1
|
Ito T, Watanabe H, Honda K, Fujikawa T, Kitamura K, Tsutsumi T. The role of SLC26A4 in bony labyrinth development and otoconial mineralization in mouse models. Front Mol Neurosci 2024; 17:1384764. [PMID: 38742227 PMCID: PMC11089141 DOI: 10.3389/fnmol.2024.1384764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Inner ear malformations are predominantly attributed to developmental arrest during the embryonic stage of membranous labyrinth development. Due to the inherent difficulty in clinically assessing the status of the membranous labyrinth, these malformations are diagnosed with radiographic imaging, based on the morphological characteristics of the bony labyrinth. While extensive research has elucidated the intricacies of membranous labyrinth development in mouse models, comprehensive investigations into the developmental trajectory of the bony labyrinth, especially about its calcification process, have been notably lacking. One of the most prominent types of inner ear malformations is known as incomplete partition (IP), characterized by nearly normal external cochlear appearance but pronounced irregularities in the morphology of the modiolus and inter-scalar septa. IP type II (IP-II), also known as Mondini dysplasia, is generally accompanied by an enlargement of the vestibular aqueduct and is primarily attributed to mutations in the SLC26A4 gene. In the case of IP-II, the modiolus and inter-scalar septa of the cochlear apex are underdeveloped or missing, resulting in the manifestation of a cystic structure on radiographic imaging. In this overview, we not only explore the normal development of the bony labyrinth in mice but also present our observations on otolith mineralization. Furthermore, we investigated the specifics of bony labyrinth and otolith mineralization in Slc26a4-deficient mice, which served as an animal model for IP-II. We ensured that these findings promise to provide valuable insights for the establishment of therapeutic interventions, optimal timing, targeted sites, and preventive measures when considering the management of this condition.
Collapse
Affiliation(s)
- Taku Ito
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taro Fujikawa
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Kitamura
- Department of Otorhinolaryngology, Chigasaki Chuo Hospital, Kanagawa, Japan
| | - Takeshi Tsutsumi
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Lee D, Hong JH. Chloride/Multiple Anion Exchanger SLC26A Family: Systemic Roles of SLC26A4 in Various Organs. Int J Mol Sci 2024; 25:4190. [PMID: 38673775 PMCID: PMC11050216 DOI: 10.3390/ijms25084190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, GAIHST (Gachon Advanced Institute for Health Sciences and Technology), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Tighilet B, Chabbert C. Cellular and Molecular Mechanisms of Vestibular Ageing. J Clin Med 2023; 12:5519. [PMID: 37685587 PMCID: PMC10487907 DOI: 10.3390/jcm12175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
While age-related auditory deficits and cochlear alterations are well described, those affecting the vestibular sensory organs and more broadly the central vestibular pathways are much less documented. Although there is inter-individual heterogeneity in the phenomenon of vestibular ageing, common tissue alterations, such as losses of sensory hair cells or primary and secondary neurons during the ageing process, can be noted. In this review, we document the cellular and molecular processes that occur during ageing in the peripheral and central vestibular system and relate them to the impact of age-related vestibular deficits based on current knowledge.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille University-CNRS, Laboratory of Cognitive Neurosciences, UMR7291, Team Pathophysiology and Therapy of Vestibular Disorders, 13331 Marseille, France
- Research Group on Vestibular Pathophysiology, CNRS, Unit GDR2074, 13331 Marseille, France
| | - Christian Chabbert
- Aix Marseille University-CNRS, Laboratory of Cognitive Neurosciences, UMR7291, Team Pathophysiology and Therapy of Vestibular Disorders, 13331 Marseille, France
- Research Group on Vestibular Pathophysiology, CNRS, Unit GDR2074, 13331 Marseille, France
| |
Collapse
|
4
|
Koh JY, Affortit C, Ranum PT, West C, Walls WD, Yoshimura H, Shao JQ, Mostaert B, Smith RJH. Single-cell RNA-sequencing of stria vascularis cells in the adult Slc26a4 -/- mouse. BMC Med Genomics 2023; 16:133. [PMID: 37322474 PMCID: PMC10268361 DOI: 10.1186/s12920-023-01549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.
Collapse
Affiliation(s)
- Jin-Young Koh
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Corentin Affortit
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul T Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Cody West
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jian Q Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Brian Mostaert
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard J H Smith
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA.
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Watanabe H, Ito T, Aoki N, Bai J, Honda K, Kawashima Y, Fujikawa T, Ikeda T, Tsutsumi T. Quantitative analysis and correlative evaluation of video-oculography, micro-computed tomography, and histopathology in Pendrin-null mice. Neurobiol Dis 2023; 183:106194. [PMID: 37295562 DOI: 10.1016/j.nbd.2023.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Patients with SLC26A4 mutations exhibit highly variable hearing loss and vestibular dysfunction. Although Slc26a4 mutant mice similarly exhibit vestibular deficits, including circling behavior, head tilting, and torticollis, the underlying pathogenesis of the vestibular symptoms remains unclear, hindering its effective management for patients with SLC26A4 mutations. In this study, we evaluated the equilibrium function using the inspection equipment, which can record eye movements against rotational, gravitational, and thermal stimulations. Moreover, we correlated the degree of functional impairment with the morphological alterations observed in Slc26a4Δ/Δ mice. The rotational stimulus and ice water caloric tests revealed considerable impairment of the semicircular canal, while the tilted gravitational stimulus test showed a severe functional decline of the otolithic system in Slc26a4Δ/Δ mice. Generally, the degree of impairment was more severe in circling Slc26a4Δ/Δ mice than in non-circling Slc26a4Δ/Δ mice. In non-circling Slc26a4Δ/Δ mice, the semicircular canal function was normal. Micro-computed tomography results showed enlargement of the vestibular aqueduct and bony semicircular canals but no correlative relationship between the severity of the caloric response and the size of bony labyrinths. Giant otoconia and a significant decrease in total otolith volume in the saccule and utricle were observed in Slc26a4Δ/Δ mice. However, the giant otoconia were not overly dislocated in the bony otolithic system and ectopic otoconia were absent in the semicircular canal. The number and morphology of the utricular hair cells in Slc26a4Δ/Δ mice were not significantly reduced compared to those in Slc26a4Δ/+ mice. Collectively, we can conclude that vestibular impairments are mainly associated with otoconia formation and morphology rather than hair cell degeneration. In addition, severe disturbances of semicircular canals cause circling behavior in Slc26a4Δ/Δ mice. Our comprehensive morphological and functional assessments apply to mouse models of other genetic diseases with vestibular impairment.
Collapse
Affiliation(s)
- Hiroki Watanabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Department of Otorhinolaryngology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Taku Ito
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Natsuki Aoki
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Jing Bai
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshiyuki Kawashima
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Taro Fujikawa
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takuo Ikeda
- Department of Otorhinolaryngology, Tsudumigaura Medical Center for Children with disabilities, 752-4 Kume, Shunan-shi, Yamaguchi 745-0801, Japan
| | - Takeshi Tsutsumi
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
6
|
Liu Q, Zhang X, Huang H, Chen Y, Wang F, Hao A, Zhan W, Mao Q, Hu Y, Han L, Sun Y, Zhang M, Liu Z, Li GL, Zhang W, Shu Y, Sun L, Chen Z. Asymmetric pendrin homodimer reveals its molecular mechanism as anion exchanger. Nat Commun 2023; 14:3012. [PMID: 37230976 DOI: 10.1038/s41467-023-38303-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Pendrin (SLC26A4) is an anion exchanger expressed in the apical membranes of selected epithelia. Pendrin ablation causes Pendred syndrome, a genetic disorder associated with sensorineural hearing loss, hypothyroid goiter, and reduced blood pressure. However its molecular structure has remained unknown, limiting our understanding of the structural basis of transport. Here, we determine the cryo-electron microscopy structures of mouse pendrin with symmetric and asymmetric homodimer conformations. The asymmetric homodimer consists of one inward-facing protomer and the other outward-facing protomer, representing coincident uptake and secretion- a unique state of pendrin as an electroneutral exchanger. The multiple conformations presented here provide an inverted alternate-access mechanism for anion exchange. The structural and functional data presented here disclose the properties of an anion exchange cleft and help understand the importance of disease-associated variants, which will shed light on the pendrin exchange mechanism.
