1
|
Moreno-Manuel AI, Macías Á, Cruz FM, Gutiérrez LK, Martínez F, González-Guerra A, Martínez Carrascoso I, Bermúdez-Jimenez FJ, Sánchez-Pérez P, Vera-Pedrosa ML, Ruiz-Robles JM, Bernal JA, Jalife J. The Kir2.1E299V mutation increases atrial fibrillation vulnerability while protecting the ventricles against arrhythmias in a mouse model of short QT syndrome type 3. Cardiovasc Res 2024; 120:490-505. [PMID: 38261726 PMCID: PMC11060485 DOI: 10.1093/cvr/cvae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
AIMS Short QT syndrome type 3 (SQTS3) is a rare arrhythmogenic disease caused by gain-of-function mutations in KCNJ2, the gene coding the inward rectifier potassium channel Kir2.1. We used a multidisciplinary approach and investigated arrhythmogenic mechanisms in an in-vivo model of de-novo mutation Kir2.1E299V identified in a patient presenting an extremely abbreviated QT interval and paroxysmal atrial fibrillation. METHODS AND RESULTS We used intravenous adeno-associated virus-mediated gene transfer to generate mouse models, and confirmed cardiac-specific expression of Kir2.1WT or Kir2.1E299V. On ECG, the Kir2.1E299V mouse recapitulated the QT interval shortening and the atrial-specific arrhythmia of the patient. The PR interval was also significantly shorter in Kir2.1E299V mice. Patch-clamping showed extremely abbreviated action potentials in both atrial and ventricular Kir2.1E299V cardiomyocytes due to a lack of inward-going rectification and increased IK1 at voltages positive to -80 mV. Relative to Kir2.1WT, atrial Kir2.1E299V cardiomyocytes had a significantly reduced slope conductance at voltages negative to -80 mV. After confirming a higher proportion of heterotetrameric Kir2.x channels containing Kir2.2 subunits in the atria, in-silico 3D simulations predicted an atrial-specific impairment of polyamine block and reduced pore diameter in the Kir2.1E299V-Kir2.2WT channel. In ventricular cardiomyocytes, the mutation increased excitability by shifting INa activation and inactivation in the hyperpolarizing direction, which protected the ventricle against arrhythmia. Moreover, Purkinje myocytes from Kir2.1E299V mice manifested substantially higher INa density than Kir2.1WT, explaining the abbreviation in the PR interval. CONCLUSION The first in-vivo mouse model of cardiac-specific SQTS3 recapitulates the electrophysiological phenotype of a patient with the Kir2.1E299V mutation. Kir2.1E299V eliminates rectification in both cardiac chambers but protects against ventricular arrhythmias by increasing excitability in both Purkinje-fiber network and ventricles. Consequently, the predominant arrhythmias are supraventricular likely due to the lack of inward rectification and atrial-specific reduced pore diameter of the Kir2.1E299V-Kir2.2WT heterotetramer.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Action Potentials
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/metabolism
- Atrial Fibrillation/genetics
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/metabolism
- Disease Models, Animal
- Genetic Predisposition to Disease
- Heart Rate/genetics
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenotype
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
Collapse
Affiliation(s)
- Ana I Moreno-Manuel
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Fernando Martínez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrés González-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Isabel Martínez Carrascoso
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco José Bermúdez-Jimenez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Department of Cardiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Sánchez-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | - Juan Manuel Ruiz-Robles
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 4810, USA
| |
Collapse
|
2
|
Moreno-Manuel AI, Gutiérrez LK, Vera-Pedrosa ML, Cruz FM, Bermúdez-Jiménez FJ, Martínez-Carrascoso I, Sánchez-Pérez P, Macías Á, Jalife J. Molecular stratification of arrhythmogenic mechanisms in the Andersen Tawil syndrome. Cardiovasc Res 2023; 119:919-932. [PMID: 35892314 PMCID: PMC10153646 DOI: 10.1093/cvr/cvac118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare inheritable disease associated with loss-of-function mutations in KCNJ2, the gene coding the strong inward rectifier potassium channel Kir2.1, which forms an essential membrane protein controlling cardiac excitability. ATS is usually marked by a triad of periodic paralysis, life-threatening cardiac arrhythmias and dysmorphic features, but its expression is variable and not all patients with a phenotype linked to ATS have a known genetic alteration. The mechanisms underlying this arrhythmogenic syndrome are poorly understood. Knowing such mechanisms would be essential to distinguish ATS from other channelopathies with overlapping phenotypes and to develop individualized therapies. For example, the recently suggested role of Kir2.1 as a countercurrent to sarcoplasmic calcium reuptake might explain the arrhythmogenic mechanisms of ATS and its overlap with catecholaminergic polymorphic ventricular tachycardia. Here we summarize current knowledge on the mechanisms of arrhythmias leading to sudden cardiac death in ATS. We first provide an overview of the syndrome and its pathophysiology, from the patient's bedside to the protein and discuss the role of essential regulators and interactors that could play a role in cases of ATS. The review highlights novel ideas related to some post-translational channel interactions with partner proteins that might help define the molecular bases of the arrhythmia phenotype. We then propose a new all-embracing classification of the currently known ATS loss-of-function mutations according to their position in the Kir2.1 channel structure and their functional implications. We also discuss specific ATS pathogenic variants, their clinical manifestations, and treatment stratification. The goal is to provide a deeper mechanistic understanding of the syndrome toward the development of novel targets and personalized treatment strategies.
Collapse
Affiliation(s)
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | | | - Francisco Miguel Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Francisco José Bermúdez-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
- Departamento de Cardiología, Hospital Virgen de las Nieves, GranadaSpain
| | | | - Patricia Sánchez-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
d’Apolito M, Santoro F, Santacroce R, Cordisco G, Ragnatela I, D’Arienzo G, Pellegrino PL, Brunetti ND, Margaglione M. A Novel DLG1 Variant in a Family with Brugada Syndrome: Clinical Characteristics and In Silico Analysis. Genes (Basel) 2023; 14:427. [PMID: 36833354 PMCID: PMC9957379 DOI: 10.3390/genes14020427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited primary channelopathy syndrome associated to sudden cardiac death. Overall, variants have been identified in eighteen genes encoding for ion channel subunits and seven genes for regulatory proteins. Recently, a missense variant in DLG1 has been found within a BrS phenotype-positive patient. DLG1 encodes for synapse associated protein 97 (SAP97), a protein characterized by the presence of multiple domains for protein-protein interactions including PDZ domains. In cardiomyocytes, SAP97 interacts with Nav1.5, a PDZ binding motif of SCN5A and others potassium channel subunits. AIM OF THE STUDY To characterize the phenotype of an Italian family with BrS syndrome carrying a DLG1 variant. METHODS Clinical and genetic investigations were performed. Genetic testing was performed with whole-exome sequencing (WES) using the Illumina platform. According to the standard protocol, a variant found by WES was confirmed in all members of the family by bi-directional capillary Sanger resequencing. The effect of the variant was investigated by using in silico prediction of pathogenicity. RESULTS The index case was a 74-year-old man with spontaneous type 1 BrS ECG pattern that experienced syncope and underwent ICD implantation. WES of the index case, performed assuming a dominant mode of inheritance, identified a heterozygous variant, c.1556G>A (p.R519H), in the exon 15 of the DLG1 gene. In the pedigree investigation, 6 out of 12 family members had the variant. Carriers of the gene variant all had BrS ECG type 1 drug induced and showed heterogeneous cardiac phenotypes with two patients experiencing syncope during exercise and fever, respectively. The amino acid residue #519 lies near a PDZ domain and in silico analysis suggested a causal role for the variant. Modelling of the resulting protein structure predicted that the variant disrupts an H-bond and a likelihood of being pathogenic. As a consequence, it is likely that a conformational change affects protein functionality and the modulating role on ion channels. CONCLUSIONS A DLG1 gene variant identified was associated with BrS. The variant could modify the formation of multichannel protein complexes, affecting ion channels to specific compartments in cardiomyocytes.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Francesco Santoro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giorgia Cordisco
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | | | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
4
|
