1
|
Hertzog N, Duman M, Bochud M, Brügger-Verdon V, Gerhards M, Schön F, Dorndecker F, Meijer D, Fledrich R, Stassart R, Sankar DS, Dengjel J, López SR, Jacob C. Hypoxia-induced conversion of sensory Schwann cells into repair cells is regulated by HDAC8. Nat Commun 2025; 16:515. [PMID: 39779705 PMCID: PMC11711395 DOI: 10.1038/s41467-025-55835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery. We found that HDAC8 is specifically expressed in sensory SCs and regulates the E3 ubiquitin ligase TRAF7, which destabilizes hypoxia-inducible factor 1-alpha (HIF1α) and counteracts the phosphorylation and upregulation of c-Jun, a major inducer of the repair SC phenotype. Our study indicates that this phenotype switch is regulated by different mechanisms in sensory and motor SCs and is accelerated by HDAC8 downregulation, which promotes sensory axon regeneration and sensory function recovery.
Collapse
Affiliation(s)
- Nadège Hertzog
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mert Duman
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Maëlle Bochud
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Maren Gerhards
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felicia Schön
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franka Dorndecker
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dies Meijer
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert Fledrich
- Paul Flechsig Institute, Center of Neuropathology and Brain Sciences, University of Leipzig, Leipzig, Germany
| | - Ruth Stassart
- Paul Flechsig Institute, Center of Neuropathology and Brain Sciences, University of Leipzig, Leipzig, Germany
| | | | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sofía Raigón López
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claire Jacob
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
2
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
3
|
Patel AA, Kim H, Ramesh R, Marquez A, Faraj MM, Antikainen H, Lee AS, Torres A, Khawaja IM, Heffernan C, Bonder EM, Maurel P, Svaren J, Son YJ, Dobrowolski R, Kim HA. TFEB/3 Govern Repair Schwann Cell Generation and Function Following Peripheral Nerve Injury. J Neurosci 2024; 44:e0198242024. [PMID: 39054068 PMCID: PMC11358533 DOI: 10.1523/jneurosci.0198-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
TFEB and TFE3 (TFEB/3), key regulators of lysosomal biogenesis and autophagy, play diverse roles depending on cell type. This study highlights a hitherto unrecognized role of TFEB/3 crucial for peripheral nerve repair. Specifically, they promote the generation of progenitor-like repair Schwann cells after axonal injury. In Schwann cell-specific TFEB/3 double knock-out mice of either sex, the TFEB/3 loss disrupts the transcriptomic reprogramming that is essential for the formation of repair Schwann cells. Consequently, mutant mice fail to populate the injured nerve with repair Schwann cells and exhibit defects in axon regrowth, target reinnervation, and functional recovery. TFEB/3 deficiency inhibits the expression of injury-responsive repair Schwann cell genes, despite the continued expression of c-jun, a previously identified regulator of repair Schwann cell function. TFEB/3 binding motifs are enriched in the enhancer regions of injury-responsive genes, suggesting their role in repair gene activation. Autophagy-dependent myelin breakdown is not impaired despite TFEB/3 deficiency. These findings underscore a unique role of TFEB/3 in adult Schwann cells that is required for proper peripheral nerve regeneration.
Collapse
Affiliation(s)
- Akash A Patel
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center and Department of Neural Science, Temple University, Philadelphia, Pennsylvania 19140
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Anthony Marquez
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Moler M Faraj
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Henri Antikainen
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Andrew S Lee
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Adriana Torres
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Imran M Khawaja
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Corey Heffernan
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Patrice Maurel
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Comparative Biosciences, School of Veterinary Medicine University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center and Department of Neural Science, Temple University, Philadelphia, Pennsylvania 19140
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania 19140
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Haesun A Kim
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
4
|
Xu J, Peng Q, Cai J, Shangguan J, Su W, Chen G, Sun H, Zhu C, Gu Y. The Schwann cell-specific G-protein Gαo (Gnao1) is a cell-intrinsic controller contributing to the regulation of myelination in peripheral nerve system. Acta Neuropathol Commun 2024; 12:24. [PMID: 38331815 PMCID: PMC10854112 DOI: 10.1186/s40478-024-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Jinghui Xu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Qianqian Peng
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jieyi Cai
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jianghong Shangguan
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Wenfeng Su
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Hualin Sun
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| |
Collapse
|
5
|
Namini MS, Daneshimehr F, Beheshtizadeh N, Mansouri V, Ai J, Jahromi HK, Ebrahimi-Barough S. Cell-free therapy based on extracellular vesicles: a promising therapeutic strategy for peripheral nerve injury. Stem Cell Res Ther 2023; 14:254. [PMID: 37726794 PMCID: PMC10510237 DOI: 10.1186/s13287-023-03467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
Peripheral nerve injury (PNI) is one of the public health concerns that can result in a loss of sensory or motor function in the areas in which injured and non-injured nerves come together. Up until now, there has been no optimized therapy for complete nerve regeneration after PNI. Exosome-based therapies are an emerging and effective therapeutic strategy for promoting nerve regeneration and functional recovery. Exosomes, as natural extracellular vesicles, contain bioactive molecules for intracellular communications and nervous tissue function, which could overcome the challenges of cell-based therapies. Furthermore, the bioactivity and ability of exosomes to deliver various types of agents, such as proteins and microRNA, have made exosomes a potential approach for neurotherapeutics. However, the type of cell origin, dosage, and targeted delivery of exosomes still pose challenges for the clinical translation of exosome therapeutics. In this review, we have focused on Schwann cell and mesenchymal stem cell (MSC)-derived exosomes in nerve tissue regeneration. Also, we expressed the current understanding of MSC-derived exosomes related to nerve regeneration and provided insights for developing a cell-free MSC therapeutic strategy for nerve injury.
Collapse
Affiliation(s)
- Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Schepers M, Malheiro A, Gamardo AS, Hellings N, Prickaerts J, Moroni L, Vanmierlo T, Wieringa P. Phosphodiesterase (PDE) 4 inhibition boosts Schwann cell myelination in a 3D regeneration model. Eur J Pharm Sci 2023; 185:106441. [PMID: 37004962 DOI: 10.1016/j.ejps.2023.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been extensively researched for their anti-inflammatory and neuroregenerative properties. Despite the known neuroplastic and myelin regenerative properties of nonselective PDE4 inhibitors on the central nervous system, the direct impact on peripheral remyelination and subsequent neuroregeneration has not yet been investigated. Therefore, to examine the possible therapeutic effect of PDE4 inhibition on peripheral glia, we assessed the differentiation of primary rat Schwann cells exposed in vitro to the PDE4 inhibitor roflumilast. To further investigate the differentiation promoting effects of roflumilast, we developed a 3D model of rat Schwann cell myelination that closely resembles the in vivo situation. Using these in vitro models, we demonstrated that pan-PDE4 inhibition using roflumilast significantly promoted differentiation of Schwann cells towards a myelinating phenotype, as indicated by the upregulation of myelin proteins, including MBP and MAG. Additionally, we created a unique regenerative model comprised of a 3D co-culture of rat Schwann cells and human iPSC-derived neurons. Schwann cells treated with roflumilast enhanced axonal outgrowth of iPSC-derived nociceptive neurons, which was accompanied by an accelerated myelination speed, thereby showing not only phenotypic but also functional changes of roflumilast-treated Schwann cells. Taken together, the PDE4 inhibitor roflumilast possesses a therapeutic benefit to stimulate Schwann cell differentiation and, subsequently myelination, as demonstrated in the biologically relevant in vitro platform used in this study. These results can aid in the development of novel PDE4 inhibition-based therapies in the advancement of peripheral regenerative medicine.
