1
|
Lu J, Lee J, Yuan E, Wakefield DL, Kanke M, Pruitt D, Barreda J, Rulifson IC, Xie J, Ferbas J, Long J, Meade B, Homann O, Guo W, Gomes T, Zhou H, Wu B, Cui J, Wang S. RAB18 regulates extrahepatic siRNA-mediated gene silencing efficacy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102335. [PMID: 39380712 PMCID: PMC11458997 DOI: 10.1016/j.omtn.2024.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Small interfering RNAs (siRNAs) hold considerable therapeutic potential to selectively silence previously "undruggable" disease-associated targets, offering new opportunities to fight human diseases. This therapeutic strategy, however, is limited by the inability of naked siRNAs to passively diffuse across cellular membranes due to their large molecular size and negative charge. Delivery of siRNAs to liver through conjugation of siRNA to N-acetylgalactosamine (GalNAc) has been a success, providing robust and durable gene knockdown, specifically in hepatocytes. However, the poor delivery and silencing efficacy of siRNAs in other cell types has hindered their applications outside the liver. We previously reported that a genome-wide pooled knockout screen identified RAB18 as a major modulator of GalNAc-siRNA conjugates. Herein, we demonstrate RAB18 knockout/knockdown efficaciously enhances siRNA-mediated gene silencing in hepatic and extrahepatic cell lines and in vivo. Our results reveal a mechanism by which retrograde Golgi-endoplasmic reticulum (ER) transport and the intracellular lipid droplets (LDs) positively regulate siRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Jiamiao Lu
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jasper Lee
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Eric Yuan
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | | | - Matt Kanke
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Danielle Pruitt
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jose Barreda
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Ingrid C. Rulifson
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jiansong Xie
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - John Ferbas
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jason Long
- RNA Therapeutics, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Bryan Meade
- RNA Therapeutics, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Oliver Homann
- CRADI Computational Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Wei Guo
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Tina Gomes
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Hong Zhou
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Bin Wu
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Jixin Cui
- Cardiometabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | - Songli Wang
- Precision Biology, Amgen Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Deng L, Kersten S, Stienstra R. Triacylglycerol uptake and handling by macrophages: From fatty acids to lipoproteins. Prog Lipid Res 2023; 92:101250. [PMID: 37619883 DOI: 10.1016/j.plipres.2023.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Macrophages are essential innate immune cells and form our first line of immune defense. Also known as professional phagocytes, macrophages interact and take up various particles, including lipids. Defective lipid handling can drive excessive lipid accumulation leading to foam cell formation, a key feature of various cardiometabolic conditions such as atherosclerosis, non-alcoholic fatty liver disease, and obesity. At the same time, intracellular lipid storage and foam cell formation can also be viewed as a protective and anti-lipotoxic mechanism against a lipid-rich environment and associated elevated lipid uptake. Traditionally, foam cell formation has primarily been linked to cholesterol uptake via native and modified low-density lipoproteins. However, other lipids, including non-esterified fatty acids and triacylglycerol (TAG)-rich lipoproteins (very low-density lipoproteins and chylomicrons), can also interact with macrophages. Recent studies have identified multiple pathways mediating TAG uptake and processing by macrophages, including endocytosis and receptor/transporter-mediated internalization and transport. This review will present the current knowledge of how macrophages take up different lipids and lipoprotein particles and address how TAG-rich lipoproteins are processed intracellularly. Understanding how macrophages take up and process different lipid species such as TAG is necessary to design future therapeutic interventions to correct excessive lipid accumulation and associated co-morbidities.
Collapse
Affiliation(s)
- Lei Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Hofer P, Grabner GF, König M, Xie H, Bulfon D, Ludwig AE, Wolinski H, Zimmermann R, Zechner R, Heier C. Cooperative lipolytic control of neuronal triacylglycerol by spastic paraplegia-associated enzyme DDHD2 and ATGL. J Lipid Res 2023; 64:100457. [PMID: 37832604 PMCID: PMC10665947 DOI: 10.1016/j.jlr.2023.100457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Intracellular lipolysis-the enzymatic breakdown of lipid droplet-associated triacylglycerol (TAG)-depends on the cooperative action of several hydrolytic enzymes and regulatory proteins, together designated as lipolysome. Adipose triglyceride lipase (ATGL) acts as a major cellular TAG hydrolase and core effector of the lipolysome in many peripheral tissues. Neurons initiate lipolysis independently of ATGL via DDHD domain-containing 2 (DDHD2), a multifunctional lipid hydrolase whose dysfunction causes neuronal TAG deposition and hereditary spastic paraplegia. Whether and how DDHD2 cooperates with other lipolytic enzymes is currently unknown. In this study, we further investigated the enzymatic properties and functions of DDHD2 in neuroblastoma cells and primary neurons. We found that DDHD2 hydrolyzes multiple acylglycerols in vitro and substantially contributes to neutral lipid hydrolase activities of neuroblastoma cells and brain tissue. Substrate promiscuity of DDHD2 allowed its engagement at different steps of the lipolytic cascade: In neuroblastoma cells, DDHD2 functioned exclusively downstream of ATGL in the hydrolysis of sn-1,3-diacylglycerol (DAG) isomers but was dispensable for TAG hydrolysis and lipid droplet homeostasis. In primary cortical neurons, DDHD2 exhibited lipolytic control over both, DAG and TAG, and complemented ATGL-dependent TAG hydrolysis. We conclude that neuronal cells use noncanonical configurations of the lipolysome and engage DDHD2 as dual TAG/DAG hydrolase in cooperation with ATGL.
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Mario König
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anton E Ludwig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
5
|
Castoldi A, Sanin DE, van Teijlingen Bakker N, Aguiar CF, de Brito Monteiro L, Rana N, Grzes KM, Kabat AM, Curtis J, Cameron AM, Caputa G, Antônio de Souza T, Souto FO, Buescher JM, Edwards-Hicks J, Pearce EL, Pearce EJ, Saraiva Camara NO. Metabolic and functional remodeling of colonic macrophages in response to high-fat diet-induced obesity. iScience 2023; 26:107719. [PMID: 37674984 PMCID: PMC10477064 DOI: 10.1016/j.isci.2023.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.
Collapse
Affiliation(s)
- Angela Castoldi
- Department of Immunology, University of Sao Paulo, Sao Paulo, Brazil
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Institute Keizo Asami, Federal University of Pernambuco, Pernambuco, Brazil
| | - David E. Sanin
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Lauar de Brito Monteiro
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Nisha Rana
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Katarzyna M. Grzes
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Agnieszka M. Kabat
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan Curtis
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alanna M. Cameron
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - George Caputa
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Fabrício O. Souto
- Institute Keizo Asami, Federal University of Pernambuco, Pernambuco, Brazil
| | - Joerg M. Buescher
- Metabolomics Facility, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Erika L. Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward J. Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
6
|
Hamel R, Peruzzotti-Jametti L, Ridley K, Testa V, Yu B, Rowitch D, Marioni JC, Pluchino S. Time-resolved single-cell RNAseq profiling identifies a novel Fabp5+ subpopulation of inflammatory myeloid cells with delayed cytotoxic profile in chronic spinal cord injury. Heliyon 2023; 9:e18339. [PMID: 37636454 PMCID: PMC10450865 DOI: 10.1016/j.heliyon.2023.e18339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Traumatic spinal cord injuries (SCI) are a group of highly debilitating pathologies affecting thousands annually, and adversely affecting quality of life. Currently, no fully restorative therapies exist, and SCI still results in significant personal, societal and financial burdens. Inflammation plays a major role in the evolution of SCI, with myeloid cells, including bone marrow derived macrophages (BMDMs) and microglia (MG) being primary drivers of both early secondary pathogenesis and delayed wound healing events. The precise role of myeloid cell subsets is unclear as upon crossing the blood-spinal cord barrier, infiltrating bone marrow derived macrophages (BMDMs) may take on the morphology of resident microglia, and upregulate canonical microglia markers, thus making the two populations difficult to distinguish. Here, we used time-resolved scRNAseq and transgenic fate-mapping to chart the transcriptional profiles of tissue-resident and -infiltrating myeloid cells in a mouse model of thoracic contusion SCI. Our work identifies a novel subpopulation of foam cell-like inflammatory myeloid cells with increased expression of Fatty Acid Binding Protein 5 (Fabp5) and comprise both tissue-resident and -infiltrating cells. Fabp5+ inflammatory myeloid cells display a delayed cytotoxic profile that is predominant at the lesion epicentre and extends into the chronic phase of SCI.