Collapse
Affiliation(s)
- Qianying Liu
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Zhang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Huang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxin Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Fang Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Aihua Hao
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wuqiang Zhan
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiyu Mao
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxia Hu
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin Han
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yifang Sun
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Meng Zhang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhimin Liu
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Weijia Zhang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Lei Sun
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, China.
| | - Zhenguo Chen
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, China.
| |
Collapse
|
7
|
Biallelic mutations in pakistani families with autosomal recessive prelingual nonsyndromic hearing loss. Genes Genomics 2023; 45:145-156. [PMID: 36472766 DOI: 10.1007/s13258-022-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nonsyndromic autosomal recessive hearing loss (DFNB) is an etiologically heterogeneous disorder group showing a wide spectrum of onset ages and severity. DFNB genes are very diverse in their types and functions, making molecular diagnosis difficult. DFNB is particularly frequent in Pakistan, which may be partly due to consanguinity. OBJECTIVE This study was performed to determine the genetic causes in Pakistani DFNB families with prelingual onset and to establish genotype-phenotype correlation. METHODS Whole exome sequencing and subsequent genetic analysis were performed for 11 Pakistani DFNB families including eight consanguineous families. RESULTS We identified eight pathogenic or likely pathogenic mutations in LOXHD1, GJB2, SLC26A4, MYO15A, and TMC1 from six families. The GJB2 mutations were identified in two families each with compound heterozygous mutations and a homozygous mutation. The compound heterozygous mutations in LOXHD1 ([p.D278Y] + [p.D1219E]) and GJB2 [p.M1?] + [p.G12Vfs*2]) were novel. The four missense or start-loss mutations were located at well conserved residues, and most in silico analysis predicted their pathogenicity. In addition to causative mutations, we found compound heterozygous mutations in PTPRQ as variants of uncertain significance. CONCLUSION This study identified biallelic mutations as the underlying cause of early onset DFNB in six Pakistani families. This study will be helpful in providing an exact molecular diagnosis and treatment of prelingual onset deafness patients.
Collapse
|
8
|
Matulevičius A, Bernardinelli E, Brownstein Z, Roesch S, Avraham KB, Dossena S. Molecular Features of SLC26A4 Common Variant p.L117F. J Clin Med 2022; 11:5549. [PMID: 36233414 PMCID: PMC9570580 DOI: 10.3390/jcm11195549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The SLC26A4 gene, which encodes the anion exchanger pendrin, is involved in determining syndromic (Pendred syndrome) and non-syndromic (DFNB4) autosomal recessive hearing loss. SLC26A4 c.349C>T, p.L117F is a relatively common allele in the Ashkenazi Jewish community, where its minor allele frequency is increased compared to other populations. Although segregation and allelic data support the pathogenicity of this variant, former functional tests showed characteristics that were indistinguishable from those of the wild-type protein. Here, we applied a triad of cell-based assays, i.e., measurement of the ion transport activity by a fluorometric method, determination of the subcellular localization by confocal microscopy, and assessment of protein expression levels, to conclusively assign or exclude the pathogenicity of SLC26A4 p.L117F. This protein variant showed a moderate, but significant, reduction in ion transport function, a partial retention in the endoplasmic reticulum, and a strong reduction in expression levels as a consequence of an accelerated degradation by the Ubiquitin Proteasome System, all supporting pathogenicity. The functional and molecular features of human pendrin p.L117F were recapitulated by the mouse ortholog, thus indicating that a mouse carrying this variant might represent a good model of Pendred syndrome/DFNB4.
Collapse
Affiliation(s)
- Arnoldas Matulevičius
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Zippora Brownstein
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Karen B. Avraham
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
9
|
ONISHI S, MURAI A, KITO A, KAWASHIMA Y, OHMORI Y, KATO A. A simple specimen preparation method for histopathological evaluation of vestibular organs. J Toxicol Pathol 2022; 35:275-279. [PMID: 35832898 PMCID: PMC9256003 DOI: 10.1293/tox.2022-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shinichi ONISHI
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Atsuko MURAI
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Aki KITO
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Yuka KAWASHIMA
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Yusuke OHMORI
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Atsuhiko KATO
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
10
|
Hu CJ, Lu YC, Tsai CY, Chan YH, Lin PH, Lee YS, Yu IS, Lin SW, Liu TC, Hsu CJ, Yang TH, Cheng YF, Wu CC. Insights into phenotypic differences between humans and mice with p.T721M and other C-terminal variants of the SLC26A4 gene. Sci Rep 2021; 11:20983. [PMID: 34697379 PMCID: PMC8545921 DOI: 10.1038/s41598-021-00448-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Recessive variants of the SLC26A4 gene are an important cause of hereditary hearing impairment. Several transgenic mice with different Slc26a4 variants have been generated. However, none have recapitulated the auditory phenotypes in humans. Of the SLC26A4 variants identified thus far, the p.T721M variant is of interest, as it appears to confer a more severe pathogenicity than most of the other missense variants, but milder pathogenicity than non-sense and frameshift variants. Using a genotype-driven approach, we established a knock-in mouse model homozygous for p.T721M. To verify the pathogenicity of p.T721M, we generated mice with compound heterozygous variants by intercrossing Slc26a4+/T721M mice with Slc26a4919-2A>G/919-2A>G mice, which segregated the c.919-2A > G variant with abolished Slc26a4 function. We then performed serial audiological assessments, vestibular evaluations, and inner ear morphological studies. Surprisingly, both Slc26a4T721M/T721M and Slc26a4919-2A>G/T721M showed normal audiovestibular functions and inner ear morphology, indicating that p.T721M is non-pathogenic in mice and a single p.T721M allele is sufficient to maintain normal inner ear physiology. The evidence together with previous reports on mouse models with Slc26a4 p.C565Y and p.H723R variants, support our speculation that the absence of audiovestibular phenotypes in these mouse models could be attributed to different protein structures at the C-terminus of human and mouse pendrin.
Collapse
Affiliation(s)
- Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Yi-Shan Lee
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, 100, Taiwan
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, 100, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veteran General Hospital, 201, Sec.2, Shi-Pai Rd, Taipei, 112, Taiwan. .,Department of Otolaryngology-Head and Neck Surgery, Taipei Veteran General Hospital, Taipei, 112, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan. .,Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, 302, Taiwan.
| |
Collapse
|
11
|
Ito T, Fujikawa T, Honda K, Makabe A, Watanabe H, Bai J, Kawashima Y, Miwa T, Griffith AJ, Tsutsumi T. Cochlear Pathomorphogenesis of Incomplete Partition Type II in Slc26a4-Null Mice. J Assoc Res Otolaryngol 2021; 22:681-691. [PMID: 34622375 DOI: 10.1007/s10162-021-00812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Incomplete partition type II (IP-II) is frequently identified in ears with SLC26A4 mutations. Cochleae with IP-II are generally observed to have 1½ turns; the basal turns are normally formed, and the apical turn is dilated or cystic. The objective of this study was to characterize the pathomorphogenesis of the IP-II cochlear anomaly in Slc26a4-null mice. Otic capsules were dissected from Slc26a4Δ/+ and Slc26a4Δ/Δ mice at 1 and 8 days of age and at 1 and 3 months of age. X-ray micro-computed tomography was used to image samples. We used a multiplanar view and three-dimensional reconstructed models to calculate the cochlear duct length, cochlear turn rotation angle, and modiolus tilt angle. The number of inner hair cells was counted, and the length of the cochlear duct was measured in a whole-mount preparation of the membranous labyrinth. X-ray micro-computed tomography mid-modiolar planar views demonstrated cystic apical turns in Slc26a4Δ/Δ mice resulting from the loss or deossification of the interscalar septum, which morphologically resembles IP-II in humans. Planes vertical to the modiolus showed a similar mean rotation angle between Slc26a4Δ/+ and Slc26a4Δ/Δ mice. In contrast, the mean cochlear duct length and mean number of inner hair cells in Slc26a4Δ/Δ mice were significantly smaller than in Slc26a4Δ/+ mice. In addition, there were significant differences in the mean tilt angle and mean width of the modiolus. Our analysis of Slc26a4-null mice suggests that IP-II in humans reflects loss or deossification of the interscalar septum but not a decreased number of cochlear turns.
Collapse
Affiliation(s)
- Taku Ito
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan.
| | - Taro Fujikawa
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Ayane Makabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Jing Bai
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Yoshiyuki Kawashima
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Toru Miwa
- Department of Otolaryngology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Andrew J Griffith
- Molecular Biology and Genetics Section, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.,Departments of Otolaryngology and Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Takeshi Tsutsumi
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| |
Collapse
|
12
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
13
|
Roesch S, Rasp G, Sarikas A, Dossena S. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol Res 2021; 11:423-442. [PMID: 34562878 PMCID: PMC8482117 DOI: 10.3390/audiolres11030040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of this condition.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: ; Tel.: +43-(0)662-2420-80564
| |
Collapse
|
14
|
Honda K, Griffith AJ. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum Genet 2021; 141:455-464. [PMID: 34345941 DOI: 10.1007/s00439-021-02311-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mutations of coding regions and splice sites of SLC26A4 cause Pendred syndrome and nonsyndromic recessive hearing loss DFNB4. SLC26A4 encodes pendrin, a transmembrane exchanger of anions and bases. The mutant SLC26A4 phenotype is characterized by inner ear malformations, including an enlarged vestibular aqueduct (EVA), incomplete cochlear partition type II and modiolar hypoplasia, progressive and fluctuating hearing loss, and vestibular dysfunction. A thyroid iodine organification defect can lead to multinodular goiter and distinguishes Pendred syndrome from DFNB4. Pendred syndrome and DFNB4 are each inherited as an autosomal recessive trait caused by biallelic mutations of SLC26A4 (M2). However, there are some EVA patients with only one detectable mutant allele (M1) of SLC26A4. In most European-Caucasian M1 patients, there is a haplotype that consists of 12 variants upstream of SLC26A4, called CEVA (Caucasian EVA), which acts as a pathogenic recessive allele in trans to mutations affecting the coding regions or splice sites of SLC26A4. This combination of an M1 genotype with the CEVA haplotype is associated with a less severe phenotype than the M2 genotype. The phenotype in EVA patients with no mutant alleles of SLC26A4 (M0) has a very low recurrence probability and is likely to be caused by other factors.
