these structural motifs, we evaluated the effect of sodium arsenite (NaAsO2) on GATA3 function and its relevance in the development of arsenic-induced breast cancer. Breast cell lines derived from normal mammary epithelium (MCF-10A), hormone receptor-positive and hormone receptor negative breast cancer cells (T-47D and MDA-MB-453, respectively) were used. We observed a reduction on GATA3 protein levels at non-cytotoxic concentrations of NaAsO2 in MCF-10A and T-47D, but not in MDA-MB-453 cells. This reduction was associated with an increase in cell proliferation and cell migration in MCF-10A, but not in T-47D or MDA-MB-453 cells. The evaluation of cell proliferation and EMT markers indicate that the reduction on GATA3 protein levels by arsenic, disrupts the function of this transcription factor. Our data indicate that GATA3 is a tumor suppressor in the normal mammary epithelium and that arsenic could act as an initiator of breast cancer by disrupting the function of GATA3.
Collapse
Affiliation(s)
- Cristian A Vergara-Gerónimo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Alfonso León-Del-Rio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | | | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Liu X, Bai F, Wang Y, Wang C, Chan HL, Zheng C, Fang J, Zhu WG, Pei XH. Loss of function of GATA3 regulates FRA1 and c-FOS to activate EMT and promote mammary tumorigenesis and metastasis. Cell Death Dis 2023; 14:370. [PMID: 37353480 PMCID: PMC10290069 DOI: 10.1038/s41419-023-05888-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Basal-like breast cancers (BLBCs) are among the most aggressive cancers, partly due to their enrichment of cancer stem cells (CSCs). Breast CSCs can be generated from luminal-type cancer cells via epithelial-mesenchymal transition (EMT). GATA3 maintains luminal cell fate, and its expression is lost or reduced in BLBCs. However, deletion of Gata3 in mice or cells results in early lethality or proliferative defects. It is unknown how loss-of-function of GATA3 regulates EMT and CSCs in breast cancer. We report here that haploid loss of Gata3 in mice lacking p18Ink4c, a cell cycle inhibitor, up-regulates Fra1, an AP-1 family protein that promotes mesenchymal traits, and downregulates c-Fos, another AP-1 family protein that maintains epithelial fate, leading to activation of EMT and promotion of mammary tumor initiation and metastasis. Depletion of Gata3 in luminal tumor cells similarly regulates Fra1 and c-Fos in activation of EMT. GATA3 binds to FOSL1 (encoding FRA1) and FOS (encoding c-FOS) loci to repress FOSL1 and activate FOS transcription. Deletion of Fra1 or reconstitution of Gata3, but not reconstitution of c-Fos, in Gata3 deficient tumor cells inhibits EMT, preventing tumorigenesis and/or metastasis. In human breast cancers, GATA3 expression is negatively correlated with FRA1 and positively correlated with c-FOS. Low GATA3 and FOS, but high FOSL1, are characteristics of BLBCs. Together, these data provide the first genetic evidence indicating that loss of function of GATA3 in mammary tumor cells activates FOSL1 to promote mesenchymal traits and CSC function, while concurrently repressing FOS to lose epithelial features. We demonstrate that FRA1 is required for the activation of EMT in GATA3 deficient tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
| | - Yuchan Wang
- Gansu Dian Medical Laboratory, Lanzhou, 730000, China
| | - Chuying Wang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ho Lam Chan
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Chenglong Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jian Fang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
14
|
DiDonna SC, Nagornyuk A, Adhikari N, Takada M, Takaku M. P4HTM: A Novel Downstream Target of GATA3 in Breast Cancer. RESEARCH SQUARE 2023:rs.3.rs-2622989. [PMID: 36909571 PMCID: PMC10002838 DOI: 10.21203/rs.3.rs-2622989/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Breast cancer continues to be a major cause of death among women. The GATA3 gene is often overexpressed in breast cancer and is widely used to support a diagnosis. However, lower expression of GATA3 has been linked to poorer prognosis along with frequent gene mutations. Therefore, the role of GATA3 in breast cancer appears to be context specific. This study aims to identify a new downstream target of GATA3 to better understand its regulatory network. Clinical data analysis identified the prolyl 4-hydroxylase transmembrane protein (P4HTM) as one of the most highly co-expressed genes with GATA3. Immunohistochemical staining of breast tumors confirms co-expression between GATA3 and P4HTM at the protein level. Similar to GATA3, P4HTM expression levels are linked to patient prognosis, with lower levels indicating poorer survival. Genomics data found that GATA3 binds to the P4HTM locus, and that ectopic expression of GATA3 in basal breast cancer cells increases the P4HTM transcript level. These results collectively suggest that P4HTM is a novel downstream target of GATA3 in breast cancer and is involved in tumor progression.
Collapse
Affiliation(s)
- Sarah C DiDonna
- University of North Dakota School of Medicine and Health Sciences
| | - Aerica Nagornyuk
- University of North Dakota School of Medicine and Health Sciences
| | - Neeta Adhikari
- University of North Dakota School of Medicine and Health Sciences
| | | | - Motoki Takaku
- University of North Dakota School of Medicine and Health Sciences
| |
Collapse
|
15
|
Choi J, Choi JH, Lee HW, Seo D, Lkhagvasuren G, Kim JW, Seo SB, Lee K, Lee KH. KPNA3 promotes epithelial-mesenchymal transition by regulating TGF-β and AKT signaling pathways in MDA-MB-231, a triple-negative breast cancer cell line. BMB Rep 2023; 56:120-125. [PMID: 36593106 PMCID: PMC9978358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 01/04/2023] Open
Abstract
Karyopherin-α3 (KPNA3), a karyopherin- α isoform, is intimately associated with metastatic progression via epithelial-mesenchymal transition (EMT). However, the molecular mechanism underlying how KPNA3 acts as an EMT inducer remains to be elucidated. In this report, we identified that KPNA3 was significantly upregulated in cancer cells, particularly in triple-negative breast cancer, and its knockdown resulted in the suppression of cell proliferation and metastasis. The comprehensive transcriptome analysis from KPNA3 knockdown cells indicated that KPNA3 is involved in the regulation of numerous EMTrelated genes, including the downregulation of GATA3 and E-cadherin and the up-regulation of HAS2. Moreover, it was found that KPNA3 EMT-mediated metastasis can be achieved by TGF-β or AKT signaling pathways; this suggests that the novel independent signaling pathways KPNA3-TGF-β-GATA3-HAS2/E-cadherin and KPNA3-AKT-HAS2/E-cadherin are involved in the EMT-mediated progress of TNBC MDA-MB-231 cells. These findings provide new insights into the divergent EMT inducibility of KPNA3 according to cell and cancer type. [BMB Reports 2023; 56(2): 120-125].
Collapse
Affiliation(s)
- Jaesung Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea, Seoul 06974, Korea
| | - Jee-Hye Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea, Seoul 06974, Korea
| | - Ho Woon Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea, Seoul 06974, Korea
| | - Dongbeom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea, Seoul 06974, Korea
| | - Gavaachimed Lkhagvasuren
- Department of Science of Cultural Heritage, Graduate School, Chung-Ang University, Seoul 06974, Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea, Seoul 06974, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea, Seoul 06974, Korea
| | - Kangseok Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea, Seoul 06974, Korea
| | - Kwang-Ho Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea, Seoul 06974, Korea,Department of Science of Cultural Heritage, Graduate School, Chung-Ang University, Seoul 06974, Korea,Corresponding author. Tel: +82-2-820-5213; Fax: +82-2-825-5206; E-mail:
| |
Collapse
|
16
|
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med 2022; 88:101086. [PMID: 35305807 DOI: 10.1016/j.mam.2022.101086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/31/2022]
Abstract
Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.