Collapse
Affiliation(s)
- Regan Hamel
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - Veronica Testa
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Bryan Yu
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - David Rowitch
- Cambridge Stem Cell Institute, University of Cambridge, UK
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Vassiliou E, Farias-Pereira R. Impact of Lipid Metabolism on Macrophage Polarization: Implications for Inflammation and Tumor Immunity. Int J Mol Sci 2023; 24:12032. [PMID: 37569407 PMCID: PMC10418847 DOI: 10.3390/ijms241512032] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Macrophage polarization is influenced by lipids, which also exert significant control over macrophage functions. Lipids and their metabolites are players in intricate signaling pathways that modulate macrophages' responses to pathogens, phagocytosis, ferroptosis, and inflammation. This review focuses on lipid metabolism and macrophage functions and addresses potential molecular targets for the treatment of macrophage-related diseases. While lipogenesis is crucial for lipid accumulation and phagocytosis in M1 macrophages, M2 macrophages likely rely on fatty acid β-oxidation to utilize fatty acids as their primary energy source. Cholesterol metabolism, regulated by factors such as SREBPs, PPARs, and LXRs, is associated with the cholesterol efflux capacity and the formation of foam cells (M2-like macrophages). Foam cells, which are targets for atherosclerosis, are associated with an increase in inflammatory cytokines. Lipolysis and fatty acid uptake markers, such as CD36, also contribute to the production of cytokines. Enhancing the immune system through the inhibition of lipid-metabolism-related factors can potentially serve as a targeted approach against tumor cells. Cyclooxygenase inhibitors, which block the conversion of arachidonic acid into various inflammatory mediators, influence macrophage polarization and have generated attention in cancer research.
Collapse
Affiliation(s)
- Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA;
| | - Renalison Farias-Pereira
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA;
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Kang YJ. MicroRNA-22 Regulates the Pro-inflammatory Responses and M1 Polarization of Macrophages by Targeting GLUT1 and 4-1BBL. J Immunol Res 2023; 2023:2457006. [PMID: 37469388 PMCID: PMC10352528 DOI: 10.1155/2023/2457006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Many microRNAs (miRNAs) are selectively expressed in mammalian immune cells and have been linked to immune responses in host defense and autoimmune disease. In macrophages, miRNAs regulate cell metabolism by repressing the expression of genes such as transcription factors, enzymes, and metabolism-related molecules, as well as the expression of genes that impact inflammatory responses and phenotype determination. Previous studies showed that miR-22 plays a role in a variety of biological processes, such as cancer cell growth, cell survival, and cell expansion. In CD4 + T cells of inflammatory bowel disease patients, miR-22 is upregulated and regulates inflammasome-mediated responses. However, it has not yet been determined how miR-22 contributes to the activation of innate immune cells. In this study, we identified a mechanism of toll-like receptors- (TLR-) dependent miR-22 induction that regulates the downstream signaling pathway linking inflammatory responses and macrophage polarization. MiR-22 is induced via TLR-signaling, which regulates the induction of Slc2a1 (glucose transporter 1 and Glut1) and Tnfsf9 (tumor necrosis factor 9, 4-1BB ligand, and 4-1BBL) mRNAs that contribute to sustained inflammatory responses and the polarization of macrophages. Our observations support further efforts to explore a potential therapeutic strategy using miR-22 for the modulation of excessive macrophage activation for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Young Jun Kang
- Molecular Medicine Research Institute, Sunnyvale, CA 94085, USA
| |
Collapse
|
9
|
Prakash P, Manchanda P, Paouri E, Bisht K, Sharma K, Wijewardhane PR, Randolph CE, Clark MG, Fine J, Thayer EA, Crockett A, Gasmi N, Stanko S, Prayson RA, Zhang C, Davalos D, Chopra G. Amyloid β Induces Lipid Droplet-Mediated Microglial Dysfunction in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543525. [PMID: 37333071 PMCID: PMC10274698 DOI: 10.1101/2023.06.04.543525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Several microglia-expressed genes have emerged as top risk variants for Alzheimer's disease (AD). Impaired microglial phagocytosis is one of the main proposed outcomes by which these AD-risk genes may contribute to neurodegeneration, but the mechanisms translating genetic association to cellular dysfunction remain unknown. Here we show that microglia form lipid droplets (LDs) upon exposure to amyloid-beta (Aβ), and that their LD load increases with proximity to amyloid plaques in brains from human patients and the AD mouse model 5xFAD. LD formation is dependent upon age and disease progression and is more prominent in the hippocampus in mice and humans. Despite variability in LD load between microglia from male versus female animals and between cells from different brain regions, LD-laden microglia exhibited a deficit in Aβ phagocytosis. Unbiased lipidomic analysis identified a substantial decrease in free fatty acids (FFAs) and a parallel increase in triacylglycerols (TAGs) as the key metabolic transition underlying LD formation. We demonstrate that DGAT2, a key enzyme for the conversion of FFAs to TAGs, promotes microglial LD formation, is increased in microglia from 5xFAD and human AD brains, and that inhibiting DGAT2 improved microglial uptake of Aβ. These findings identify a new lipid-mediated mechanism underlying microglial dysfunction that could become a novel therapeutic target for AD.
Collapse
Affiliation(s)
- Priya Prakash
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Evi Paouri
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kanchan Bisht
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kaushik Sharma
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Matthew G. Clark
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Alexis Crockett
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Nadia Gasmi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sarah Stanko
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Richard A. Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Guo WB, Wu C, Pan K, Yang L, Miao AJ. Pre-exposure to Fe 2O 3 or TiO 2 Nanoparticles Inhibits Subsequent Biological Uptake of 55Fe-Labeled Fe 2O 3 Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4831-4840. [PMID: 36938933 DOI: 10.1021/acs.est.2c08747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aquatic organisms are frequently exposed to various nanoparticles (NPs) in the natural environment. Thus, studies of NP bioaccumulation should include organisms that have been previously exposed to NPs. Our study investigated the effects of pre-exposure of Tetrahymena thermophila (T. thermophila) to Fe2O3 or TiO2 NPs on the protozoan's subsequent uptake of 55Fe-labeled Fe2O3 (55Fe2O3) NPs. Molecular mechanisms underlying the pre-exposure effects were explored in transcriptomic and metabolomic experiments. Pre-exposure to either NPs inhibited the subsequent uptake of 55Fe2O3 NPs. The results of the transcriptomic experiment indicated that NP pre-exposure influenced the expression of genes related to phagosomes and lysosomes and physiological processes such as glutathione and lipid metabolism, which are closely associated with the endocytosis of 55Fe2O3 NPs. The differentially expressed metabolites obtained from the metabolomic experiments showed an enrichment of energy metabolism and antioxidation pathways in T. thermophila pre-exposed to NPs. Together, these results demonstrate that the pre-exposure of T. thermophila to Fe2O3 or TiO2 NPs inhibited the protozoan's subsequent uptake of 55Fe2O3 NPs, possibly by mechanisms involving the alteration of endocytosis-related organelles, the induction of oxidative stress, and a lowering of the intracellular energy supply. Thus, NP pre-exposure represents a scenario which can inform increasingly realistic estimates of NP bioaccumulation.