Collapse
Affiliation(s)
- Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Andrew J Griffith
- Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
15
|
Dlugaiczyk J. Rare Disorders of the Vestibular Labyrinth: of Zebras, Chameleons and Wolves in Sheep's Clothing. Laryngorhinootologie 2021; 100:S1-S40. [PMID: 34352900 PMCID: PMC8363216 DOI: 10.1055/a-1349-7475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The differential diagnosis of vertigo syndromes is a challenging issue, as many - and in particular - rare disorders of the vestibular labyrinth can hide behind the very common symptoms of "vertigo" and "dizziness". The following article presents an overview of those rare disorders of the balance organ that are of special interest for the otorhinolaryngologist dealing with vertigo disorders. For a better orientation, these disorders are categorized as acute (AVS), episodic (EVS) and chronic vestibular syndromes (CVS) according to their clinical presentation. The main focus lies on EVS sorted by their duration and the presence/absence of triggering factors (seconds, no triggers: vestibular paroxysmia, Tumarkin attacks; seconds, sound and pressure induced: "third window" syndromes; seconds to minutes, positional: rare variants and differential diagnoses of benign paroxysmal positional vertigo; hours to days, spontaneous: intralabyrinthine schwannomas, endolymphatic sac tumors, autoimmune disorders of the inner ear). Furthermore, rare causes of AVS (inferior vestibular neuritis, otolith organ specific dysfunction, vascular labyrinthine disorders, acute bilateral vestibulopathy) and CVS (chronic bilateral vestibulopathy) are covered. In each case, special emphasis is laid on the decisive diagnostic test for the identification of the rare disease and "red flags" for potentially dangerous disorders (e. g. labyrinthine infarction/hemorrhage). Thus, this chapter may serve as a clinical companion for the otorhinolaryngologist aiding in the efficient diagnosis and treatment of rare disorders of the vestibular labyrinth.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- Klinik für Ohren-, Nasen-, Hals- und Gesichtschirurgie
& Interdisziplinäres Zentrum für Schwindel und
neurologische Sehstörungen, Universitätsspital Zürich
(USZ), Universität Zürich (UZH), Zürich,
Schweiz
| |
Collapse
|
16
|
Hu CJ, Lu YC, Yang TH, Chan YH, Tsai CY, Yu IS, Lin SW, Liu TC, Cheng YF, Wu CC, Hsu CJ. Toward the Pathogenicity of the SLC26A4 p.C565Y Variant Using a Genetically Driven Mouse Model. Int J Mol Sci 2021; 22:2789. [PMID: 33801843 PMCID: PMC8001573 DOI: 10.3390/ijms22062789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.
Collapse
Affiliation(s)
- Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| |
Collapse
|
17
|
Simon F, Denoyelle F, Beraneck M. Interpreting pendred syndrome as a foetal hydrops: Clinical and animal model evidence. J Vestib Res 2021; 31:315-321. [PMID: 33579884 DOI: 10.3233/ves-200789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Menière disease (MD) and SLC26A4 related deafness (Pendred syndrome (PS) or DFNB4) are two different inner ear disorders which present with fluctuating and progressive hearing loss, which could be a direct consequence of endolymphatic hydrops. OBJECTIVE To present similarities between both pathologies and explore how the concept of hydrops may be applied to PS/DFNB4. METHODS Review of the literature on MD, PS/DFNB4 and mouse model of PS/DFNB4. RESULTS MD and PS/DFNB4 share a number of similarities such as fluctuating and progressive hearing loss, acute episodes with vertigo and tinnitus, MRI and histological evidence of endolymphatic hydrops (although with different underlying mechanisms). MD is usually diagnosed during the fourth decade of life whereas PS/DFNB4 is congenital. The PS/DFNB4 mouse models have shown that biallelic slc26a4 mutations lead to Na+ and water retention in the endolymph during the perinatal period, which in turn induces degeneration of the stria vascularis and hearing loss. Crossing clinical/imagery characteristics and animal models, evidence seems to support the hypothesis of PS being a foetal hydrops. CONCLUSIONS When understanding PS/DFNB4 as a developmental hydrops, treatments used in MD could be repositioned to PS.
Collapse
Affiliation(s)
- François Simon
- Université de Paris, INCC UMR 8002, CNRS, F-75006 Paris, France.,Université de Paris, Faculté de Médecine, F-75006 Paris, France.,Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | - Françoise Denoyelle
- Université de Paris, Faculté de Médecine, F-75006 Paris, France.,Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | | |
Collapse
|
18
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
19
|
Nadar-Ponniah PT, Taiber S, Caspi M, Koffler-Brill T, Dror AA, Siman-Tov R, Rubinstein M, Padmanabhan K, Luxenburg C, Lang RA, Avraham KB, Rosin-Arbesfeld R. Striatin Is Required for Hearing and Affects Inner Hair Cells and Ribbon Synapses. Front Cell Dev Biol 2020; 8:615. [PMID: 32766247 PMCID: PMC7381154 DOI: 10.3389/fcell.2020.00615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Striatin, a subunit of the serine/threonine phosphatase PP2A, is a core member of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complexes. The protein is expressed in the cell junctions between epithelial cells, which play a role in maintaining cell-cell adhesion. Since the cell junctions are crucial for the function of the mammalian inner ear, we examined the localization and function of striatin in the mouse cochlea. Our results show that in neonatal mice, striatin is specifically expressed in the cell-cell junctions of the inner hair cells, the receptor cells in the mammalian cochlea. Auditory brainstem response measurements of striatin-deficient mice indicated a progressive, high-frequency hearing loss, suggesting that striatin is essential for normal hearing. Moreover, scanning electron micrographs of the organ of Corti revealed a moderate degeneration of the outer hair cells in the middle and basal regions, concordant with the high-frequency hearing loss. Additionally, striatin-deficient mice show aberrant ribbon synapse maturation. Loss of the outer hair cells, combined with the aberrant ribbon synapse distribution, may lead to the observed auditory impairment. Together, these results suggest a novel function for striatin in the mammalian auditory system.
Collapse
Affiliation(s)
- Prathamesh T. Nadar-Ponniah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Amiel A. Dror
- Department of Otolaryngology, Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard A. Lang
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Tsukada K, Usami SI. Detailed MR imaging assessment of endolymphatic hydrops in patients with SLC26A4 mutations. Auris Nasus Larynx 2020; 47:958-964. [PMID: 32536503 DOI: 10.1016/j.anl.2020.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Mutations in SLC26A4 represent the second most common mutations in deafness patients. The majority of patients with SLC26A4 mutations have a large vestibular aqueduct (LVA). Recently, some reports showed the presence of endolymphatic hydrops (ELH) in patients with LVA on the basis of high-resolution enhanced 3T-MRI. However, detailed evaluation has not been performed. We provide the first report on ELH in LVA patients with biallelic SLC26A4 mutations. In this study, we focused on 1) the findings of ELH in LVA patients with biallelic SLC26A4 mutations, and 2) the findings of the endolymphatic duct (ED) and endolymphatic sac (ES) by using two different gadodimide (Gd) enhancement methods. SUBJECTS AND METHODS Five patients with SLC26A4 mutations underwent enhanced 3T-MRI using the intratympanic (IT) or intravenous (IV) injection of Gd for the diagnosis ELH. RESULTS All of the patients had ELH in at least one ear. ELH was identified in the vestibule (8/10 ears) as well as in the cochlea (7/10 ears). With regard to the ED and ES, all ears for which MRI was performed with an IT injection of Gd had black areas in the ES or VA or both; however, all of the ears receiving an IV injection had no black areas and were well enhanced. CONCLUSIONS A majority of the patients had severe ELH in the cochleo-vestibular endolymph, with two different patterns observed in the MRI findings of the ED and ES.