Collapse
Affiliation(s)
- Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| | - Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| |
Collapse
|
17
|
Linker SB, Narvaiza I, Hsu JY, Wang M, Qiu F, Mendes APD, Oefner R, Kottilil K, Sharma A, Randolph-Moore L, Mejia E, Santos R, Marchetto MC, Gage FH. Human-specific regulation of neural maturation identified by cross-primate transcriptomics. Curr Biol 2022; 32:4797-4807.e5. [PMID: 36228612 DOI: 10.1016/j.cub.2022.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Unique aspects of human behavior are often attributed to differences in the relative size and organization of the human brain: these structural aspects originate during early development. Recent studies indicate that human neurodevelopment is considerably slower than that in other nonhuman primates, a finding that is termed neoteny. One aspect of neoteny is the slow onset of action potentials. However, which molecular mechanisms play a role in this process remain unclear. To examine the evolutionary constraints on the rate of neuronal maturation, we have generated transcriptional data tracking five time points, from the neural progenitor state to 8-week-old neurons, in primates spanning the catarrhine lineage, including Macaca mulatta, Gorilla gorilla, Pan paniscus, Pan troglodytes, and Homo sapiens. Despite finding an overall similarity of many transcriptional signatures, species-specific and clade-specific distinctions were observed. Among the genes that exhibited human-specific regulation, we identified a key pioneer transcription factor, GATA3, that was uniquely upregulated in humans during the neuronal maturation process. We further examined the regulatory nature of GATA3 in human cells and observed that downregulation quickened the speed of developing spontaneous action potentials, thereby modulating the human neotenic phenotype. These results provide evidence for the divergence of gene regulation as a key molecular mechanism underlying human neoteny.
Collapse
Affiliation(s)
- Sara B Linker
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Jonathan Y Hsu
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Meiyan Wang
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Fan Qiu
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Ana P D Mendes
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Ruth Oefner
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Kalyani Kottilil
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Amandeep Sharma
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Lynne Randolph-Moore
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Eunice Mejia
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Renata Santos
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, 102 rue de la Santé, 75014 Paris, France; Institut des Sciences Biologiques, CNRS, 16 rue Pierre et Marie Curie, 75005 Paris, France
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Lee JH, Massagué J. TGF-β in Developmental and Fibrogenic EMTs. Semin Cancer Biol 2022; 86:136-145. [PMID: 36183999 PMCID: PMC10155902 DOI: 10.1016/j.semcancer.2022.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
TGF-β plays a prominent role as an inducer of epithelial-mesenchymal transitions (EMTs) during development and wound healing and in disease conditions such as fibrosis and cancer. During these processes EMT occurs together with changes in cell proliferation, differentiation, communication, and extracellular matrix remodeling that are orchestrated by multiple signaling inputs besides TGF-β. Chief among these inputs is RAS-MAPK signaling, which is frequently required for EMT induction by TGF-β. Recent work elucidated the molecular basis for the cooperation between the TGF-β-SMAD and RAS-MAPK pathways in the induction of EMT in embryonic, adult and carcinoma epithelial cells. These studies also provided direct mechanistic links between EMT and progenitor cell differentiation during gastrulation or intra-tumoral fibrosis during cancer metastasis. These insights illuminate the nature of TGF-β driven EMTs as part of broader processes during development, fibrogenesis and metastasis.
Collapse
Affiliation(s)
- Jun Ho Lee
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
20
|
Upregulated GATA3/miR205-5p Axis Inhibits MFNG Transcription and Reduces the Malignancy of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14133057. [PMID: 35804829 PMCID: PMC9264964 DOI: 10.3390/cancers14133057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Triple-negative cancer (TNBC) is a deadly disease that presents a potential health threat to women worldwide. It is the most aggressive and presents a poor prognosis among all breast cancer subgroups. We previously demonstrated that the elevated expression of manic fringe (MFNG) plays a pivotal role in breast cancer. However, the mechanism through which MFNG is regulated remains obscure. The study presented here set out to determine the mechanism by which MFNG expression is regulated in TNBC. Our findings revealed that GATA3 and miR-205-p cooperatively block the transcription of MFNG leading to the inhibition of cell migration and tumor growth in vitro and in vivo. Our study uncovers a novel GATA3/miR-205-p/MFNG feed-forward loop and miR205-5p could be adopted as a potential therapeutic strategy of TNBC. Abstract Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast carcinomas and has the worst prognosis of all breast cancer subtypes due to the lack of an effective target. Therefore, understanding the molecular mechanism underpinning TNBC progression could explore a new target for therapy. While the Notch pathway is critical in the development process, its dysregulation leads to TNBC initiation. Previously, we found that manic fringe (MFNG) activates the Notch signaling and induces breast cancer progression. However, the underlying molecular mechanism of MFNG upstream remains unknown. In this study, we explore the regulatory mechanisms of MFNG in TNBC. We show that the increased expression of MFNG in TNBC is associated with poor clinical prognosis and significantly promotes cell growth and migration, as well as Notch signaling activation. The mechanistic studies reveal that MFNG is a direct target of GATA3 and miR205-5p and demonstrate that GATA3 and miR205-5p overexpression attenuate MFNG oncogenic effects, while GATA3 knockdown mimics MFNG phenotype to promote TNBC progression. Moreover, we illustrate that GATA3 is required for miR205-5p activation to inhibit MFNG transcription by binding to the 3′ UTR region of its mRNA, which forms the GATA3/miR205-5p/MFNG feed-forward loop. Additionally, our in vivo data show that the miR205-5p mimic combined with polyetherimide-black phosphorus (PEI-BP) nanoparticle remarkably inhibits the growth of TNBC-derived tumors which lack GATA3 expression. Collectively, our study uncovers a novel GATA3/miR205-5p/MFNG feed-forward loop as a pathway that could be a potential therapeutic target for TNBC.
Collapse
|
21
|
SOX4-mediated FBW7 transcriptional upregulation confers Tamoxifen resistance in ER+ breast cancers via GATA3 downregulation. Life Sci 2022; 303:120682. [PMID: 35662647 DOI: 10.1016/j.lfs.2022.120682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022]
Abstract
AIM Tamoxifen-mediated endocrine therapy has been standard treatment for ER+ breast cancers; however, majority of them acquire resistance leading to disease relapse. Although numerous substrates of E3 ligase FBW7 are known, only a handful of factors that regulate FBW7 expression and function are reported. In particular, there remains a lack of in-depth understanding of FBW7 transcriptional regulation. MATERIALS AND METHODS Luciferase reporter assay was performed after cloning full length and truncated FBW7 promoters followed by Chromatin immunoprecipitation assay to validate binding of SOX4 on FBW7 promoter. Transcriptional regulation of FBW7 by SOX4 and their biological consequences with respect to ER+ breast cancer was then evaluated using immunoblotting and other cell based assays. KEY FINDINGS SOX4 positively regulates FBW7 at transcriptional level by binding to three putative SOX4 biding sites within 3.1 kb long FBW7 promoter. Analysis of publicly available RNAseq datasets also showed a positive correlation between SOX4 and FBW7 mRNA in cancer cell lines and patient samples. qPCR and Immunoblotting confirmed that transiently or stably expressed SOX4 induced both endogenous FBW7 mRNA and protein levels. Our findings further demonstrated that increased levels of SOX4 and FBW7 in MCF7 mammospheres promoted cancer stemness and tumor cell dormancy. We further showed that both MCF7 mammospheres and MCFTAMR cells had elevated SOX4 levels which apparently enhanced FBW7 to potentiate GATA3 degradation leading to enhanced stemness, tumor dormancy and Tamoxifen resistance in MCF7TAMR as well as patients with ER+ breast cancers. SIGNIFICANCE Targeting SOX4-FBW7-GATA3 axis may overcome tamoxifen resistance in ER+ breast cancers.
Collapse
|
22
|
Bianco G, Coto-Llerena M, Gallon J, Kancherla V, Taha-Mehlitz S, Marinucci M, Konantz M, Srivatsa S, Montazeri H, Panebianco F, Tirunagaru VG, De Menna M, Paradiso V, Ercan C, Dahmani A, Montaudon E, Beerenwinkel N, Kruithof-de Julio M, Terracciano LM, Lengerke C, Jeselsohn RM, Doebele RC, Bidard FC, Marangoni E, Ng CKY, Piscuoglio S. GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers. Commun Biol 2022; 5:373. [PMID: 35440675 PMCID: PMC9018745 DOI: 10.1038/s42003-022-03296-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.