Collapse
Affiliation(s)
- Melissa Schepers
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands; Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Afonso Malheiro
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Adrián Seijas Gamardo
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Tim Vanmierlo
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands; Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium.
| | - Paul Wieringa
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| |
Collapse
|
7
|
Bueno C, Blanquer M, García-Bernal D, Martínez S, Moraleda JM. Binucleated human bone marrow-derived mesenchymal cells can be formed during neural-like differentiation with independence of any cell fusion events. Sci Rep 2022; 12:20615. [PMID: 36450873 PMCID: PMC9712539 DOI: 10.1038/s41598-022-24996-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
Although it has been reported that bone marrow-derived cells (BMDCs) can transdifferentiate into neural cells, the findings are considered unlikely. It has been argued that the rapid neural transdifferentiation of BMDCs reported in culture studies is actually due to cytotoxic changes induced by the media. While transplantation studies indicated that BMDCs can form new neurons, it remains unclear whether the underlying mechanism is transdifferentiation or BMDCs-derived cell fusion with the existing neuronal cells. Cell fusion has been put forward to explain the presence of gene-marked binucleated neurons after gene-marked BMDCs transplantation. In the present study, we demostrated that human BMDCs can rapidly adopt a neural-like morphology through active neurite extension and binucleated human BMDCs can form with independence of any cell fusion events. We also showed that BMDCs neural-like differentiation involves the formation of intermediate cells which can then redifferentiate into neural-like cells, redifferentiate back to the mesenchymal fate or even repeatedly switch lineages without cell division. Furthermore, we have discovered that nuclei from intermediate cells rapidly move within the cell, adopting different morphologies and even forming binucleated cells. Therefore, our results provide a stronger basis for rejecting the idea that BMDCs neural transdifferentiation is merely an artefact.
Collapse
Affiliation(s)
- Carlos Bueno
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Miguel Blanquer
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain ,grid.10586.3a0000 0001 2287 8496Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Salvador Martínez
- grid.26811.3c0000 0001 0586 4893Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550 San Juan, Alicante, Spain
| | - José M. Moraleda
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
8
|
Monje PV, Bacallao K, Aparicio GI, Lalwani A. Heregulin Activity Assays for Residual Testing of Cell Therapy Products. Biol Proced Online 2021; 23:22. [PMID: 34772336 PMCID: PMC8590303 DOI: 10.1186/s12575-021-00157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background Heregulin is a ligand for the protooncogene product ErbB/HER that acts as a key mitogenic factor for human Schwann cells (hSCs). Heregulin is required for sustained hSC growth in vitro but must be thoroughly removed before cell collection for transplantation due to potential safety concerns. The goal of this study was to develop simple cell-based assays to assess the effectiveness of heregulin addition to and removal from aliquots of hSC culture medium. These bioassays were based on the capacity of a β1-heregulin peptide to elicit ErbB/HER receptor signaling in adherent ErbB2+/ErbB3+ cells. Results Western blotting was used to measure the activity of three different β1-heregulin/ErbB-activated kinases (ErbB3/HER3, ERK/MAPK and Akt/PKB) using phospho-specific antibodies against key activating residues. The duration, dose-dependency and specificity of β1-heregulin-initiated kinase phosphorylation were investigated, and controls were implemented for assay optimization and reproducibility to detect β1-heregulin activity in the nanomolar range. Results from these assays showed that the culture medium from transplantable hSCs elicited no detectable activation of the aforementioned kinases in independent rounds of testing, indicating that the implemented measures can ensure that the final hSC product is devoid of bioactive β1-heregulin molecules prior to transplantation. Conclusions These assays may be valuable to detect impurities such as undefined soluble factors or factors for which other biochemical or biological assays are not yet available. Our workflow can be modified as necessary to determine the presence of ErbB/HER, ERK, and Akt activators other than β1-heregulin using native samples, such as fresh isolates from cell- or tissue extracts in addition to culture medium.
Collapse
Affiliation(s)
- Paula V Monje
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Ketty Bacallao
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gabriela I Aparicio
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Instituto de Investigaciones Biotecnológicas "Rodolfo A. Ugalde", Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBio-UNSAM-CONICET), Buenos Aires, Argentina
| | - Anil Lalwani
- Cell and Gene Therapy CMC and Regulatory Advisor, Boulder, CO, USA
| |
Collapse
|
9
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Feng X, Takayama Y, Ohno N, Kanda H, Dai Y, Sokabe T, Tominaga M. Increased TRPV4 expression in non-myelinating Schwann cells is associated with demyelination after sciatic nerve injury. Commun Biol 2020; 3:716. [PMID: 33247229 PMCID: PMC7695724 DOI: 10.1038/s42003-020-01444-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective calcium-permeable cation channel that is widely expressed and activated in various neurons and glial cells in the nervous system. Schwann cells (SCs) are primary glia cells that wrap around axons to form the myelin sheath in the peripheral nervous system. However, whether TRPV4 is expressed and functions in SCs is unclear. Here, we demonstrate functional expression of TRPV4 in mouse SCs and investigated its physiological significance. Deletion of TRPV4 did not affect normal myelin development for SCs in sciatic nerves in mice. However, after sciatic nerve cut injury, TRPV4 expression levels were remarkably increased in SCs following nerve demyelination. Ablation of TRPV4 expression impaired the demyelinating process after nerve injury, resulting in delayed remyelination and functional recovery of sciatic nerves. These results suggest that local activation of TRPV4 could be an attractive pharmacological target for therapeutic intervention after peripheral nerve injury. Feng et al. report that TRPV4 plays an important role in Schwann cells (SCs) during nerve demyelination and remyelination in mice. Using sciatic nerve cut injury mouse models, they find that TRPV4 expression is remarkably increased in demyelinating SCs during sciatic nerve injury; and ablation of TRPV4 expression impairs the demyelinating process after nerve injury, resulting in their delayed remyelination and functional recovery.
Collapse
Affiliation(s)
- Xiaona Feng
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan.,Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Takaaki Sokabe
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan.,Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Makoto Tominaga
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan. .,Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan. .,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan.
| |
Collapse
|
11
|
Soluble dimeric prion protein ligand activates Adgrg6 receptor but does not rescue early signs of demyelination in PrP-deficient mice. PLoS One 2020; 15:e0242137. [PMID: 33180885 PMCID: PMC7660510 DOI: 10.1371/journal.pone.0242137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The adhesion G-protein coupled receptor Adgrg6 (formerly Gpr126) is instrumental in the development, maintenance and repair of peripheral nervous system myelin. The prion protein (PrP) is a potent activator of Adgrg6 and could be used as a potential therapeutic agent in treating peripheral demyelinating and dysmyelinating diseases. We designed a dimeric Fc-fusion protein comprising the myelinotrophic domain of PrP (FT2Fc), which activated Adgrg6 in vitro and exhibited favorable pharmacokinetic properties for in vivo treatment of peripheral neuropathies. While chronic FT2Fc treatment elicited specific transcriptomic changes in the sciatic nerves of PrP knockout mice, no amelioration of the early molecular signs demyelination was detected. Instead, RNA sequencing of sciatic nerves revealed downregulation of cytoskeletal and sarcomere genes, akin to the gene expression changes seen in myopathic skeletal muscle of PrP overexpressing mice. These results call for caution when devising myelinotrophic therapies based on PrP-derived Adgrg6 ligands. While our treatment approach was not successful, Adgrg6 remains an attractive therapeutic target to be addressed in other disease models or by using different biologically active Adgrg6 ligands.