Collapse
Affiliation(s)
- Keita Tsukada
- Department of Otolaryngology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto City, 390-8621, Japan
| | - Shin-Ichi Usami
- Department of Otolaryngology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto City, 390-8621, Japan.
| |
Collapse
|
21
|
McKenna K, Rahman K, Parham K. Otoconia degeneration as a consequence of primary hyperparathyroidism. Med Hypotheses 2020; 144:109982. [PMID: 32531542 DOI: 10.1016/j.mehy.2020.109982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022]
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine condition which disrupts physiologic calcium regulation. PHPT causes persistent hypercalcemia via the elevated and constant secretion of parathyroid hormone. Due to the effects of parathyroid hormone on target organs such as the bones, kidneys and gastrointestinal tract, untreated PHPT can lead to complications such as decreased bone mineral density, nephrolithiasis, and chronic abdominal pain, respectively. Given PHPT's drastic effect on calcium metabolism, it is likely that the condition also affects other organ systems, such as the inner ear, which rely on calcium for normal structure and function. Specifically, the saccule and utricle have otoconia made of calcium carbonate deposited on a protein framework. We hypothesize that PHPT, the epitome calcium disorder, can cause otoconia degeneration, one manifestation of which is benign paroxysmal positional vertigo (BPPV). As a preliminarily test of this hypothesis, we measured the levels of otolin-1, an inner ear glycoprotein found in the otoconia protein framework and a proposed biomarker for otoconia degeneration in patients with PHPT. We found a positive linear relationship between PTH (parathyroid hormone) and otolin-1 levels (R2 = 0.53) and total calcium and PTH levels (R2 = 0.32). These findings suggest that both PTH and total calcium levels affect otolin-1 levels, implying that the calcium dysregulation caused by PHPT may contribute to the otoconia breakdown and may be associated with inner ear disorders such as BPPV.
Collapse
Affiliation(s)
- Kelly McKenna
- School of Medicine, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Khalil Rahman
- School of Medicine, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Kourosh Parham
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
22
|
Dror AA, Taiber S, Sela E, Handzel O, Avraham KB. A mouse model for benign paroxysmal positional vertigo with genetic predisposition for displaced otoconia. GENES BRAIN AND BEHAVIOR 2020; 19:e12635. [PMID: 31898392 DOI: 10.1111/gbb.12635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022]
Abstract
Abnormal formation of otoconia, the biominerals of the inner ear, results in balance disorders. The inertial mass of otoconia activates the underlying mechanosensory hair cells in response to change in head position primarily during linear and rotational acceleration. Otoconia associate exclusively with the two gravity receptors, the utricle and saccule. The cristae sensory epithelium is associated with an extracellular gelatinous matrix known as cupula, equivalent to otoconia. During head rotation, the inertia of endolymphatic fluids within the semicircular canals deflects the cupula of the corresponding crista and activates the underlying mechanosensory hair cells. It is believed that detached free-floating otoconia particles travel ectopically to the semicircular canal and cristae and are the culprit for benign paroxysmal positional vertigo (BPPV). The Slc26a4 mouse mutant harbors a missense mutation in pendrin. This mutation leads to impaired transport activity of pendrin and to defects in otoconia composition and distribution. All Slc26a4 loop/loop homozygous mutant mice are profoundly deaf but show inconsistent vestibular deficiency. A panel of behavioral tests was utilized in order to generate a scoring method for vestibular function. A pathological finding of displaced otoconia was identified consistently in the inner ears of mutant mice with severe vestibular dysfunction. In this work, we present a mouse model with a genetic predisposition for ectopic otoconia with a clinical correlation to BPPV. This unique mouse model can serve as a platform for further investigation of BPPV pathophysiology, and for developing novel treatment approaches in a live animal model.
Collapse
Affiliation(s)
- Amiel A Dror
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Otolaryngology-Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Sela
- Department of Otolaryngology-Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Ophir Handzel
- Department of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Wasano K, Takahashi S, Rosenberg SK, Kojima T, Mutai H, Matsunaga T, Ogawa K, Homma K. Systematic quantification of the anion transport function of pendrin (SLC26A4) and its disease-associated variants. Hum Mutat 2020; 41:316-331. [PMID: 31599023 PMCID: PMC6930342 DOI: 10.1002/humu.23930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023]
Abstract
Thanks to the advent of rapid DNA sequencing technology and its prevalence, many disease-associated genetic variants are rapidly identified in many genes from patient samples. However, the subsequent effort to experimentally validate and define their pathological roles is extremely slow. Consequently, the pathogenicity of most disease-associated genetic variants is solely speculated in silico, which is no longer deemed compelling. We developed an experimental approach to efficiently quantify the pathogenic effects of disease-associated genetic variants with a focus on SLC26A4, which is essential for normal inner ear function. Alterations of this gene are associated with both syndromic and nonsyndromic hereditary hearing loss with various degrees of severity. We established HEK293T-based stable cell lines that express pendrin missense variants in a doxycycline-dependent manner, and systematically determined their anion transport activities with high accuracy in a 96-well plate format using a high throughput plate reader. Our doxycycline dosage-dependent transport assay objectively distinguishes missense variants that indeed impair the function of pendrin from those that do not (functional variants). We also found that some of these putative missense variants disrupt normal messenger RNA splicing. Our comprehensive experimental approach helps determine the pathogenicity of each pendrin variant, which should guide future efforts to benefit patients.
Collapse
Affiliation(s)
- Koichiro Wasano
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel K. Rosenberg
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Takashi Kojima
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hideki Mutai
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Tatsuo Matsunaga
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuaki Homma
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
24
|
Touré A. Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential. Front Cell Dev Biol 2019; 7:230. [PMID: 31681763 PMCID: PMC6813192 DOI: 10.3389/fcell.2019.00230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
In mammals, sperm cells produced within the testis are structurally differentiated but remain immotile and are unable to fertilize the oocyte unless they undergo a series of maturation events during their transit in the male and female genital tracts. This post-testicular functional maturation is known to rely on the micro-environment of both male and female genital tracts, and is tightly controlled by the pH of their luminal milieus. In particular, within the epididymis, the establishment of a low bicarbonate (HCO3–) concentration contributes to luminal acidification, which is necessary for sperm maturation and subsequent storage in a quiescent state. Following ejaculation, sperm is exposed to the basic pH of the female genital tract and bicarbonate (HCO3–), calcium (Ca2+), and chloride (Cl–) influxes induce biochemical and electrophysiological changes to the sperm cells (cytoplasmic alkalinization, increased cAMP concentration, and protein phosphorylation cascades), which are indispensable for the acquisition of fertilization potential, a process called capacitation. Solute carrier 26 (SLC26) members are conserved membranous proteins that mediate the transport of various anions across the plasma membrane of epithelial cells and constitute important regulators of pH and HCO3– concentration. Most SLC26 members were shown to physically interact and cooperate with the cystic fibrosis transmembrane conductance regulator channel (CFTR) in various epithelia, mainly by stimulating its Cl– channel activity. Among SLC26 members, the function of SLC26A3, A6, and A8 were particularly investigated in the male genital tract and the sperm cells. In this review, we will focus on SLC26s contributions to ionic- and pH-dependent processes during sperm post-testicular maturation. We will specify the current knowledge regarding their functions, based on data from the literature generated by means of in vitro and in vivo studies in knock-out mouse models together with genetic studies of infertile patients. We will also discuss the limits of those studies, the current research gaps and identify some key points for potential developments in this field.
Collapse
Affiliation(s)
- Aminata Touré
- INSERM U1016, Centre National de la Recherche Scientifique, UMR 8104, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
25
|
Kim MA, Kim SH, Ryu N, Ma JH, Kim YR, Jung J, Hsu CJ, Choi JY, Lee KY, Wangemann P, Bok J, Kim UK. Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics 2019; 9:7184-7199. [PMID: 31695761 PMCID: PMC6831294 DOI: 10.7150/thno.38032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Mutations of SLC26A4 that abrogate pendrin, expressed in endolymphatic sac, cochlea and vestibule, are known to cause autosomal recessive sensorineural hearing loss with enlargement of the membranous labyrinth. This is the first study to demonstrate the feasibility of gene therapy for pendrin-related hearing loss. Methods: We used a recombinant viral vector to transfect Slc26a4 cDNA into embryonic day 12.5 otocysts of pendrin-deficient knock-out (Slc26a4∆/∆ ) and pendrin-deficient knock-in (Slc26a4tm1Dontuh/tm1Dontuh ) mice. Results: Local gene-delivery resulted in spatially and temporally limited pendrin expression, prevented enlargement, failed to restore vestibular function, but succeeded in the restoration of hearing. Restored hearing phenotypes included normal hearing as well as sudden, fluctuating, and progressive hearing loss. Conclusion: Our study illustrates the feasibility of gene therapy for pendrin-related hearing loss, suggests differences in the requirement of pendrin between the cochlea and the vestibular labyrinth, and documents that insufficient pendrin expression during late embryonal and early postnatal development of the inner ear can cause sudden, fluctuating and progressive hearing loss without obligatory enlargement of the membranous labyrinth.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chuan-Jen Hsu
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jae Young Choi
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Philine Wangemann
- Department of Anatomy and Physiology, Kansas State University, Manhattan, United States of America
| | - Jinwoong Bok
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK21PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
26
|
Yang T, Guo L, Wang L, Yu X. Diagnosis, Intervention, and Prevention of Genetic Hearing Loss. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:73-92. [PMID: 30915702 DOI: 10.1007/978-981-13-6123-4_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is estimated that at least 50% of congenital or childhood hearing loss is attributable to genetic causes. In non-syndromic hearing loss, which accounts for 70% of genetic hearing loss, approximately 80% of cases are autosomal recessive, 15% autosomal dominant, and 1-2% mitochondrial or X-linked. In addition, 30% of genetic hearing loss is syndromic. The genetic causes of hearing loss are highly heterogeneous. So far, more than 140 deafness-related genes have been discovered. Studies on those genes tremendously increased our understanding of the inner ear functions at the molecular level. It also offers important information for the patients and allows personalized and accurate genetic counseling. In many cases, genetic diagnosis of hearing loss can help to avoid unnecessary and costly clinical testing, offer prognostic information, and guide future medical management. On the other hand, a variety of gene therapeutic approaches have been developed aiming to relieve or converse the hearing loss due to genetic causes. Prevention of genetic hearing loss is feasible through prepregnancy and prenatal genetic diagnosis and counseling.