Collapse
Affiliation(s)
- Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Venkatesh Kancherla
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mattia Marinucci
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hesam Montazeri
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Federica Panebianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Marta De Menna
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland
| | - Viola Paradiso
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Luigi M Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Rinath M Jeselsohn
- Division of Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Charlotte K Y Ng
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
23
|
Hara N, Sawada Y. Epigenetics of Cutaneous T-Cell Lymphomas. Int J Mol Sci 2022; 23:ijms23073538. [PMID: 35408897 PMCID: PMC8998216 DOI: 10.3390/ijms23073538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic modifications rarely occur in isolation (as single “epigenetic modifications”). They usually appear together and form a network to control the epigenetic system. Cutaneous malignancies are usually affected by epigenetic changes. However, there is limited knowledge regarding the epigenetic changes associated with cutaneous lymphomas. In this review, we focused on cutaneous T-cell lymphomas such as mycosis fungoides, Sézary syndrome, and anaplastic large cell lymphoma. With regard to epigenetic changes, we summarize the detailed chemical modifications categorized into DNA methylation and histone acetylation and methylation. We also summarize the epigenetic modifications and characteristics of the drug for cutaneous T-cell lymphoma (CTCL). Furthermore, we discuss current research on epigenetic-targeted therapy against cutaneous T-cell lymphomas. Although the current method of treatment with histone deacetylase inhibitors does not exhibit sufficient therapeutic benefits in all cases of CTCL, epigenetic-targeted combination therapy might overcome this limitation for patients with CTCL.
Collapse
|
24
|
Bai F, Zheng C, Liu X, Chan HL, Liu S, Ma J, Ren S, Zhu WG, Pei XH. Loss of function of GATA3 induces basal-like mammary tumors. Am J Cancer Res 2022; 12:720-733. [PMID: 34976209 PMCID: PMC8692904 DOI: 10.7150/thno.65796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: GATA3 is a transcription factor essential for mammary luminal epithelial cell differentiation. Expression of GATA3 is absent or significantly reduced in basal-like breast cancers. Gata3 loss-of-function impairs cell proliferation, making it difficult to investigate the role of GATA3 deficiency in vivo. We previously demonstrated that CDK inhibitor p18INK4c (p18) is a downstream target of GATA3 and restrains mammary epithelial cell proliferation and tumorigenesis. Whether and how loss-of-function of GATA3 results in basal-like breast cancers remains elusive. Methods: We generated mutant mouse strains with heterozygous germline deletion of Gata3 in p18 deficient backgrounds and developed a Gata3 depleted mammary tumor model system to determine the role of Gata3 loss in controlling cell proliferation and aberrant differentiation in mammary tumor development and progression. Results: Haploid loss of Gata3 reduced mammary epithelial cell proliferation with induction of p18, impaired luminal differentiation, and promoted basal differentiation in mammary glands. p18 deficiency induced luminal type mammary tumors and rescued the proliferative defect caused by haploid loss of Gata3. Haploid loss of Gata3 accelerated p18 deficient mammary tumor development and changed the properties of these tumors, resulting in their malignant and luminal-to-basal transformation. Expression of Gata3 negatively correlated with basal differentiation markers in MMTV-PyMT mammary tumor cells. Depletion of Gata3 in luminal tumor cells also reduced cell proliferation with induction of p18 and promoted basal differentiation. We confirmed that expression of GATA3 and basal markers are inversely correlated in human basal-like breast cancers. Conclusions: This study provides the first genetic evidence demonstrating that loss-of-function of GATA3 directly induces basal-like breast cancer. Our finding suggests that basal-like breast cancer may also originate from luminal type cancer.
Collapse
|
25
|
Segura-Bautista D, Maya-Nunez G, Aguilar-Rojas A, Huerta-Reyes M, Pérez-Solis MA. Contribution of Stemness-linked Transcription Regulators to the Progression of Breast Cancer. Curr Mol Med 2021; 22:766-778. [PMID: 34819003 DOI: 10.2174/1566524021666211124154803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Although there are currently several factors that allow measuring the risk of having breast cancer or predicting its progression, the underlying causes of this malignancy have remained unknown. Several molecular studies have described some mechanisms involved in the progress of breast cancer. These have helped in identifying new targets with therapeutic potential. However, despite the therapeutic strategies implemented from the advances achieved in breast cancer research, a large percentage of patients with breast cancer die due to the spread of malignant cells to other tissues or organs, such as bones and lungs. Therefore, determining the processes that promote the migration of malignant cells remains one of the greatest challenges for oncological research. Several research groups have reported evidence on how the dedifferentiation of tumor cells leads to the acquisition of stemness characteristics, such as invasion, metastasis, the capability to evade the immunological response, and resistance to several cytotoxic drugs. These phenotypic changes have been associated with a complex reprogramming of gene expression in tumor cells during the Epithelial-Mesenchymal Transition (EMT). Considering the determining role that the transcriptional regulation plays in the expression of the specific characteristics and attributes of breast cancer during ETM, in the present work, we reviewed and analyzed several transcriptional mechanisms that support the mesenchymal phenotype. In the same way, we established the importance of transcription factors with a therapeutic perspective in the progress of breast cancer.
Collapse
Affiliation(s)
- David Segura-Bautista
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Guadalupe Maya-Nunez
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Arturo Aguilar-Rojas
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Maira Huerta-Reyes
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Marco Allan Pérez-Solis
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| |
Collapse
|
26
|
Elucidated tumorigenic role of MAML1 and TWIST1 in gastric cancer is associated with Helicobacter pylori infection. Microb Pathog 2021; 162:105304. [PMID: 34818576 DOI: 10.1016/j.micpath.2021.105304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) has a fundamental role in tumor initiation, progression, and metastasis. Helicobacter pylori (HP) induces EMT and thus causes gastric cancer (GC) by deregulating multiple signaling pathways involved in EMT. TWIST1 and MAML1 have been confirmed to be critical inducers of EMT via diverse signaling pathways such as Notch signaling. This study aimed to investigate for the first time possible associations between TWIST1/MAML1 mRNA expression levels, HP infection, and clinicopathological characteristics in GC patients. METHOD TWIST1 and MAML1 mRNA expression levels were evaluated in tumoral and adjacent normal tissues in 73 GC patients using the quantitative reverse transcription PCR (RT-qPCR) method. PCR technique was also applied to examine the infection with HP in GC samples. RESULTS Upregulation of TWIST1 and MAML1 expression was observed in 35 (48%) and 34 (46.6%) of 73 tumor samples, respectively. Co-overexpression of these genes was found in 26 of 73 (35.6%) tumor samples; meanwhile, there was a significant positive correlation between MAML1 and TWIST1 mRNA expression levels (P < 0.001). MAML1 overexpression exhibited meaningful associations with advanced tumor stages (P = 0.006) and nodal metastases (P ˂ 0.001). 34 of 73 (46.6%) tumors tested positive for HP, and meanwhile, MAML1 expression was positively related with T (P = 0.05) and grade (P = 0.0001) in these HP-positive samples. Increased TWIST1 expression was correlated with patient sex (P = 0.035) and advanced tumor grade (P = 0.017) in HP-infected tumors. Furthermore, TWIST1 and MAML1 expression levels were inversely linked with histologic grade in HP-negative tumor samples (P = 0.021 and P = 0.048, respectively). CONCLUSION We propose TWIST1 and MAML1 as potential biomarkers of advanced-stage GC that determine the characteristics and aggressiveness of the disease. Based on accumulating evidence and our findings, they can be introduced as promising therapeutic targets to modify functional abnormalities in cells that promote GC progression. Moreover, HP may enhance GC growth and metastasis by disrupting TWIS1/MAML1 expression patterns and related pathways.
