1
|
Mayo S, Gómez-Manjón I, Marco-Hernández AV, Fernández-Martínez FJ, Camacho A, Martínez F. N-Type Ca Channel in Epileptic Syndromes and Epilepsy: A Systematic Review of Its Genetic Variants. Int J Mol Sci 2023; 24:6100. [PMID: 37047073 PMCID: PMC10094502 DOI: 10.3390/ijms24076100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
N-type voltage-gated calcium channel controls the release of neurotransmitters from neurons. The association of other voltage-gated calcium channels with epilepsy is well-known. The association of N-type voltage-gated calcium channels and pain has also been established. However, the relationship between this type of calcium channel and epilepsy has not been specifically reviewed. Therefore, the present review systematically summarizes existing publications regarding the genetic associations between N-type voltage-dependent calcium channel and epilepsy.
Collapse
Affiliation(s)
- Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Irene Gómez-Manjón
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ana Victoria Marco-Hernández
- Neuropediatric Unit, Hospital Universitario Doctor Peset, 46017 Valencia, Spain
- Translational Research in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Francisco Javier Fernández-Martínez
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ana Camacho
- Division of Pediatric Neurology, Department of Neurology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Martínez
- Translational Research in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Genomic Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
2
|
Encephalopathy-causing mutations in Gβ 1 ( GNB1) alter regulation of neuronal GIRK channels. iScience 2021; 24:103018. [PMID: 34522861 PMCID: PMC8426278 DOI: 10.1016/j.isci.2021.103018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022] Open
Abstract
Mutations in the GNB1 gene, encoding the Gβ1 subunit of heterotrimeric G proteins, cause GNB1 Encephalopathy. Patients experience seizures, pointing to abnormal activity of ion channels or neurotransmitter receptors. We studied three Gβ1 mutations (K78R, I80N and I80T) using computational and functional approaches. In heterologous expression models, these mutations did not alter the coupling between G protein-coupled receptors to Gi/o, or the Gβγ regulation of the neuronal voltage-gated Ca2+ channel CaV2.2. However, the mutations profoundly affected the Gβγ regulation of the G protein-gated inwardly rectifying potassium channels (GIRK, or Kir3). Changes were observed in Gβ1 protein expression levels, Gβγ binding to cytosolic segments of GIRK subunits, and in Gβγ function, and included gain-of-function for K78R or loss-of-function for I80T/N, which were GIRK subunit-specific. Our findings offer new insights into subunit-dependent gating of GIRKs by Gβγ, and indicate diverse etiology of GNB1 Encephalopathy cases, bearing a potential for personalized treatment. GIRK channels are key players affected by GNB1 mutations under study (K78R and I80N/T) Effects of mutations (LoF or GoF) are channel subunit composition-specific The findings help to understand the GNB1 encephalopathy and to devise treatments The results yield new insights into mechanisms of Gβγ regulation of GIRKs
Collapse
|
3
|
Shaw K, Bell L, Boyd K, Grijseels DM, Clarke D, Bonnar O, Crombag HS, Hall CN. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat Commun 2021; 12:3190. [PMID: 34045465 PMCID: PMC8160329 DOI: 10.1038/s41467-021-23508-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The hippocampus is essential for spatial and episodic memory but is damaged early in Alzheimer's disease and is very sensitive to hypoxia. Understanding how it regulates its oxygen supply is therefore key for designing interventions to preserve its function. However, studies of neurovascular function in the hippocampus in vivo have been limited by its relative inaccessibility. Here we compared hippocampal and visual cortical neurovascular function in awake mice, using two photon imaging of individual neurons and vessels and measures of regional blood flow and haemoglobin oxygenation. We show that blood flow, blood oxygenation and neurovascular coupling were decreased in the hippocampus compared to neocortex, because of differences in both the vascular network and pericyte and endothelial cell function. Modelling oxygen diffusion indicates that these features of the hippocampal vasculature may restrict oxygen availability and could explain its sensitivity to damage during neurological conditions, including Alzheimer's disease, where the brain's energy supply is decreased.
Collapse
Affiliation(s)
- K Shaw
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom
| | - L Bell
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom
| | - K Boyd
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom
| | - D M Grijseels
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom
| | - D Clarke
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom
| | - O Bonnar
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom
| | - H S Crombag
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom
| | - C N Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom.