Collapse
|
12
|
Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 2020; 77:3977-3989. [PMID: 32277262 PMCID: PMC7532964 DOI: 10.1007/s00018-020-03516-9] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
The great plasticity of Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), is a critical feature in the context of peripheral nerve regeneration following traumatic injuries and peripheral neuropathies. After a nerve damage, SCs are rapidly activated by injury-induced signals and respond by entering the repair program. During the repair program, SCs undergo dynamic cell reprogramming and morphogenic changes aimed at promoting nerve regeneration and functional recovery. SCs convert into a repair phenotype, activate negative regulators of myelination and demyelinate the damaged nerve. Moreover, they express many genes typical of their immature state as well as numerous de-novo genes. These genes modulate and drive the regeneration process by promoting neuronal survival, damaged axon disintegration, myelin clearance, axonal regrowth and guidance to their former target, and by finally remyelinating the regenerated axon. Many signaling pathways, transcriptional regulators and epigenetic mechanisms regulate these events. In this review, we discuss the main steps of the repair program with a particular focus on the molecular mechanisms that regulate SC plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- Gianluigi Nocera
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
13
|
Kerman BE, Genoud S, Kurt Vatandaslar B, Denli AM, Georges Ghosh S, Xu X, Yeo GW, Aimone JB, Gage FH. Motoneuron expression profiling identifies an association between an axonal splice variant of HDGF-related protein 3 and peripheral myelination. J Biol Chem 2020; 295:12233-12246. [PMID: 32647008 PMCID: PMC7443494 DOI: 10.1074/jbc.ra120.014329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/27/2020] [Indexed: 11/06/2022] Open
Abstract
Disorders that disrupt myelin formation during development or in adulthood, such as multiple sclerosis and peripheral neuropathies, lead to severe pathologies, illustrating myelin's crucial role in normal neural functioning. However, although our understanding of glial biology is increasing, the signals that emanate from axons and regulate myelination remain largely unknown. To identify the core components of the myelination process, here we adopted a microarray analysis approach combined with laser-capture microdissection of spinal motoneurons during the myelinogenic phase of development. We identified neuronal genes whose expression was enriched during myelination and further investigated hepatoma-derived growth factor-related protein 3 (HRP3 or HDGFRP3). HRP3 was strongly expressed in the white matter fiber tracts of the peripheral (PNS) and central (CNS) nervous systems during myelination and remyelination in a cuprizone-induced demyelination model. The dynamic localization of HPR3 between axons and nuclei during myelination was consistent with its axonal localization during neuritogenesis. To study this phenomenon, we identified two splice variants encoded by the HRP3 gene: the canonical isoform HRP3-I and a newly recognized isoform, HRP3-II. HRP3-I remained solely in the nucleus, whereas HRP3-II displayed distinct axonal localization both before and during myelination. Interestingly, HRP3-II remained in the nuclei of unmyelinated neurons and glial cells, suggesting the existence of a molecular machinery that transfers it to and retains it in the axons of neurons fated for myelination. Overexpression of HRP3-II, but not of HRP3-I, increased Schwann cell numbers and myelination in PNS neuron-glia co-cultures. However, HRP3-II overexpression in CNS co-cultures did not alter myelination.
Collapse
Affiliation(s)
- Bilal Ersen Kerman
- Department of Histology and Embryology, Istanbul Medipol University International School of Medicine, Istanbul, Turkey; Regenerative and Restorative Medicine Research Center, Institute of Health Science, Department of Neuroscience, Istanbul Medipol University, Istanbul, Turkey; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Stéphane Genoud
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA; Vifor Pharma, Villars-sur-Glâne, Switzerland
| | - Burcu Kurt Vatandaslar
- Regenerative and Restorative Medicine Research Center, Institute of Health Science, Department of Neuroscience, Istanbul Medipol University, Istanbul, Turkey; Institute of Health Science, Department of Neuroscience, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Murat Denli
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shereen Georges Ghosh
- Laboratory for Pediatric Brain Disease, University of California, San Diego, La Jolla, California, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Xiangdong Xu
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - James Bradley Aimone
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
14
|
Schwann Cell Cultures: Biology, Technology and Therapeutics. Cells 2020; 9:cells9081848. [PMID: 32781699 PMCID: PMC7465416 DOI: 10.3390/cells9081848] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cell (SC) cultures from experimental animals and human donors can be prepared using nearly any type of nerve at any stage of maturation to render stage- and patient-specific populations. Methods to isolate, purify, expand in number, and differentiate SCs from adult, postnatal and embryonic sources are efficient and reproducible as these have resulted from accumulated refinements introduced over many decades of work. Albeit some exceptions, SCs can be passaged extensively while maintaining their normal proliferation and differentiation controls. Due to their lineage commitment and strong resistance to tumorigenic transformation, SCs are safe for use in therapeutic approaches in the peripheral and central nervous systems. This review summarizes the evolution of work that led to the robust technologies used today in SC culturing along with the main features of the primary and expanded SCs that make them irreplaceable models to understand SC biology in health and disease. Traditional and emerging approaches in SC culture are discussed in light of their prospective applications. Lastly, some basic assumptions in vitro SC models are identified in an attempt to uncover the combined value of old and new trends in culture protocols and the cellular products that are derived.
Collapse
|
15
|
Yao Y, Wang C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med 2020; 5:14. [PMID: 32821434 PMCID: PMC7395755 DOI: 10.1038/s41536-020-00099-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cell dedifferentiation is the process by which cells grow reversely from a partially or terminally differentiated stage to a less differentiated stage within their own lineage. This extraordinary phenomenon, observed in many physiological processes, inspires the possibility of developing new therapeutic approaches to regenerate damaged tissue and organs. Meanwhile, studies also indicate that dedifferentiation can cause pathological changes. In this review, we compile the literature describing recent advances in research on dedifferentiation, with an emphasis on tissue-specific findings, cellular mechanisms, and potential therapeutic applications from an engineering perspective. A critical understanding of such knowledge may provide fresh insights for designing new therapeutic strategies for regenerative medicine based on the principle of cell dedifferentiation.
Collapse
Affiliation(s)
- Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
16
|
Chen R, Yang X, Zhang B, Wang S, Bao S, Gu Y, Li S. EphA4 Negatively Regulates Myelination by Inhibiting Schwann Cell Differentiation in the Peripheral Nervous System. Front Neurosci 2019; 13:1191. [PMID: 31798398 PMCID: PMC6863774 DOI: 10.3389/fnins.2019.01191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022] Open
Abstract
Myelin plays a crucial role in axon function recovery following nerve damage, and the interaction between Schwann cells (SCs) and regenerating axons profoundly affects myelin formation. Eph receptor A4 (EphA4), a member of the Eph tyrosine kinase receptor family, regulates cell-cell interactions via its ligand ephrins. However, our current knowledge on how EphA4 regulates the formation of myelin sheaths remains limited. In order to explore the roles of EphA4 in myelination in the peripheral nervous system, we used a combination of (1) a co-culture model of dorsal root ganglion (DRG) explants and SCs, (2) a SC differentiation model induced by db-cAMP, and (3) a regeneration model of crushed sciatic nerves in rats. Our results demonstrated that EphA4 inhibited myelination by inhibiting SC differentiation and facilitating SC proliferation in vitro. The in vivo experiments revealed that EphA4 expression in SCs is upregulated following nerve crush injury and then downregulated during remyelination. Moreover, silencing of EphA4 by siRNA or overexpression of EphA4 by genetic manipulation can accelerate or slow down nerve remyelination in crushed sciatic nerves. Taken together, our results suggest that EphA4 may negatively regulate myelination by abrogating SC differentiation.