Liu Q, Sun J, Dong Y, Li P, Wang J, Wang Y, Xu Y, Tian X, Wu B, He P, Yu Q, Lu X, Cao J. Tetramisole is a new I K1 channel agonist and exerts I K1 -dependent cardioprotective effects in rats. Pharmacol Res Perspect 2022; 10:e00992. [PMID: 35880674 PMCID: PMC9316008 DOI: 10.1002/prp2.992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac ischemia, hypoxia, arrhythmias, and heart failure share the common electrophysiological changes featured by the elevation of intracellular Ca2+ (Ca2+ overload) and inhibition of the inward rectifier potassium (IK1 ) channel. IK1 channel agonists have been considered a new type of anti-arrhythmia and cardioprotective agents. We predicted using a drug repurposing strategy that tetramisole (Tet), a known anthelminthic agent, was a new IK1 channel agonist. The present study aimed to experimentally identify the above prediction and further demonstrate that Tet has cardioprotective effects. Results of the whole-cell patch clamp technique showed that Tet at 1-100 μmol/L enhanced IK1 current, hyperpolarized resting potential (RP), and shortened action potential duration (APD) in isolated rat cardiomyocytes, while without effects on other ion channels or transporters. In adult Sprague-Dawley (SD) rats in vivo, Tet showed anti-arrhythmia and anticardiac remodeling effects, respectively, in the coronary ligation-induced myocardial infarction model and isoproterenol (Iso, i.p., 3 mg/kg/day, 10 days) infusion-induced cardiac remodeling model. Tet also showed anticardiomyocyte remodeling effect in Iso (1 μmol/L) infused adult rat ventricular myocytes or cultured H9c2 (2-1) cardiomyocytes. Tet at 0.54 mg/kg in vivo or 30 μmol/L in vitro showed promising protections on acute ischemic arrhythmias, myocardial hypertrophy, and fibrosis. Molecular docking was performed and identified the selective binding of Tet with Kir2.1. The cardioprotection of Tet was associated with the facilitation of IK1 channel forward trafficking, deactivation of PKA signaling, and inhibition of intracellular calcium overload. Enhancing IK1 may play dual roles in anti-arrhythmia and antiventricular remodeling mediated by restoration of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Jiaxing Sun
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Yangdou Dong
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Pan Li
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Jin Wang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yulan Wang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yanwu Xu
- Department of BiochemistryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xinrui Tian
- Department of Respiratory and Critical Care MedicineSecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Bowei Wu
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Peifeng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, School of ManagementShanxi Medical UniversityTaiyuanChina
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, School of ManagementShanxi Medical UniversityTaiyuanChina
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center, Chinese PLA General HospitalNational clinical research center for geriatric diseaseBeijingChina
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
5
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
6
|
Liu QH, Zhang LJ, Wang J, Wu BW, Cao JM. Cardioprotection of an I K1 channel agonist on L-thyroxine induced rat ventricular remodeling. Am J Transl Res 2021; 13:8683-8696. [PMID: 34539987 PMCID: PMC8430128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Downregulation of inward rectifier potassium (IK1) channel is a hallmark in cardiac hypertrophy and failure. The cardioprotection of zacopride (a selective IK1 agonist) and underlying mechanisms were investigated in L-thyroxine (T4) or Triiodothyronine (T3)-induced cardiac remodeling. In the in vivo study, adult male Sprague-Dawley (SD) rats were randomly divided into control, L-thyroxine, L-thy+zacopride, and L-thy+zacopride+chloroquine (an IK1 antagonist) groups. Echocardiography, histopathology, TUNEL assay, western blotting and confocal imaging for intracellular Ca2+ fluorescence were performed. In the in vitro study, zacopride and nifedipine (a LTCC blocker) were used to compare their effects on Kir2.1, SAP97, autophagy, and [Ca2+]i in H9C2 (2-1) cardiomyocytes. Zacopride treatment attenuated L-thyroxine- or T3 induced cardiac remodeling and dysfunction which manifested as cardiac hypertrophy and collagen deposition, dilated ventricle, decreased ejection fraction (EF), increased cardiomyocytes apoptosis, hyper-activation of CaMKII and PI3K/Akt/mTOR signaling, decreased cardiac autophagy, and increased expression of integrin β3. The cardioprotection of zacopride is strongly associated with the upregulation of IK1, SAP97, and [Ca2+]i homeostasis in cardiomyocytes. IK1 antagonist chloroquine or BaCl2 reversed these effects. Nifedipine could attenuate intracellular Ca2+ overload with no significant effects on IK1, SAP97, and autophagy. This study showed that zacopride could improve cardiac remodeling via facilitating Kir2.1 forward trafficking, and negatively regulating calcium-activated and PI3K/Akt/mTOR signalings, in an IK1-dependent manner.
Collapse
Affiliation(s)
- Qing-Hua Liu
- Department of Pathophysiology, Shanxi Medical UniversityTaiyuan, China
| | - Li-Jun Zhang
- Department of Pathophysiology, Shanxi Medical UniversityTaiyuan, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, The Department of Physiology, Shanxi Medical UniversityTaiyuan, China
| | - Bo-Wei Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, The Department of Physiology, Shanxi Medical UniversityTaiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, The Department of Physiology, Shanxi Medical UniversityTaiyuan, China
| |
Collapse
|
7
|
Reilly L, Eckhardt LL. Cardiac potassium inward rectifier Kir2: Review of structure, regulation, pharmacology, and arrhythmogenesis. Heart Rhythm 2021; 18:1423-1434. [PMID: 33857643 PMCID: PMC8328935 DOI: 10.1016/j.hrthm.2021.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Potassium inward rectifier channel Kir2 is an important component of terminal cardiac repolarization and resting membrane stability. This functionality is part of balanced cardiac excitability and is a defining feature of excitable cardiac membranes. “Gain-of-function” or “loss-of-function” mutations in KCNJ2, the gene encoding Kir2.1, cause genetic sudden cardiac death syndromes, and loss of the Kir2 current IK1 is a major contributing factor to arrhythmogenesis in failing human hearts. Here we provide a contemporary review of the functional structure, physiology, and pharmacology of Kir2 channels. Beyond the structure and functional relationships, we will focus on the elements of clinically used drugs that block the channel and the implications for treatment of atrial fibrillation with IK1-blocking agents. We will also review the clinical disease entities associated with KCNJ2 mutations and the growing area of research into associated arrhythmia mechanisms. Lastly, the presence of Kir2 channels has become a tipping point for electrical maturity in induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) and highlights the significance of understanding why Kir2 in iPS-CMs is important to consider for Comprehensive In Vitro Proarrhythmia Assay and drug safety testing.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
8
|
Trum M, Islam MMT, Lebek S, Baier M, Hegner P, Eaton P, Maier LS, Wagner S. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart. Am J Physiol Heart Circ Physiol 2020; 319:H1347-H1357. [PMID: 33035439 PMCID: PMC7792712 DOI: 10.1152/ajpheart.00182.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been shown to prolong cardiac action potential duration resulting in afterdepolarizations, the cellular basis of triggered arrhythmias. As previously shown, protein kinase A type I (PKA I) is readily activated by oxidation of its regulatory subunits. However, the relevance of this mechanism of activation for cardiac pathophysiology is still elusive. In this study, we investigated the effects of oxidation-activated PKA I on cardiac electrophysiology. Ventricular cardiomyocytes were isolated from redox-dead PKA-RI Cys17Ser knock-in (KI) and wild-type (WT) mice and exposed to H2O2 (200 µmol/L) or vehicle (Veh) solution. In WT myocytes, exposure to H2O2 significantly increased oxidation of the regulatory subunit I (RI) and thus its dimerization (threefold increase in PKA RI dimer). Whole cell current clamp and voltage clamp were used to measure cardiac action potentials (APs), transient outward potassium current (Ito) and inward rectifying potassium current (IK1), respectively. In WT myocytes, H2O2 exposure significantly prolonged AP duration due to significantly decreased Ito and IK1 resulting in frequent early afterdepolarizations (EADs). Preincubation with the PKA-specific inhibitor Rp-8-Br-cAMPS (10 µmol/L) completely abolished the H2O2-dependent decrease in Ito and IK1 in WT myocytes. Intriguingly, H2O2 exposure did not prolong AP duration, nor did it decrease Ito, and only slightly enhanced EAD frequency in KI myocytes. Treatment of WT and KI cardiomyocytes with the late INa inhibitor TTX (1 µmol/L) completely abolished EAD formation. Our results suggest that redox-activated PKA may be important for H2O2-dependent arrhythmias and could be important for the development of specific antiarrhythmic drugs.NEW & NOTEWORTHY Oxidation-activated PKA type I inhibits transient outward potassium current (Ito) and inward rectifying potassium current (IK1) and contributes to ROS-induced APD prolongation as well as generation of early afterdepolarizations in murine ventricular cardiomyocytes.