Collapse
Affiliation(s)
- Tao Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Luo Guo
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department, Shanghai Engineering Research Centre of Cochlear Implant, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Longhao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaoyu Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
27
|
El Khouri E, Whitfield M, Stouvenel L, Kini A, Riederer B, Lores P, Roemermann D, di Stefano G, Drevet JR, Saez F, Seidler U, Touré A. Slc26a3 deficiency is associated with epididymis dysplasia and impaired sperm fertilization potential in the mouse. Mol Reprod Dev 2018; 85:682-695. [PMID: 30118583 DOI: 10.1002/mrd.23055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 12/25/2022]
Abstract
Members of the solute carrier 26 (SLC26) family have emerged as important players in mediating anions fluxes across the plasma membrane of epithelial cells, in cooperation with the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Among them, SLC26A3 acts as a chloride/bicarbonate exchanger, highly expressed in the gastrointestinal, pancreatic and renal tissues. In humans, mutations in the SLC26A3 gene were shown to induce congenital chloride-losing diarrhea (CLD), a rare autosomal recessive disorder characterized by life-long secretory diarrhea. In view of some reports indicating subfertility in some male CLD patients together with SLC26-A3 and -A6 expression in the male genital tract and sperm cells, we analyzed the male reproductive parameters and functions of SLC26A3 deficient mice, which were previously reported to display CLD gastro-intestinal features. We show that in contrast to Slc26a6, deletion of Slc26a3 is associated with severe lesions and abnormal cytoarchitecture of the epididymis, together with sperm quantitative, morphological and functional defects, which altogether compromised male fertility. Overall, our work provides new insight into the pathophysiological mechanisms that may alter the reproductive functions and lead to male subfertility in CLD patients, with a phenotype reminiscent of that induced by CFTR deficiency in the male genital tract.
Collapse
Affiliation(s)
- Elma El Khouri
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Marjorie Whitfield
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,CNRS, UMR6293, INSERM U1103, GReD, Université Clermont Auvergne, Aubière, France
| | - Laurence Stouvenel
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Archana Kini
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Patrick Lores
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | | | | | - Joël R Drevet
- CNRS, UMR6293, INSERM U1103, GReD, Université Clermont Auvergne, Aubière, France
| | - Fabrice Saez
- CNRS, UMR6293, INSERM U1103, GReD, Université Clermont Auvergne, Aubière, France
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Aminata Touré
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
28
|
Roesch S, Bernardinelli E, Nofziger C, Tóth M, Patsch W, Rasp G, Paulmichl M, Dossena S. Functional Testing of SLC26A4 Variants-Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria. Int J Mol Sci 2018; 19:ijms19010209. [PMID: 29320412 PMCID: PMC5796158 DOI: 10.3390/ijms19010209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/29/2022] Open
Abstract
The prevalence and spectrum of sequence alterations in the SLC26A4 gene, which codes for the anion exchanger pendrin, are population-specific and account for at least 50% of cases of non-syndromic hearing loss associated with an enlarged vestibular aqueduct. A cohort of nineteen patients from Austria with hearing loss and a radiological alteration of the vestibular aqueduct underwent Sanger sequencing of SLC26A4 and GJB2, coding for connexin 26. The pathogenicity of sequence alterations detected was assessed by determining ion transport and molecular features of the corresponding SLC26A4 protein variants. In this group, four uncharacterized sequence alterations within the SLC26A4 coding region were found. Three of these lead to protein variants with abnormal functional and molecular features, while one should be considered with no pathogenic potential. Pathogenic SLC26A4 sequence alterations were only found in 12% of patients. SLC26A4 sequence alterations commonly found in other Caucasian populations were not detected. This survey represents the first study on the prevalence and spectrum of SLC26A4 sequence alterations in an Austrian cohort and further suggests that genetic testing should always be integrated with functional characterization and determination of the molecular features of protein variants in order to unequivocally identify or exclude a causal link between genotype and phenotype.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Charity Nofziger
- PharmGenetix Gmbh, Sonystrasse 20, A-5081 Niederalm Anif, Austria.
| | - Miklós Tóth
- Department of Otorhinolaryngology, Head & Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20251 Hamburg, Germany.
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
| | - Markus Paulmichl
- Center for Health and Bioresources, Austrian Institute of Technology, Muthgasse 11, A-1190 Vienna, Austria.
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| |
Collapse
|
29
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
30
|
Abstract
Pendred syndrome is an autosomal recessive disorder that is classically defined by the combination of sensorineural deafness/hearing impairment, goiter, and an abnormal organification of iodide with or without hypothyroidism. The hallmark of the syndrome is the impaired hearing, which is associated with inner ear malformations such as an enlarged vestibular aqueduct (EVA). The thyroid phenotype is variable and may be modified by the nutritional iodine intake. Pendred syndrome is caused by biallelic mutations in the SLC26A4/PDS gene, which encodes the multifunctional anion exchanger pendrin. Pendrin has affinity for chloride, iodide, and bicarbonate, among other anions. In the inner ear, pendrin functions as a chloride/bicarbonate exchanger that is essential for maintaining the composition and the potential of the endolymph. In the thyroid, pendrin is expressed at the apical membrane of thyroid cells facing the follicular lumen. Functional studies have demonstrated that pendrin can mediate iodide efflux in heterologous cells. This, together with the thyroid phenotype observed in humans (goiter, impaired iodine organification) suggests that pendrin could be involved in iodide efflux into the lumen, one of the steps required for thyroid hormone synthesis. Iodide efflux can, however, also occur in the absence of pendrin suggesting that other exchangers or channels are involved. It has been suggested that Anoctamin 1 (ANO1/TMEM16A), a calcium-activated anion channel, which is also expressed at the apical membrane of thyrocytes, could participate in mediating apical efflux. In the kidney, pendrin is involved in bicarbonate secretion and chloride reabsorption. While there is no renal phenotype under basal conditions, severe metabolic alkalosis has been reported in Pendred syndrome patients exposed to an increased alkali load. This review provides an overview on the clinical spectrum of Pendred syndrome, the functional data on pendrin with a focus on its potential role in the thyroid, as well as the controversy surrounding the relative physiological roles of pendrin and anoctamin.
Collapse
Affiliation(s)
- Jean-Louis Wémeau
- Université de Lille 2, Centre Hospitalier Régional Universitaire de Lille, Clinique Endocrinologique Marc-Linquette, 59037 Lille, France.