Collapse
Affiliation(s)
- Ruyue Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Yang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shengran Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuangxi Bao
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China
| | - Shiying Li
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
17
|
Bello SA, Torres-Gutiérrez V, Rodríguez-Flores EJ, Toledo-Román EJ, Rodríguez N, Díaz-Díaz LM, Vázquez-Figueroa LD, Cuesta JM, Grillo-Alvarado V, Amador A, Reyes-Rivera J, García-Arrarás JE. Insights into intestinal regeneration signaling mechanisms. Dev Biol 2019; 458:12-31. [PMID: 31605680 DOI: 10.1016/j.ydbio.2019.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
The cellular mechanisms underlying the amazing ability of sea cucumbers to regenerate their autotomized intestines have been widely described by us and others. However, the signaling pathways that control these mechanisms are unknown. Previous studies have shown that Wnt homologs are upregulated during early intestinal regenerative stages, suggesting that the Wnt/β-catenin pathway is active during this process. Here, we used small molecules, putative disruptors of the Wnt pathway, to determine the potential role of the canonical Wnt pathway on intestine regeneration in the sea cucumber Holothuria glaberrima. We evaluated their effects in vivo by using histological analyses for cell dedifferentiation, cell proliferation and apoptosis. We found that iCRT14, an alleged Wnt pathway inhibitor, decreased the size of the regenerating intestine, while LiCl, a presumed Wnt pathway activator, increased its size. The possible cellular mechanisms by which signaling pathway disruptors affect the gut rudiment size were further studied in vitro, using cultures of tissue explants and additional pharmacological agents. Among the tested signaling activators, those that act through GSK-3 inhibition, LiCl, 1-Azakenpaullone, and CHIR99021 were found to increase muscle cell dedifferentiation, while the inhibitor iCRT14 blocked cell dedifferentiation. Differently, cell proliferation was reduced by all GSK-3 inhibitors, as well as by iCRT14 and C59, which interferes with Wnt ligand secretion. The in vivo temporal and spatial pattern of β-catenin activity was determined using an antibody against phosphorylated β-catenin and shown to correlate with cell proliferative activity. In vitro treatment using C59 decreased the number of cells immunostained for nuclear phosphorylated β-catenin. Our results showed that the cell dedifferentiation observed during intestinal regeneration can be decoupled from the cell proliferation event and that these cellular processes can be modulated by particular signaling pathway inhibitors and activators. These results open the door for future studies where the cellular signaling pathways involved at each regeneration stage can be determined.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | | | | | - Natalia Rodríguez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Lymarie M Díaz-Díaz
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | - José M Cuesta
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | - Alexandra Amador
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Josean Reyes-Rivera
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA.
| |
Collapse
|
18
|
Lv W, Deng B, Duan W, Li Y, Song X, Ji Y, Li Z, Liu Y, Wang X, Li C. FGF9 alters the Wallerian degeneration process by inhibiting Schwann cell transformation and accelerating macrophage infiltration. Brain Res Bull 2019; 152:285-296. [PMID: 31220553 DOI: 10.1016/j.brainresbull.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023]
Abstract
In vitro experiments have proved that Fibroblast Growth Factor 9 (FGF9) was decreased in Schwann cells (SCs) in which Wallerian degeneration (WD) occurred after nerve injury. We hypothesize that FGF9 downregulation in WD has some biological influence on Schwann cells (SCs) and macrophages - the two most important cell components involved in WD. In this study, we employed strategies to regulate FGF9 in sciatic nerve crush by generating a mouse model, wherein Fgf9 was specifically knocked-out in SCs, and an intraneural injection of human FGF9 protein administered to overexpress FGF9 independently. Furthermore, an inhibitor of extracellular-regulated kinases 1/2 (ERK1/2), PD0325901, was used to clarify the underlying downstream mechanism of ERK1/2 activated by FGF9. Analysis of WD revealed the novel features of FGF9: (i) FGF9 was widely expressed in axons and SCs, and was decreased during WD process. (ii) Fgf9 knockout in SCs impaired the debris clearance and eventually impeded the regeneration of nerve fibers after damage. (iii) Fgf9 knockout in SCs promoted the dedifferentiation of SCs and delayed the infiltration of macrophages by decreasing Mcp1, Tnfα, Il1β levels and leaky blood-nerve-barrier (BNB) in WD. (iv) FGF9 injection preserved the nerve fibers, inhibited SCs dedifferentiation and accelerated macrophages infiltration. (v) ERK1/2 phosphorylation was increased by exogenous FGF9 injection. P75, Cyclin D1, Mcp1, Tnfα, Il1β, c-Jun changes by FGF9 intraneural injection were partially reversed by the ERK1/2 inhibitor. Conclusion was that FGF9 inhibited the dedifferentiation of SCs and accelerated the accumulation of macrophages in WD, and exogenous FGF9 took effects partially by ERK1/2.
Collapse
Affiliation(s)
- Wenjing Lv
- Department of Geriatirics, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, PR China.
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Weisong Duan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yi Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China
| | - Xueqin Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yingxiao Ji
- Department of Neurology, People's hospital of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Zhongyao Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yakun Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Xiaoxiao Wang
- Department of Neurology, First Hospital of Handan City, Handan 056000, Hebei, PR China
| | - Chunyan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China.
| |
Collapse
|
19
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Castelnovo LF, Magnaghi V, Thomas P. Expression of membrane progesterone receptors (mPRs) in rat peripheral glial cell membranes and their potential role in the modulation of cell migration and protein expression. Steroids 2019; 142:6-13. [PMID: 28962850 DOI: 10.1016/j.steroids.2017.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022]
Abstract
The role played by progestogens in modulating Schwann cell pathophysiology is well established. Progestogens exert their effects in these cells through both classical genomic and non-genomic mechanisms, the latter mediated by the GABA-A receptor. However, there is evidence that other receptors may be involved. Membrane progesterone receptors (mPRs) are novel 7-transmembrane receptors coupled to G proteins that have been characterized in different tissues and cells, including the central nervous system (CNS). The mPRs were shown to mediate some of progestogens' neuroprotective effects in the CNS, and to be upregulated in glial cells after traumatic brain injury. Based on this evidence, this paper investigated the possible involvement of mPRs in mediating progestogen actions in S42 Schwann cells. All five mPR isoforms and progesterone receptor membrane component 1 (PGRMC1) were detected in Schwann cells, and were present on the cell membrane. Progesterone and the mPR-specific agonist, Org-OD-02-0 (02) bound to these membranes, indicating the presence of functional mPRs. The mPR agonist 02 rapidly increased cell migration in an in vitro assay, suggesting a putative role of mPRs in the nerve regeneration process. Treatment with pertussis toxin and 8-Br-cAMP blocked 02-induced cell migration, suggesting this progestogen action is mediated by activation of an inhibitory G protein, leading to a decrease in intracellular cAMP levels. In contrast, long-term mPR activation led to increased expression levels of myelin associated glycoprotein (MAG). Taken together, these findings show that mPRs are present and active in Schwann cells and have a role in modulating their physiological processes.
Collapse
Affiliation(s)
- Luca F Castelnovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas TX 78373, United States.
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy
| | - Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas TX 78373, United States
| |
Collapse
|
21
|
Monje PV. Scalable Differentiation and Dedifferentiation Assays Using Neuron-Free Schwann Cell Cultures. Methods Mol Biol 2019; 1739:213-232. [PMID: 29546710 DOI: 10.1007/978-1-4939-7649-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter describes protocols to establish simplified in vitro assays of Schwann cell (SC) differentiation in the absence of neurons. The assays are based on the capacity of isolated primary SCs to increase or decrease the expression of myelination-associated genes in response to the presence or absence of cell permeable analogs of cyclic adenosine monophosphate (cAMP). No special conditions of media or substrates beyond the administration or removal of cAMP analogs are required to obtain a synchronous response on differentiation and dedifferentiation. The assays are cost-effective and far easier to implement than traditional myelinating SC-neuron cultures. They are scalable to a variety of plate formats suited for downstream experimentation and analysis. These cell-based assays can be used as drug discovery platforms for the evaluation of novel agents controlling the onset, maintenance, and reversal of the differentiated state using any typical adherent SC population.