Collapse
Affiliation(s)
- Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China PRC
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| |
Collapse
|
11
|
Zhu XL, Zhang HW, Peng WJ, Gao S, Yang ZL, Zhang JQ, Liu XS. Autophagy impairment is involved in midazolam-induced lipid droplet accumulation and consequent phagocytosis decrease in BV2 cells. Biochem Biophys Res Commun 2023; 643:147-156. [PMID: 36609155 DOI: 10.1016/j.bbrc.2022.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
An increasing number of experimental and clinical observation suggest that the use of anaesthetics is closely associated with postoperative central nervous system (CNS) complications, such as delirium and cognitive dysfunction. Brain energy rescue is an emerging therapeutic strategy for central nervous system disease (CNSDs). However, the effect of anaesthetics on nerve cell energy utilisation, especially microglia, and its potential effects on cell function still unclear. Elucidating the effects of anaesthetics on lipid droplets, which are specific lipid storage organs, and phagocytosis of microglia is crucial to discover a new therapeutic concept for postoperative CNS complications. Here, we studied the effects of the commonly used anaesthetic midazolam on lipid droplets and phagocytosis in immortalised microglial BV2 cells. Lipid droplets were assessed by flow cytometry and triglyceride quantification. The phagocytosis of BV2 cells was evaluated by detecting their phagocytosis by latex beads. Additionally, the autophagy of BV2 cells was evaluated by western blot and observation under microscopy. Our results showed that midazolam caused lipid droplet accumulation and reduced phagocytosis in BV2 cells, and inhibition of lipid droplet accumulation partially restored phagocytosis. Furthermore, midazolam blocks autophagic degradation by increasing phosphorylated TFEB in BV2 cells, inhibition of midazolam-increased phosphorylated TFEB might contribute to the improvement of autophagic flux by rapamycin. Moreover, promoting autophagy reverse the lipid droplet accumulation and phagocytosis decrease. This study suggests autophagy is a target for attenuating lipid droplet accumulation, normal degradation of lipid droplets is important for maintaining microglia phagocytosis and attenuating the side effects of midazolam on the CNS.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Hui-Wen Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Wen-Jing Peng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhi-Lai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Ji-Qian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| | - Xue-Sheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| |
Collapse
|
12
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
13
|
Yang D, Wang X, Zhang L, Fang Y, Zheng Q, Liu X, Yu W, Chen S, Ying J, Hua F. Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases. Cell Biosci 2022; 12:106. [PMID: 35831869 PMCID: PMC9277953 DOI: 10.1186/s13578-022-00828-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of neuroglia in maintaining normal brain function under physiological and pathological conditions has been supported by growing evidence in recent years. The most important issues regarding glial metabolism and function include the cooperation between glial populations and neurons, morphological and functional changes in pathological states, and the role in the onset and progression of neurodegenerative diseases. Although lipid accumulation and further lipid droplet production in neurodegenerative disease brain models have been observed for a long time, the dynamic development of brain lipid droplet research in recent years suggests its role in the development and progression of neurodegenerative diseases was previously underestimated. First recognized as organelles of lipid storage, lipid droplets (LDs) have emerged as an important organelle in metabolic diseases, inflammation, and host defense. Dynamic changes in lipid metabolism within neurons and glial cells resulting in lipid accumulation and lipid droplet formation are present in brain models of various neurodegenerative diseases, yet their role in the brain remains largely unexplored. This paper first reviews the metabolism and accumulation of several major lipids in the brain and discusses the regulation of lipid accumulation in different types of brain cells. We explore the potential role of intracellular lipid accumulation in the pathogenesis of neurodegeneration, starting from lipid metabolism and LDs biogenesis in glial cells, and discuss several pathological factors that promote lipid droplet formation, mainly focusing on oxidative stress, energy metabolism and glial cell-neuron coupling, which are closely related to the etiology and progression of neurodegenerative diseases. Finally, the directions and challenges of intracellular lipid metabolism in glial cells in neurodegeneration are discussed.
Collapse
|
14
|
Chen S, Huang X. Cytosolic lipolysis in non-adipose tissues: energy provision and beyond. FEBS J 2022; 289:7385-7398. [PMID: 34407292 DOI: 10.1111/febs.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/18/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Cytosolic lipolysis is a well-defined biochemical process that plays important roles in the mobilization of stored neutral lipids. Lipid turnover, regulated by cytosolic lipolysis, has been extensively studied in adipose tissue, liver, and muscle. The storage and utilization of neutral lipids is a basic function of most, if not all, tissues and cells. In this review, we focus on the functions of cytosolic lipolysis mainly in non-adipose tissues and in several physiological processes, including cancer, longevity, and pathogen infection. The mechanisms underlying the impact of cytosolic lipolysis on these events will be discussed. Detailed understanding of cytosolic lipolysis in both adipose and non-adipose tissues will have implications for future clinical translation.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
16
|
Approaches to Measuring the Activity of Major Lipolytic and Lipogenic Enzymes In Vitro and Ex Vivo. Int J Mol Sci 2022; 23:ijms231911093. [PMID: 36232405 PMCID: PMC9570359 DOI: 10.3390/ijms231911093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Since the 1950s, one of the goals of adipose tissue research has been to determine lipolytic and lipogenic activity as the primary metabolic pathways affecting adipocyte health and size and thus representing potential therapeutic targets for the treatment of obesity and associated diseases. Nowadays, there is a relatively large number of methods to measure the activity of these pathways and involved enzymes, but their applicability to different biological samples is variable. Here, we review the characteristics of mean lipogenic and lipolytic enzymes, their inhibitors, and available methodologies for assessing their activity, and comment on the advantages and disadvantages of these methodologies and their applicability in vivo, ex vivo, and in vitro, i.e., in cells, organs and their respective extracts, with the emphasis on adipocytes and adipose tissue.
Collapse
|
17
|
Huang X, Leung JYS, Hu M, Xu EG, Wang Y. Microplastics can aggravate the impact of ocean acidification on the health of mussels: Insights from physiological performance, immunity and byssus properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119701. [PMID: 35779660 DOI: 10.1016/j.envpol.2022.119701] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification may increase the risk of disease outbreaks that would challenge the future persistence of marine organisms if their immune system and capacity to produce vital structures for survival (e.g., byssus threads produced by bivalves) are compromised by acidified seawater. These potential adverse effects may be exacerbated by microplastic pollution, which is forecast to co-occur with ocean acidification in the future. Thus, we evaluated the impact of ocean acidification and microplastics on the health of a mussel species (Mytilus coruscus) by assessing its physiological performance, immunity and byssus properties. We found that ocean acidification and microplastics not only reduced hemocyte concentration and viability due to elevated oxidative stress, but also undermined phagocytic activity of hemocytes due to lowered energy budget of mussels, which was in turn caused by the reduced feeding performance and energy assimilation. Byssus quality (strength and extensibility) and production were also reduced by ocean acidification and microplastics. To increase the chance of survival with these stressors, the mussels prioritized the synthesis of some byssus proteins (Mfp-4 and Mfp-5) to help maintain adhesion to substrata. Nevertheless, our findings suggest that co-occurrence of ocean acidification and microplastic pollution would increase the susceptibility of bivalves to infectious diseases and dislodgement risk, thereby threatening their survival and undermining their ecological contributions to the community.
Collapse
Affiliation(s)
- Xizhi Huang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; Institute of Geosciences, University of Mainz, Mainz, 55128, Germany
| | - Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China; School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
18
|
Rajamanickam K, Leela V, Suganya G, Basha SH, Parthiban M, Visha P, Elango A. Thermal cum lipopolysaccharide-induced stress challenge downregulates functional response of bovine monocyte-derived macrophages. J Therm Biol 2022; 108:103301. [DOI: 10.1016/j.jtherbio.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
19
|
Li C, Wang Y, Xing Y, Han J, Zhang Y, Zhang A, Hu J, Hua Y, Bai Y. Regulation of microglia phagocytosis and potential involvement of exercise. Front Cell Neurosci 2022; 16:953534. [PMID: 35959472 PMCID: PMC9357882 DOI: 10.3389/fncel.2022.953534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia are considered the main phagocytic cells in the central nervous system, remodeling neural circuits by pruning synapses during development. Microglial phagocytosis is also a crucial process in maintaining adult brain homeostasis and clearing potential toxic factors, which are recognized to be associated with neurodegenerative and neuroinflammatory disorders. For example, microglia can engulf amyloid-β plaques, myelin debris, apoptotic cells, and extracellular harmful substances by expressing a variety of specific receptors on the cell surface or by reprogramming intracellular glucose and lipid metabolism processes. Furthermore, physical exercise has been implicated to be one of the non-pharmaceutical treatments for various nervous system diseases, which is closely related to neuroplasticity and microglia functions including proliferation, activation, and phagocytosis. This review focuses on the central regulatory mechanisms related to microglia phagocytosis and the potential role of exercise training in this process.