| |
Collapse
|
4
|
Gao XZ, Ma RH, Zhang ZX. miR-339 Promotes Hypoxia-Induced Neuronal Apoptosis and Impairs Cell Viability by Targeting FGF9/CACNG2 and Mediating MAPK Pathway in Ischemic Stroke. Front Neurol 2020; 11:436. [PMID: 32587563 PMCID: PMC7297914 DOI: 10.3389/fneur.2020.00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke (IS) is a common cerebrovascular disease characterized by insufficient blood blow to the brain and the second leading cause of death as well as disability worldwide. Recent literatures have indicated that abnormal expression of miR-339 is closely related to IS. In this study, we attempted to assess the biological function of miR-339 and its underlying mechanism in IS. By accessing the GEO repository, the expression of miR-339, FGF9, and CACNG2 in middle cerebral artery occlusion (MCAO) and non-MCAO was evaluated. PC12 cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment were prepared to mimic in vitro the IS model. The levels of miR-339, FGF9, CACNG2, and MAPK-related markers were quantitatively measured by qRT-PCR and Western blot. CCK-8 and flow cytometry analyses were performed to examine cell viability and apoptosis, respectively. IS-related potential pathways were identified using KEGG enrichment analysis and GO annotations. Bioinformatics analysis and dual-luciferase reporter assay were used to predict and verify the possible target of miR-339. Our results showed that miR-339 expression was significantly increased in MCAO and OGD/R-treated PC12 cells. Overexpression of miR-339 inhibited cell viability of PC12 cells subjected to OGD/R treatment. FGF9 and CACMG2 are direct targets of miR-339 and can reverse the aggressive effect of miR-339 on the proliferation and apoptosis of OGD/R-treated PC12 cells. Moreover, miR-339 mediated the activation of the MAPK pathway, which was inhibited by the FGF9/CACNG2 axis in PC12 cells treated by OGD/R stimulation. In summary, these findings suggested that miR-339 might act as a disruptive molecule to accelerate the IS progression via targeting the FGF9/CACNG2 axis and mediating the MAPK pathway.
Collapse
Affiliation(s)
- Xiao-Zeng Gao
- Department of Anesthesiology, North China University of Science and Technology, Tangshan, China
| | - Ru-Hua Ma
- Emergency Department, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Zhao-Xia Zhang
- Department of Geriatrics, Shanxian Central Hospital, Heze, China
| |
Collapse
|
5
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
6
|
Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders. Mol Brain 2017; 10:43. [PMID: 28870203 PMCID: PMC5583998 DOI: 10.1186/s13041-017-0324-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/24/2017] [Indexed: 11/10/2022] Open
Abstract
The neurotransmitter glutamate facilitates neuronal signalling at excitatory synapses. Glutamate is released from the presynaptic membrane into the synaptic cleft. Across the synaptic cleft glutamate binds to both ion channels and metabotropic glutamate receptors at the postsynapse, which expedite downstream signalling in the neuron. The postsynaptic density, a highly specialized matrix, which is attached to the postsynaptic membrane, controls this downstream signalling. The postsynaptic density also resets the synapse after each synaptic firing. It is composed of numerous proteins including a family of Discs large associated protein 1, 2, 3 and 4 (DLGAP1-4) that act as scaffold proteins in the postsynaptic density. They link the glutamate receptors in the postsynaptic membrane to other glutamate receptors, to signalling proteins and to components of the cytoskeleton. With the central localisation in the postsynapse, the DLGAP family seems to play a vital role in synaptic scaling by regulating the turnover of both ionotropic and metabotropic glutamate receptors in response to synaptic activity. DLGAP family has been directly linked to a variety of psychological and neurological disorders. In this review we focus on the direct and indirect role of DLGAP family on schizophrenia as well as other brain diseases.
Collapse
Affiliation(s)
- Andreas H Rasmussen
- Department of Cellular and Molecular Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hanne B Rasmussen
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Asli Silahtaroglu
- Department of Cellular and Molecular Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
7
|
Trafficking of neuronal calcium channels. Neuronal Signal 2017; 1:NS20160003. [PMID: 32714572 PMCID: PMC7373241 DOI: 10.1042/ns20160003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 01/20/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Neuronal voltage-gated calcium channels (VGCCs) serve complex yet essential physiological functions via their pivotal role in translating electrical signals into intracellular calcium elevations and associated downstream signalling pathways. There are a number of regulatory mechanisms to ensure a dynamic control of the number of channels embedded in the plasma membrane, whereas alteration of the surface expression of VGCCs has been linked to various disease conditions. Here, we provide an overview of the mechanisms that control the trafficking of VGCCs to and from the plasma membrane, and discuss their implication in pathophysiological conditions and their potential as therapeutic targets.