Collapse
Affiliation(s)
- M. Trum
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - M. M. T. Islam
- 2Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
- 3Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - S. Lebek
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - M. Baier
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - P. Hegner
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - P. Eaton
- 4The William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - L. S. Maier
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - S. Wagner
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Tinaquero D, Crespo-García T, Utrilla RG, Nieto-Marín P, González-Guerra A, Rubio-Alarcón M, Cámara-Checa A, Dago M, Matamoros M, Pérez-Hernández M, Tamargo M, Cebrián J, Jalife J, Tamargo J, Bernal JA, Caballero R, Delpón E. The p.P888L SAP97 polymorphism increases the transient outward current (I to,f) and abbreviates the action potential duration and the QT interval. Sci Rep 2020; 10:10707. [PMID: 32612162 PMCID: PMC7329876 DOI: 10.1038/s41598-020-67109-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
Synapse-Associated Protein 97 (SAP97) is an anchoring protein that in cardiomyocytes targets to the membrane and regulates Na+ and K+ channels. Here we compared the electrophysiological effects of native (WT) and p.P888L SAP97, a common polymorphism. Currents were recorded in cardiomyocytes from mice trans-expressing human WT or p.P888L SAP97 and in Chinese hamster ovary (CHO)-transfected cells. The duration of the action potentials and the QT interval were significantly shorter in p.P888L-SAP97 than in WT-SAP97 mice. Compared to WT, p.P888L SAP97 significantly increased the charge of the Ca-independent transient outward (Ito,f) current in cardiomyocytes and the charge crossing Kv4.3 channels in CHO cells by slowing Kv4.3 inactivation kinetics. Silencing or inhibiting Ca/calmodulin kinase II (CaMKII) abolished the p.P888L-induced Kv4.3 charge increase, which was also precluded in channels (p.S550A Kv4.3) in which the CaMKII-phosphorylation is prevented. Computational protein-protein docking predicted that p.P888L SAP97 is more likely to form a complex with CaMKII than WT. The Na+ current and the current generated by Kv1.5 channels increased similarly in WT-SAP97 and p.P888L-SAP97 cardiomyocytes, while the inward rectifier current increased in WT-SAP97 but not in p.P888L-SAP97 cardiomyocytes. The p.P888L SAP97 polymorphism increases the Ito,f, a CaMKII-dependent effect that may increase the risk of arrhythmias.
Collapse
Affiliation(s)
- David Tinaquero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Teresa Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Paloma Nieto-Marín
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | | | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Marcos Matamoros
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Marta Pérez-Hernández
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - María Tamargo
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Internal Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Juan Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | | | - Ricardo Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.
| | - Eva Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | | |
Collapse
|
10
|
Musa H, Marcou CA, Herron TJ, Makara MA, Tester DJ, O'Connell RP, Rosinski B, Guerrero-Serna G, Milstein ML, Monteiro da Rocha A, Ye D, Crotti L, Nesterenko VV, Castelletti S, Torchio M, Kotta MC, Dagradi F, Antzelevitch C, Mohler PJ, Schwartz PJ, Ackerman MJ, Anumonwo JM. Abnormal myocardial expression of SAP97 is associated with arrhythmogenic risk. Am J Physiol Heart Circ Physiol 2020; 318:H1357-H1370. [PMID: 32196358 DOI: 10.1152/ajpheart.00481.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synapse-associated protein 97 (SAP97) is a scaffolding protein crucial for the functional expression of several cardiac ion channels and therefore proper cardiac excitability. Alterations in the functional expression of SAP97 can modify the ionic currents underlying the cardiac action potential and consequently confer susceptibility for arrhythmogenesis. In this study, we generated a murine model for inducible, cardiac-targeted Sap97 ablation to investigate arrhythmia susceptibility and the underlying molecular mechanisms. Furthermore, we sought to identify human SAP97 (DLG1) variants that were associated with inherited arrhythmogenic disease. The murine model of cardiac-specific Sap97 ablation demonstrated several ECG abnormalities, pronounced action potential prolongation subject to high incidence of arrhythmogenic afterdepolarizations and notable alterations in the activity of the main cardiac ion channels. However, no DLG1 mutations were found in 40 unrelated cases of genetically elusive long QT syndrome (LQTS). Instead, we provide the first evidence implicating a gain of function in human DLG1 mutation resulting in an increase in Kv4.3 current (Ito) as a novel, potentially pathogenic substrate for Brugada syndrome (BrS). In conclusion, DLG1 joins a growing list of genes encoding ion channel interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. Dysfunction in these critical components of cardiac excitability can potentially result in fatal cardiac disease.NEW & NOTEWORTHY The gene encoding SAP97 (DLG1) joins a growing list of genes encoding ion channel-interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. In this study we provide the first data supporting DLG1-encoded SAP97's candidacy as a minor Brugada syndrome susceptibility gene.
Collapse
Affiliation(s)
- Hassan Musa
- Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - Cherisse A Marcou
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases; Division of Pediatric Cardiology, Department of Pediatrics; and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Todd J Herron
- Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan.,Cardiovascular Regeneration Core Laboratory, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan
| | - Michael A Makara
- Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - David J Tester
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases; Division of Pediatric Cardiology, Department of Pediatrics; and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Ryan P O'Connell
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - Brad Rosinski
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - Guadalupe Guerrero-Serna
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - Michelle L Milstein
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - André Monteiro da Rocha
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan.,Cardiovascular Regeneration Core Laboratory, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan
| | - Dan Ye
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases; Division of Pediatric Cardiology, Department of Pediatrics; and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Lia Crotti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | | | - Silvia Castelletti
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Margherita Torchio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Maria-Christina Kotta
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Federica Dagradi
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | | | - Peter J Mohler
- Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases; Division of Pediatric Cardiology, Department of Pediatrics; and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Justus M Anumonwo
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Zangerl-Plessl EM, Qile M, Bloothooft M, Stary-Weinzinger A, van der Heyden MAG. Disease Associated Mutations in K IR Proteins Linked to Aberrant Inward Rectifier Channel Trafficking. Biomolecules 2019; 9:biom9110650. [PMID: 31731488 PMCID: PMC6920955 DOI: 10.3390/biom9110650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
The ubiquitously expressed family of inward rectifier potassium (KIR) channels, encoded by KCNJ genes, is primarily involved in cell excitability and potassium homeostasis. Channel mutations associate with a variety of severe human diseases and syndromes, affecting many organ systems including the central and peripheral neural system, heart, kidney, pancreas, and skeletal muscle. A number of mutations associate with altered ion channel expression at the plasma membrane, which might result from defective channel trafficking. Trafficking involves cellular processes that transport ion channels to and from their place of function. By alignment of all KIR channels, and depicting the trafficking associated mutations, three mutational hotspots were identified. One localized in the transmembrane-domain 1 and immediately adjacent sequences, one was found in the G-loop and Golgi-export domain, and the third one was detected at the immunoglobulin-like domain. Surprisingly, only few mutations were observed in experimentally determined Endoplasmic Reticulum (ER)exit-, export-, or ER-retention motifs. Structural mapping of the trafficking defect causing mutations provided a 3D framework, which indicates that trafficking deficient mutations form clusters. These “mutation clusters” affect trafficking by different mechanisms, including protein stability.
Collapse
Affiliation(s)
- Eva-Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (E.-M.Z.-P.); (A.S.-W.)
| | - Muge Qile
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
| | - Meye Bloothooft
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (E.-M.Z.-P.); (A.S.-W.)