Collapse
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
22
|
Ching RC, Wiberg M, Kingham PJ. Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res Ther 2018; 9:266. [PMID: 30309388 PMCID: PMC6182785 DOI: 10.1186/s13287-018-1017-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Background Adipose derived stem cells can be stimulated to produce a growth factor rich secretome which enhances axon regeneration. In this study we investigated the importance of exosomes, extracellular vesicles released by many different cell types, including stem cells and endogenous nervous system Schwann cells (SCs), on neurite outgrowth. Methods Adipose derived stem cells were differentiated towards a Schwann cell-like phenotype (dADSCs) by in vitro stimulation with a mix of factors (basic fibroblast growth factor, platelet derived growth factor-AA, neuregulin-1 and forskolin). Using a precipitation and low-speed centrifugation protocol the extracellular vesicles were isolated from the medium of the stem cells cultures and also from primary SCs. The conditioned media or concentrated vesicles were applied to neurons in vitro and computerised image analysis was used to assess neurite outgrowth. Total RNA was purified from the extracellular vesicles and investigated using qRT-PCR. Results Application of exosomes derived from SCs significantly enhanced in vitro neurite outgrowth and this was replicated by the exosomes from dADSCs. qRT-PCR demonstrated that the exosomes contained mRNAs and miRNAs known to play a role in nerve regeneration and these molecules were up-regulated by the Schwann cell differentiation protocol. Transfer of fluorescently tagged exosomal RNA to neurons was detected and destruction of the RNA by UV-irradiation significantly reduced the dADSCs exosome effects on neurite outgrowth. In contrast, this process had no significant effect on the SCs-derived exosomes. Conclusions In summary, this work suggests that stem cell-derived exosomes might be a useful adjunct to other novel therapeutic interventions in nerve repair.
Collapse
Affiliation(s)
- Rosanna C Ching
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87, Umeå, Sweden.,Department of Surgical and Perioperative Sciences, Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87, Umeå, Sweden.,Department of Surgical and Perioperative Sciences, Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
23
|
Pesaresi M, Sebastian-Perez R, Cosma MP. Dedifferentiation, transdifferentiation and cell fusion: in vivo reprogramming strategies for regenerative medicine. FEBS J 2018; 286:1074-1093. [PMID: 30103260 DOI: 10.1111/febs.14633] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/01/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
Abstract
Regenerative capacities vary enormously across the animal kingdom. In contrast to most cold-blooded vertebrates, mammals, including humans, have very limited regenerative capacity when it comes to repairing damaged or degenerating tissues. Here, we review the main mechanisms of tissue regeneration, underlying the importance of cell dedifferentiation and reprogramming. We discuss the significance of cell fate and identity changes in the context of regenerative medicine, with a particular focus on strategies aiming at the promotion of the body's self-repairing mechanisms. We also introduce some of the most recent advances that have resulted in complete reprogramming of cell identity in vivo. Lastly, we discuss the main challenges that need to be addressed in the near future to develop in vivo reprogramming approaches with therapeutic potential.
Collapse
Affiliation(s)
- Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Wen J, Tan D, Li L, Wang X, Pan M, Guo J. RhoA regulates Schwann cell differentiation through JNK pathway. Exp Neurol 2018; 308:26-34. [PMID: 29940159 DOI: 10.1016/j.expneurol.2018.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/25/2022]
Abstract
RhoA is a small GTPase that regulates many functions of mammalian cells via actin reorganization. Lots of studies uncovered that its activation acts as a major negative regulator of neurite extension, and inhibition of RhoA activity or reduction of its expression can promote neuron survival and axonal regeneration. However, little is known about whether RhoA also exerts important functions on Schwann cells (SCs) which are the glial cells of the peripheral nervous system (PNS). Recently, we reported that RhoA plays important roles in the proliferation, migration and myelination of SCs. In the present study, using RNA interference to knockdown RhoA expression and CT04 (a cell-permeable C3 Transferase) to inhibit RhoA activation we found that blocking RhoA can slack SC differentiation. Unexpectedly, inhibiting ROCK, the mostly well-known downstream effector of RhoA, has no influence on SC differentiation. Instead, the inhibition of RhoA in differentiating SCs results in the activation of JNK and p38 MAPK. And the inhibitor of JNK but not p38 MAPK can promote SC differentiation in the presence of RhoA inhibition. Overall results indicate that RhoA plays a vital role in SC differentiation via JNK pathway rather than ROCK pathway.
Collapse
Affiliation(s)
- Jinkun Wen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Dandan Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Lixia Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Xianghai Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Mengjie Pan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Jiasong Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China; Institute of Bone Biology, Academy of Orthopedics, Guangdong Province, Guangzhou 510665, China.
| |
Collapse
|
25
|
Gomis-Coloma C, Velasco-Aviles S, Gomez-Sanchez JA, Casillas-Bajo A, Backs J, Cabedo H. Class IIa histone deacetylases link cAMP signaling to the myelin transcriptional program of Schwann cells. J Cell Biol 2018; 217:1249-1268. [PMID: 29472387 PMCID: PMC5881490 DOI: 10.1083/jcb.201611150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 10/06/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Schwann cells respond to cyclic adenosine monophosphate (cAMP) halting proliferation and expressing myelin proteins. Here we show that cAMP signaling induces the nuclear shuttling of the class IIa histone deacetylase (HDAC)-4 in these cells, where it binds to the promoter and blocks the expression of c-Jun, a negative regulator of myelination. To do it, HDAC4 does not interfere with the transcriptional activity of MEF2. Instead, by interacting with NCoR1, it recruits HDAC3 and deacetylates histone 3 in the promoter of c-Jun, blocking gene expression. Importantly, this is enough to up-regulate Krox20 and start Schwann cell differentiation program-inducing myelin gene expression. Using conditional knockout mice, we also show that HDAC4 together with HDAC5 redundantly contribute to activate the myelin transcriptional program and the development of myelin sheath in vivo. We propose a model in which cAMP signaling shuttles class IIa HDACs into the nucleus of Schwann cells to regulate the initial steps of myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Clara Gomis-Coloma
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones Científicas, Sant Joan, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) and Fundación para el Fomento de la Investigación Saniatria y Biomédica de la Comunidad Valenciana (FISABIO), Alicante, Spain
| | - Sergio Velasco-Aviles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones Científicas, Sant Joan, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) and Fundación para el Fomento de la Investigación Saniatria y Biomédica de la Comunidad Valenciana (FISABIO), Alicante, Spain
| | - Jose A Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones Científicas, Sant Joan, Alicante, Spain
- Department of Cell and Developmental Biology, University College London, London, England, UK
| | - Angeles Casillas-Bajo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones Científicas, Sant Joan, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) and Fundación para el Fomento de la Investigación Saniatria y Biomédica de la Comunidad Valenciana (FISABIO), Alicante, Spain
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones Científicas, Sant Joan, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) and Fundación para el Fomento de la Investigación Saniatria y Biomédica de la Comunidad Valenciana (FISABIO), Alicante, Spain
| |
Collapse
|
26
|
Monje PV, Sant D, Wang G. Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ. Mol Neurobiol 2018; 55:6637-6660. [PMID: 29327207 DOI: 10.1007/s12035-017-0837-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
This study comprehensively addresses the phenotype, function, and whole transcriptome of primary human and rodent Schwann cells (SCs) and highlights key species-specific features beyond the expected donor variability that account for the differential ability of human SCs to proliferate, differentiate, and interact with axons in vitro. Contrary to rat SCs, human SCs were insensitive to mitogenic factors other than neuregulin and presented phenotypic variants at various stages of differentiation, along with a mixture of proliferating and senescent cells, under optimal growth-promoting conditions. The responses of human SCs to cAMP-induced differentiation featured morphological changes and cell cycle exit without a concomitant increase in myelin-related proteins and lipids. Human SCs efficiently extended processes along those of other SCs (human or rat) but failed to do so when placed in co-culture with sensory neurons under conditions supportive of myelination. Indeed, axon contact-dependent human SC alignment, proliferation, and differentiation were not observed and could not be overcome by growth factor supplementation. Strikingly, RNA-seq data revealed that ~ 44 of the transcriptome contained differentially expressed genes in human and rat SCs. A bioinformatics approach further highlighted that representative SC-specific transcripts encoding myelin-related and axon growth-promoting proteins were significantly affected and that a deficient expression of key transducers of cAMP and adhesion signaling explained the fairly limited potential of human SCs to differentiate and respond to axonal cues. These results confirmed the significance of combining traditional bioassays and high-resolution genomics methods to characterize human SCs and identify genes predictive of cell function and therapeutic value.