Collapse
Affiliation(s)
- Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yulong Bai
| |
Collapse
|
20
|
Muralidharan S, Torta F, Lin MK, Olona A, Bagnati M, Moreno-Moral A, Ko JH, Ji S, Burla B, Wenk MR, Rodrigues HG, Petretto E, Behmoaras J. Immunolipidomics Reveals a Globoside Network During the Resolution of Pro-Inflammatory Response in Human Macrophages. Front Immunol 2022; 13:926220. [PMID: 35844525 PMCID: PMC9280915 DOI: 10.3389/fimmu.2022.926220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4)-mediated changes in macrophages reshape intracellular lipid pools to coordinate an effective innate immune response. Although this has been previously well-studied in different model systems, it remains incompletely understood in primary human macrophages. Here we report time-dependent lipidomic and transcriptomic responses to lipopolysaccharide (LPS) in primary human macrophages from healthy donors. We grouped the variation of ~200 individual lipid species measured by LC-MS/MS into eight temporal clusters. Among all other lipids, glycosphingolipids (glycoSP) and cholesteryl esters (CE) showed a sharp increase during the resolution phase (between 8h or 16h post LPS). GlycoSP, belonging to the globoside family (Gb3 and Gb4), showed the greatest inter-individual variability among all lipids quantified. Integrative network analysis between GlycoSP/CE levels and genome-wide transcripts, identified Gb4 d18:1/16:0 and CE 20:4 association with subnetworks enriched for T cell receptor signaling (PDCD1, CD86, PTPRC, CD247, IFNG) and DC-SIGN signaling (RAF1, CD209), respectively. Our findings reveal Gb3 and Gb4 globosides as sphingolipids associated with the resolution phase of inflammatory response in human macrophages.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Jacques Behmoaras, ; Federico Torta,
| | - Michelle K. Lin
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Antoni Olona
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore
| | - Marta Bagnati
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Aida Moreno-Moral
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore
| | - Jeong-Hun Ko
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hosana G. Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore,MRC London Institute of Medical Sciences (LMC), Imperial College, London, United Kingdom,Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - Jacques Behmoaras
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore,Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom,*Correspondence: Jacques Behmoaras, ; Federico Torta,
| |
Collapse
|
21
|
Tlili M, Acevedo H, Descoteaux A, Germain M, Heinonen KM. Cell-intrinsic Wnt4 ligand regulates mitochondrial oxidative phosphorylation in macrophages. J Biol Chem 2022; 298:102193. [PMID: 35764169 PMCID: PMC9352913 DOI: 10.1016/j.jbc.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow–derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C–mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow–derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.
Collapse
Affiliation(s)
- Mouna Tlili
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Hamlet Acevedo
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Albert Descoteaux
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, CANADA; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, CANADA; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Université du Québec, Quebec, CANADA
| | - Krista M Heinonen
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, CANADA.
| |
Collapse
|
22
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
23
|
Kanti MM, Striessnig-Bina I, Wieser BI, Schauer S, Leitinger G, Eichmann TO, Schweiger M, Winkler M, Winter E, Lana A, Kufferath I, Marsh LM, Kwapiszewska G, Zechner R, Hoefler G, Vesely PW. Adipose triglyceride lipase-mediated lipid catabolism is essential for bronchiolar regeneration. JCI Insight 2022; 7:e149438. [PMID: 35349484 PMCID: PMC9090255 DOI: 10.1172/jci.insight.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene‑induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.
Collapse
Affiliation(s)
- Manu Manjunath Kanti
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabelle Striessnig-Bina
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beatrix Irene Wieser
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- BioTechMed-Graz, Graz, Austria
- Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Thomas O. Eichmann
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Martina Schweiger
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margit Winkler
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Graz, Austria
| | - Elke Winter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Lana
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh Matthew Marsh
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Giessen, Germany
| | - Rudolf Zechner
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Paul Willibald Vesely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
24
|
Lipid metabolism and neutrophil function. Cell Immunol 2022; 377:104546. [DOI: 10.1016/j.cellimm.2022.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
|
25
|
Triglyceride breakdown from lipid droplets regulates the inflammatory response in macrophages. Proc Natl Acad Sci U S A 2022; 119:e2114739119. [PMID: 35302892 PMCID: PMC8944848 DOI: 10.1073/pnas.2114739119] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play important roles in cellular energy homeostasis, tightly regulating the accumulation and release of lipids. In macrophages, lipids accumulate in LDs during inflammation. However, it is unclear how inflammatory activation promotes the accumulation of lipids in LDs, and how the dynamic between lipid accumulation and breakdown could drive or inhibit inflammation. Elucidating the role of lipid accumulation during inflammation may provide important knowledge to influence inflammatory processes during health and disease. We identify the importance of the hypoxia-inducible lipid droplet–associated protein and the intracellular adipose triglyceride lipase in the regulation of lipid accumulation and breakdown in inflammatory macrophages. Furthermore, we determine the regulatory effect of lipid breakdown from LDs in supporting inflammation. In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages. Lipopolysaccharide (LPS)-mediated activation markedly increased triglyceride accumulation in macrophages. This increase could be attributed to up-regulation of the hypoxia-inducible lipid droplet–associated (HILPDA) protein, which down-regulated adipose triglyceride lipase (ATGL) protein levels, in turn leading to decreased ATGL-mediated triglyceride hydrolysis. The reduction in ATGL-mediated lipolysis attenuated the inflammatory response in macrophages after ex vivo and in vitro activation, and was accompanied by decreased production of prostaglandin-E2 (PGE2) and interleukin-6 (IL-6). Overall, we provide evidence that LPS-mediated activation of macrophages suppresses lipolysis via induction of HILPDA, thereby reducing the availability of proinflammatory lipid precursors and suppressing the production of PGE2 and IL-6.
Collapse
|
26
|
Goeritzer M, Schlager S, Kuentzel KB, Vujić N, Korbelius M, Rainer S, Kolb D, Mussbacher M, Salzmann M, Schrottmaier WC, Assinger A, Schlagenhauf A, Madreiter-Sokolowski CT, Blass S, Eichmann TO, Graier WF, Kratky D. Adipose Triglyceride Lipase Deficiency Attenuates In Vitro Thrombus Formation without Affecting Platelet Activation and Bleeding In Vivo. Cells 2022; 11:850. [PMID: 35269472 PMCID: PMC8908992 DOI: 10.3390/cells11050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
According to genome-wide RNA sequencing data from human and mouse platelets, adipose triglyceride lipase (ATGL), the main lipase catalyzing triglyceride (TG) hydrolysis in cytosolic lipid droplets (LD) at neutral pH, is expressed in platelets. Currently, it is elusive to whether common lipolytic enzymes are involved in the degradation of TG in platelets. Since the consequences of ATGL deficiency in platelets are unknown, we used whole-body and platelet-specific (plat)Atgl-deficient (-/-) mice to investigate the loss of ATGL on platelet function. Our results showed that platelets accumulate only a few LD due to lack of ATGL. Stimulation with platelet-activating agonists resulted in comparable platelet activation in Atgl-/-, platAtgl-/-, and wild-type mice. Measurement of mitochondrial respiration revealed a decreased oxygen consumption rate in platelets from Atgl-/- but not from platAtgl-/- mice. Of note, global loss of ATGL was associated with an anti-thrombogenic phenotype, which was evident by reduced thrombus formation in collagen-coated channels in vitro despite unchanged bleeding and occlusion times in vivo. We conclude that genetic deletion of ATGL affects collagen-induced thrombosis without pathological bleeding and platelet activation.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Stefanie Schlager
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- AOP Orphan Pharmaceuticals GmbH, 1190 Vienna, Austria
| | - Katharina B. Kuentzel
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Nemanja Vujić
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Melanie Korbelius
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Silvia Rainer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis, Medical University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria;
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria;
| | - Manuel Salzmann
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, 1190 Vienna, Austria;
| | - Waltraud C. Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1190 Vienna, Austria; (W.C.S.); (A.A.)
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1190 Vienna, Austria; (W.C.S.); (A.A.)