Collapse
|
8
|
Aviner B, Gradwohl G, Bliznyuk A, Grossman Y. Selective pressure modulation of synaptic voltage-dependent calcium channels-involvement in HPNS mechanism. J Cell Mol Med 2016; 20:1872-88. [PMID: 27273194 PMCID: PMC5020619 DOI: 10.1111/jcmm.12877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/21/2016] [Indexed: 11/28/2022] Open
Abstract
Exposure to hyperbaric pressure (HP) exceeding 100 msw (1.1 MPa) is known to cause a constellation of motor and cognitive impairments named high-pressure neurological syndrome (HPNS), considered to be the result of synaptic transmission alteration. Long periods of repetitive HP exposure could be an occupational risk for professional deep-sea divers. Previous studies have indicated the modulation of presynaptic Ca(2+) currents based on synaptic activity modified by HP. We have recently demonstrated that currents in genetically identified cellular voltage-dependent Ca(2+) channels (VDCCs), CaV 1.2 and CaV 3.2 are selectively affected by HP. This work further elucidates the HPNS mechanism by examining HP effect on Ca(2+) currents in neuronal VDCCs, CaV 2.2 and CaV 2.1, which are prevalent in presynaptic terminals, expressed in Xenopus oocytes. HP augmented the CaV 2.2 current amplitude, much less so in a channel variation containing an additional modulatory subunit, and had almost no effect on the CaV 2.1 currents. HP differentially affected the channels' kinetics. It is, therefore, suggested that HPNS signs and symptoms arise, at least in part, from pressure modulation of various VDCCs.
Collapse
Affiliation(s)
- Ben Aviner
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Gideon Gradwohl
- Department of Physics, Jerusalem College of Technology, Jerusalem, Israel
| | - Alice Bliznyuk
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yoram Grossman
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
9
|
Kienitz MC, Mintert-Jancke E, Hertel F, Pott L. Differential effects of genetically-encoded Gβγ scavengers on receptor-activated and basal Kir3.1/Kir3.4 channel current in rat atrial myocytes. Cell Signal 2014; 26:1182-92. [PMID: 24576551 DOI: 10.1016/j.cellsig.2014.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 12/23/2022]
Abstract
Opening of G-protein-activated inward-rectifying K(+) (GIRK, Kir3) channels is regulated by interaction with βγ-subunits of Pertussis-toxin-sensitive G proteins upon activation of appropriate GPCRs. In atrial and neuronal cells agonist-independent activity (I(basal)) contributes to the background K(+) conductance, important for stabilizing resting potential. Data obtained from the Kir3 signaling pathway reconstituted in Xenopus oocytes suggest that I(basal) requires free G(βγ). In cells with intrinsic expression of Kir3 channels this issue has been scarcely addressed experimentally. Two G(βγ)-binding proteins (myristoylated phosducin - mPhos - and G(αi1)) were expressed in atrial myocytes using adenoviral gene transfer, to interrupt G(βγ)-signaling. Agonist-induced and basal currents were recorded using whole cell voltage-clamp. Expression of mPhos and G(αi1) reduced activation of Kir3 current via muscarinic M(2) receptors (IK(ACh)). Inhibition of IK(ACh) by mPhos consisted of an irreversible component and an agonist-dependent reversible component. Reduction in density of IK(ACh) by overexpressed Gαi1, in contrast to mPhos, was paralleled by substantial slowing of activation, suggesting a reduction in density of functional M2 receptors, rather than G(βγ)-scavenging as underlying mechanism. In line with this notion, current density and activation kinetics were rescued by fusing the αi1-subunit to an Adenosine A(1) receptor. Neither mPhos nor G(αi1) had a significant effect on I(basal), defined by the inhibitory peptide tertiapin-Q. These data demonstrate that basal Kir3 current in a native environment is unrelated to G-protein signaling or agonist-independent free G(βγ). Moreover, our results illustrate the importance of physiological expression levels of the signaling components in shaping key parameters of the response to an agonist.
Collapse
Affiliation(s)
| | | | - Fabian Hertel
- Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
10
|
Yang HC, Liu CM, Liu YL, Chen CW, Chang CC, Fann CSJ, Chiou JJ, Yang UC, Chen CH, Faraone SV, Tsuang MT, Hwu HG. The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population. PLoS One 2013; 8:e60099. [PMID: 23555897 PMCID: PMC3610748 DOI: 10.1371/journal.pone.0060099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 02/22/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment. METHODS We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia. RESULTS We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO. CONCLUSIONS These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating the glutamate and dopamine hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | | | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Jie Chiou
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Stephen V. Faraone
- Medical Genetics Research Center and Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, United States of America
- Institute of Behavioral Genomics, University of California San Diego, La Jolla, California, United States of America
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Zamponi GW, Currie KPM. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1629-43. [PMID: 23063655 DOI: 10.1016/j.bbamem.2012.10.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/29/2022]
Abstract
Voltage gated calcium channels (Ca²⁺ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of Ca(V)2 (N- and P/Q-type) Ca²⁺-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of Ca(V)2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
12
|
The role of a voltage-dependent Ca2+ channel intracellular linker: a structure-function analysis. J Neurosci 2012; 32:7602-13. [PMID: 22649239 DOI: 10.1523/jneurosci.5727-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Voltage-dependent calcium channels (VDCCs) allow the passage of Ca(2+) ions through cellular membranes in response to membrane depolarization. The channel pore-forming subunit, α1, and a regulatory subunit (Ca(V)β) form a high affinity complex where Ca(V)β binds to a α1 interacting domain in the intracellular linker between α1 membrane domains I and II (I-II linker). We determined crystal structures of Ca(V)β2 functional core in complex with the Ca(V)1.2 and Ca(V)2.2 I-II linkers to a resolution of 1.95 and 2.0 Å, respectively. Structural differences between the highly conserved linkers, important for coupling Ca(V)β to the channel pore, guided mechanistic functional studies. Electrophysiological measurements point to the importance of differing linker structure in both Ca(V)1 and 2 subtypes with mutations affecting both voltage- and calcium-dependent inactivation and voltage dependence of activation. These linker effects persist in the absence of Ca(V)β, pointing to the intrinsic role of the linker in VDCC function and suggesting that I-II linker structure can serve as a brake during inactivation.