| | - Peter Kopp
- Northwestern University, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Tarry 15, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Xu Y, Zhang Y, Lundberg YW. Spatiotemporal differences in otoconial gene expression. Genesis 2016; 54:613-625. [PMID: 27792272 DOI: 10.1002/dvg.22990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/02/2016] [Accepted: 10/26/2016] [Indexed: 11/06/2022]
Abstract
Otoconia are minute biocrystals composed of glycoproteins, proteoglycans, and CaCO3 , and are indispensable for sensory processing in the utricle and saccule. Otoconia abnormalities and degeneration can cause or facilitate crystal dislocation to the ampulla, leading to vertigo and imbalance in humans. In order to better understand the molecular mechanism controlling otoconia formation and maintenance, we have examined the spatial and temporal expression differences of otoconial genes in the mouse inner ear at developmental, mature and aging stages using whole transcriptome sequencing (RNA-Seq) and quantitative RT-PCR. We show that the expression levels of most otoconial genes are much higher in the utricle and saccule compared with other inner ear tissues before postnatal stages in C57Bl/6J mice, and the expression of a few of these genes is restricted to the embryonic utricle and saccule. After the early postnatal stages, expression of all otoconial genes in the utricle and saccule is drastically reduced, while a few genes gain expression dominance in the aging ampulla, indicating a potential for ectopic debris formation in the latter tissue at old ages. The data suggest that the expression of otoconial genes is tightly regulated spatially and temporally during developmental stages and can become unregulated at aging stages. Birth Defects Research (Part A) 106:613-625, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA.,Cell Electrophysiology Laboratory, Shanghai Research Center of Acupuncture and Meridians, Shanghai, 201203, China
| | - Yan Zhang
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA
| | - Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA
| |
Collapse
|
32
|
Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hear Res 2016; 335:33-39. [DOI: 10.1016/j.heares.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
|
33
|
de Moraes VCS, Bernardinelli E, Zocal N, Fernandez JA, Nofziger C, Castilho AM, Sartorato EL, Paulmichl M, Dossena S. Reduction of Cellular Expression Levels Is a Common Feature of Functionally Affected Pendrin (SLC26A4) Protein Variants. Mol Med 2016; 22:41-53. [PMID: 26752218 DOI: 10.2119/molmed.2015.00226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/04/2016] [Indexed: 11/06/2022] Open
Abstract
Sequence alterations in the pendrin gene (SLC26A4) leading to functionally affected protein variants are frequently involved in the pathogenesis of syndromic and nonsyndromic deafness. Considering the high number of SLC26A4 sequence alterations reported to date, discriminating between functionally affected and unaffected pendrin protein variants is essential in contributing to determine the genetic cause of deafness in a given patient. In addition, identifying molecular features common to the functionally affected protein variants can be extremely useful to design future molecule-directed therapeutic approaches. Here we show the functional and molecular characterization of six previously uncharacterized pendrin protein variants found in a cohort of 58 Brazilian deaf patients. Two variants (p.T193I and p.L445W) were undetectable in the plasma membrane, completely retained in the endoplasmic reticulum and showed no transport function; four (p.P142L, p.G149R, p.C282Y and p.Q413R) showed reduced function and significant, although heterogeneous, expression levels in the plasma membrane. Importantly, total expression levels of all of the functionally affected protein variants were significantly reduced with respect to the wild-type and a fully functional variant (p.R776C), regardless of their subcellular localization. Interestingly, reduction of expression may also reduce the transport activity of variants with an intrinsic gain of function (p.Q413R). As reduction of overall cellular abundance was identified as a common molecular feature of pendrin variants with affected function, the identification of strategies to prevent reduction in expression levels may represent a crucial step of potential future therapeutic interventions aimed at restoring the transport activity of dysfunctional pendrin variants.
Collapse
Affiliation(s)
- Vanessa C S de Moraes
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Nathalia Zocal
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Jhonathan A Fernandez
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Arthur M Castilho
- Otology, Audiology and Implantable Ear Prostheses, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Edi L Sartorato
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
34
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
35
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
36
|
Ogun OA, Janky KL, Cohn ES, Büki B, Lundberg YW. Gender-based comorbidity in benign paroxysmal positional vertigo. PLoS One 2014; 9:e105546. [PMID: 25187992 PMCID: PMC4154861 DOI: 10.1371/journal.pone.0105546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
It has been noted that benign paroxysmal positional vertigo (BPPV) may be associated with certain disorders and medical procedures. However, most studies to date were done in Europe, and epidemiological data on the United States (US) population are scarce. Gender-based information is even rarer. Furthermore, it is difficult to assess the relative prevalence of each type of association based solely on literature data, because different comorbidities were reported by various groups from different countries using different patient populations and possibly different inclusion/exclusion criteria. In this study, we surveyed and analyzed a large adult BPPV population (n = 1,360 surveyed, 227 completed, most of which were recurrent BPPV cases) from Omaha, NE, US, and its vicinity, all diagnosed at Boys Town National Research Hospital (BTNRH) over the past decade using established and consistent diagnostic criteria. In addition, we performed a retrospective analysis of patients' diagnostic records (n = 1,377, with 1,360 adults and 17 children). The following comorbidities were found to be significantly more prevalent in the BPPV population when compared to the age- and gender-matched general population: ear/hearing problems, head injury, thyroid problems, allergies, high cholesterol, headaches, and numbness/paralysis. There were gender differences in the comorbidities. In addition, familial predisposition was fairly common among the participants. Thus, the data confirm some previously reported comorbidities, identify new ones (hearing loss, thyroid problems, high cholesterol, and numbness/paralysis), and suggest possible predisposing and triggering factors and events for BPPV.
Collapse
Affiliation(s)
| | - Kristen L. Janky
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Edward S. Cohn
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Bela Büki
- Department of Otolaryngology, Karl Landsteiner University Hospital Krems, Krems an der Donau, Austria
| | | |
Collapse
|
37
|
Rudnicki A, Isakov O, Ushakov K, Shivatzki S, Weiss I, Friedman LM, Shomron N, Avraham KB. Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways. BMC Genomics 2014; 15:484. [PMID: 24942165 PMCID: PMC4073505 DOI: 10.1186/1471-2164-15-484] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/13/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The mammalian inner ear contains sensory organs, the organ of Corti in the cochlea and cristae and maculae in the vestibule, with each comprised of patterned sensory epithelia that are responsible for hearing and balance. The development, cell fate, patterning, and innervation of both the sensory and nonsensory regions of the inner ear are governed by tight regulation involving, among others, transcription factors and microRNAs (miRNAs). In humans, mutations in specific miRNA genes are associated with hearing loss. In mice, experimental reduction or mutations of miRNAs in the inner ear leads to severe developmental and structural abnormalities. A comprehensive identification of miRNAs in the sensory epithelia and their gene targets will enable pathways of auditory and vestibular function to be defined. RESULTS In this study, we used Next-Generation Sequencing (NGS) to identify the most prominent miRNAs in the inner ear and to define miRNA-target pairs that form pathways crucial for the function of the sensory epithelial cells. NGS of RNA from inner ear sensory epithelial cells led to the identification of 455 miRNAs in both cochlear and vestibular sensory epithelium, with 30 and 44 miRNAs found in only cochlea or vestibule, respectively. miR-6715-3p and miR-6715-5p were defined for the first time in the inner ear. Gene targets were identified for each of these miRNAs, including Arhgap12, a GTPase activating protein, for miR-6715-3p, implicating this miRNA in sensory hair cell bundle development, actin reorganization, cell adhesion and inner ear morphogenesis. CONCLUSIONS This study provides a comprehensive atlas of miRNAs in the inner ear sensory epithelia. The results provide further support of the essential regulatory role of miRNAs in inner ear sensory epithelia and in regulating pathways that define development and growth of these cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
38
|
Atrophic thyroid follicles and inner ear defects reminiscent of cochlear hypothyroidism in Slc26a4-related deafness. Mamm Genome 2014; 25:304-16. [PMID: 24760582 DOI: 10.1007/s00335-014-9515-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/10/2023]
Abstract
Thyroid hormone is essential for inner ear development and is required for auditory system maturation. Human mutations in SLC26A4 lead to a syndromic form of deafness with enlargement of the thyroid gland (Pendred syndrome) and non-syndromic deafness (DFNB4). We describe mice with an Slc26a4 mutation, Slc26a4 (loop/loop) , which are profoundly deaf but show a normal sized thyroid gland, mimicking non-syndromic clinical signs. Histological analysis of the thyroid gland revealed defective morphology, with a majority of atrophic microfollicles, while measurable thyroid hormone in blood serum was within the normal range. Characterization of the inner ear showed a spectrum of morphological and molecular defects consistent with inner ear pathology, as seen in hypothyroidism or disrupted thyroid hormone action. The pathological inner ear hallmarks included thicker tectorial membrane with reduced β-tectorin protein expression, the absence of BK channel expression of inner hair cells, and reduced inner ear bone calcification. Our study demonstrates that deafness in Slc26a4 (loop/loop) mice correlates with thyroid pathology, postulating that sub-clinical thyroid morphological defects may be present in some DFNB4 individuals with a normal sized thyroid gland. We propose that insufficient availability of thyroid hormone during inner ear development plays an important role in the mechanism underlying deafness as a result of SLC26A4 mutations.