| | - Axel Schlagenhauf
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Sandra Blass
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Thomas O. Eichmann
- BioTechMed-Graz, 8010 Graz, Austria;
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- BioTechMed-Graz, 8010 Graz, Austria;
| | - Dagmar Kratky
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- BioTechMed-Graz, 8010 Graz, Austria;
| |
Collapse
|
27
|
Dhamodaran K, Baidouri H, Nartey A, Staverosky J, Keller K, Acott T, Vranka J, Raghunathan V. Endogenous expression of Notch pathway molecules in human trabecular meshwork cells. Exp Eye Res 2022; 216:108935. [PMID: 35033558 PMCID: PMC8885976 DOI: 10.1016/j.exer.2022.108935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Cells in the trabecular meshwork sense and respond to a myriad of physical forces through a process known as mechanotransduction. Whilst the effect of substratum stiffness or stretch on TM cells have been investigated in the context of transforming growth factor (TGF-β), Wnt and YAP/TAZ pathways, the role of Notch signaling, an evolutionarily conserved pathway, recently implicated in mechanotransduction, has not been investigated in trabecular meshwork (TM) cells. Here, we compare the endogenous expression of Notch pathway molecules in TM cells from glaucomatous and non-glaucomatous donors, segmental flow regions, and when subjected to cyclical strain, or grown on hydrogels of varying rigidity. METHODS Primary TM from glaucomatous (GTM), non-glaucomatous (NTM) donors, and from segmental flow regions [high flow (HF), low flow (LF)], were utilized between passages 2-6. Cells were (i) plated on tissue culture plastic, (ii) subjected to cyclical strain (6 h and 24 h), or (iii) cultured on 3 kPa and 80 kPa hydrogels. mRNA levels of Notch receptors/ligands/effectors in the TM cells was determined by qRT-PCR. Phagocytosis was determined as a function of substratum stiffness in NTM-HF/LF cells in the presence or absence of 100 nM Dexamethasone treatment. RESULTS Innate expression of Notch pathway genes were significantly overexpressed in GTM cells with no discernible differences observed between HF/LF cells in either NTM or GTM cells cultured on plastic substrates. With 6 h of cyclical strain, a subset of Notch pathway genes presented with altered expression. Expression of Notch receptors/ligands/receptors/inhibitors progressively declined with increasing stiffness and this correlated with phagocytic ability of NTM cells. Dexamethasone treatment decreased phagocytosis regardless of stiffness or cells isolated from segmental outflow regions. CONCLUSIONS We demonstrate here that the Notch expression in cultured TM cells differ intrinsically between GTM vs NTM, and by substratum cues (cyclical strain and stiffness). Of import, the most apparent differences in gene expression were observed as a function of substratum stiffness which closely followed phagocytic ability of cells. Interestingly, on soft substrates (mimicking normal TM stiffness) Notch expression and phagocytosis was highest, while both expression and phagocytosis was significantly lower on stiffer substrates (mimicking glaucomatous stiffness) regardless of DEX treatment. Such context dependent changes suggest Notch pathway may play differing roles in disease vs homeostasis. Studies focused on understanding the mechanistic role of Notch (if any) in outflow homeostasis are thus warranted.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Andrews Nartey
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Julia Staverosky
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Kate Keller
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Ted Acott
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA,Department of Biomedical Engineering, University of Houston, Houston, TX, USA,Correspondence should be sent to: VijayKrishna Raghunathan, Ph.D., University of Houston, College of Optometry, 4901 Calhoun Rd, Houston, TX, 77204, Phone: (713)-743-8331,
| |
Collapse
|
28
|
Kittirat Y, Phetcharaburanin J, Promraksa B, Kulthawatsiri T, Wangwiwatsin A, Klanrit P, Sangkhamanon S, Jarearnrat A, Thongchot S, Mahalapbutr P, Loilome W, Saya H, Namwat N. Lipidomic Analyses Uncover Apoptotic and Inhibitory Effects of Pyrvinium Pamoate on Cholangiocarcinoma Cells via Mitochondrial Membrane Potential Dysfunction. Front Public Health 2021; 9:766455. [PMID: 34950627 PMCID: PMC8688698 DOI: 10.3389/fpubh.2021.766455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Pyrvinium pamoate (PP), an FDA-approved anthelmintic drug, has been validated as a highly potent anti-cancer agent and patented recently as a potential chemotherapeutic drug for various cancers. The aims of this study were, therefore, to investigate the ability of PP in anti-proliferative activity and focused on the lipid profiles revealing the alteration of specific lipid species in the liver fluke Opisthorchis viverrini (Ov)-associated cholangiocarcinoma (CCA) cells. PP inhibited CCA cell viability through suppressing mitochondrial membrane potential (MMP) and ATP productions, leading to apoptotic cell death. Liquid chromatography-mass spectrometry combined with chemometrics was performed to investigate lipid alteration during PP-induced apoptosis. The lipidomic analyses showed the altered lipid signatures of CCA cell types including S-acetyldihydrolipoamide, methylselenopyruvate, and triglycerides that were increased in PP-treated CCA cells. In contrast, the levels of sphinganine and phosphatidylinositol were lower in the PP-treated group compared with its counterpart. The orthogonal partial-least squares regression analysis revealed that PP-induced MMP dysfunction, leading to remarkably reduced ATP level, was significantly associated with triglyceride (TG) accumulation observed in PP-treated CCA cells. Our findings indicate that PP could suppress the MMP function, which causes inhibition of CCA cell viability through lipid production, resulting in apoptotic induction in CCA cells. These findings provide an anti-cancer mechanism of PP under apoptotic induction ability that may serve as the alternative approach for CCA treatment.
Collapse
Affiliation(s)
- Yingpinyapat Kittirat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Bundit Promraksa
- Faculty of Medical Technology, Nakhonratsima College, Nakhon Ratchasima, Thailand
| | - Thanaporn Kulthawatsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Sakkarn Sangkhamanon
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jarearnrat
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Mahidol University, Bangkok, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University Science Park, Innovation and Enterprise Affairs, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
29
|
Wu KM, Zhang YR, Huang YY, Dong Q, Tan L, Yu JT. The role of the immune system in Alzheimer's disease. Ageing Res Rev 2021; 70:101409. [PMID: 34273589 DOI: 10.1016/j.arr.2021.101409] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder where the accumulation of amyloid plaques and the formation of tau tangles are the prominent pathological hallmarks. Increasing preclinical and clinical studies have revealed that different components of the immune system may act as important contributors to AD etiology and pathogenesis. The recognition of misfolded Aβ and tau by immune cells can trigger a series of complex immune responses in AD, and then lead to neuroinflammation and neurodegeneration. In parallel, genome-wide association studies have also identified several immune related loci associated with increased - risk of AD by interfering with the function of immune cells. Other immune related factors, such as impaired immunometabolism, defective meningeal lymphatic vessels and autoimmunity might also be involved in the pathogenesis of AD. Here, we review the data showing the alterations of immune cells in the AD trajectory and seek to demonstrate the crosstalk between the immune cell dysfunction and AD pathology. We then discuss the most relevant research findings in regards to the influences of gene susceptibility of immune cells for AD. We also consider impaired meningeal lymphatics, immunometabolism and autoimmune mechanisms in AD. In addition, immune related biomarkers and immunotherapies for AD are also mentioned in order to offer novel insights for future research.
Collapse
|
30
|
Microglial 'fat shaming' in development and disease. Curr Opin Cell Biol 2021; 73:105-109. [PMID: 34455405 DOI: 10.1016/j.ceb.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Neuronal-immune interactions are known to play crucial roles in brain development and homoeostasis. Of great relevance in this context are microglia, brain macrophages that phagocytose neurons that die during development, and many neurological disorders. Single-cell RNA sequencing methods have significantly advanced our understanding of microglial heterogeneity and transcriptional response to environmental changes. Here, we review recent work showing how microglia adopt a similar molecular signature during development and disease characterised by the expression of genes linked to phagocytosis and lipid uptake and metabolism. These studies show that in many neurodegenerative conditions, microglia accumulate cholesterols and lipid-rich debris, pointing to lipid processing and transport as promising targets for developing new therapeutical treatments against neurodegenerative disorders.
