1
|
Ruan DD, Zou J, Liao LS, Ji MD, Wang RL, Zhang JH, Zhang L, Gao MZ, Chen Q, Yu HP, Wei W, Li YF, Li H, Lin F, Luo JW, Lin XF. In vitro study of ATP1A3 p.Ala275Pro mutant causing alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism. Front Neurosci 2024; 18:1415576. [PMID: 39145297 PMCID: PMC11322359 DOI: 10.3389/fnins.2024.1415576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction We previously reported that ATP1A3 c.823G>C (p.Ala275Pro) mutant causes varying phenotypes of alternative hemiplegia of childhood and rapid-onset dystonia-parkinsonism in the same family. This study aims to investigate the function of ATP1A3 c.823G>C (p.Ala275Pro) mutant at the cellular and zebrafish models. Methods ATP1A3 wild-type and mutant Hela cell lines were constructed, and ATP1A3 mRNA expression, ATP1A3 protein expression and localization, and Na+-K+-ATPase activity in each group of cells were detected. Additionally, we also constructed zebrafish models with ATP1A3 wild-type overexpression (WT) and p.Ala275Pro mutant overexpression (MUT). Subsequently, we detected the mRNA expression of dopamine signaling pathway-associated genes, Parkinson's disease-associated genes, and apoptosisassociated genes in each group of zebrafish, and observed the growth, development, and movement behavior of zebrafish. Results Cells carrying the p.Ala275Pro mutation exhibited lower levels of ATP1A3 mRNA, reduced ATP1A3 protein expression, and decreased Na+-K+-ATPase activity compared to wild-type cells. Immunofluorescence analysis revealed that ATP1A3 was primarily localized in the cytoplasm, but there was no significant difference in ATP1A3 protein localization before and after the mutation. In the zebrafish model, both WT and MUT groups showed lower brain and body length, dopamine neuron fluorescence intensity, escape ability, swimming distance, and average swimming speed compared to the control group. Moreover, overexpression of both wild-type and mutant ATP1A3 led to abnormal mRNA expression of genes associated with the dopamine signaling pathway and Parkinson's disease in zebrafish, and significantly upregulated transcription levels of bad and caspase-3 in the apoptosis signaling pathway, while reducing the transcriptional level of bcl-2 and the bcl-2/bax ratio. Conclusion This study reveals that the p.Ala275Pro mutant decreases ATP1A3 protein expression and Na+/K+-ATPase activity. Abnormal expression of either wild-type or mutant ATP1A3 genes impairs growth, development, and movement behavior in zebrafish.
Collapse
Affiliation(s)
- Dan-dan Ruan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jing Zou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li-sheng Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Ming-dong Ji
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ruo-li Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-hui Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Mei-zhu Gao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-ping Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wen Wei
- Department of Rehabilitation Medicine, Ganzhou Municipal Hospital, Ganzhou, China
| | - Yun-fei Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, China
| | - Hong Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Fan Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-wei Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xin-fu Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Pediatrics Department, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Artigas P, Meyer DJ, Young VC, Spontarelli K, Eastman J, Strandquist E, Rui H, Roux B, Birk MA, Nakanishi H, Abe K, Gatto C. A Na pump with reduced stoichiometry is up-regulated by brine shrimp in extreme salinities. Proc Natl Acad Sci U S A 2023; 120:e2313999120. [PMID: 38079564 PMCID: PMC10756188 DOI: 10.1073/pnas.2313999120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Brine shrimp (Artemia) are the only animals to thrive at sodium concentrations above 4 M. Salt excretion is powered by the Na+,K+-ATPase (NKA), a heterodimeric (αβ) pump that usually exports 3Na+ in exchange for 2 K+ per hydrolyzed ATP. Artemia express several NKA catalytic α-subunit subtypes. High-salinity adaptation increases abundance of α2KK, an isoform that contains two lysines (Lys308 and Lys758 in transmembrane segments TM4 and TM5, respectively) at positions where canonical NKAs have asparagines (Xenopus α1's Asn333 and Asn785). Using de novo transcriptome assembly and qPCR, we found that Artemia express two salinity-independent canonical α subunits (α1NN and α3NN), as well as two β variants, in addition to the salinity-controlled α2KK. These β subunits permitted heterologous expression of the α2KK pump and determination of its CryoEM structure in a closed, ion-free conformation, showing Lys758 residing within the ion-binding cavity. We used electrophysiology to characterize the function of α2KK pumps and compared it to that of Xenopus α1 (and its α2KK-mimicking single- and double-lysine substitutions). The double substitution N333K/N785K confers α2KK-like characteristics to Xenopus α1, and mutant cycle analysis reveals energetic coupling between these two residues, illustrating how α2KK's Lys308 helps to maintain high affinity for external K+ when Lys758 occupies an ion-binding site. By measuring uptake under voltage clamp of the K+-congener 86Rb+, we prove that double-lysine-substituted pumps transport 2Na+ and 1 K+ per catalytic cycle. Our results show how the two lysines contribute to generate a pump with reduced stoichiometry allowing Artemia to maintain steeper Na+ gradients in hypersaline environments.