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
- Correspondence: ; Tel.: +31-887558901
| |
Collapse
|
12
|
Sengupta S, Rothenberg KE, Li H, Hoffman BD, Bursac N. Altering integrin engagement regulates membrane localization of K ir2.1 channels. J Cell Sci 2019; 132:jcs225383. [PMID: 31391240 PMCID: PMC6771140 DOI: 10.1242/jcs.225383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
How ion channels localize and distribute on the cell membrane remains incompletely understood. We show that interventions that vary cell adhesion proteins and cell size also affect the membrane current density of inward-rectifier K+ channels (Kir2.1; encoded by KCNJ2) and profoundly alter the action potential shape of excitable cells. By using micropatterning to manipulate the localization and size of focal adhesions (FAs) in single HEK293 cells engineered to stably express Kir2.1 channels or in neonatal rat cardiomyocytes, we establish a robust linear correlation between FA coverage and the amplitude of Kir2.1 current at both the local and whole-cell levels. Confocal microscopy showed that Kir2.1 channels accumulate in membrane proximal to FAs. Selective pharmacological inhibition of key mediators of protein trafficking and the spatially dependent alterations in the dynamics of Kir2.1 fluorescent recovery after photobleaching revealed that the Kir2.1 channels are transported to the cell membrane uniformly, but are preferentially internalized by endocytosis at sites that are distal from FAs. Based on these results, we propose adhesion-regulated membrane localization of ion channels as a fundamental mechanism of controlling cellular electrophysiology via mechanochemical signals, independent of the direct ion channel mechanogating.
Collapse
Affiliation(s)
- Swarnali Sengupta
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Vaidyanathan R, Van Ert H, Haq KT, Morotti S, Esch S, McCune EC, Grandi E, Eckhardt LL. Inward Rectifier Potassium Channels (Kir2.x) and Caveolin-3 Domain-Specific Interaction: Implications for Purkinje Cell-Dependent Ventricular Arrhythmias. Circ Arrhythm Electrophysiol 2019; 11:e005800. [PMID: 29326130 DOI: 10.1161/circep.117.005800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND In human cardiac ventricle, IK1 is mainly comprised Kir2.1, but Kir2.2 and Kir2.3 heterotetramers occur and modulate IK1. Long-QT syndrome-9-associated CAV3 mutations cause decreased Kir2.1 current density, but Kir2.x heterotetramers have not been studied. Here, we determine the effect of long-QT syndrome-9-CAV3 mutation F97C on Kir2.x homo- and heterotetramers and model-associated arrhythmia mechanisms. METHODS AND RESULTS Super-resolution microscopy, co-immunoprecipitation, cellular electrophysiology, on-cell Western blotting, and simulation of Purkinje and ventricular myocyte mathematical models were used. Kir2.x isoforms have unique subcellular colocalization in human cardiomyocytes and coimmunoprecipitate with Cav3. F97C-Cav3 decreased peak inward Kir2.2 current density by 50% (-120 mV; P=0.019) and peak outward by 75% (-40 mV; P<0.05) but did not affect Kir2.3 current density. FRET (Förster resonance energy transfer) efficiency for Kir2.2 with Cav3 is high, and on-cell Western blotting demonstrates decreased Kir2.2 membrane expression with F97C-Cav3. Cav3-F97C reduced peak inward and outward current density of Kir2.2/Kir2.1 or Kir2.2/Kir2.3 heterotetramers (P<0.05). Only Cav3 scaffolding and membrane domains co-immunoprecipitation with Kir2.1 and Kir2.2 and Kir2.x-N-terminal Cav3 binding motifs are required for interaction. Mathematical Purkinje, but not ventricular, myocyte model incorporating simulated current reductions, predicts spontaneous delayed after-depolarization-mediated triggered activity. CONCLUSIONS Kir2.x isoforms have a unique intracellular pattern of distribution in association with specific Cav3 domains and that critically depends on interaction with N-terminal Kir2.x Cav3-binding motifs. Long-QT syndrome-9-CAV3 mutation differentially regulates current density and cell surface expression of Kir2.x homomeric and heteromeric channels. Mathematical Purkinje cell model incorporating experimental findings suggests delayed after-depolarization-type triggered activity as a possible arrhythmia mechanism.
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Hanora Van Ert
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Kazi T Haq
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Stefano Morotti
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Samuel Esch
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Elise C McCune
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Eleonora Grandi
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Lee L Eckhardt
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.).
| |
Collapse
|
14
|
Bach A, Clausen BH, Kristensen LK, Andersen MG, Ellman DG, Hansen PB, Hasseldam H, Heitz M, Özcelik D, Tuck EJ, Kopanitsa MV, Grant SG, Lykke-Hartmann K, Johansen FF, Lambertsen KL, Strømgaard K. Selectivity, efficacy and toxicity studies of UCCB01-144, a dimeric neuroprotective PSD-95 inhibitor. Neuropharmacology 2019; 150:100-111. [DOI: 10.1016/j.neuropharm.2019.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 01/09/2023]
|
15
|
Rhee SW, Rusch NJ. Molecular determinants of beta-adrenergic signaling to voltage-gated K + channels in the cerebral circulation. Microcirculation 2018; 25. [PMID: 29072364 DOI: 10.1111/micc.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Voltage-gated K+ (Kv ) channels are major determinants of membrane potential in vascular smooth muscle cells (VSMCs) and regulate the diameter of small cerebral arteries and arterioles. However, the intracellular structures that govern the expression and function of vascular Kv channels are poorly understood. Scaffolding proteins including postsynaptic density 95 (PSD95) recently were identified in rat cerebral VSMCs. Primarily characterized in neurons, the PSD95 scaffold has more than 50 known binding partners, and it can mediate macromolecular signaling between cell-surface receptors and ion channels. In cerebral arteries, Shaker-type Kv 1 channels appear to associate with the PSD95 molecular scaffold, and PSD95 is required for the normal expression and vasodilator influence of members of this K+ channel gene family. Furthermore, recent findings suggest that the β1-subtype adrenergic receptor is expressed in cerebral VSMCs and forms a functional vasodilator complex with Kv 1 channels on the PSD95 scaffold. Activation of β1-subtype adrenergic receptors in VSMCs enables protein kinase A-dependent phosphorylation and opening of Kv 1 channels in the PSD95 complex; the subsequent K+ efflux mediates membrane hyperpolarization and vasodilation of small cerebral arteries. Early evidence from other studies suggests that other families of Kv channels and scaffolding proteins are expressed in VSMCs. Future investigations into these macromolecular complexes that modulate the expression and function of Kv channels may reveal unknown signaling cascades that regulate VSMC excitability and provide novel targets for ion channel-based medications to optimize vascular tone.
Collapse
Affiliation(s)
- Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
16
|
Nooh MM, Mancarella S, Bahouth SW. Novel Paradigms Governing β1-Adrenergic Receptor Trafficking in Primary Adult Rat Cardiac Myocytes. Mol Pharmacol 2018; 94:862-875. [PMID: 29848777 DOI: 10.1124/mol.118.112045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
The β1-adrenergic receptor (β1-AR) is a major cardiac G protein-coupled receptor, which mediates cardiac actions of catecholamines and is involved in genesis and treatment of numerous cardiovascular disorders. In mammalian cells, catecholamines induce the internalization of the β1-AR into endosomes and their removal promotes the recycling of the endosomal β1-AR back to the plasma membrane; however, whether these redistributive processes occur in terminally differentiated cells is unknown. Compartmentalization of the β1-AR in response to β-agonists and antagonists was determined by confocal microscopy in primary adult rat ventricular myocytes (ARVMs), which are terminally differentiated myocytes with unique structures such as transverse tubules (T-tubules) and contractile sarcomeres. In unstimulated ARVMs, the fluorescently labeled β1-AR was expressed on the external membrane (the sarcolemma) of cardiomyocytes. Exposing ARVMs to isoproterenol redistributed surface β1-ARs into small (∼225-250 nm) regularly spaced internal punctate structures that overlapped with puncta stained by Di-8 ANEPPS, a membrane-impermeant T-tubule-specific dye. Replacing the β-agonist with the β-blocker alprenolol, induced the translocation of the wild-type β1-AR from these punctate structures back to the plasma membrane. This step was dependent on two barcodes, namely, the type-1 PDZ binding motif and serine at position 312 of the β1-AR, which is phosphorylated by a pool of cAMP-dependent protein kinases anchored at the type-1 PDZ of the β1-AR. These data show that redistribution of the β1-AR in ARVMs from internal structures back to the plasma membrane was mediated by a novel sorting mechanism, which might explain unique aspects of cardiac β1-AR signaling under normal or pathologic conditions.