Collapse
|
31
|
Tourki B, Halade GV. Heart Failure Syndrome With Preserved Ejection Fraction Is a Metabolic Cluster of Non-resolving Inflammation in Obesity. Front Cardiovasc Med 2021; 8:695952. [PMID: 34409075 PMCID: PMC8367012 DOI: 10.3389/fcvm.2021.695952] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an emerging disease with signs of nonresolving inflammation, endothelial dysfunction, and multiorgan defects. Moreover, based on the clinical signs and symptoms and the rise of the obesity epidemic, the number of patients developing HFpEF is increasing. From recent molecular and cellular studies, it becomes evident that HFpEF is not a single and homogenous disease but a cluster of heterogeneous pathophysiology with aging at the base of the pyramid. Obesity superimposed on aging drives the number of inflammatory pathways that intersect with metabolic dysfunction and suboptimal inflammation. Here, we compiled information on obesity-directed macrophage dysfunction that coincide with metabolic defects. Obesity-associated proinflammatory stimuli facilitates heart and interorgan inflammation in HFpEF. Furthermore, diversified mechanisms that drive heart failure urge the need of studying pervasive and unresolved inflammation in animal models to understand HFpEF. A broad and system-based approach will help to study major translational aspects of HFpEF, since no single animal model recapitulates all signs of differential HFpEF stages in the clinical setting. Here, we covered experimental models that target HFpEF and emphasized the advances observed with formyl peptide 2 (FPR2) receptor, a prime sensor that is important in inflammation-resolution signaling. Dysfunction of FPR2 led to the development of spontaneous obesity, impaired macrophage function, and triggered kidney fibrosis, providing evidence of multiorgan defects in HFpEF in an obesogenic aging experimental model.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| |
Collapse
|
32
|
Olona A, Hateley C, Muralidharan S, Wenk MR, Torta F, Behmoaras J. Sphingolipid metabolism during Toll-like receptor 4 (TLR4)-mediated macrophage activation. Br J Pharmacol 2021; 178:4575-4587. [PMID: 34363204 DOI: 10.1111/bph.15642] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophage activation in response to stimulation of Toll-like receptor 4 (TLR4) provides a paradigm for investigating energy metabolism that regulates the inflammatory response. TLR4-mediated pro-inflammatory macrophage activation is characterized by increased glycolysis and altered mitochondrial metabolism, supported by selective amino acid uptake and/or usage. Fatty acid metabolism remains as a highly complex rewiring that accompanies classical macrophage activation. TLR4 activation leads to de novo synthesis of fatty acids, which flux into sphingolipids, complex lipids that form the building blocks of eukaryotic cell membranes and regulate cell function. Here, we review the importance of TLR4-mediated de novo synthesis of membrane sphingolipids in macrophages. We first highlight fatty acid metabolism during TLR4-driven macrophage immunometabolism. We then focus on the temporal dynamics of sphingolipid biosynthesis and emphasize the modulatory role of some sphingolipid species (i.e. sphingomyelins, ceramides and glycosphingolipids) on the pro-inflammatory and pro-resolution phases of LPS/TLR4 activation in macrophages.
Collapse
Affiliation(s)
- Antoni Olona
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Charlotte Hateley
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Markus R Wenk
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Federico Torta
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jacques Behmoaras
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School Singapore, Republic of Singapore
| |
Collapse
|
33
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
34
|
van Dierendonck XAMH, de la Rosa Rodriguez MA, Georgiadi A, Mattijssen F, Dijk W, van Weeghel M, Singh R, Borst JW, Stienstra R, Kersten S. HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation. Cell Rep 2021; 30:1811-1822.e6. [PMID: 32049012 DOI: 10.1016/j.celrep.2020.01.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
Obesity leads to a state of chronic, low-grade inflammation that features the accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid-droplet accumulation in the development of obesity-induced adipose-tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages can be rescued by inhibition of adipose triglyceride lipase (ATGL) and is associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency does not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-inducible, physiological inhibitor of ATGL-mediated lipolysis in macrophages and uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Xanthe A M H van Dierendonck
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands
| | - Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Frits Mattijssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Wieneke Dijk
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY 10461, USA
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands.
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
35
|
Transcriptomic and metabolomic insights into the variety of sperm storage in oviduct of egg layers. Poult Sci 2021; 100:101087. [PMID: 33887680 PMCID: PMC8082553 DOI: 10.1016/j.psj.2021.101087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
In birds, the sperm storage tubules (SST) are dispersed in uterovaginal junction (UVJ) and highly correlated with differential capacity of sperm storage (SS) in and among species with unspecified mechanisms. Here, the SS duration of 252 egg layer breeders was evaluated in 5 rounds with 3 phenotypic traits to screen high- and low-SS individuals, respectively, followed with transcriptome of UVJ tissues and metabolome of serum (high-SS vs. low-SS) to decipher the candidate genes and biochemical markers correlated with differential SS capacity. Histological characterization suggested slightly higher density of SST in UVJ (high-SS vs. low-SS). Transcriptome analyses identified 596 differentially expressed genes (336 upregulated vs. 260 downregulated), which were mainly enriched in gene ontology terms of homeostasis, steroid and lipid metabolism and hormone activity, and 12 significant pathways (P < 0.05) represented by calcium, steroid, and lipid metabolism. Immunohistochemical staining of GNAQ, ST6GAL1, ADFP, and PCNA showed similar distribution in UVJ tissues between 2 groups. Several candidates (HSD11B2, DIO2, AQP3, GNAQ, NANS, ST6GAL1) combined with 4 (11β-prostaglandin F2α, prostaglandin B1, 7α-hydroxytestosterone, and N-acetylneuraminic acid) of 40 differential metabolites enriched in serum metabolome were considered as regulators and biomarkers of SS duration in egg layer breeders. The integrated transcriptome and metabolome analyses of chicken breeder hens will provide novel insights for exploration and improvement of differential SS capacity in birds.
Collapse
|
36
|
Fairley LH, Wong JH, Barron AM. Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer's Disease. Front Immunol 2021; 12:624538. [PMID: 33717134 PMCID: PMC7947196 DOI: 10.3389/fimmu.2021.624538] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-associated terminal neurodegenerative disease with no effective treatments. Dysfunction of innate immunity is implicated in the pathogenesis of AD, with genetic studies supporting a causative role in the disease. Microglia, the effector cells of innate immunity in the brain, are highly plastic and perform a diverse range of specialist functions in AD, including phagocytosing and removing toxic aggregates of beta amyloid and tau that drive neurodegeneration. These immune functions require high energy demand, which is regulated by mitochondria. Reflecting this, microglia have been shown to be highly metabolically flexible, reprogramming their mitochondrial function upon inflammatory activation to meet their energy demands. However, AD-associated genetic risk factors and pathology impair microglial metabolic programming, and metabolic derailment has been shown to cause innate immune dysfunction in AD. These findings suggest that immunity and metabolic function are intricately linked processes, and targeting microglial metabolism offers a window of opportunity for therapeutic treatment of AD. Here, we review evidence for the role of metabolic programming in inflammatory functions in AD, and discuss mitochondrial-targeted immunotherapeutics for treatment of the disease.
Collapse
Affiliation(s)
- Lauren H Fairley
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Bullock J, Polato F, Abu-Asab M, Bernardo-Colón A, Aflaki E, Agbaga MP, Becerra SP. Degradation of Photoreceptor Outer Segments by the Retinal Pigment Epithelium Requires Pigment Epithelium-Derived Factor Receptor (PEDF-R). Invest Ophthalmol Vis Sci 2021; 62:30. [PMID: 33605986 PMCID: PMC7900850 DOI: 10.1167/iovs.62.2.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To examine the contribution of pigment epithelium-derived factor receptor (PEDF-R) to the phagocytosis process. Previously, we identified PEDF-R, the protein encoded by the PNPLA2 gene, as a phospholipase A2 in the retinal pigment epithelium (RPE). During phagocytosis, RPE cells ingest abundant phospholipids and protein in the form of photoreceptor outer segment (POS) tips, which are then hydrolyzed. The role of PEDF-R in RPE phagocytosis is not known. Methods Mice in which PNPLA2 was conditionally knocked out (cKO) in the RPE were generated. Mouse RPE/choroid explants were cultured. Human ARPE-19 cells were transfected with siPNPLA2 silencing duplexes. POSs were isolated from bovine retinas. The phospholipase A2 inhibitor bromoenol lactone was used. Transmission electron microscopy, immunofluorescence, lipid labeling, pulse-chase experiments, western blots, and free fatty acid and β-hydroxybutyrate assays were performed. Results The RPE of the cKO mice accumulated lipids, as well as more abundant and larger rhodopsin particles, compared to littermate controls. Upon POS exposure, RPE explants from cKO mice released less β-hydroxybutyrate compared to controls. After POS ingestion during phagocytosis, rhodopsin degradation was stalled both in cells treated with bromoenol lactone and in PNPLA2-knocked-down cells relative to their corresponding controls. Phospholipase A2 inhibition lowered β-hydroxybutyrate release from phagocytic RPE cells. PNPLA2 knockdown also resulted in a decline in fatty acids and β-hydroxybutyrate release from phagocytic RPE cells. Conclusions PEDF-R downregulation delayed POS digestion during phagocytosis. The findings imply that the efficiency of RPE phagocytosis depends on PEDF-R, thus identifying a novel contribution of this protein to POS degradation in the RPE.