Collapse
|
39
|
Raft S, Andrade LR, Shao D, Akiyama H, Henkemeyer M, Wu DK. Ephrin-B2 governs morphogenesis of endolymphatic sac and duct epithelia in the mouse inner ear. Dev Biol 2014; 390:51-67. [PMID: 24583262 DOI: 10.1016/j.ydbio.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 02/03/2023]
Abstract
Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB-Efnb2 signaling-deficient mice.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Leonardo R Andrade
- Laboratory of Biomineralization, Institute of Biomedical Sciences, CCS, Universidade Federal do Rio de Janeiro, RJ 21941-902, Brazil
| | - Dongmei Shao
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University, Gifu City 501-1194, Japan
| | - Mark Henkemeyer
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Doris K Wu
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance. Int J Biochem Cell Biol 2014; 52:58-67. [PMID: 24530837 DOI: 10.1016/j.biocel.2014.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/29/2014] [Accepted: 02/01/2014] [Indexed: 12/21/2022]
Abstract
The solute carrier 26 (SLC26) proteins are transmembrane proteins located at the plasma membrane of the cells and transporting a variety of monovalent and divalent anions, including chloride, bicarbonate, sulfate and oxalate. In humans, 11 members have been identified (SLC26A1 to SLC26A11) and although part of them display a very restricted tissue expression pattern, altogether they are widely expressed in the epithelial cells of the body where they contribute to the composition and the pH regulation of the secreted fluids. Importantly, mutations in SLC26A2, A3, A4, and A5 have been associated with distinct human genetic recessive disorders (i.e. diastrophic dysplasia, congenital chloride diarrhea, Pendred syndrome and deafness, respectively), demonstrating their essential and non-redundant functions in many tissues. During the last decade, physical and functional interactions of SLC26 members with the cystic fibrosis transmembrane conductance regulator (CFTR) have been highly documented, leading to the model of a crosstalk based on the binding of the SLC26 STAS domain to the CFTR regulatory domain. In this review, we will focus on the functional interaction of SLC26A8 and SLC26A9 with the CFTR channel. In particular we will highlight the newly published studies indicating that mutations in SLC26A8 and SLC26A9 proteins are associated with a deregulation of the CFTR anion transport activity in the pathophysiological context of the sperm and the pulmonary cells. These studies confirm the physiological relevance of SLC26 and CFTR cross-regulation, opening new gates for the treatment of cystic fibrosis.
Collapse
|
41
|
Rudnicki A, Shivatzki S, Beyer LA, Takada Y, Raphael Y, Avraham KB. microRNA-224 regulates Pentraxin 3, a component of the humoral arm of innate immunity, in inner ear inflammation. Hum Mol Genet 2014; 23:3138-46. [PMID: 24470395 DOI: 10.1093/hmg/ddu023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRNAs) are regulators of differentiation and development of inner ear cells. Mutations in miRNAs lead to deafness in humans and mice. Among inner ear pathologies, inflammation may lead to structural and neuronal defects and eventually to hearing loss and vestibular dysfunction. While the genetic factors of these pathways have not been defined, autoimmunity participates in these processes. We report that inflammatory stimuli in the inner ear induce activation of the innate immune system via miR-224 and pentraxin 3 (Ptx3). miR-224 is a transcriptional target of nuclear factor κB, a key mediator of innate immunity. Ptx3 is a regulator of the immune response. It is released in response to inflammation and regulated by nuclear factor κB. We show that miR-224 and Ptx3 are expressed in the inner ear and we demonstrate that miR-224 targets Ptx3. As a model of the innate immune response, we injected lipopolysaccharide into the scala tympani of mouse inner ears. This resulted in changes in the levels of miR-224 and Ptx3, in addition to activation of the complement system, as measured by immune cell infiltration and activated C3. This suggests that while miR-224 regulates Ptx3 under normal conditions, upon inflammation, both are recruited to offer a front line of defense in acting as responders to inflammation in the inner ear. miR-224 diminishes the innate immune response by down-regulating Ptx3 expression, while Ptx3 stimulates the innate immune response. An understanding of the molecular components of the inflammatory pathway may help develop therapeutics for reducing inflammation associated with inner ear injury.
Collapse
Affiliation(s)
- Anya Rudnicki
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 68878, Israel and
| | - Shaked Shivatzki
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 68878, Israel and
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yohei Takada
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 68878, Israel and
| |
Collapse
|
42
|
Wangemann P. Mouse models for pendrin-associated loss of cochlear and vestibular function. Cell Physiol Biochem 2013; 32:157-65. [PMID: 24429822 PMCID: PMC4415819 DOI: 10.1159/000356635] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA) and sensorineural hearing loss. The relatively high prevalence of SLC26A4 mutations provides a strong imperative to develop rational interventions that delay, ameliorate or prevent pendrin-associated loss of cochlear and vestibular function. This review summarizes recent studies in mouse models that have been developed to delineate the role of pendrin in the physiology of hearing and balance and that have brought forward the concept that a temporally and spatially limited therapy may be sufficient to secure a life-time of normal hearing in children bearing mutations of SLC26A4.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
43
|
Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med 2013; 34:494-515. [PMID: 23506885 DOI: 10.1016/j.mam.2012.07.009] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/21/2012] [Indexed: 02/08/2023]
Abstract
The phylogenetically ancient SLC26 gene family encodes multifunctional anion exchangers and anion channels transporting a broad range of substrates, including Cl(-), HCO3(-), sulfate, oxalate, I(-), and formate. SLC26 polypeptides are characterized by N-terminal cytoplasmic domains, 10-14 hydrophobic transmembrane spans, and C-terminal cytoplasmic STAS domains, and appear to be homo-oligomeric. SLC26-related SulP proteins of marine bacteria likely transport HCO3(-) as part of oceanic carbon fixation. SulP genes present in antibiotic operons may provide sulfate for antibiotic biosynthetic pathways. SLC26-related Sultr proteins transport sulfate in unicellular eukaryotes and in plants. Mutations in three human SLC26 genes are associated with congenital or early onset Mendelian diseases: chondrodysplasias for SLC26A2, chloride diarrhea for SLC26A3, and deafness with enlargement of the vestibular aqueduct for SLC26A4. Additional disease phenotypes evident only in mouse knockout models include oxalate urolithiasis for Slc26a6 and Slc26a1, non-syndromic deafness for Slc26a5, gastric hypochlorhydria for Slc26a7 and Slc26a9, distal renal tubular acidosis for Slc26a7, and male infertility for Slc26a8. STAS domains are required for cell surface expression of SLC26 proteins, and contribute to regulation of the cystic fibrosis transmembrane regulator in complex, cell- and tissue-specific ways. The protein interactomes of SLC26 polypeptides are under active investigation.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
44
|
Li X, Sanneman JD, Harbidge DG, Zhou F, Ito T, Nelson R, Picard N, Chambrey R, Eladari D, Miesner T, Griffith AJ, Marcus DC, Wangemann P. SLC26A4 targeted to the endolymphatic sac rescues hearing and balance in Slc26a4 mutant mice. PLoS Genet 2013; 9:e1003641. [PMID: 23874234 PMCID: PMC3708829 DOI: 10.1371/journal.pgen.1003641] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/01/2013] [Indexed: 12/13/2022] Open
Abstract
Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 (Δ/Δ) mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4 (Δ/Δ) line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4.
Collapse
Affiliation(s)
- Xiangming Li
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Joel D. Sanneman
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Donald G. Harbidge
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Fei Zhou
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Taku Ito
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Raoul Nelson
- Department of Pediatrics, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Nicolas Picard
- Inserm, UMRS 970, Centre de recherche PARCC (Paris centre de recherche cardiovasculaire); Faculté de Médecine Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Régine Chambrey
- Inserm, UMRS 970, Centre de recherche PARCC (Paris centre de recherche cardiovasculaire); Faculté de Médecine Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Eladari
- Inserm, UMRS 970, Centre de recherche PARCC (Paris centre de recherche cardiovasculaire); Faculté de Médecine Paris Descartes, Sorbonne Paris Cité, Paris, France
- Département de Physiologie, HEGP, AP-HP, Paris, France
| | - Tracy Miesner
- Comparative Medicine Group, Kansas State University, Manhattan, Kansas, United States of America
| | - Andrew J. Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Daniel C. Marcus
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Philine Wangemann
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
45
|
Lu YC, Wu CC, Yang TH, Lin YH, Yu IS, Lin SW, Chang Q, Lin X, Wong JM, Hsu CJ. Differences in the pathogenicity of the p.H723R mutation of the common deafness-associated SLC26A4 gene in humans and mice. PLoS One 2013; 8:e64906. [PMID: 23755160 PMCID: PMC3670936 DOI: 10.1371/journal.pone.0064906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/19/2013] [Indexed: 11/23/2022] Open
Abstract
Mutations in the SLC26A4 gene are a common cause of human hereditary hearing impairment worldwide. Previous studies have demonstrated that different SLC26A4 mutations have different pathogenetic mechanisms. By using a genotype-driven approach, we established a knock-in mouse model (i.e., Slc26a4tm2Dontuh/tm2Dontuh mice) homozygous for the common p.H723R mutation in the East Asian population. To verify the pathogenicity of the p.H723R allele in mice, we further generated mice with compound heterozygous mutations (i.e., Slc26a4tm1Dontuh/tm2Dontuh) by intercrossing Slc26a4+/tm2Dontuh mice with Slc26a4tm1Dontuh/tm1Dontuh mice, which segregated the c.919-2A>G mutation with an abolished Slc26a4 function. Mice were then subjected to audiologic assessments, a battery of vestibular evaluations, inner ear morphological studies, and noise exposure experiments. The results were unexpected; both Slc26a4tm2Dontuh/tm2Dontuh and Slc26a4tm1Dontuh/tm2Dontuh mice showed normal audiovestibular phenotypes and inner ear morphology, and they did not show significantly higher shifts in hearing thresholds after noise exposure than the wild-type mice. The results indicated not only the p.H723R allele was non-pathogenic in mice, but also a single p.H723R allele was sufficient to maintain normal inner ear physiology in heterozygous compound mice. There might be discrepancies in the pathogenicity of specific SLC26A4 mutations in humans and mice; therefore, precautions should be taken when extrapolating the results of animal studies to humans.