Collapse
Affiliation(s)
- Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Dylan J. Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Victoria C. Young
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Jessica Eastman
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Evan Strandquist
- School of Biological Sciences, Illinois State University, Normal, IL61790
| | - Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Matthew A. Birk
- Department of Biology, Saint Francis University, Loretto, PA15940
| | - Hanayo Nakanishi
- Department of Basic Medical Sciences, Cellular and Structural Physiology Institute, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Kazuhiro Abe
- Department of Basic Medical Sciences, Cellular and Structural Physiology Institute, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, IL61790
| |
Collapse
|
3
|
Varlamova EG, Borisova EV, Evstratova YA, Newman AG, Kuldaeva VP, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy. Int J Mol Sci 2023; 24:17104. [PMID: 38069426 PMCID: PMC10707124 DOI: 10.3390/ijms242317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Ekaterina V. Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Yuliya A. Evstratova
- Federal State Budgetary Educational Institution of Higher Education “MIREA—Russian Technological University”, 78, Vernadskogo Ave., 119454 Moscow, Russia;
| | - Andrew G. Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Victor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Alexey A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| |
Collapse
|
4
|
Kanai R, Vilsen B, Cornelius F, Toyoshima C. Crystal structures of Na + ,K + -ATPase reveal the mechanism that converts the K + -bound form to Na + -bound form and opens and closes the cytoplasmic gate. FEBS Lett 2023; 597:1957-1976. [PMID: 37357620 DOI: 10.1002/1873-3468.14689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Na+ ,K+ -ATPase (NKA) plays a pivotal role in establishing electrochemical gradients for Na+ and K+ across the cell membrane by alternating between the E1 (showing high affinity for Na+ and low affinity for K+ ) and E2 (low affinity to Na+ and high affinity to K+ ) forms. Presented here are two crystal structures of NKA in E1·Mg2+ and E1·3Na+ states at 2.9 and 2.8 Å resolution, respectively. These two E1 structures fill a gap in our description of the NKA reaction cycle based on the atomic structures. We describe how NKA converts the K+ -bound E2·2K+ form to an E1 (E1·Mg2+ ) form, which allows high-affinity Na+ binding, eventually closing the cytoplasmic gate (in E1 ~ P·ADP·3Na+ ) after binding three Na+ , while keeping the extracellular ion pathway sealed. We now understand previously unknown functional roles for several parts of NKA and that NKA uses even the lipid bilayer for gating the ion pathway.
Collapse
Affiliation(s)
- Ryuta Kanai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Denmark
| | | | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
5
|
Zou S, Lan YL, Gong Y, Chen Z, Xu C. The role of ATP1A3 gene in epilepsy: We need to know more. Front Cell Neurosci 2023; 17:1143956. [PMID: 36866063 PMCID: PMC9972585 DOI: 10.3389/fncel.2023.1143956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The ATP1A3 gene, which encodes the Na+/K+-ATPase α3 catalytic subunit, plays a crucial role in both physiological and pathological conditions in the brain, and mutations in this gene have been associated with a wide variety of neurological diseases by impacting the whole infant development stages. Cumulative clinical evidence suggests that some severe epileptic syndromes have been linked to mutations in ATP1A3, among which inactivating mutation of ATP1A3 has been intriguingly found to be a candidate pathogenesis for complex partial and generalized seizures, proposing ATP1A3 regulators as putative targets for the rational design of antiepileptic therapies. In this review, we introduced the physiological function of ATP1A3 and summarized the findings about ATP1A3 in epileptic conditions from both clinical and laboratory aspects at first. Then, some possible mechanisms of how ATP1A3 mutations result in epilepsy are provided. We think this review timely introduces the potential contribution of ATP1A3 mutations in both the genesis and progression of epilepsy. Taken that both the detailed mechanisms and therapeutic significance of ATP1A3 for epilepsy are not yet fully illustrated, we think that both in-depth mechanisms investigations and systematic intervention experiments targeting ATP1A3 are needed, and by doing so, perhaps a new light can be shed on treating ATP1A3-associated epilepsy.