Collapse
|
27
|
Porras L, Ismail H, Mader S. Positive Regulation of Estrogen Receptor Alpha in Breast Tumorigenesis. Cells 2021; 10:cells10112966. [PMID: 34831189 PMCID: PMC8616513 DOI: 10.3390/cells10112966] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα, NR3A1) contributes through its expression in different tissues to a spectrum of physiological processes, including reproductive system development and physiology, bone mass maintenance, as well as cardiovascular and central nervous system functions. It is also one of the main drivers of tumorigenesis in breast and uterine cancer and can be targeted by several types of hormonal therapies. ERα is expressed in a subset of luminal cells corresponding to less than 10% of normal mammary epithelial cells and in over 70% of breast tumors (ER+ tumors), but the basis for its selective expression in normal or cancer tissues remains incompletely understood. The mapping of alternative promoters and regulatory elements has delineated the complex genomic structure of the ESR1 gene and shed light on the mechanistic basis for the tissue-specific regulation of ESR1 expression. However, much remains to be uncovered to better understand how ESR1 expression is regulated in breast cancer. This review recapitulates the current body of knowledge on the structure of the ESR1 gene and the complex mechanisms controlling its expression in breast tumors. In particular, we discuss the impact of genetic alterations, chromatin modifications, and enhanced expression of other luminal transcription regulators on ESR1 expression in tumor cells.
Collapse
|
28
|
Bai F, Zhang LH, Liu X, Wang C, Zheng C, Sun J, Li M, Zhu WG, Pei XH. GATA3 functions downstream of BRCA1 to suppress EMT in breast cancer. Theranostics 2021; 11:8218-8233. [PMID: 34373738 PMCID: PMC8344017 DOI: 10.7150/thno.59280] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Purpose: Functional loss of BRCA1 is associated with poorly differentiated and metastatic breast cancers that are enriched with cancer stem cells (CSCs). CSCs can be generated from carcinoma cells through an epithelial-mesenchymal transition (EMT) program. We and others have previously demonstrated that BRCA1 suppresses EMT and regulates the expression of multiple EMT-related transcription factors. However, the downstream mediators of BRCA1 function in EMT suppression remain elusive. Methods: Depletion of BRCA1 or GATA3 activates p18INK4C , a cell cycle inhibitor which inhibits mammary epithelial cell proliferation. We have therefore created genetically engineered mice with Brca1 or Gata3 loss in addition to deletion of p18INK4C , to rescue proliferative defects caused by deficiency of Brca1 or Gata3. By using these mutant mice along with human BRCA1 deficient as well as proficient breast cancer tissues and cells, we investigated and compared the role of Brca1 and Gata3 loss in the activation of EMT in breast cancers. Results: We discovered that BRCA1 and GATA3 expressions were positively correlated in human breast cancer. Depletion of BRCA1 stimulated methylation of GATA3 promoter thereby repressing GATA3 transcription. We developed Brca1 and Gata3 deficient mouse system. We found that Gata3 deficiency in mice induced poorly-differentiated mammary tumors with the activation of EMT and promoted tumor initiating and metastatic potential. Gata3 deficient mammary tumors phenocopied Brca1 deficient tumors in the induction of EMT under the same genetic background. Reconstitution of Gata3 in Brca1-deficient tumor cells activated mesenchymal-epithelial transition, suppressing tumor initiation and metastasis. Conclusions: Our finding, for the first time, demonstrates that GATA3 functions downstream of BRCA1 to suppress EMT in controlling mammary tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Li-Han Zhang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, China
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chuying Wang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenglong Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jianping Sun
- Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Min Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
29
|
Kvokačková B, Remšík J, Jolly MK, Souček K. Phenotypic Heterogeneity of Triple-Negative Breast Cancer Mediated by Epithelial-Mesenchymal Plasticity. Cancers (Basel) 2021; 13:2188. [PMID: 34063254 PMCID: PMC8125677 DOI: 10.3390/cancers13092188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma known for its unusually aggressive behavior and poor clinical outcome. Besides the lack of molecular targets for therapy and profound intratumoral heterogeneity, the relatively quick overt metastatic spread remains a major obstacle in effective clinical management. The metastatic colonization of distant sites by primary tumor cells is affected by the microenvironment, epigenetic state of particular subclones, and numerous other factors. One of the most prominent processes contributing to the intratumoral heterogeneity is an epithelial-mesenchymal transition (EMT), an evolutionarily conserved developmental program frequently hijacked by tumor cells, strengthening their motile and invasive features. In response to various intrinsic and extrinsic stimuli, malignant cells can revert the EMT state through the mesenchymal-epithelial transition (MET), a process that is believed to be critical for the establishment of macrometastasis at secondary sites. Notably, cancer cells rarely undergo complete EMT and rather exist in a continuum of E/M intermediate states, preserving high levels of plasticity, as demonstrated in primary tumors and, ultimately, in circulating tumor cells, representing a simplified element of the metastatic cascade. In this review, we focus on cellular drivers underlying EMT/MET phenotypic plasticity and its detrimental consequences in the context of TNBC cancer.
Collapse
Affiliation(s)
- Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
30
|
Mayo V, Bowles AC, Wubker LE, Ortiz I, Cordoves AM, Cote RJ, Correa D, Agarwal A. Human-derived osteoblast-like cells and pericyte-like cells induce distinct metastatic phenotypes in primary breast cancer cells. Exp Biol Med (Maywood) 2021; 246:971-985. [PMID: 33210551 PMCID: PMC8024509 DOI: 10.1177/1535370220971599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Approximately 70% of advanced breast cancer patients will develop bone metastases, which accounts for ∼90% of cancer-related mortality. Breast cancer circulating tumor cells (CTCs) establish metastatic tumors in the bone after a close interaction with local bone marrow cells including pericytes and osteoblasts, both related to resident mesenchymal stem/stromal cells (BM-MSCs) progenitors. In vitro recapitulation of the critical cellular players of the bone microenvironment and infiltrating CTCs could provide new insights into their cross-talk during the metastatic cascade, helping in the development of novel therapeutic strategies. Human BM-MSCs were isolated and fractionated according to CD146 presence. CD146+ cells were utilized as pericyte-like cells (PLCs) given the high expression of the marker in perivascular cells, while CD146- cells were induced into an osteogenic phenotype generating osteoblast-like cells (OLCs). Transwell migration assays were performed to establish whether primary breast cancer cells (3384T) were attracted to OLC. Furthermore, proliferation of 3384T breast cancer cells was assessed in the presence of PLC- and OLC-derived conditioned media. Additionally, conditioned media cultures as well as transwell co-cultures of each OLCs and PLCs were performed with 3384T breast cancer cells for gene expression interrogation assessing their induced transcriptional changes with an emphasis on metastatic potential. PLC as well as their conditioned media increased motility and invasion potential of 3384T breast cancer cells, while OLC induced a dormant phenotype, downregulating invasiveness markers related with migration and proliferation. Altogether, these results indicate that PLC distinctively drive 3384T cancer cells to an invasive and migratory phenotype, while OLC induce a quiescence state, thus recapitulating the different phases of the in vivo bone metastatic process. These data show that phenotypic responses from metastasizing cancer cells are influenced by neighboring cells at the bone metastatic niche during the establishment of secondary metastatic tumors.