Collapse
Affiliation(s)
- Ying-Chang Lu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hung Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center For Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center For Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Qing Chang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jau-Min Wong
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Parzefall T, Shivatzki S, Lenz DR, Rathkolb B, Ushakov K, Karfunkel D, Shapira Y, Wolf M, Mohr M, Wolf E, Sabrautzki S, de Angelis MH, Frydman M, Brownstein Z, Avraham KB. Cytoplasmic mislocalization of POU3F4 due to novel mutations leads to deafness in humans and mice. Hum Mutat 2013; 34:1102-10. [PMID: 23606368 DOI: 10.1002/humu.22339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/08/2013] [Indexed: 11/12/2022]
Abstract
POU3F4 is a POU domain transcription factor that is required for hearing. In the ear, POU3F4 is essential for mesenchymal remodeling of the bony labyrinth and is the causative gene for DFNX2 human nonsyndromic deafness. Ear abnormalities underlie this form of deafness, characterized previously in multiple spontaneous, radiation-induced and transgenic mouse mutants. Here, we report three novel mutations in the POU3F4 gene that result in profound hearing loss in both humans and mice. A p.Gln79* mutation was identified in a child from an Israeli family, revealed by massively parallel sequencing (MPS). This strategy demonstrates the strength of MPS for diagnosis with only one affected individual. A second mutation, p.Ile285Argfs*43, was identified by Sanger sequencing. A p.Cys300* mutation was found in an ENU-induced mutant mouse, schwindel (sdl), by positional cloning. The mutation leads to a predicted truncated protein, similar to the human mutations, providing a relevant mouse model. The p.Ile285Argfs*43 and p.Cys300* mutations lead to a shift of Pou3f4 nuclear localization to the cytoplasm, demonstrated in cellular localization studies and in the inner ears of the mutant mice. The discovery of these mutations facilitates a deeper comprehension of the molecular basis of inner ear defects due to mutations in the POU3F4 transcription factor.
Collapse
Affiliation(s)
- Thomas Parzefall
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Khan MR, Bashir R, Naz S. SLC26A4 mutations in patients with moderate to severe hearing loss. Biochem Genet 2013; 51:514-23. [PMID: 23504402 DOI: 10.1007/s10528-013-9582-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/15/2012] [Indexed: 11/28/2022]
Abstract
Mutations in SLC26A4 cause either syndromic or nonsyndromic hearing loss. We identified a link between hearing loss and DFNB4 in 3 of the 50 families participating in this study. Sequencing analysis revealed two SLC26A4 mutations, p.V239D and p.S57X, in affected members of the 3 families. These mutations have been previously reported in deaf individuals from the subcontinent, all of whom manifested profound deafness. The patients investigated in our study exhibited moderate to severe hearing loss. Our results show that inactivating SLC26A4 mutations that cause profound deafness can also be involved in the etiology of moderate to severe hearing loss. The type of mutation cannot predict the severity of the hearing loss in all cases, and there may be additional epistatic interactions that could modify the phenotype.
Collapse
Affiliation(s)
- Muhammad Riaz Khan
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | | | | |
Collapse
|
48
|
Bronckers ALJJ, Guo J, Zandieh-Doulabi B, Bervoets TJ, Lyaruu DM, Li X, Wangemann P, DenBesten P. Developmental expression of solute carrier family 26A member 4 (SLC26A4/pendrin) during amelogenesis in developing rodent teeth. Eur J Oral Sci 2012; 119 Suppl 1:185-92. [PMID: 22243245 DOI: 10.1111/j.1600-0722.2011.00901.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ameloblasts need to regulate pH during the formation of enamel crystals, a process that generates protons. Solute carrier family 26A member 4 (SLC26A4, or pendrin) is an anion exchanger for chloride, bicarbonate, iodine, and formate. It is expressed in apical membranes of ion-transporting epithelia in kidney, inner ear, and thyroid where it regulates luminal pH and fluid transport. We hypothesized that maturation ameloblasts express SLC26A4 to neutralize acidification of enamel fluid in forming enamel. In rodents, secretory and maturation ameloblasts were immunopositive for SLC26A4. Staining was particularly strong in apical membranes of maturation ameloblasts facing forming enamel. RT-PCR confirmed the presence of mRNA transcripts for Slc26a4 in enamel organs. SLC26A4 immunostaining was also found in mineralizing connective tissues, including odontoblasts, osteoblasts, osteocytes, osteoclasts, bone lining cells, cellular cementoblasts, and cementocytes. However, Slc26a4-null mutant mice had no overt dental phenotype. The presence of SLC26A4 in apical plasma membranes of maturation ameloblasts is consistent with a potential function as a pH regulator. SLC26A4 does not appear to be critical for ameloblast function and is probably compensated by other pH regulators.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Department of Oral Cell Biology ACTA, University of Amsterdam and VU-University of Amsterdam, Research Institute MOVE, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dossena S, Nofziger C, Tamma G, Bernardinelli E, Vanoni S, Nowak C, Grabmayer E, Kössler S, Stephan S, Patsch W, Paulmichl M. Molecular and functional characterization of human pendrin and its allelic variants. Cell Physiol Biochem 2011; 28:451-66. [PMID: 22116358 DOI: 10.1159/000335107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2011] [Indexed: 12/13/2022] Open
Abstract
Pendrin (SLC26A4, PDS) is an electroneutral anion exchanger transporting I(-), Cl(-), HCO(3)(-), OH(-), SCN(-) and formate. In the thyroid, pendrin is expressed at the apical membrane of the follicular epithelium and may be involved in mediating apical iodide efflux into the follicle; in the inner ear, it plays a crucial role in the conditioning of the pH and ion composition of the endolymph; in the kidney, it may exert a role in pH homeostasis and regulation of blood pressure. Mutations of the pendrin gene can lead to syndromic and non-syndromic hearing loss with EVA (enlarged vestibular aqueduct). Functional tests of mutated pendrin allelic variants found in patients with Pendred syndrome or non-syndromic EVA (ns-EVA) revealed that the pathological phenotype is due to the reduction or loss of function of the ion transport activity. The diagnosis of Pendred syndrome and ns-EVA can be difficult because of the presence of phenocopies of Pendred syndrome and benign polymorphisms occurring in the general population. As a consequence, defining whether or not an allelic variant is pathogenic is crucial. Recently, we found that the two parameters used so far to assess the pathogenic potential of a mutation, i.e. low incidence in the control population, and substitution of evolutionary conserved amino acids, are not always reliable for predicting the functionality of pendrin allelic variants; actually, we identified mutations occurring with the same frequency in the cohort of hearing impaired patients and in the control group of normal hearing individuals. Moreover, we identified functional polymorphisms affecting highly conserved amino acids. As a general rule however, we observed a complete loss of function for all truncations and amino acid substitutions involving a proline. In this view, clinical and radiological studies should be combined with genetic and molecular studies for a definitive diagnosis. In performing genetic studies, the possibility that the mutation could affect regions other than the pendrin coding region, such as its promoter region and/or the coding regions of functionally related genes (FOXI1, KCNJ10), should be taken into account. The presence of benign polymorphisms in the population suggests that genetic studies should be corroborated by functional studies; in this context, the existence of hypo-functional variants and possible differences between the I(-)/Cl(-) and Cl(-)/HCO(3)(-) exchange activities should be carefully evaluated.
Collapse
Affiliation(s)
- Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wangemann P. The role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 2011; 28:527-34. [PMID: 22116367 DOI: 10.1159/000335113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2011] [Indexed: 12/13/2022] Open
Abstract
Enlargement of the vestibular aqueduct (EVA) is a common inner ear malformation found in children with sensorineural hearing loss that is frequently associated with loss-of-function or hypo-function mutations of SLC26A4. SLC26A4 codes for pendrin, which is a protein that is expressed in apical membranes of selected epithelia and functions as an anion exchanger. The comparatively high prevalence of EVA provides a strong imperative to develop rational interventions that delay, ameliorate or prevent hearing loss associated with this phenotype. The development of rational interventions requires a fundamental understanding of the role that pendrin plays in the normal development of hearing, as well as a detailed understanding of the pathobiologic mechanisms that, in the absence of fully functional pendrin, lead to an unstable hearing phenotype, with fluctuating or progressive loss of hearing. This review summarizes studies in mouse models that have focused on delineating the role of pendrin in the physiology of the inner ear and the pathobiology that leads to hearing loss.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|