Collapse
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| | - David Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
27
|
Tricaud N, Park HT. Wallerian demyelination: chronicle of a cellular cataclysm. Cell Mol Life Sci 2017; 74:4049-4057. [PMID: 28600652 PMCID: PMC5641270 DOI: 10.1007/s00018-017-2565-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.
Collapse
Affiliation(s)
- Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
28
|
Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, Lim S, Cho YS. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair. Stem Cell Reports 2017; 8:1714-1726. [PMID: 28506533 PMCID: PMC5469943 DOI: 10.1016/j.stemcr.2017.04.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023] Open
Abstract
Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. hPSC-SCPs are highly expandable under chemically defined medium condition hPSC-SCPs can rapidly and efficiently differentiate into functional Schwann cells SCP-SCs myelinate axon and secrete various neurotrophic factors SCP-SCs promote axonal regeneration in sciatic nerve-damaged mice
Collapse
Affiliation(s)
- Han-Seop Kim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jungwoon Lee
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Dae Kim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae Yun Kim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hyung Jin Lim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sungmin Lim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
29
|
Soto J, Monje PV. Axon contact-driven Schwann cell dedifferentiation. Glia 2017; 65:864-882. [PMID: 28233923 DOI: 10.1002/glia.23131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/26/2022]
Abstract
Mature Schwann cells (SCs) retain dedifferentiation potential throughout adulthood. Still, how dedifferentiation occurs remains uncertain. Results from a variety of cell-based assays using in vitro cultured cAMP-differentiated and myelinating SCs revealed the existence of a novel dedifferentiating activity expressed on the surface of dorsal root ganglion (DRG) axons. This activity had the capacity to prevent SC differentiation and elicit dedifferentiation through direct SC-axon contact. Evidence is provided showing that a rapid loss of myelinating SC markers concomitant to proliferation occurred even in the presence of elevated cAMP, a signal that is required to drive and maintain a differentiated state. The dedifferentiating activity was a membrane-bound protein found exclusively in DRG neurons, as judged by its subcellular partitioning, sensitivity to proteolytic degradation and cell-type specificity, and remained active even after disruption of cellular organization. It differed from the membrane-anchored neuregulin-1 isoforms that are responsible for axon contact-induced SC proliferation and exerted its action independently of mitogenic signaling emanating from receptor tyrosine kinases and mitogen-activated protein kinases such as ERK and JNK. Interestingly, dedifferentiation occurred without concomitant changes in the expression of Krox-20, a transcriptional enhancer of myelination, and c-Jun, an inhibitor of myelination. In sum, our data indicated the existence of cell surface axon-derived signals that override pro-differentiating cues, drive dedifferentiation and allow SCs to proliferate in response to axonal mitogens. This axonal signal may negatively regulate myelination at the onset or reversal of the differentiated state. GLIA 2017;65:851-863.
Collapse
Affiliation(s)
- Jennifer Soto
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Paula V Monje
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, 33136
| |
Collapse
|
30
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|
31
|
Brügger V, Duman M, Bochud M, Münger E, Heller M, Ruff S, Jacob C. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat Commun 2017; 8:14272. [PMID: 28139683 PMCID: PMC5290322 DOI: 10.1038/ncomms14272] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023] Open
Abstract
The peripheral nervous system (PNS) regenerates after injury. However, regeneration is often compromised in the case of large lesions, and the speed of axon reconnection to their target is critical for successful functional recovery. After injury, mature Schwann cells (SCs) convert into repair cells that foster axonal regrowth, and redifferentiate to rebuild myelin. These processes require the regulation of several transcription factors, but the driving mechanisms remain partially understood. Here we identify an early response to nerve injury controlled by histone deacetylase 2 (HDAC2), which coordinates the action of other chromatin-remodelling enzymes to induce the upregulation of Oct6, a key transcription factor for SC development. Inactivating this mechanism using mouse genetics allows earlier conversion into repair cells and leads to faster axonal regrowth, but impairs remyelination. Consistently, short-term HDAC1/2 inhibitor treatment early after lesion accelerates functional recovery and enhances regeneration, thereby identifying a new therapeutic strategy to improve PNS regeneration after lesion.
Collapse
Affiliation(s)
- Valérie Brügger
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mert Duman
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Maëlle Bochud
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Emmanuelle Münger
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department of Clinical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Sophie Ruff
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Claire Jacob
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
32
|
Abstract
Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs ‘sense’ axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Elisabetta Babetto
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
33
|
Piñero G, Berg R, Andersen ND, Setton-Avruj P, Monje PV. Lithium Reversibly Inhibits Schwann Cell Proliferation and Differentiation Without Inducing Myelin Loss. Mol Neurobiol 2016; 54:8287-8307. [PMID: 27917448 DOI: 10.1007/s12035-016-0262-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/25/2016] [Indexed: 01/11/2023]
Abstract
This study was undertaken to examine the bioactivity, specificity, and reversibility of lithium's action on the growth, survival, proliferation, and differentiation of cultured Schwann cells (SCs). In isolated SCs, lithium promoted a state of cell cycle arrest that featured extensive cell enlargement and c-Jun downregulation in the absence of increased expression of myelin-associated markers. In addition, lithium effectively prevented mitogen-induced S-phase entry without impairing cell viability. When lithium was administered together with differentiating concentrations of cyclic adenosine monophosphate (cAMP) analogs, a dramatic inhibition of the expression of the master regulator of myelination Krox-20 was observed. Likewise, lithium antagonized the cAMP-dependent expression of various myelin markers such as protein zero, periaxin, and galactocerebroside and allowed SCs to maintain high levels of expression of immature SC markers even in the presence of high levels of cAMP and low levels of c-Jun. Most importantly, the inhibitory action of lithium on SC proliferation and differentiation was shown to be dose dependent, specific, and reversible upon removal of lithium compounds. In SC-neuron cultures, lithium suppressed myelin sheath formation while preserving axonal integrity, SC-axon contact, and basal lamina formation. Lithium was unique in its ability to prevent the onset of myelination without promoting myelin degradation or SC dedifferentiation. To conclude, our results underscored an unexpected antagonistic action of lithium on SC mitogenesis and myelin gene expression. We suggest that lithium represents an attractive pharmacological agent to safely and reversibly suppress the onset of SC proliferation, differentiation, and myelination while maintaining the integrity of pre-existing myelinated fibers.