Collapse
Affiliation(s)
- Vera Mayo
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Annie C Bowles
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura E Wubker
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Albert M Cordoves
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Richard J Cote
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St Louis, MO 63110, USA
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
31
|
Querzoli P, Pedriali M, Rinaldi R, Secchiero P, Rossi PG, Kuhn E. GATA3 as an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: A Study with a Review of the Literature. Diagnostics (Basel) 2021; 11:604. [PMID: 33800667 PMCID: PMC8066261 DOI: 10.3390/diagnostics11040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND GATA binding protein 3 (GATA3) expression is positively correlated with estrogen receptor (ER) expression, but its prognostic value as an independent factor remains unclear. Thus, we undertook the current study to evaluate the expression of GATA3 and its prognostic value in a large series of breast carcinomas (BCs) with long-term follow-up. METHODS A total of 702 consecutive primary invasive BCs resected between 1989 and 1993 in our institution were arranged in tissue microarrays, immunostained for ER, progesterone receptor (PR), ki-67, HER2, p53, and GATA3, and scored. Clinico-pathological data were retrospectively collected. RESULTS GATA3 was evaluable in 608 (87%) of the 702 cases; it was positive in 413 (68%) cases and negative in 195 (32%) cases. GATA3 positivity was significantly associated with lower grade (p < 0.0001), size (p = 0.0463), stage (p = 0.0049), ER+ (p < 0.0001), PR+ (p < 0.0001), HER2- (p = 0.0175), and p53 wild-type pattern (p < 0.0001). The median follow-up was 183 months, GATA3 positivity was associated with better overall survival (HR 0.70, p = 0.001), and its prognostic value was retained in a multivariate analysis. The association with better overall survival was stronger in patients with grade 1-2, pT1-2, pN0, stage I-II, ER+, PR+, ki-67 < 20%, HER2-, a wild-type p53 immunohistochemical pattern, and in luminal B BC. CONCLUSIONS Our findings indicate that GATA3 is a positive prognostic marker in BC patients, especially in patients with biologically less aggressive BC. Incorporating GATA3 immunohistochemistry into routine practice could help further stratify BC patients for their risk.
Collapse
Affiliation(s)
- Patrizia Querzoli
- Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; (P.Q.); (M.P.)
| | - Massimo Pedriali
- Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; (P.Q.); (M.P.)
| | - Rosa Rinaldi
- Section of Anatomic Pathology, ASST Mantova, Ospedale Carlo Poma, 46100 Mantova, Italy;
| | - Paola Secchiero
- Surgery and Experimental Medicine and Interdepartmental Center of Technology of Advanced Therapies (LTTA), Department of Morphology, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Elisabetta Kuhn
- Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, 20122 Milano, Italy
| |
Collapse
|
32
|
Breast Cancer and the Other Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22063280. [PMID: 33807045 PMCID: PMC8005115 DOI: 10.3390/ijms22063280] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is very heterogenous and the most common gynaecological cancer, with various factors affecting its development. While its impact on human lives and national health budgets is still rising in almost all global areas, many molecular mechanisms affecting its onset and development remain unclear. Conventional treatments still prove inadequate in some aspects, and appropriate molecular therapeutic targets are required for improved outcomes. Recent scientific interest has therefore focused on the non-coding RNAs roles in tumour development and their potential as therapeutic targets. These RNAs comprise the majority of the human transcript and their broad action mechanisms range from gene silencing to chromatin remodelling. Many non-coding RNAs also have altered expression in breast cancer cell lines and tissues, and this is often connected with increased proliferation, a degraded extracellular environment, and higher endothelial to mesenchymal transition. Herein, we summarise the known abnormalities in the function and expression of long non-coding RNAs, Piwi interacting RNAs, small nucleolar RNAs and small nuclear RNAs in breast cancer, and how these abnormalities affect the development of this deadly disease. Finally, the use of RNA interference to suppress breast cancer growth is summarised.
Collapse
|
33
|
Inhibition of EZH2 Catalytic Activity Selectively Targets a Metastatic Subpopulation in Triple-Negative Breast Cancer. Cell Rep 2021; 30:755-770.e6. [PMID: 31968251 DOI: 10.1016/j.celrep.2019.12.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Epigenetic changes are increasingly being appreciated as key events in breast cancer progression. However, breast cancer subtype-specific epigenetic regulation remains poorly investigated. Here we report that EZH2 is a leading candidate of epigenetic modulators associated with the TNBC subtype and that it predicts poor overall survival in TNBC patients. We demonstrate that specific pharmacological or genetic inhibition of EZH2 catalytic activity impairs distant metastasis. We further define a specific EZH2high population with enhanced invasion, mammosphere formation, and metastatic potential that exhibits marked sensitivity to EZH2 inhibition. Mechanistically, EZH2 inhibition differentiates EZH2high basal cells to a luminal-like phenotype by derepressing GATA3 and renders them sensitive to endocrine therapy. Furthermore, dissection of human TNBC heterogeneity shows that EZH2high basal-like 1 and mesenchymal subtypes have exquisite sensitivity to EZH2 inhibition compared with the EZH2low luminal androgen receptor subtype. These preclinical findings provide a rationale for clinical development of EZH2 as a targeted therapy against TNBC metastasis.
Collapse
|
34
|
Wanet A, Bassal MA, Patel SB, Marchi F, Mariani SA, Ahmed N, Zhang H, Borchiellini M, Chen S, Zhang J, Di Ruscio A, Miyake K, Tsai M, Paranjape A, Park SY, Karasuyama H, Schroeder T, Dzierzak E, Galli SJ, Tenen DG, Welner RS. E-cadherin is regulated by GATA-2 and marks the early commitment of mouse hematopoietic progenitors to the basophil and mast cell fates. Sci Immunol 2021; 6:6/56/eaba0178. [PMID: 33547048 DOI: 10.1126/sciimmunol.aba0178] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
E-cadherin is a calcium-dependent cell-cell adhesion molecule extensively studied for its involvement in tissue formation, epithelial cell behavior, and suppression of cancer. However, E-cadherin expression in the hematopoietic system has not been fully elucidated. Combining single-cell RNA-sequencing analyses and immunophenotyping, we revealed that progenitors expressing high levels of E-cadherin and contained within the granulocyte-monocyte progenitors (GMPs) fraction have an enriched capacity to differentiate into basophils and mast cells. We detected E-cadherin expression on committed progenitors before the expression of other reported markers of these lineages. We named such progenitors pro-BMPs (pro-basophil and mast cell progenitors). Using RNA sequencing, we observed transcriptional priming of pro-BMPs to the basophil and mast cell lineages. We also showed that GATA-2 directly regulates E-cadherin expression in the basophil and mast cell lineages, thus providing a mechanistic connection between the expression of this cell surface marker and the basophil and mast cell fate specification.
Collapse
Affiliation(s)
- Anaïs Wanet
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sweta B Patel
- Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Samanta A Mariani
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Haoran Zhang
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Marta Borchiellini
- Department of Health Sciences, University of Eastern Piedmont, Novara 28100, Italy.,Department of Translational Medicine, University of Eastern Piedmont, Novara 28100, Italy
| | - Sisi Chen
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Junyan Zhang
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Annalisa Di Ruscio
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100, Italy.,Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kensuke Miyake
- Inflammation, Infection, Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anuya Paranjape
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shin-Young Park
- Transfusion Medicine, Boston Children's Hospital and Harvard Medical School, Harvard Medical School, Boston, MA 02115, USA
| | - Hajime Karasuyama
- Inflammation, Infection, Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Elaine Dzierzak
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Robert S Welner
- Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
35
|
Abstract
Public databases featuring original, raw data from "Omics" experiments enable researchers to perform meta-analyses by combining either the raw data or the summarized results of several independent studies. In proteomics, high-throughput protein expression data is measured by diverse techniques such as mass spectrometry, 2-D gel electrophoresis or protein arrays yielding data of different scales. Therefore, direct data merging can be problematic, and combining the summarized data of the individual studies can be advantageous. A special form of meta-analysis is network meta-analysis, where studies with different settings of experimental groups can be combined. However, all studies must be linked by one experimental group that has to appear in each study. Usually that is the control group. Then, a study network is formed and indirect statistical inferences can also be made between study groups that appear not in each of the studies.In this chapter, we describe the working principle of and available software for network meta-analysis. The applicability to high-throughput protein expression data is demonstrated in an example from breast cancer research. We also describe the special challenges when applying this method.