Collapse
Affiliation(s)
- Jeanee Bullock
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC, United States
| | - Federica Polato
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elma Aflaki
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Martin-Paul Agbaga
- Departments of Cell Biology and Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - S. Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
38
|
Selen ES, Choi J, Wolfgang MJ. Discordant hepatic fatty acid oxidation and triglyceride hydrolysis leads to liver disease. JCI Insight 2021; 6:135626. [PMID: 33491665 PMCID: PMC7934875 DOI: 10.1172/jci.insight.135626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
To extract energy from stored lipids, fatty acids must first be liberated from triglyceride before their β-oxidation in mitochondria in a coordinated and stepwise manner. To determine the independent and interdependent roles of hepatic triglyceride hydrolysis and fatty acid oxidation, mice were generated with a liver-specific defect in triglyceride hydrolysis (AtglL–/–), fatty acid oxidation (Cpt2L–/–), or both (double knockout). The loss of either gene resulted in the compensatory increase in the other, demonstrating their coordination. The loss of individual components of fatty acid catabolism (carnitine palmitoyl transferase 2 [Cpt2], adipose triglyceride lipase [Atgl], and Pparα) resulted in largely independent effects on hepatocyte morphology, intermediary metabolism, and gene expression in response to fasting. However, high-fat feeding revealed the interdependent role of Atgl and Cpt2, as the loss of only one of the genes resulted in steatosis (fatty liver) but the loss of both components resulted in significant steatohepatitis (inflammation and fibrosis). Lipolysis and β-oxidation are intimately linked within a continuous pathway, and disruption of their coordination leads to unique cellular and molecular phenotypes that ultimately result in liver disease.
Collapse
Affiliation(s)
| | | | - Michael J Wolfgang
- Department of Biological Chemistry and.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021; 114:154338. [PMID: 32791172 PMCID: PMC7736084 DOI: 10.1016/j.metabol.2020.154338] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated transcription factors of nuclear hormone receptor superfamily that regulate energy metabolism. Currently, three PPAR subtypes have been identified: PPARα, PPARγ, and PPARβ/δ. PPARα and PPARδ are highly expressed in oxidative tissues and regulate genes involved in substrate delivery and oxidative phosphorylation (OXPHOS) and regulation of energy homeostasis. In contrast, PPARγ is more important in lipogenesis and lipid synthesis, with highest expression levels in white adipose tissue (WAT). In addition to tissues regulating whole body energy homeostasis, PPARs are expressed in immune cells and have an emerging critical role in immune cell differentiation and fate commitment. In this review, we discuss the actions of PPARs in the function of the innate and the adaptive immune system and their implications in immune-mediated inflammatory conditions.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Eirini Konstantinidou
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Chinmay Jani
- Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Mt. Auburn Hospital, Cambridge, MA 02138, United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
40
|
Lipid Metabolism in Regulation of Macrophage Functions. Trends Cell Biol 2020; 30:979-989. [DOI: 10.1016/j.tcb.2020.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
|
41
|
Chausse B, Kakimoto PA, Kann O. Microglia and lipids: how metabolism controls brain innate immunity. Semin Cell Dev Biol 2020; 112:137-144. [PMID: 32807643 DOI: 10.1016/j.semcdb.2020.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
Abstract
Microglia are universal sensors of alterations in CNS physiology. These cells integrate complex molecular signals and undergo comprehensive phenotypical remodeling to adapt inflammatory responses. In the last years, single-cell analyses have revealed that microglia exhibit diverse phenotypes during development, growth and disease. Emerging evidence suggests that such phenotype transitions are mediated by reprogramming of cell metabolism. Indeed, metabolic pathways are distinctively altered in activated microglia and are central nodes controlling microglial responses. Microglial lipid metabolism has been specifically involved in the control of microglial activation and effector functions, such as migration, phagocytosis and inflammatory signaling, and minor disturbances in microglial lipid handling associates with altered brain function in disorders featuring neuroinflammation. In this review, we explore new and relevant aspects of microglial metabolism in health and disease. We give special focus on how different branches of lipid metabolism, such as lipid sensing, synthesis and oxidation, integrate and control essential aspects of microglial biology, and how disturbances in these processes associate with aging and the pathogenesis of, for instance, multiple sclerosis and Alzheimer's disease. Finally, challenges and advances in microglial lipid research are discussed.
Collapse
Affiliation(s)
- Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | - Pamela A Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, Brazil
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
42
|
Castoldi A, Monteiro LB, van Teijlingen Bakker N, Sanin DE, Rana N, Corrado M, Cameron AM, Hässler F, Matsushita M, Caputa G, Klein Geltink RI, Büscher J, Edwards-Hicks J, Pearce EL, Pearce EJ. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun 2020; 11:4107. [PMID: 32796836 PMCID: PMC7427976 DOI: 10.1038/s41467-020-17881-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Foamy macrophages, which have prominent lipid droplets (LDs), are found in a variety of disease states. Toll-like receptor agonists drive triacylglycerol (TG)-rich LD development in macrophages. Here we explore the basis and significance of this process. Our findings indicate that LD development is the result of metabolic commitment to TG synthesis on a background of decreased fatty acid oxidation. TG synthesis is essential for optimal inflammatory macrophage activation as its inhibition, which prevents LD development, has marked effects on the production of inflammatory mediators, including IL-1β, IL-6 and PGE2, and on phagocytic capacity. The failure of inflammatory macrophages to make PGE2 when TG-synthesis is inhibited is critical for this phenotype, as addition of exogenous PGE2 is able to reverse the anti-inflammatory effects of TG synthesis inhibition. These findings place LDs in a position of central importance in inflammatory macrophage activation.
Collapse
Affiliation(s)
- Angela Castoldi
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Lauar B Monteiro
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Nisha Rana
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Mauro Corrado
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Alanna M Cameron
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Fabian Hässler
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - George Caputa
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Ramon I Klein Geltink
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Jörg Büscher
- Metabolomics Facility, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany.
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
43
|
Kappelt F, Du Ma X, Abou Hasna B, Kornke JM, Maniak M. Phospholipids containing ether-bound hydrocarbon-chains are essential for efficient phagocytosis and neutral lipids of the ester-type perturb development in Dictyostelium. Biol Open 2020; 9:9/7/bio052126. [PMID: 32675052 PMCID: PMC7375469 DOI: 10.1242/bio.052126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lipids are the building blocks for cellular membranes; they provide signalling molecules for membrane dynamics and serve as energy stores. One path of their synthesis is initiated by glycerol-3-phosphate acyltransferase (GPAT), which in Dictyostelium resides on the endoplasmic reticulum. When an excess of fatty acids is present, it redistributes to storage organelles, the lipid droplets. Mutants, where the GPAT was eliminated by homologous recombination, produce fewer lipid droplets and are almost devoid of triacylglycerols (TAG), rendering them more resistant to cell death and cell loss in the developmental stages preceding fruiting body formation. The enzyme most closely related to GPAT is called FARAT, because it combines a fatty acyl-reductase (FAR) and an acyltransferase (AT) domain in its sequence. The protein is confined to the lumen of the peroxisome, where it transfers a fatty acid to dihydroxyacetone-phosphate initiating the synthesis of ether lipids, later completed at the endoplasmic reticulum. A mutant lacking FARAT produces lipid droplets that are devoid of the storage lipid monoalkyl-diacyl-glycerol (MDG), but the efficiency of spore formation in the developmental cycle is largely unaltered. Instead, these mutants are strongly impaired in phagocytosis of yeast particles, which is attributed to reduced synthesis of membrane phospholipids containing ether-linked chains.
Collapse
Affiliation(s)
| | - Xiaoli Du Ma
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | | | | | - Markus Maniak
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
44
|
Yvan-Charvet L, Ivanov S. Metabolic Reprogramming of Macrophages in Atherosclerosis: Is It All about Cholesterol? J Lipid Atheroscler 2020; 9:231-242. [PMID: 32821733 PMCID: PMC7379089 DOI: 10.12997/jla.2020.9.2.231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Hypercholesterolemia contributes to the chronic inflammatory response during the progression of atherosclerosis, in part by favoring cholesterol loading in macrophages and other immune cells. However, macrophages encounter a substantial amount of other lipids and nutrients after ingesting atherogenic lipoprotein particles or clearing apoptotic cells, increasing their metabolic load and impacting their behavior during atherosclerosis plaque progression. This review examines whether and how fatty acids and glucose shape the cellular metabolic reprogramming of macrophages in atherosclerosis to modulate the onset phase of inflammation and the later resolution stage, in which the balance is tipped toward tissue repair.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Stoyan Ivanov
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| |
Collapse
|
45
|
Rosas-Ballina M, Guan XL, Schmidt A, Bumann D. Classical Activation of Macrophages Leads to Lipid Droplet Formation Without de novo Fatty Acid Synthesis. Front Immunol 2020; 11:131. [PMID: 32132994 PMCID: PMC7040478 DOI: 10.3389/fimmu.2020.00131] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/17/2020] [Indexed: 01/17/2023] Open
Abstract
Altered lipid metabolism in macrophages is associated with various important inflammatory conditions. Although lipid metabolism is an important target for therapeutic intervention, the metabolic requirement involved in lipid accumulation during pro-inflammatory activation of macrophages remains incompletely characterized. We show here that macrophage activation with IFNγ results in increased aerobic glycolysis, iNOS-dependent inhibition of respiration, and accumulation of triacylglycerol. Surprisingly, metabolite tracing with 13C-labeled glucose revealed that the glucose contributed to the glycerol groups in triacylglycerol (TAG), rather than to de novo synthesis of fatty acids. This is in stark contrast to the otherwise similar metabolism of cancer cells, and previous results obtained in activated macrophages and dendritic cells. Our results establish a novel metabolic pathway whereby glucose provides glycerol to the headgroup of TAG during classical macrophage activation.