Collapse
Affiliation(s)
- Gonzalo Piñero
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Universidad de Buenos Aires. CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Randall Berg
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalia Denise Andersen
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patricia Setton-Avruj
- Universidad de Buenos Aires. CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Paula Virginia Monje
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
34
|
Guha I, Slamova I, Chun S, Clegg A, Golos M, Thrasivoulou C, Simons JP, Al-Shawi R. The effects of short-term JNK inhibition on the survival and growth of aged sympathetic neurons. Neurobiol Aging 2016; 46:138-48. [PMID: 27490965 DOI: 10.1016/j.neurobiolaging.2016.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/27/2022]
Abstract
During the course of normal aging, certain populations of nerve growth factor (NGF)-responsive neurons become selectively vulnerable to cell death. Studies using dissociated neurons isolated from neonates have shown that c-Jun N-terminal kinases (JNKs) are important in regulating the survival and neurite outgrowth of NGF-responsive sympathetic neurons. Unlike neonatal neurons, adult sympathetic neurons are not dependent on NGF for their survival. Moreover, the NGF precursor, proNGF, is neurotoxic for aging but not young adult NGF-responsive neurons. Because of these age-related differences, the effects of JNK inhibition on the survival and growth of sympathetic neurons isolated from aged mice were studied. Aged neurons, as well as glia, were found to be dependent on JNK for their growth but not their survival. Conversely, proNGF neurotoxicity was JNK-dependent and mediated by the p75-interacting protein NRAGE, whereas neurite outgrowth was independent of NRAGE. These results have implications for the potential use of JNK inhibitors as therapies for ameliorating age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Isa Guha
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Ivana Slamova
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Soyon Chun
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Arthur Clegg
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Michal Golos
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Chris Thrasivoulou
- Research Department of Cell and Developmental Biology, University College London, London, UK
| | - J Paul Simons
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| | - Raya Al-Shawi
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
35
|
Saitoh F, Wakatsuki S, Tokunaga S, Fujieda H, Araki T. Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation. Sci Rep 2016; 6:29856. [PMID: 27432639 PMCID: PMC4949416 DOI: 10.1038/srep29856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Rapid saltatory nerve conduction is facilitated by myelin structure, which is produced by Schwann cells (SC) in the peripheral nervous system (PNS). Proper development and degeneration/regeneration after injury requires regulated phenotypic changes of SC. We have previously shown that glutamate can induce SC proliferation in culture. Here we show that glutamate signals through metabotropic glutamate receptor 2 (mGluR2) to induce Erk phosphorylation in SC. mGluR2-elicited Erk phosphorylation requires ErbB2/3 receptor tyrosine kinase phosphorylation to limit the signaling cascade that promotes phosphorylation of Erk, but not Akt. We found that Gβγ and Src are involved in subcellular signaling downstream of mGluR2. We also found that glutamate can transform myelinating SC to proliferating SC, while inhibition of mGluR2 signaling can inhibit demyelination of injured nerves in vivo. These data suggest pathophysiological significance of mGluR2 signaling in PNS and its possible therapeutic importance to combat demyelinating disorders including Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Fuminori Saitoh
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shinji Tokunaga
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroki Fujieda
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
36
|
Miyamoto Y, Tamano M, Torii T, Kawahara K, Nakamura K, Tanoue A, Takada S, Yamauchi J. Data supporting the role of Fyn in initiating myelination in the peripheral nervous system. Data Brief 2016; 7:1098-105. [PMID: 27115022 PMCID: PMC4833127 DOI: 10.1016/j.dib.2016.03.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 11/08/2022] Open
Abstract
Transgenic mice, which express active Fyn tyrosine kinase under the control of a glial fibrillary acidic protein promoter, have been produced. This promoter induces protein expression in the initiation stage of myelination in the peripheral nervous system (PNS) “Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development (Yamauchi et al., 2015 [1])”. Herein we provide the data regarding myelination-related protein markers and myelin ultrastructure in transgenic mice.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Moe Tamano
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Kazuko Kawahara
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| |
Collapse
|
37
|
Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 2016; 17:413-25. [PMID: 26979497 DOI: 10.1038/nrm.2016.24] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response. Recent studies have highlighted the extent to which cell plasticity contributes to tissue homeostasis, findings that have implications for cell-based therapy.
Collapse
|
38
|
Monje PV. To myelinate or not to myelinate: fine tuning cAMP signaling in Schwann cells to balance cell proliferation and differentiation. Neural Regen Res 2016; 10:1936-7. [PMID: 26889176 PMCID: PMC4730812 DOI: 10.4103/1673-5374.169622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
39
|
Torii T, Miyamoto Y, Yamamoto M, Ohbuchi K, Tsumura H, Kawahara K, Tanoue A, Sakagami H, Yamauchi J. Arf6 mediates Schwann cell differentiation and myelination. Biochem Biophys Res Commun 2015; 465:450-7. [DOI: 10.1016/j.bbrc.2015.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/09/2015] [Indexed: 10/24/2022]
|
40
|
Park BS, Jo HW, Park C, Huh Y, Jung J, Jeong NY. A novel effect of ethyl pyruvate in Schwann cell de-differentiation and proliferation during Wallerian degeneration. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1053520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
41
|
Abstract
Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment) and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.
Collapse
Affiliation(s)
- Rosanna C Ching
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-901 87, Sweden ; Department of Surgical & Perioperative Sciences, Umeå University, Umeå, SE-901 87, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
42
|
Abstract
Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath.
Collapse
Affiliation(s)
- James L Salzer
- Department of Neuroscience and Physiology, New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
43
|
Groh J, Klein I, Hollmann C, Wettmarshausen J, Klein D, Martini R. CSF-1-activated macrophages are target-directed and essential mediators of Schwann cell dedifferentiation and dysfunction in Cx32-deficient mice. Glia 2015; 63:977-86. [PMID: 25628221 DOI: 10.1002/glia.22796] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/26/2022]
Abstract
We investigated connexin 32 (Cx32)-deficient mice, a model for the X-linked form of Charcot-Marie-Tooth neuropathy (CMT1X), regarding the impact of low-grade inflammation on Schwann cell phenotype. Whereas we previously identified macrophages as amplifiers of the neuropathy, we now explicitly focus on the impact of the phagocytes on Schwann cell dedifferentiation, a so far not-yet addressed disease-related mechanism for CMT1X. Using mice heterozygously deficient for Cx32 and displaying both Cx32-positive and -negative Schwann cells in one and the same nerve, we could demonstrate that macrophage clusters rather than single macrophages precisely associate with mutant but not with Cx32-positive Schwann cells. Similarly, in an advanced stage of Schwann cell perturbation, macrophage clusters were strongly associated with NCAM- and L1-positive, dedifferentiated Schwann cells. To clarify the role of macrophages regarding Schwann cell dedifferentiation, we generated Cx32-deficient mice additionally deficient for the macrophage-directed cytokine colony-stimulating factor (CSF)-1. In the absence of CSF-1, Cx32-deficient Schwann cells not only showed the expected amelioration in myelin preservation but also failed to upregulate the Schwann cell dedifferentiation markers NCAM and L1. Another novel and unexpected finding in the double mutants was the retained activation of ERK signaling, a pathway which is detrimental for Schwann cell homeostasis in myelin mutant models. Our findings demonstrate that increased ERK signaling can be compatible with the maintenance of Schwann cell differentiation and homeostasis in vivo and identifies CSF-1-activated macrophages as crucial mediators of detrimental Schwann cell dedifferentiation in Cx32-deficient mice.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg
| | | | | | | | | | | |
Collapse
|
44
|
Bacallao K, Monje PV. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination. PLoS One 2015; 10:e0116948. [PMID: 25705874 PMCID: PMC4338006 DOI: 10.1371/journal.pone.0116948] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 12/17/2014] [Indexed: 12/25/2022] Open
Abstract
Isolated Schwann cells (SCs) respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1). To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP) and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC) agonists and antagonists revealed that selective transmembrane AC (tmAC) activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC), a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the uncoupling of signals controlling differentiation and myelination in SCs.
Collapse
Affiliation(s)
- Ketty Bacallao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Paula V. Monje
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
The cancer stem cell (CSC) hypothesis postulates that there is a hierarchy of cellular differentiation within cancers and that the bulk population of tumor cells is derived from a relatively small population of multi-potent neoplastic stem-like cells (CSCs). This tumor-initiating cell population plays an important role in maintaining tumor growth through their unlimited self-renewal, therapeutic resistance, and capacity to propagate tumors through asymmetric cell division. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to de-differentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of novel therapeutic strategies that focus on depleting tumors of their tumor-propagating cell population.