Collapse
Affiliation(s)
- Christine Winter
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
36
|
The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity. Cancers (Basel) 2020; 12:cancers12123863. [PMID: 33371274 PMCID: PMC7766255 DOI: 10.3390/cancers12123863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer stem cells are a subset of transformed cells that sustain tumor growth and can metastasize to secondary organs. Since metastasis accounts for most cancer deaths, it is of paramount importance to understand the cellular and molecular mechanisms that regulate this subgroup of cells. The tumor microenvironment (TME) is the habitat in which transformed cells evolve, and it is composed by many different cell types and the extracellular matrix (ECM). A body of evidence strongly indicates that microenvironmental cues modulate stemness in breast cancer, and that the coevolution of the TME and cancer stem cells determine the fate of breast tumors. In this review, we summarize the studies providing links between the TME and the breast cancer stem cell phenotype and we discuss their specific interactions with immune cell subsets, stromal cells, and the ECM. Abstract Tumor progression involves the co-evolution of transformed cells and the milieu in which they live and expand. Breast cancer stem cells (BCSCs) are a specialized subset of cells that sustain tumor growth and drive metastatic colonization. However, the cellular hierarchy in breast tumors is rather plastic, and the capacity to transition from one cell state to another depends not only on the intrinsic properties of transformed cells, but also on the interplay with their niches. It has become evident that the tumor microenvironment (TME) is a major player in regulating the BCSC phenotype and metastasis. The complexity of the TME is reflected in its number of players and in the interactions that they establish with each other. Multiple types of immune cells, stromal cells, and the extracellular matrix (ECM) form an intricate communication network with cancer cells, exert a highly selective pressure on the tumor, and provide supportive niches for BCSC expansion. A better understanding of the mechanisms regulating these interactions is crucial to develop strategies aimed at interfering with key BCSC niche factors, which may help reducing tumor heterogeneity and impair metastasis.
Collapse
|
37
|
Sereesongsaeng N, McDowell SH, Burrows JF, Scott CJ, Burden RE. Cathepsin V suppresses GATA3 protein expression in luminal A breast cancer. Breast Cancer Res 2020; 22:139. [PMID: 33298139 PMCID: PMC7726886 DOI: 10.1186/s13058-020-01376-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lysosomal cysteine protease cathepsin V has previously been shown to exhibit elevated expression in breast cancer tissue and be associated with distant metastasis. Research has also identified that cathepsin V expression is elevated in tumour tissues from numerous other malignancies, but despite this, there has been limited examination of the function of this protease in cancer. Here we investigate the role of cathepsin V in breast cancer in order to delineate the molecular mechanisms by which this protease contributes to tumourigenesis. Methods Lentiviral transductions were used to generate shRNA cell line models, with cell line validation undertaken using RQ-PCR and Western blotting. Phenotypic changes of tumour cell biology were examined using clonogenic and invasion assays. The relationship between GATA3 expression and cathepsin V was primarily analysed using Western blotting. Site-directed mutagenesis was used to generate catalytic mutant and shRNA-resistant constructs to confirm the role of cathepsin V in regulating GATA3 expression. Results We have identified that elevated cathepsin V expression is associated with reduced survival in ER-positive breast cancers. Cathepsin V regulates the expression of GATA3 in ER-positive breast cancers, through promoting its degradation via the proteasome. We have determined that depletion of cathepsin V results in elevated pAkt-1 and reduced GSK-3β expression, which rescues GATA3 from proteasomal degradation. Conclusions In this study, we have identified that cysteine protease cathepsin V can suppress GATA3 expression in ER-positive breast cancers by facilitating its turnover via the proteasome. Therefore, targeting cathepsin V may represent a potential therapeutic strategy in ER-positive breast cancers, by restoring GATA3 protein expression, which is associated with a more favourable clinical outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-020-01376-6.
Collapse
Affiliation(s)
- Naphannop Sereesongsaeng
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Sara H McDowell
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.,Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - James F Burrows
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Christopher J Scott
- Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Roberta E Burden
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
38
|
Etzerodt A, Moulin M, Doktor TK, Delfini M, Mossadegh-Keller N, Bajenoff M, Sieweke MH, Moestrup SK, Auphan-Anezin N, Lawrence T. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J Exp Med 2020; 217:133611. [PMID: 31951251 PMCID: PMC7144521 DOI: 10.1084/jem.20191869] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/23/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Experimental and clinical evidence suggests that tumor-associated macrophages (TAMs) play important roles in cancer progression. Here, we have characterized the ontogeny and function of TAM subsets in a mouse model of metastatic ovarian cancer that is representative for visceral peritoneal metastasis. We show that the omentum is a critical premetastatic niche for development of invasive disease in this model and define a unique subset of CD163+ Tim4+ resident omental macrophages responsible for metastatic spread of ovarian cancer cells. Transcriptomic analysis showed that resident CD163+ Tim4+ omental macrophages were phenotypically distinct and maintained their resident identity during tumor growth. Selective depletion of CD163+ Tim4+ macrophages in omentum using genetic and pharmacological tools prevented tumor progression and metastatic spread of disease. These studies describe a specific role for tissue-resident macrophages in the invasive progression of metastatic ovarian cancer. The molecular pathways of cross-talk between tissue-resident macrophages and disseminated cancer cells may represent new targets to prevent metastasis and disease recurrence.
Collapse
Affiliation(s)
- Anders Etzerodt
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Morgane Moulin
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | - Marc Bajenoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Michael H Sieweke
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Regenerative Therapies, TU Dresden, Dresden, Germany
| | - Søren Kragh Moestrup
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Toby Lawrence
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
39
|
Tanaka H, Takizawa Y, Takaku M, Kato D, Kumagawa Y, Grimm SA, Wade PA, Kurumizaka H. Interaction of the pioneer transcription factor GATA3 with nucleosomes. Nat Commun 2020; 11:4136. [PMID: 32811816 PMCID: PMC7434886 DOI: 10.1038/s41467-020-17959-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 07/22/2020] [Indexed: 01/23/2023] Open
Abstract
During cellular reprogramming, the pioneer transcription factor GATA3 binds chromatin, and in a context-dependent manner directs local chromatin remodeling and enhancer formation. Here, we use high-resolution nucleosome mapping in human cells to explore the impact of the position of GATA motifs on the surface of nucleosomes on productive enhancer formation, finding productivity correlates with binding sites located near the nucleosomal dyad axis. Biochemical experiments with model nucleosomes demonstrate sufficiently stable transcription factor-nucleosome interaction to empower cryo-electron microscopy structure determination of the complex at 3.15 Å resolution. The GATA3 zinc fingers efficiently bind their target 5′-GAT-3′ sequences in the nucleosome when they are located in solvent accessible, consecutive major grooves without significant changes in nucleosome structure. Analysis of genomic loci bound by GATA3 during reprogramming suggests a correlation of recognition motif sequence and spacing that may distinguish productivity of new enhancer formation. GATA 3 functions as a pioneer factor during cellular reprogramming. Here the authors delineate nucleosome positioning relative to GATA3 binding motifs and describe the structure of a GATA3–nucleosome complex; providing insight into how a pioneer factor interacts with nucleosomes and catalyze their local remodelling to produce an accessible enhancer.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Motoki Takaku
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Daiki Kato
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Laboratory for Drug Discovery, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 MifukuIzunokuni-shi, Shizuoka, 410-2321, Japan
| | - Yusuke Kumagawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Sara A Grimm
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
40
|
Hruschka N, Kalisz M, Subijana M, Graña-Castro O, Del Cano-Ochoa F, Brunet LP, Chernukhin I, Sagrera A, De Reynies A, Kloesch B, Chin SF, Burgués O, Andreu D, Bermejo B, Cejalvo JM, Sutton J, Caldas C, Ramón-Maiques S, Carroll JS, Prat A, Real FX, Martinelli P. The GATA3 X308_Splice breast cancer mutation is a hormone context-dependent oncogenic driver. Oncogene 2020; 39:5455-5467. [PMID: 32587399 PMCID: PMC7410826 DOI: 10.1038/s41388-020-1376-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
As the catalog of oncogenic driver mutations is expanding, it becomes clear that alterations in a given gene might have different functions and should not be lumped into one class. The transcription factor GATA3 is a paradigm of this. We investigated the functions of the most common GATA3 mutation (X308_Splice) and five additional mutations, which converge into a neoprotein that we called "neoGATA3," associated with excellent prognosis in patients. Analysis of available molecular data from >3000 breast cancer patients revealed a dysregulation of the ER-dependent transcriptional response in tumors carrying neoGATA3-generating mutations. Mechanistic studies in vitro showed that neoGATA3 interferes with the transcriptional programs controlled by estrogen and progesterone receptors, without fully abrogating them. ChIP-Seq analysis indicated that ER binding is reduced in neoGATA3-expressing cells, especially at distal regions, suggesting that neoGATA3 interferes with the fine tuning of ER-dependent gene expression. This has opposite outputs in distinct hormonal context, having pro- or anti-proliferative effects, depending on the estrogen/progesterone ratio. Our data call for functional analyses of putative cancer drivers to guide clinical application.