Collapse
Affiliation(s)
- Mohammed M Nooh
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| | - Salvatore Mancarella
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| | - Suleiman W Bahouth
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| |
Collapse
|
17
|
Strauss B, Akar FG. Kir2.1 & Na v1.5 in Sickness and in Health: Who Needs a Chaperone When They Have an Alpha Partner? Circ Res 2018; 122:1482-1484. [PMID: 29798894 PMCID: PMC6181135 DOI: 10.1161/circresaha.118.313029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Benjamin Strauss
- From the Cardiovascular Research Center, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Fadi G Akar
- From the Cardiovascular Research Center, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
18
|
Abstract
Although the mechanism of sudden cardiac death (SCD) in heart failure is not completely known, genetic variations are known to play key roles in this process. Increasing numbers of mutations and variants are being discovered through genome-wide association studies. The genetic variations involved in the mechanisms of SCD have aroused widespread concern. Comprehensive understanding of the genetic variations involved in SCD may help prevent it. To this end, we briefly reviewed the genetic variations involved in SCD and their associations and interactions, and observed that cardiac ion channels are the core molecules involved in this process. Genetic variations involved in cardiac structure, cardiogenesis and development, cell division and differentiation, and DNA replication and transcription are all speculated to be loci involved in SCD. Additionally, the systems involved in neurohumoral regulation as well as substance and energy metabolism are also potentially responsible for susceptibility to SCD. They form an elaborate network and mutually interact with each other to govern the fate of SCD-susceptible individuals.
Collapse
|
19
|
Simkin D, Robin G, Giuliano S, Vukolic A, Moceri P, Guy N, Wagner KD, Lacampagne A, Allard B, Bendahhou S. Andersen's syndrome mutants produce a knockdown of inwardly rectifying K + channel in mouse skeletal muscle in vivo. Cell Tissue Res 2017; 371:309-323. [PMID: 29018970 DOI: 10.1007/s00441-017-2696-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022]
Abstract
Andersen's syndrome (AS) is a rare autosomal disorder that has been defined by the triad of periodic paralysis, cardiac arrhythmia, and developmental anomalies. AS has been directly linked to over 40 different autosomal dominant negative loss-of-function mutations in the KCNJ2 gene, encoding for the tetrameric strong inward rectifying K+ channel KIR2.1. While KIR2.1 channels have been suggested to contribute to setting the resting membrane potential (RMP) and to control the duration of the action potential (AP) in skeletal and cardiac muscle, the mechanism by which AS mutations produce such complex pathophysiological symptoms is poorly understood. Thus, we use an adenoviral transduction strategy to study in vivo subcellular distribution of wild-type (WT) and AS-associated mutant KIR2.1 channels in mouse skeletal muscle. We determined that WT and D71V AS mutant KIR2.1 channels are localized to the sarcolemma and the transverse tubules (T-tubules) of skeletal muscle fibers, while the ∆314-315 AS KIR2.1 mutation prevents proper trafficking of the homo- or hetero-meric channel complexes. Whole-cell voltage-clamp recordings in individual skeletal muscle fibers confirmed the reduction of inwardly rectifying K+ current (IK1) after transduction with ∆314-315 KIR2.1 as compared to WT channels. Analysis of skeletal muscle function revealed reduced force generation during isometric contraction as well as reduced resistance to muscle fatigue in extensor digitorum longus muscles transduced with AS mutant KIR2.1. Together, these results suggest that KIR2.1 channels may be involved in the excitation-contraction coupling process required for proper skeletal muscle function. Our findings provide clues to mechanisms associated with periodic paralysis in AS.
Collapse
Affiliation(s)
- Dina Simkin
- UMR 7370 CNRS, LP2M, Laboratoire d'Excellence - ICST, Université Côte d'Azur, Faculté de Médecine, 06107, Nice, France.,Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Gaëlle Robin
- UMR CNRS 5534, Université Claude Bernard Lyon 1, 69622, Lyon, France
| | - Serena Giuliano
- UMR 7370 CNRS, LP2M, Laboratoire d'Excellence - ICST, Université Côte d'Azur, Faculté de Médecine, 06107, Nice, France
| | - Ana Vukolic
- Institute for Molecular Health Science, ETH Zurich, 8093, Zurich, Switzerland
| | - Pamela Moceri
- UMR 7370 CNRS, LP2M, Laboratoire d'Excellence - ICST, Université Côte d'Azur, Faculté de Médecine, 06107, Nice, France.,Service de Cardiologie, Pasteur Hospital, CHU de Nice, 06107, Nice, France
| | - Nicolas Guy
- UMR 7275 CNRS, IPMC, Université Côte d'Azur, 06560, Valbonne, France
| | - Kay-Dietrich Wagner
- UMR 7284 CNRS, INSERM, IBV, Université Côte d'Azur, Faculté de Médecine, 06107, Nice, France
| | - Alain Lacampagne
- INSERM U1046, UMR CNRS 9214, Université de Montpellier, CHRU de Montpellier, 34295, Montpellier, France
| | - Bruno Allard
- UMR CNRS 5534, Université Claude Bernard Lyon 1, 69622, Lyon, France
| | - Saïd Bendahhou
- UMR 7370 CNRS, LP2M, Laboratoire d'Excellence - ICST, Université Côte d'Azur, Faculté de Médecine, 06107, Nice, France.
| |
Collapse
|
20
|
Goversen B, van der Heyden MAG, van Veen TAB, de Boer TP. The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: Special focus on I K1. Pharmacol Ther 2017; 183:127-136. [PMID: 28986101 DOI: 10.1016/j.pharmthera.2017.10.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Preclinical drug screens are not based on human physiology, possibly complicating predictions on cardiotoxicity. Drug screening can be humanised with in vitro assays using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, in contrast to adult ventricular cardiomyocytes, iPSC-CMs beat spontaneously due to presence of the pacemaking current If and reduced densities of the hyperpolarising current IK1. In adult cardiomyocytes, IK1 finalises repolarisation by stabilising the resting membrane potential while also maintaining excitability. The reduced IK1 density contributes to proarrhythmic traits in iPSC-CMs, which leads to an electrophysiological phenotype that might bias drug responses. The proarrhythmic traits can be suppressed by increasing IK1 in a balanced manner. We systematically evaluated all studies that report strategies to mature iPSC-CMs and found that only few studies report IK1 current densities. Furthermore, these studies did not succeed in establishing sufficient IK1 levels as they either added too little or too much IK1. We conclude that reduced densities of IK1 remain a major flaw in iPSC-CMs, which hampers their use for in vitro drug screening.
Collapse
Affiliation(s)
- Birgit Goversen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Matamoros M, Pérez-Hernández M, Guerrero-Serna G, Amorós I, Barana A, Núñez M, Ponce-Balbuena D, Sacristán S, Gómez R, Tamargo J, Caballero R, Jalife J, Delpón E. Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. Cardiovasc Res 2016; 110:279-90. [PMID: 26786162 DOI: 10.1093/cvr/cvw009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/13/2016] [Indexed: 01/11/2023] Open
Abstract
AIMS Cardiac excitability and refractoriness are largely determined by the function and number of inward rectifier K⁺ channels (Kir2.1-2.3), which are differentially expressed in the atria and ventricles, and Nav1.5 channels. We have focused on how Nav1.5 and Kir2.x function within a macromolecular complex by elucidating the molecular determinants that govern Nav1.5/Kir2.x reciprocal modulation. METHODS AND RESULTS The results demonstrate that there is an unexpected 'internal' PDZ-like binding domain located at the N-terminus of the Nav1.5 channel that mediates its binding to α1-syntrophin. Nav1.5 N-terminal domain, by itself (the 132 aa peptide) (Nter), exerts a 'chaperone-like' effect that increases sodium (I(Na)) and inward rectifier potassium (I(K1)) currents by enhancing the expression of Nav1.5, Kir2.1, and Kir2.2 channels as demonstrated in Chinese hamster ovary (CHO) cells and in rat cardiomyocytes. Site-directed mutagenesis analysis demonstrates that the Nter chaperone-like effect is determined by Serine 20. Nav1.5-Kir2.x reciprocal positive interactions depend on a specific C-terminal PDZ-binding domain sequence (SEI), which is present in Kir2.1 and Kir2.2 channels but not in Kir2.3. Therefore, in human atrial myocytes, the presence of Kir2.3 isoforms precludes reciprocal I(K1)-INa density modulation. Moreover, results in rat and human atrial myocytes demonstrate that binding to α1-syntrophin is necessary for the Nav1.5-Kir2.x-positive reciprocal modulation. CONCLUSIONS The results demonstrate the critical role of the N-terminal domain of Nav1.5 channels in Nav1.5-Kir2.x-reciprocal interactions and suggest that the molecular mechanisms controlling atrial and ventricular cellular excitability may be different.