Collapse
Affiliation(s)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Nobbio L, Visigalli D, Mannino E, Fiorese F, Kassack MU, Sturla L, Prada V, De Flora A, Zocchi E, Bruzzone S, Schenone A. The diadenosine homodinucleotide P18 improves in vitro myelination in experimental Charcot-Marie-Tooth type 1A. J Cell Biochem 2014; 115:161-7. [PMID: 23959806 DOI: 10.1002/jcb.24644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 11/05/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) is a demyelinating hereditary neuropathy whose pathogenetic mechanisms are still poorly defined and an etiologic treatment is not yet available. An abnormally high intracellular Ca(2+) concentration ([Ca(2+)]i) occurs in Schwann cells from CMT1A rats (CMT1A SC) and is caused by overexpression of the purinoceptor P2X7. Normalization of the Ca(2+) levels through down-regulation of P2X7 appears to restore the normal phenotype of CMT1A SC in vitro. We recently demonstrated that the diadenosine 5',5'''-P1, P2-diphosphate (Ap2A) isomer P18 behaves as an antagonist of the P2X7 purinergic receptor, effectively blocking channel opening induced by ATP. In addition, P18 behaves as a P2Y11 agonist, inducing cAMP overproduction in P2Y11-overexpressing cells. Here we investigated the in vitro effects of P18 on CMT1A SC. We observed that basal levels of intracellular cAMP ([cAMP]i), a known regulator of SC differentiation and myelination, are significantly lower in CMT1A SC than in wild-type (wt) cells. P18 increased [cAMP]i in both CMT1A and wt SC, and this effects was blunted by NF157, a specific P2Y11 antagonist. Prolonged treatment of organotypic dorsal root ganglia (DRG) cultures with P18 significantly increased expression of myelin protein zero, a marker of myelin production, in both CMT1A and wt cultures. Interestingly, P18 decreased the content of non-phosphorylated neurofilaments, a marker of axonal damage, only in CMT1A DRG cultures. These results suggest that P2X7 antagonists, in combination with [cAMP]i-increasing agents, could represent a therapeutic strategy aimed at correcting the molecular derangements causing the CMT1A phenotype.
Collapse
Affiliation(s)
- Lucilla Nobbio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Mother and Child Sciences and CEBR, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tse KH, Novikov LN, Wiberg M, Kingham PJ. Intrinsic mechanisms underlying the neurotrophic activity of adipose derived stem cells. Exp Cell Res 2014; 331:142-151. [PMID: 25193075 DOI: 10.1016/j.yexcr.2014.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/24/2014] [Indexed: 01/14/2023]
Abstract
Adipose derived stem cells (ADSC) can be differentiated into Schwann cell-like cells which enhance nerve function and regeneration. However, the signalling mechanisms underlying the neurotrophic potential of ADSC remain largely unknown. In this study, we hypothesised that ADSC, upon stimulation with a combination of growth factors, could rapidly produce brain derived neurotrophic factor (BDNF) with a similar molecular mechanism to that functioning in the nervous system. Within 48 h of stimulation, ADSC demonstrated potent neurotrophic effects on dorsal root ganglion neurons, at a magnitude equivalent to that of the longer term differentiated Schwann cell-like cells. Stimulated ADSC showed rapid up-regulation of the neuronal activity dependent promoter BDNF exon IV along with an augmented expression of full length protein encoding BDNF exon IX. BDNF protein was secreted at a concentration similar to that produced by differentiated Schwann cell-like cells. Stimulation also activated the BDNF expression gating transcription factor, cAMP responsive element binding (CREB) protein. However, blocking phosphorylation of CREB with the protein kinase A small molecule inhibitor H89 did not suppress secretion of BDNF protein. These results suggest rapid BDNF production in ADSC is mediated through multiple compensatory pathways independent of, or in addition to, the CREB neuronal activation cascade.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Lev N Novikov
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden; Department of Surgical and Perioperative Sciences, Section of Hand & Plastic Surgery, Umeå University, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
48
|
Jesuraj NJ, Marquardt LM, Kwasa JA, Sakiyama-Elbert SE. Glial cell line-derived neurotrophic factor promotes increased phenotypic marker expression in femoral sensory and motor-derived Schwann cell cultures. Exp Neurol 2014; 257:10-8. [PMID: 24731946 PMCID: PMC4065822 DOI: 10.1016/j.expneurol.2014.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/06/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
Schwann cells (SCs) secrete growth factors and extracellular matrix molecules that promote neuronal survival and help guide axons during regeneration. Transplantation of SCs is a promising strategy for enhancing peripheral nerve regeneration. However, we and others have shown that after long-term in vitro expansion, SCs revert to a de-differentiated state similar to the phenotype observed after injury. In vivo, glial cell-line derived neurotrophic factor (GDNF) may guide the differentiation of SCs to remyelinate regenerating axons. Therefore, we hypothesized that exogenous GDNF may guide the differentiation of SCs into their native phenotypes in vitro through stimulation of GDNF family receptor (GFR)α-1. When activated in SCs, GFRα-1 promotes phosphorylation of Fyn, a Src family tyrosine kinase responsible for mediating downstream signaling for differentiation and proliferation. In this study, SCs harvested from the sensory and motor branches of rat femoral nerve were expanded in vitro and then cultured with 50 or 100ng/mL of GDNF. The exogenous GDNF promoted differentiation of sensory and motor-derived SCs back to their native phenotypes, as demonstrated by decreased proliferation after 7days and increased expression of S100Ββ and phenotype-specific markers. Furthermore, inhibiting Fyn with Src family kinase inhibitors, PP2 and SU6656, and siRNA-mediated knockdown of Fyn reduced GDNF-stimulated differentiation of sensory and motor-derived SCs. These results demonstrate that activating Fyn is necessary for GDNF-stimulated differentiation of femoral nerve-derived SCs into their native phenotypes in vitro. Therefore GDNF could be incorporated into SC-based therapies to promote differentiation of SCs into their native phenotype to improve functional nerve regeneration.
Collapse
Affiliation(s)
- Nithya J Jesuraj
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Laura M Marquardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Jasmine A Kwasa
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Lee HJ, Shin YK, Park HT. Mitogen Activated Protein Kinase Family Proteins and c-jun Signaling in Injury-induced Schwann Cell Plasticity. Exp Neurobiol 2014; 23:130-7. [PMID: 24963277 PMCID: PMC4065826 DOI: 10.5607/en.2014.23.2.130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) in the peripheral nerves myelinate axons during postnatal development to allow saltatory conduction of nerve impulses. Well-organized structures of myelin sheathes are maintained throughout life unless nerves are insulted. After peripheral nerve injury, unidentified signals from injured nerves drive SC dedifferentiation into an immature state. Dedifferentiated SCs participate in axonal regeneration by producing neurotrophic factors and removing degenerating nerve debris. In this review, we focus on the role of mitogen activated protein kinase family proteins (MAP kinases) in SC dedifferentiation. In addition, we will highlight neuregulin 1 and the transcription factor c-jun as upstream and downstream signals for MAP kinases in SC responses to nerve injury.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Department of Pharmacology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Yoon Kyung Shin
- Department of Physiology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Hwan Tae Park
- Department of Physiology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| |
Collapse
|
50
|
Schmid D, Zeis T, Schaeren-Wiemers N. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells. ASN Neuro 2014; 6:137-57. [PMID: 24641305 PMCID: PMC4834722 DOI: 10.1042/an20130031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/16/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022] Open
Abstract
In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest.
Collapse
Key Words
- camp
- forskolin
- in vitro
- microarray
- schwann cell differentiation
- bmp, bone morphogenetic protein
- camp, cyclic adenosine monophosphate
- cns, central nervous system
- creb, camp-response-element-binding protein
- david, database for annotation, visualization and integrated discovery
- dgc, dystrophin–glycoprotein complex
- ecm, extracellular matrix
- fdr, false discovery rate
- go, gene ontology
- ipa, ingenuity pathway analysis
- mag, myelin-associated glycoprotein
- mapk, mitogen-activated protein kinase
- mbp, myelin basic protein
- mpz/p0, myelin protein zero
- nf-κb, nuclear factor κb
- olig1, oligodendrocyte transcription factor 1
- pca, principal component analysis
- pfa, paraformaldehyde
- pka, protein kinase a
- pns, peripheral nervous system
- qrt–pcr, quantitative rt–pcr
- s.d., standard deviation
Collapse
Affiliation(s)
- Daniela Schmid
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Thomas Zeis
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Nicole Schaeren-Wiemers
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| |
Collapse
|