Collapse
Affiliation(s)
- Natascha Hruschka
- Institute of Cancer Research, Medical University Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
| | - Maria Subijana
- Institute of Cancer Research, Medical University Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Francisco Del Cano-Ochoa
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Laia Paré Brunet
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Ana Sagrera
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
| | - Aurelien De Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Bernhard Kloesch
- Institute of Cancer Research, Medical University Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Suet-Feung Chin
- Department of Oncology, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Octavio Burgués
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Pathology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Universitat Pompeu Fabra, Barcelona, Spain
| | - Begoña Bermejo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain
| | - Joe Sutton
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Carlos Caldas
- Department of Oncology, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Santiago Ramón-Maiques
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paola Martinelli
- Institute of Cancer Research, Medical University Vienna, Comprehensive Cancer Center, Vienna, Austria.
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain.
- Cancer Cell Signaling Department, Boehringer-Ingelheim RCV, Vienna, Austria.
| |
Collapse
|
41
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
Byun JS, Singhal SK, Park S, Yi DI, Yan T, Caban A, Jones A, Mukhopadhyay P, Gil SM, Hewitt SM, Newman L, Davis MB, Jenkins BD, Sepulveda JL, De Siervi A, Nápoles AM, Vohra NA, Gardner K. Racial Differences in the Association Between Luminal Master Regulator Gene Expression Levels and Breast Cancer Survival. Clin Cancer Res 2020; 26:1905-1914. [PMID: 31911546 PMCID: PMC8051554 DOI: 10.1158/1078-0432.ccr-19-0875] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/10/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Compared with their European American (EA) counterparts, African American (AA) women are more likely to die from breast cancer in the United States. This disparity is greatest in hormone receptor-positive subtypes. Here we uncover biological factors underlying this disparity by comparing functional expression and prognostic significance of master transcriptional regulators of luminal differentiation. EXPERIMENTAL DESIGN Data and biospecimens from 262 AA and 293 EA patients diagnosed with breast cancer from 2001 to 2010 at a major medical center were analyzed by IHC for functional biomarkers of luminal differentiation, including estrogen receptor (ESR1) and its pioneer factors, FOXA1 and GATA3. Integrated comparison of protein levels with network-level gene expression analysis uncovered predictive correlations with race and survival. RESULTS Univariate or multivariate HRs for overall survival, estimated from digital IHC scoring of nuclear antigen, show distinct differences in the magnitude and significance of these biomarkers to predict survival based on race: ESR1 [EA HR = 0.47; 95% confidence interval (CI), 0.31-0.72 and AA HR = 0.77; 95% CI, 0.48-1.18]; FOXA1 (EA HR = 0.38; 95% CI, 0.23-0.63 and AA HR = 0.53; 95% CI, 0.31-0.88), and GATA3 (EA HR = 0.36; 95% CI, 0.23-0.56; AA HR = 0.57; CI, 0.56-1.4). In addition, we identify genes in the downstream regulons of these biomarkers highly correlated with race and survival. CONCLUSIONS Even within clinically homogeneous tumor groups, regulatory networks that drive mammary luminal differentiation reveal race-specific differences in their association with clinical outcome. Understanding these biomarkers and their downstream regulons will elucidate the intrinsic mechanisms that drive racial disparities in breast cancer survival.
Collapse
Affiliation(s)
- Jung S Byun
- National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Sandeep K Singhal
- Columbia University Medical Center, Columbia University, New York, New York
| | - Samson Park
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dae Ik Yi
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tingfen Yan
- National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Ambar Caban
- Columbia University Medical Center, Columbia University, New York, New York
| | - Alana Jones
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Sara M Gil
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M Hewitt
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Jorge L Sepulveda
- Columbia University Medical Center, Columbia University, New York, New York
| | - Adriana De Siervi
- Laboratorio de Oncologıa Molecular y Nuevos Blancos Terapeuticos, Instituto de Biologıa y Medicina Experimental (IBYME), CONICET, Argentina
| | - Anna María Nápoles
- National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Nasreen A Vohra
- Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Kevin Gardner
- Columbia University Medical Center, Columbia University, New York, New York.
| |
Collapse
|
43
|
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol 2020; 10:499. [PMID: 32318352 PMCID: PMC7154126 DOI: 10.3389/fonc.2020.00499] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Venetsana Kyriazopoulou
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Department of Life Sciences European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
44
|
El-Arabey AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, Kabil N, Ozpolat B, Calin GA, Salama SA, Abd-Allah AR, Sood AK, Lopez-Berestein G. GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell Signal 2020; 68:109539. [PMID: 31935430 DOI: 10.1016/j.cellsig.2020.109539] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/03/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic cancer. Emerging evidence suggests that tumor-associated macrophages (TAMs) play an immunosuppressive role in the tumor microenvironment and promote tumor growth, angiogenesis, and metastasis in ovarian cancer. Therefore, targeting TAMs in patients with ovarian cancer is an appealing strategy; however, all trials to date have failed. To improve the efficacy of this approach, we sought to elucidate the underlying mechanisms of the role of TAMs in ovarian cancer. We found that the developmental transcription factor GATA3 was highly expressed in HGSOC cell lines but not in the fallopian tube, which is the main origin of HGSOC. GATA3 expression was associated with poor prognosis in HGSOC patients (P < .05) and was found to promote proliferation and migration in HGSOC cell lines. GATA3 was released abundantly from TAM cells via exosomes and contributed to tumor growth in the tumor microenvironment. Moreover, GATA3 acted as a regulator for macrophage polarization and interactions between TAMs and HGSOC to support proliferation, motility, and cisplatin chemoresistance in mutant TP53 HGSOC cell lines. Furthermore, GATA3 played a critical role in the interactions between TAMs and mutant TP53 HGSOC to promote angiogenesis and epithelial-mesenchymal transition with epigenetic regulation. Targeting GATA3 using GATA3siRNA in TAMs impeded GATA3-driven proliferation, migration, cisplatin chemoresistance, and angiogenesis in mutant TP53 HGSOC cell lines. Our findings indicate that GATA3 plays a novel role in immunoediting of HGSOC and demonstrate that GATA3 may serve as a prognostic marker for HGSOC and a promising target in the treatment of HGSOC.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohammed Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Nashwa Kabil
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Salama Abdou Salama
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Adel Rashad Abd-Allah
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
46
|
Cornelissen LM, Henneman L, Drenth AP, Schut E, de Bruijn R, Klarenbeek S, Zwart W, Jonkers J. Exogenous ERα Expression in the Mammary Epithelium Decreases Over Time and Does Not Contribute to p53-Deficient Mammary Tumor Formation in Mice. J Mammary Gland Biol Neoplasia 2019; 24:305-321. [PMID: 31729597 DOI: 10.1007/s10911-019-09437-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 12/09/2022] Open
Abstract
Approximately 75% of all breast cancers express the nuclear hormone receptor estrogen receptor α (ERα). However, the majority of mammary tumors from genetically engineered mouse models (GEMMs) are ERα-negative. To model ERα-positive breast cancer in mice, we exogenously introduced expression of mouse and human ERα in an existing GEMM of p53-deficient breast cancer. After initial ERα expression during mammary gland development, expression was reduced or lost in adult glands and p53-deficient mammary tumors. Chromatin immunoprecipitation (ChIP)-sequencing analysis of primary mouse mammary epithelial cells (MMECs) derived from these models, in which expression of the ERα constructs was induced in vitro, confirmed interaction of ERα with the DNA. In human breast and endometrial cancer, and also in healthy breast tissue, DNA binding of ERα is facilitated by the pioneer factor FOXA1. Surprisingly, the ERα binding sites identified in primary MMECs, but also in mouse mammary gland and uterus, showed an high enrichment of ERE motifs, but were devoid of Forkhead motifs. Furthermore, exogenous introduction of FOXA1 and GATA3 in ERα-expressing MMECs was not sufficient to promote ERα-responsiveness of these cells. Together, this suggests that species-specific differences in pioneer factor usage between mouse and human are dictated by the DNA sequence, resulting in ERα-dependencies in mice that are not FOXA1 driven. These species-specific differences in ERα-biology may limit the utility of mice for in vivo modeling of ERα-positive breast cancer.