Collapse
Affiliation(s)
- Marcos Matamoros
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Marta Pérez-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Irene Amorós
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Adriana Barana
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Mercedes Núñez
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sandra Sacristán
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Ricardo Gómez
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
22
|
Free Fatty Acid Effects on the Atrial Myocardium: Membrane Ionic Currents Are Remodeled by the Disruption of T-Tubular Architecture. PLoS One 2015; 10:e0133052. [PMID: 26274906 PMCID: PMC4537212 DOI: 10.1371/journal.pone.0133052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/22/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epicardial adiposity and plasma levels of free fatty acids (FFAs) are elevated in atrial fibrillation, heart failure and obesity, with potentially detrimental effects on myocardial function. As major components of epicardial fat, FFAs may be abnormally regulated, with a potential to detrimentally modulate electro-mechanical function. The cellular mechanisms underlying such effects of FFAs are unknown. OBJECTIVE To determine the mechanisms underlying electrophysiological effects of palmitic (PA), stearic (SA) and oleic (OA) FFAs on sheep atrial myocytes. METHODS We used electrophysiological techniques, numerical simulations, biochemistry and optical imaging to examine the effects of acutely (≤ 15 min), short-term (4-6 hour) or 24-hour application of individual FFAs (10 μM) on isolated ovine left atrial myocytes (LAMs). RESULTS Acute and short-term incubation in FFAs resulted in no differences in passive or active properties of isolated left atrial myocytes (LAMs). 24-hour application had differential effects depending on the FFA. PA did not affect cellular passive properties but shortened (p<0.05) action potential duration at 30% repolarization (APD30). APD50 and APD80 were unchanged. SA had no effect on resting membrane potential but reduced membrane capacitance by 15% (p<0.05), and abbreviated APD at all values measured (p≤0.001). OA did not significantly affect passive or active properties of LAMs. Measurement of the major voltage-gated ion channels in SA treated LAMs showed a ~60% reduction (p<0.01) of the L-type calcium current (ICa-L) and ~30% reduction (p<0.05) in the transient outward potassium current (ITO). A human atrial cell model recapitulated SA effects on APD. Optical imaging showed that SA incubated for 24 hours altered t-tubular structure in isolated cells (p<0.0001). CONCLUSIONS SA disrupts t-tubular architecture and remodels properties of membrane ionic currents in sheep atrial myocytes, with potential implications in arrhythmogenesis.
Collapse
|
23
|
Abriel H, Rougier JS, Jalife J. Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res 2015; 116:1971-88. [PMID: 26044251 DOI: 10.1161/circresaha.116.305017] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.
Collapse
Affiliation(s)
- Hugues Abriel
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.)
| | - Jean-Sébastien Rougier
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.)
| | - José Jalife
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.).
| |
Collapse
|
24
|
Willis BC, Ponce-Balbuena D, Jalife J. Protein assemblies of sodium and inward rectifier potassium channels control cardiac excitability and arrhythmogenesis. Am J Physiol Heart Circ Physiol 2015; 308:H1463-73. [PMID: 25862830 DOI: 10.1152/ajpheart.00176.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
The understanding of how cardiac ion channels function in the normal and the diseased heart has greatly increased over the last four decades thanks to the advent of patch-clamp technology and, more recently, the emergence of genetics, as well as cellular and molecular cardiology. However, our knowledge of how these membrane-embedded proteins physically interact with each other within macromolecular complexes remains incomplete. This review focuses on how the main cardiac inward sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) function within macromolecular complexes to control cardiac excitability. It has become increasingly clear that these two important ion channel proteins physically interact with multiple other protein partners and with each other from early stages of protein trafficking and targeting through membrane anchoring, recycling, and degradation. Recent findings include compartmentalized regulation of NaV1.5 channel expression and function through a PDZ (postsynaptic density protein, Drosophila disc large tumor suppressor, and zonula occludens-1 protein) domain-binding motif, and interaction of caveolin-3 with Kir2.1 and ankyrin-G as a molecular platform for NaV1.5 signaling. At the cardiomyocyte membrane, NaV1.5 and Kir2.1 interact through at least two distinct PDZ domain-scaffolding proteins (synapse-associated protein-97 and α1-syntrophin), thus modulating reciprocally their cell-surface expression at two different microdomains. Emerging evidence also shows that inheritable mutations in plakophilin-2, ankyrin-G, dystrophin, syntrophin, synapse-associated protein-97, and caveolin-3, among others, modify functional expression and/or localization in the cardiac cell of NaV1.5, Kir2.1 or both to give rise to arrhythmogenic diseases. Unveiling the mechanistic underpinnings of macromolecular interactions should increase our understanding of inherited and acquired arrhythmogenic cardiac diseases and may lead to advances in therapy.
Collapse
Affiliation(s)
- B Cicero Willis
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan; and
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan; and
| | - José Jalife
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan; and Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
25
|
Gillet L, Rougier JS, Shy D, Sonntag S, Mougenot N, Essers M, Shmerling D, Balse E, Hatem SN, Abriel H. Cardiac-specific ablation of synapse-associated protein SAP97 in mice decreases potassium currents but not sodium current. Heart Rhythm 2014; 12:181-92. [PMID: 25447080 DOI: 10.1016/j.hrthm.2014.09.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Collapse
Affiliation(s)
- Ludovic Gillet
- Department of Clinical Research, University of Bern, Bern, Switzerland.
| | | | - Diana Shy
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Nathalie Mougenot
- Plateau d'Expérimentation Coeur, Muscle, Vaisseaux, Université Pierre et Marie Curie, Paris, France
| | - Maria Essers
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Elise Balse
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S1166, Institut de Recherche Sur Les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S1166, Paris, France; Institute of Cardiometabolism & Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Stéphane N Hatem
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S1166, Institut de Recherche Sur Les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S1166, Paris, France; Institute of Cardiometabolism & Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Hugues Abriel
- Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
26
|
Bondarenko VE. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes. PLoS One 2014; 9:e89113. [PMID: 24586529 PMCID: PMC3931689 DOI: 10.1371/journal.pone.0089113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol). The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca2+]i transients; changes in intracellular and transmembrane Ca2+ fluxes; and [Na+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca2+]i transients. In particular, the model includes two subpopulations of the L-type Ca2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of mathematical models for other species or for pathological conditions.
Collapse
Affiliation(s)
- Vladimir E. Bondarenko
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Vaidyanathan R, Vega AL, Song C, Zhou Q, Tan BH, Tan B, Berger S, Makielski JC, Eckhardt LL. The interaction of caveolin 3 protein with the potassium inward rectifier channel Kir2.1: physiology and pathology related to long qt syndrome 9 (LQT9). J Biol Chem 2013; 288:17472-80. [PMID: 23640888 DOI: 10.1074/jbc.m112.435370] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in CAV3 cause LQT syndrome 9 (LQT9). A previously reported LQT9 patient had prominent U waves on ECG, a feature that has been correlated with Kir2.1 loss of function. Our objective was to determine whether caveolin 3 (Cav3) associates with Kir2.1 and whether LQT9-associated CAV3 mutations affect the biophysical properties of Kir2.1. Kir2.1 current (IK1) density was measured using the whole-cell voltage clamp technique. WT-Cav3 did not affect IK1. However, F97C-Cav3 and T78M-Cav3 decreased IK1 density significantly by ∼60%, and P104L-Cav3 decreased IK1 density significantly by ∼30% at -60 mV. Immunostained rat heart cryosections and HEK293 cells cotransfected with Kir2.1 and WT-Cav3 both demonstrated colocalization of Kir2.1 and WT-Cav3 by confocal imaging. Cav3 coimmunoprecipitated with Kir2.1 in human ventricular myocytes and in heterologous expression systems. Additionally, FRET efficiency was highly specific, with a molecular distance of 5.6 ± 0.4 nm, indicating close protein location. Colocalization experiments found that Cav3 and Kir2.1 accumulated in the Golgi compartment. On-cell Western blot analysis showed decreased Kir2.1 cell surface expression by 60% when expressed with F97C-Cav3 and by 20% when expressed with P104L-Cav3 compared with WT-Cav3. This is the first report of an association between Cav3 and Kir2.1. The Cav3 mutations F97C-Cav3, P104L-Cav3, and T78M-Cav3 decreased IK1 density significantly. This effect was related to a reduced cell surface expression of Kir2.1. Kir2.1 loss of function is additive to the increase described previously in late INa, prolonging repolarization and leading to arrhythmia generation in Cav3-mediated LQT9.