Collapse
|
13
|
Simms BA, Zamponi GW. Trafficking and stability of voltage-gated calcium channels. Cell Mol Life Sci 2012; 69:843-56. [PMID: 21964928 PMCID: PMC11115007 DOI: 10.1007/s00018-011-0843-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium channels are important mediators of calcium influx into electrically excitable cells. The amount of calcium entering through this family of channel proteins is not only determined by the functional properties of channels embedded in the plasma membrane but also by the numbers of channels that are expressed at the cell surface. The trafficking of channels is controlled by numerous processes, including co-assembly with ancillary calcium channel subunits, ubiquitin ligases, and interactions with other membrane proteins such as G protein coupled receptors. Here we provide an overview about the current state of knowledge of calcium channel trafficking to the cell membrane, and of the mechanisms regulating the stability and internalization of this important ion channel family.
Collapse
Affiliation(s)
- Brett A. Simms
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1 Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1 Canada
| |
Collapse
|
14
|
Abstract
An estimated 15-50% of the population experiences pain at any given time, at great personal and societal cost. Pain is the most common reason patients seek medical attention, and there is a high degree of individual variability in reporting the incidence and severity of symptoms. Research suggests that pain sensitivity and risk for chronic pain are complex heritable traits of polygenic origin. Animal studies and candidate gene testing in humans have provided some progress in understanding the heritability of pain, but the application of the genome-wide association methodology offers a new tool for further elucidating the genetic contributions to normal pain responding and pain in clinical populations. Although the determination of the genetics of pain is still in its infancy, it is clear that a number of genes play a critical role in determining pain sensitivity or susceptibility to chronic pain. This review presents an update of the most recent findings that associate genetic variation with variability in pain and an overview of the candidate genes with the highest translational potential.
Collapse
Affiliation(s)
- Erin E Young
- Department of Anesthesiology, Molecular Epidemiology of Pain Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
15
|
Abstract
Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.
Collapse
Affiliation(s)
- Kevin P M Currie
- Department of Anesthesiology, Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
16
|
Nissenbaum J, Devor M, Seltzer Z, Gebauer M, Michaelis M, Tal M, Dorfman R, Abitbul-Yarkoni M, Lu Y, Elahipanah T, delCanho S, Minert A, Fried K, Persson AK, Shpigler H, Shabo E, Yakir B, Pisanté A, Darvasi A. Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2. Genome Res 2010; 20:1180-90. [PMID: 20688780 DOI: 10.1101/gr.104976.110] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic neuropathic pain is affected by specifics of the precipitating neural pathology, psychosocial factors, and by genetic predisposition. Little is known about the identity of predisposing genes. Using an integrative approach, we discovered that CACNG2 significantly affects susceptibility to chronic pain following nerve injury. CACNG2 encodes for stargazin, a protein intimately involved in the trafficking of glutamatergic AMPA receptors. The protein might also be a Ca(2+) channel subunit. CACNG2 has previously been implicated in epilepsy. Initially, using two fine-mapping strategies in a mouse model (recombinant progeny testing [RPT] and recombinant inbred segregation test [RIST]), we mapped a pain-related quantitative trait locus (QTL) (Pain1) into a 4.2-Mb interval on chromosome 15. This interval includes 155 genes. Subsequently, bioinformatics and whole-genome microarray expression analysis were used to narrow the list of candidates and ultimately to pinpoint Cacng2 as a likely candidate. Analysis of stargazer mice, a Cacng2 hypomorphic mutant, provided electrophysiological and behavioral evidence for the gene's functional role in pain processing. Finally, we showed that human CACNG2 polymorphisms are associated with chronic pain in a cohort of cancer patients who underwent breast surgery. Our findings provide novel information on the genetic basis of neuropathic pain and new insights into pain physiology that may ultimately enable better treatments.
Collapse
Affiliation(s)
- Jonathan Nissenbaum
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|