Collapse
Affiliation(s)
- Lisette M Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Mouse Clinic for Cancer and Aging - Transgenic facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenisis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Yu W, Huang W, Yang Y, Qiu R, Zeng Y, Hou Y, Sun G, Shi H, Leng S, Feng D, Chen Y, Wang S, Teng X, Yu H, Wang Y. GATA3 recruits UTX for gene transcriptional activation to suppress metastasis of breast cancer. Cell Death Dis 2019; 10:832. [PMID: 31685800 PMCID: PMC6828764 DOI: 10.1038/s41419-019-2062-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
GATA3 has emerged as a prominent transcription factor required for maintaining mammary-gland homeostasis. GATA3 loss is associated with aggressive breast cancer development, but the mechanism by which breast cancer is affected by the loss of GATA3 function remains unclear. Here, we report that GATA3 expression is positively correlated with the expression of UTX, a histone H3K27 demethylase contained in the MLL4 methyltransferase complex, and that GATA3 recruits the chromatin-remodeling MLL4 complex and interacts directly with UTX, ASH2L, and RBBP5. Using RNA sequencing and chromatin immunoprecipitation and sequencing, we demonstrate that the GATA3/UTX complex synergistically regulates a cohort of genes including Dicer and UTX, which are critically involved in the epithelial-to-mesenchymal transition (EMT). Our results further show that the GATA3-UTX-Dicer axis inhibits EMT, invasion, and metastasis of breast cancer cells in vitro and the dissemination of breast cancer in vivo. Our study implicates the GATA3-UTX-Dicer axis in breast cancer metastasis and provides new mechanistic insights into the pathophysiological function of GATA3.
Collapse
Affiliation(s)
- Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China.,Cardiovascular surgery center, Shandong Provincial ENT Hospital affiliated to Shandong University, 250022, Jinan, P.R. China
| | - Wei Huang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Gancheng Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Hang Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yang Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Shuang Wang
- Cardiovascular surgery center, Shandong Provincial ENT Hospital affiliated to Shandong University, 250022, Jinan, P.R. China
| | - Xu Teng
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Hefen Yu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China. .,Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China.
| |
Collapse
|
48
|
Zeng Y, Gao T, Huang W, Yang Y, Qiu R, Hou Y, Yu W, Leng S, Feng D, Liu W, Teng X, Yu H, Wang Y. MicroRNA-455-3p mediates GATA3 tumor suppression in mammary epithelial cells by inhibiting TGF-β signaling. J Biol Chem 2019; 294:15808-15825. [PMID: 31492753 DOI: 10.1074/jbc.ra119.010800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
GATA3 is a basic and essential transcription factor that regulates many pathophysiological processes and is required for the development of mammary luminal epithelial cells. Loss-of-function GATA3 alterations in breast cancer are associated with poor prognosis. Here, we sought to understand the tumor-suppressive functions GATA3 normally performs. We discovered a role for GATA3 in suppressing epithelial-to-mesenchymal transition (EMT) in breast cancer by activating miR-455-3p expression. Enforced expression of miR-455-3p alone partially prevented EMT induced by transforming growth factor β (TGF-β) both in cells and tumor xenografts by directly inhibiting key components of TGF-β signaling. Pathway and biochemical analyses showed that one miRNA-455-3p target, the TGF-β-induced protein ZEB1, recruits the Mi-2/nucleosome remodeling and deacetylase (NuRD) complex to the promotor region of miR-455 to strictly repress the GATA3-induced transcription of this microRNA. Considering that ZEB1 enhances TGF-β signaling, we delineated a double-feedback interaction between ZEB1 and miR-455-3p, in addition to the repressive effect of miR-455-3p on TGF-β signaling. Our study revealed that a feedback loop between these two axes, specifically GATA3-induced miR-455-3p expression, could repress ZEB1 and its recruitment of NuRD (MTA1) to suppress miR-455, which ultimately regulates TGF-β signaling. In conclusion, we identified that miR-455-3p plays a pivotal role in inhibiting the EMT and TGF-β signaling pathway and maintaining cell differentiation. This forms the basis of that miR-455-3p might be a promising therapeutic intervention for breast cancer.
Collapse
Affiliation(s)
- Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyang Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xu Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
49
|
Cornelissen LM, de Bruijn R, Henneman L, Kim Y, Zwart W, Jonkers J. GATA3 Truncating Mutations Promote Cistromic Re-Programming In Vitro, but Not Mammary Tumor Formation in Mice. J Mammary Gland Biol Neoplasia 2019; 24:271-284. [PMID: 31218575 DOI: 10.1007/s10911-019-09432-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 11/27/2022] Open
Abstract
Heterozygous mutations in the transcription factor GATA3 are identified in 10-15% of all breast cancer cases. Most of these are protein-truncating mutations, concentrated within or downstream of the second GATA-type zinc-finger domain. Here, we investigated the functional consequences of expression of two truncated GATA3 mutants, in vitro in breast cancer cell lines and in vivo in the mouse mammary gland. We found that the truncated GATA3 mutants display altered DNA binding activity caused by preferred tethering through FOXA1. In addition, expression of the truncated GATA3 mutants reduces E-cadherin expression and promotes anchorage-independent growth in vitro. However, we could not identify any effects of truncated GATA3 expression on mammary gland development or mammary tumor formation in mice. Together, our results demonstrate that both truncated GATA3 mutants promote cistromic re-programming of GATA3 in vitro, but these mutants are not sufficient to induce tumor formation in mice.
Collapse
Affiliation(s)
- Lisette M Cornelissen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenisis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Mouse Clinic for Cancer and Aging - Transgenic facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Yongsoo Kim
- Division of Molecular Carcinogenisis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
LSD1 suppresses invasion, migration and metastasis of luminal breast cancer cells via activation of GATA3 and repression of TRIM37 expression. Oncogene 2019; 38:7017-7034. [PMID: 31409898 PMCID: PMC6823153 DOI: 10.1038/s41388-019-0923-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/28/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
Abstract
LSD1 (KDM1A) is a histone demethylase that plays both oncogenic and tumor suppressor roles in breast cancer. However, the exact contexts under which it plays these opposite functions remain largely elusive. By characterizing its role in luminal breast epithelial cells, here we show that inhibition of LSD1 by both genetic and pharmacological approaches increases their invasion and migration, whereas its inhibition by genetic approach, but not by pharmacological approach, impairs their proliferation/survival. Induced loss of LSD1 in luminal cells in a mouse model of luminal breast cancer, MMTV-PyMT, leads to a profound increase in lung metastasis. Mechanistically, LSD1 interacts with GATA3, a key luminal-specific transcription factor (TF), and their common target genes are highly related to breast cancer. LSD1 positively regulates GATA3 expression. It also represses expression of TRIM37, a breast epithelial oncogene encoding a histone H2A ubiquitin ligase, and ELF5, a key TF gene for luminal progenitors and alveolar luminal cells. LSD1-loss also leads to reduced expression of several cell-cell adhesion genes (e.g., CDH1, VCL, CTNNA1), possibly via TRIM37-upregulation and subsequently TRIM37-mediated repression. Collectively, our data suggest LSD1 largely plays a tumor suppressor role in luminal breast cancer and the oncogenic program associated with LSD1-inhibition may be suppressed via TRIM37-inhibition.
Collapse
|