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- Department of Medicine, Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program,University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Szuts V, Ménesi D, Varga-Orvos Z, Zvara Á, Houshmand N, Bitay M, Bogáts G, Virág L, Baczkó I, Szalontai B, Geramipoor A, Cotella D, Wettwer E, Ravens U, Deák F, Puskás LG, Papp JG, Kiss I, Varró A, Jost N. Altered expression of genes for Kir ion channels in dilated cardiomyopathy. Can J Physiol Pharmacol 2013; 91:648-56. [PMID: 23889090 DOI: 10.1139/cjpp-2012-0413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dilated cardiomyopathy (DCM) is a multifactorial disease characterized by left ventricular dilation that is associated with systolic dysfunction and increased action potential duration. The Kir2.x K⁺ channels (encoded by KCNJ genes) regulate the inward rectifier current (IK1) contributing to the final repolarization in cardiac muscle. Here, we describe the transitions in the gene expression profiles of 4 KCNJ genes from healthy or dilated cardiomyopathic human hearts. In the healthy adult ventricles, KCNJ2, KCNJ12, and KCNJ4 (Kir2.1-2.3, respectively) genes were expressed at high levels, while expression of the KCNJ14 (Kir2.4) gene was low. In DCM ventricles, the levels of Kir2.1 and Kir2.3 were upregulated, but those of Kir2.2 channels were downregulated. Additionally, the expression of the DLG1 gene coding for the synapse-associated protein 97 (SAP97) anchoring molecule exhibited a 2-fold decline with increasing age in normal hearts, and it was robustly downregulated in young DCM patients. These adaptations could offer a new aspect for the explanation of the generally observed physiological and molecular alterations found in DCM.
Collapse
Affiliation(s)
- Viktoria Szuts
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Goldoni D, Yarham J, McGahon M, O’Connor A, Guduric-Fuchs J, Edgar K, McDonald D, Simpson D, Collins A. A novel dual-fluorescence strategy for functionally validating microRNA targets in 3' untranslated regions: regulation of the inward rectifier potassium channel K(ir)2.1 by miR-212. Biochem J 2012; 448:103-13. [PMID: 22880819 PMCID: PMC3475433 DOI: 10.1042/bj20120578] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 01/16/2023]
Abstract
Gene targeting by microRNAs is important in health and disease. We developed a functional assay for identifying microRNA targets and applied it to the K(+) channel K(ir)2.1 [KCNJ2 (potassium inwardly-rectifying channel, subfamily J, member 2)] which is dysregulated in cardiac and vascular disorders. The 3'UTR (untranslated region) was inserted downstream of the mCherry red fluorescent protein coding sequence in a mammalian expression plasmid. MicroRNA sequences were inserted into the pSM30 expression vector which provides enhanced green fluorescent protein as an indicator of microRNA expression. HEK (human embryonic kidney)-293 cells were co-transfected with the mCherry-3'UTR plasmid and a pSM30-based plasmid with a microRNA insert. The principle of the assay is that functional targeting of the 3'UTR by the microRNA results in a decrease in the red/green fluorescence intensity ratio as determined by automated image analysis. The method was validated with miR-1, a known down-regulator of K(ir)2.1 expression, and was used to investigate the targeting of the K(ir)2.1 3'UTR by miR-212. The red/green ratio was lower in miR-212-expressing cells compared with the non-targeting controls, an effect that was attenuated by mutating the predicted target site. miR-212 also reduced inward rectifier current and K(ir)2.1 protein in HeLa cells. This novel assay has several advantages over traditional luciferase-based assays including larger sample size, amenability to time course studies and adaptability to high-throughput screening.
Collapse
Key Words
- hela cell
- hek-293 cell
- image analysis
- microrna
- patch clamp
- cmv, cytomegalovirus
- dmem, dulbecco’s modified eagle’s medium
- egfp, enhanced green fluorescent protein
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- hek, human embryonic kidney
- hprt1, hypoxanthine–phosphoribosyltransferase 1
- ik1, inward-rectifier k+ current
- kcnj2, potassium inwardly-rectifying channel, subfamily j, member 2
- mirna, microrna
- qrt–pcr, quantitative reverse transcription pcr
- race, rapid amplification of cdna ends
- sirna, short interfering rna
- utr, untranslated region
Collapse
Affiliation(s)
- Dana Goldoni
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| | - Janet M. Yarham
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| | - Mary K. McGahon
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| | - Anna O’Connor
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| | - Jasenka Guduric-Fuchs
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| | - Kevin Edgar
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| | - Denise M. McDonald
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| | - David A. Simpson
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| | - Anthony Collins
- Centre for Vision and Vascular Science, Queen's University of Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, U.K
| |
Collapse
|
31
|
Vaidyanathan R, O'Connell RP, Deo M, Milstein ML, Furspan P, Herron TJ, Pandit SV, Musa H, Berenfeld O, Jalife J, Anumonwo JMB. The ionic bases of the action potential in isolated mouse cardiac Purkinje cell. Heart Rhythm 2012; 10:80-7. [PMID: 23041576 DOI: 10.1016/j.hrthm.2012.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Collecting electrophysiological and molecular data from the murine conduction system presents technical challenges. Thus, only little advantage has been taken of numerous genetically engineered murine models to study excitation through the cardiac conduction system of the mouse. OBJECTIVE To develop an approach for isolating murine cardiac Purkinje cells (PCs), to characterize major ionic currents and to use the data to simulate action potentials (APs) recorded from PCs. METHODS Light microscopy was used to isolate and identify PCs from apical and septal cells. Current and voltage clamp techniques were used to record APs and whole cell currents. We then simulated a PC AP on the basis of our experimental data. RESULTS APs recorded from PCs were significantly longer than those recorded from ventricular cells. The prominent plateau phase of the PC AP was very negative (≈-40 mV). Spontaneous activity was observed only in PCs. The inward rectifier current demonstrated no significant differences compared to ventricular myocytes (VMs). However, sodium current density was larger, and the voltage-gated potassium current density was significantly less in PCs compared with myocytes. T-type Ca(2+) currents (I(Ca,T)) were present in PCs but not VMs. Computer simulations suggest that I(Ca,T) and cytosolic calcium diffusion significantly modulate AP profile recorded in PCs, as compared to VMs. CONCLUSIONS Our study provides the first comprehensive ionic profile of murine PCs. The data show unique features of PC ionic mechanisms that govern its excitation process. Experimental data and numerical modeling results suggest that a smaller voltage-gated potassium current and the presence of I(Ca,T) are important determinants of the longer and relatively negative plateau phase of the APs.
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dolmatova E, Spagnol G, Boassa D, Baum JR, Keith K, Ambrosi C, Kontaridis MI, Sorgen PL, Sosinsky GE, Duffy HS. Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 2012; 303:H1208-18. [PMID: 22982782 DOI: 10.1152/ajpheart.00251.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrosis following myocardial infarction is associated with increases in arrhythmias and sudden cardiac death. Initial steps in the development of fibrosis are not clear; however, it is likely that cardiac fibroblasts play an important role. In immune cells, ATP release from pannexin 1 (Panx1) channels acts as a paracrine signal initiating activation of innate immunity. ATP has been shown in noncardiac systems to initiate fibroblast activation. Therefore, we propose that ATP release through Panx1 channels and subsequent fibroblast activation in the heart drives the development of fibrosis in the heart following myocardial infarction. We identified for the first time that Panx1 is localized within sarcolemmal membranes of canine cardiac myocytes where it directly interacts with the postsynaptic density 95/Drosophila disk large/zonula occludens-1-containing scaffolding protein synapse-associated protein 97 via its carboxyl terminal domain (amino acids 300-357). Induced ischemia rapidly increased glycosylation of Panx1, resulting in increased trafficking to the plasma membrane as well as increased interaction with synapse-associated protein 97. Cellular stress enhanced ATP release from myocyte Panx1 channels, which, in turn, causes fibroblast transformation to the activated myofibroblast phenotype via activation of the MAPK and p53 pathways, both of which are involved in the development of cardiac fibrosis. ATP release through Panx1 channels in cardiac myocytes during ischemia may be an early paracrine event leading to profibrotic responses to ischemic cardiac injury.