Collapse
Affiliation(s)
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
47
|
DAGL-Beta Functions as a PUFA-Specific Triacylglycerol Lipase in Macrophages. Cell Chem Biol 2020; 27:314-321.e5. [PMID: 31991095 DOI: 10.1016/j.chembiol.2020.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/19/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
Here, we apply quantitative chemical proteomics and untargeted lipidomics to assign a polyunsaturated fatty acid (PUFA)-specific triacylglycerol (TAG) lipase activity for diacylglycerol lipase-beta (DAGLβ) in macrophages. We demonstrate that DAGLβ but not DAGLα is expressed and active in bone marrow-derived macrophages (BMDMs) as determined by activity-based protein profiling analysis of SILAC BMDMs. Genetic disruption of DAGLβ resulted in accumulation of cellular TAGs composed of PUFA but not saturated/low unsaturated fatty acid counterparts, which is recapitulated in wild-type macrophages treated with a DAGLβ-selective inhibitor. Biochemical assays with synthetic substrates confirm PUFA-TAGs as authentic DAGLβ substrates. In summary, our findings identify DAGLβ as a PUFA-specific TAG lipase in primary macrophages.
Collapse
|
48
|
Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens DW, Kim J, Tevini J, Felder TK, Wolinski H, Bertozzi CR, Bassik MC, Aigner L, Wyss-Coray T. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 2020; 23:194-208. [PMID: 31959936 PMCID: PMC7595134 DOI: 10.1038/s41593-019-0566-1] [Citation(s) in RCA: 573] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/27/2019] [Indexed: 01/05/2023]
Abstract
Microglia become progressively activated and seemingly dysfunctional with age, and genetic studies have linked these cells to the pathogenesis of a growing number of neurodegenerative diseases. Here we report a striking buildup of lipid droplets in microglia with aging in mouse and human brains. These cells, which we call 'lipid-droplet-accumulating microglia' (LDAM), are defective in phagocytosis, produce high levels of reactive oxygen species and secrete proinflammatory cytokines. RNA-sequencing analysis of LDAM revealed a transcriptional profile driven by innate inflammation that is distinct from previously reported microglial states. An unbiased CRISPR-Cas9 screen identified genetic modifiers of lipid droplet formation; surprisingly, variants of several of these genes, including progranulin (GRN), are causes of autosomal-dominant forms of human neurodegenerative diseases. We therefore propose that LDAM contribute to age-related and genetic forms of neurodegeneration.
Collapse
Affiliation(s)
- Julia Marschallinger
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.,Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tal Iram
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Macy Zardeneta
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Song E Lee
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Haney
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Genetics, School of Medicine, and Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - John V Pluvinage
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.,Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Vidhu Mathur
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, School of Medicine, and Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Justin Kim
- Department of Chemistry, Stanford ChEM-H and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Julia Tevini
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Thomas K Felder
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria.,Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Graz, Austria
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford ChEM-H and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Michael C Bassik
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Department of Genetics, School of Medicine, and Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA. .,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Department of Veterans Affairs, Palo Alto, CA, USA.
| |
Collapse
|
49
|
Koc M, Šiklová M, Šrámková V, Štěpán M, Krauzová E, Štich V, Rossmeislová L. Signs of Deregulated Gene Expression Are Present in Both CD14 + and CD14 - PBMC From Non-Obese Men With Family History of T2DM. Front Endocrinol (Lausanne) 2020; 11:582732. [PMID: 33658980 PMCID: PMC7917286 DOI: 10.3389/fendo.2020.582732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022] Open
Abstract
AIM Development of type 2 diabetes (T2DM) is associated with disturbances in immune and metabolic status that may be reflected by an altered gene expression profile of peripheral blood mononuclear cells (PBMC). To reveal a potential family predisposition to these alterations, we investigated the regulation of gene expression profiles in circulating CD14+ and CD14- PBMC in fasting conditions and in response to oral glucose tolerance test (OGTT) in glucose tolerant first-degree relatives (FDR) of T2DM patients and in control subjects. MATERIALS AND METHODS This work is based on the clinical study LIMEX (NCT03155412). Non-obese 12 non-diabetic (FDR), and 12 control men without family history of diabetes matched for age and BMI underwent OGTT. Blood samples taken before and at the end of OGTT were used for isolation of circulating CD14+ and CD14- PBMC. In these cells, mRNA levels of 94 genes related to lipid and carbohydrate metabolism, immunity, and inflammation were assessed by qPCR. RESULTS Irrespectively of the group, the majority of analyzed genes had different mRNA expression in CD14+ PBMC compared to CD14- PBMC in the basal (fasting) condition. Seven genes (IRS1, TLR2, TNFα in CD14+ PBMC; ABCA1, ACOX1, ATGL, IL6 in CD14- PBMC) had different expression in control vs. FDR groups. OGTT regulated mRNA levels of nine genes selectively in CD14+ PBMC and of two genes (ABCA1, PFKL) selectively in CD14-PBMC. Differences in OGTT-induced response between FDR and controls were observed for EGR2, CCL2 in CD14+ PBMC and for ABCA1, ACOX1, DGAT2, MLCYD, and PTGS2 in CD14- PBMC. CONCLUSION This study revealed a different impact of glucose challenge on gene expression in CD14+ when compared with CD14- PBMC fractions and suggested possible impact of family predisposition to T2DM on basal and OGTT-induced gene expression in these PBMC fractions. Future studies on these putative alterations of inflammation and lipid metabolism in fractionated PBMC in larger groups of subjects are warranted.
Collapse
Affiliation(s)
- Michal Koc
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Michaela Šiklová
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, and Inserm, Toulouse, France
| | - Veronika Šrámková
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, and Inserm, Toulouse, France
| | - Marek Štěpán
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Internal Medicine, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague, Czechia
| | - Eva Krauzová
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Internal Medicine, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague, Czechia
| | - Vladimír Štich
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, and Inserm, Toulouse, France
- Department of Internal Medicine, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague, Czechia
| | - Lenka Rossmeislová
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, and Inserm, Toulouse, France
- *Correspondence: Lenka Rossmeislová,
| |
Collapse
|
50
|
Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1651724. [PMID: 31885772 PMCID: PMC6899283 DOI: 10.1155/2019/1651724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by the production of autoreactive antibodies and cytokines, which are thought to have a major role in disease activity and progression. Immune system exposure to excessive amounts of autoantigens that are not efficiently removed is reported to play a significant role in the generation of autoantibodies and the pathogenesis of SLE. While several mechanisms of cell death-based autoantigenic exposure and compromised autoantigen removal have been described in relation to disease onset, a significant association with the development of SLE can be attributed to increased apoptosis and impaired phagocytosis of apoptotic cells. Both apoptosis and impaired phagocytosis can be caused by hydrogen peroxide whose cellular production is enhanced by exposure to endogenous hormones or environmental chemicals, which have been implicated in the pathogenesis of SLE. Hydrogen peroxide can cause lymphocyte apoptosis and glutathione depletion, both of which are associated with the severity of SLE. The cellular accumulation of hydrogen peroxide is facilitated by the myriad of stimuli causing increased cellular bioenergetic activity that enhances metabolic production of this toxic oxidizing agent such as emotional stress and infection, which are recognized SLE exacerbating factors. When combined with impaired cellular hydrogen peroxide removal caused by xenobiotics and genetically compromised hydrogen peroxide elimination due to enzymatic polymorphic variation, a mechanism for cellular accumulation of hydrogen peroxide emerges, leading to hydrogen peroxide-induced apoptosis and impaired phagocytosis, enhanced autoantigen exposure, formation of autoantibodies, and development of SLE.
Collapse
|