Collapse
Affiliation(s)
- Elena Dolmatova
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chu W, Li C, Qu X, Zhao D, Wang X, Yu X, Cai F, Liang H, Zhang Y, Zhao X, Li B, Qiao G, Dong D, Lu Y, Du Z, Yang B. Arsenic-induced interstitial myocardial fibrosis reveals a new insight into drug-induced long QT syndrome. Cardiovasc Res 2012; 96:90-8. [PMID: 22853924 DOI: 10.1093/cvr/cvs230] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIMS Arsenic trioxide (ATO), an effective therapeutic agent for acute promyelocytic leukaemia, can cause sudden cardiac death due to long QT syndrome (LQTS). The present study was designed to determine whether ATO could induce cardiac fibrosis and explore whether cardiac fibroblasts (CFs) are involved in the development of LQTS by ATO. METHODS AND RESULTS ATO treatment of guinea pigs caused substantial interstitial myocardial fibrosis and LQTS, which was accompanied by an increase in transforming growth factor β1(TGF-β1) secretion and a decrease in ether-à-go-go-related gene (HERG) and inward rectifying potassium channel (I(K1)) subunit Kir2.1 protein levels. ATO promoted collagen production and TGF-β1 expression and secretion in cultured CFs. Whole-cell patch clamp and western blotting showed that treatment with TGF-β1 markedly reduced HERG and I(K1) current densities and downregulated HERG and Kir2.1 protein expression in HEK293 cells stably transfected with the human recombinant HERG channel and in cardiomyocytes (CMs). These changes were completely reversed by treatment with the protein kinase A (PKA) antagonist, H89. CM and CF co-cultures showed that ATO significantly increased TGF-β1 levels in the culture medium, whereas markedly reduced HERG and Kir2.1 protein levels were observed in CMs compared with ATO-treated CMs not co-cultured with CFs. Finally, in vivo administration of LY364947, a pharmacological antagonist of TGF-β signalling, dramatically prevented interstitial fibrosis and LQTS and abolished aberrant expression of TGF-β1, HERG, and Kir2.1 in ATO-treated guinea pigs. CONCLUSION ATO-induced TGF-β1 secretion from CFs aggravates QT prolongation, suggesting that modulation of TGF-β signalling may provide a novel strategy for the treatment of drug-induced LQTS.
Collapse
Affiliation(s)
- Wenfeng Chu
- Department of Pharmacology, Harbin Medical University, Xuefu Road 194, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hersch M, Peter B, Kang HM, Schüpfer F, Abriel H, Pedrazzini T, Eskin E, Beckmann JS, Bergmann S, Maurer F. Mapping genetic variants associated with beta-adrenergic responses in inbred mice. PLoS One 2012; 7:e41032. [PMID: 22859963 PMCID: PMC3409184 DOI: 10.1371/journal.pone.0041032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/16/2012] [Indexed: 01/11/2023] Open
Abstract
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β1-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10−8). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10−6). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
Collapse
Affiliation(s)
- Micha Hersch
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bastian Peter
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hyun Min Kang
- Department of Computer Science and Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fanny Schüpfer
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Hugues Abriel
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Thierry Pedrazzini
- Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Eleazar Eskin
- Department of Computer Science and Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacques S. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fabienne Maurer
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
|
37
|
Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia. Proc Natl Acad Sci U S A 2012; 109:E2134-43. [PMID: 22509027 DOI: 10.1073/pnas.1109370109] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I(K1)), which is important for maintenance of the cell resting membrane potential, and the sodium current (I(Na)), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I(K1) modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I(K1)-I(Na) interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I(K1)-I(Na) interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na(V)1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na(v)1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na(v)1.5-Kir2.1 interactions. The reciprocal modulation between Na(v)1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances.
Collapse
|
38
|
Wallace JL, Gow IF, Warnock M. The life and death of breast cancer cells: proposing a role for the effects of phytoestrogens on potassium channels. J Membr Biol 2011; 242:53-67. [PMID: 21728044 DOI: 10.1007/s00232-011-9376-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
Changes in the regulation of potassium channels are increasingly implicated in the altered activity of breast cancer cells. Increased or reduced expression of a number of K(+) channels have been identified in numerous breast cancer cell lines and cancerous tissue biopsy samples, compared to normal tissue, and are associated with tumor formation and spread, enhanced levels of proliferation, and resistance to apoptotic stimuli. Through knockout or silencing of K(+) channel genes, and use of specific or more broad pharmacologic K(+) channel blockers, the growth of numerous cell lines, including breast cancer cells, has been modified. In this manner it has been proposed that in MCF7 breast cancer cells proliferation appears to be regulated by the activity of a number of K(+) channels, including the Ca(2+) activated K(+) channels, and the voltage-gated K(+) channels hEAG and K(v)1.1. The effect of phytoestrogens on K(+) channels has not been extensively studied but yields some interesting results. In a number of cell lines the phytoestrogen genistein inhibits K(+) current through several channels including K(v)1.3 and hERG. Where it has been used, structurally similar daidzein has little or no effect on K(+) channel activity. Since many K(+) channels have roles in proliferation and apoptosis in breast cancer cells, the impact of K(+) channel regulation by phytoestrogens is of potentially great relevance.
Collapse
Affiliation(s)
- Joanne L Wallace
- School of Health Sciences, Queen Margaret University, Musselburgh, Edinburgh, Scotland, UK.
| | | | | |
Collapse
|
39
|
Zhang H, Zhang L, Zhang Q, Yang X, Yu J, Shun S, Wu Y, Zeng Q, Wang T. Puerarin: a novel antagonist to inward rectifier potassium channel (IK1). Mol Cell Biochem 2011; 352:117-23. [PMID: 21327545 DOI: 10.1007/s11010-011-0746-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Puerarin, isolated from the root of pueraria, had been widely used to prevent and treat arrhythmia. We show that puerarin effectively prevents and reverses aconitine-induced arrhythmias in perfused heart in vitro and in rats in vivo. To study the mechanisms of antiarrhythmic action of puerarin, we investigated the electrophysiological actions of puerarin using whole-cell clamp in isolated rodent ventricular myocytes and two electrode voltage-clamp (TEV) in I(K1)-expressing Xenopus oocytes. Puerarin had no prominent effect on action potentials of ventricular myocytes from guinea pig. However, puerarin (1.2 mM) significantly inhibited the I(K1) current in rat ventricular cells. Consistently, puerarin blocked I(K1) expressed in Xenopus oocytes in a dose-dependent manner. Puerarin competed with barium, an open-channel blocker of I(K1), to inhibit I(K1) currents. Thus, our data demonstrated that puerarin is a novel open-channel blocker of I(K1), which may underlie the antiarrhythmic action of puerarin.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cardiology, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Forces, Xi'an, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dassau L, Conti LR, Radeke CM, Ptáček LJ, Vandenberg CA. Kir2.6 regulates the surface expression of Kir2.x inward rectifier potassium channels. J Biol Chem 2011; 286:9526-41. [PMID: 21209095 DOI: 10.1074/jbc.m110.170597] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precise trafficking, localization, and activity of inward rectifier potassium Kir2 channels are important for shaping the electrical response of skeletal muscle. However, how coordinated trafficking occurs to target sites remains unclear. Kir2 channels are tetrameric assemblies of Kir2.x subunits. By immunocytochemistry we show that endogenous Kir2.1 and Kir2.2 are localized at the plasma membrane and T-tubules in rodent skeletal muscle. Recently, a new subunit, Kir2.6, present in human skeletal muscle, was identified as a gene in which mutations confer susceptibility to thyrotoxic hypokalemic periodic paralysis. Here we characterize the trafficking and interaction of wild type Kir2.6 with other Kir2.x in COS-1 cells and skeletal muscle in vivo. Immunocytochemical and electrophysiological data demonstrate that Kir2.6 is largely retained in the endoplasmic reticulum, despite high sequence identity with Kir2.2 and conserved endoplasmic reticulum and Golgi trafficking motifs shared with Kir2.1 and Kir2.2. We identify amino acids responsible for the trafficking differences of Kir2.6. Significantly, we show that Kir2.6 subunits can coassemble with Kir2.1 and Kir2.2 in vitro and in vivo. Notably, this interaction limits the surface expression of both Kir2.1 and Kir2.2. We provide evidence that Kir2.6 functions as a dominant negative, in which incorporation of Kir2.6 as a subunit in a Kir2 channel heterotetramer reduces the abundance of Kir2 channels on the plasma membrane.
Collapse
Affiliation(s)
- Lior Dassau
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|