Collapse
Affiliation(s)
- Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yu-Long Lan ✉
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China,Cenglin Xu ✉
| |
Collapse
|
6
|
Arystarkhova E, Toustrup-Jensen MS, Holm R, Ko JK, Lee KE, Feschenko P, Ozelius LJ, Brashear A, Vilsen B, Sweadner KJ. Temperature instability of a mutation at a multidomain junction in Na,K-ATPase isoform ATP1A3 (p.Arg756His) produces a fever-induced neurological syndrome. J Biol Chem 2023; 299:102758. [PMID: 36462665 PMCID: PMC9860391 DOI: 10.1016/j.jbc.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
ATP1A3 encodes the α3 isoform of Na,K-ATPase. In the brain, it is expressed only in neurons. Human ATP1A3 mutations produce a wide spectrum of phenotypes, but particular syndromes are associated with unique substitutions. For arginine 756, at the junction of membrane and cytoplasmic domains, mutations produce encephalopathy during febrile infections. Here we tested the pathogenicity of p.Arg756His (R756H) in isogenic mammalian cells. R756H protein had sufficient transport activity to support cells when endogenous ATP1A1 was inhibited. It had half the turnover rate of wildtype, reduced affinity for Na+, and increased affinity for K+. There was modest endoplasmic reticulum retention during biosynthesis at 37 °C but little benefit from the folding drug phenylbutyrate (4-PBA), suggesting a tolerated level of misfolding. When cells were incubated at just 39 °C, however, α3 protein level dropped without loss of β subunit, paralleled by an increase of endogenous α1. Elevated temperature resulted in internalization of α3 from the surface along with some β subunit, accompanied by cytoplasmic redistribution of a marker of lysosomes and endosomes, lysosomal-associated membrane protein 1. After return to 37 °C, α3 protein levels recovered with cycloheximide-sensitive new protein synthesis. Heating in vitro showed activity loss at a rate 20- to 30-fold faster than wildtype, indicating a temperature-dependent destabilization of protein structure. Arg756 appears to confer thermal resistance as an anchor, forming hydrogen bonds among four linearly distant parts of the Na,K-ATPase structure. Taken together, our observations are consistent with fever-induced symptoms in patients.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jae-Kyun Ko
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kyung Eun Lee
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Polina Feschenko
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison Brashear
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Moreno C, Jiao S, Yano S, Holmgren M. Disease mutations of human α3 Na +/K +-ATPase define extracellular Na + binding/occlusion kinetics at ion binding site III. PNAS NEXUS 2022; 1:pgac205. [PMID: 36304555 PMCID: PMC9585393 DOI: 10.1093/pnasnexus/pgac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Na+/K+-ATPase, which creates transmembrane electrochemical gradients by exchanging 3 Na+ for 2 K+, is central to the pathogenesis of neurological diseases such as alternating hemiplegia of childhood. Although Na+/K+-ATPase has 3 distinct ion binding sites I-III, the difficulty of distinguishing ion binding events at each site from the others hinders kinetic study of these transitions. Here, we show that binding of Na+ at each site in the human α3 Na+/K+-ATPase can be resolved using extracellular Na+-mediated transient currents. When Na+/K+-ATPase is constrained to bind and release only Na+, three kinetic components: fast, medium, and slow, can be isolated, presumably corresponding to the protein dynamics associated with the binding (or release depending on the voltage step direction) and the occlusion (or deocclusion) of each of the 3 Na+. Patient-derived mutations of residues which coordinate Na+ at site III exclusively impact the slow component, demonstrating that site III is crucial for deocclusion and release of the first Na+ into the extracellular milieu. These results advance understanding of Na+/K+-ATPase mutation pathogenesis and provide a foundation for study of individual ions' binding kinetics.
Collapse
Affiliation(s)
- Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sho Yano
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,Medical Genetics and Genomic Medicine Training Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miguel Holmgren
- Correspondence should be addressed: Miguel Holmgren, Ph.D. Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. Tel: +1-(301) 451-6259; E-mail:
| |
Collapse
|
8
|
Structure and function of H +/K + pump mutants reveal Na +/K + pump mechanisms. Nat Commun 2022; 13:5270. [PMID: 36085139 PMCID: PMC9463140 DOI: 10.1038/s41467-022-32793-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na+ to H+ selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous residue substitutions transform the non-gastric H+/K+ pump, a strict H+-dependent electroneutral P-type ATPase, into a bona fide Na+-dependent electrogenic Na+/K+ pump. Conversion of a H+-dependent primary-active transporter into a Na+-dependent one provides a prototype for similar studies of ion-transport proteins. Moreover, we solve the structures of the wild-type non-gastric H+/K+ pump, a suitable drug target to treat cystic fibrosis, and of its Na+/K+ pump-mimicking mutant in two major conformations, providing insight on how Na+ binding drives a concerted mechanism leading to Na+/K+ pump phosphorylation.
Collapse
|
9
|
Fruergaard MU, Dach I, Andersen JL, Ozol M, Shasavar A, Quistgaard EM, Poulsen H, Fedosova NU, Nissen P. The Na,K-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state. J Biol Chem 2022; 298:102317. [PMID: 35926706 PMCID: PMC9485054 DOI: 10.1016/j.jbc.2022.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/29/2022] Open
Abstract
The Na+,K+-ATPase generates electrochemical gradients of Na+ and K+ across the plasma membrane via a functional cycle that includes various phosphoenzyme intermediates. However, the structure and function of these intermediates and how metal fluorides mimick them require further investigation. Here, we describe a 4.0 Å resolution crystal structure and functional properties of the pig kidney Na+,K+-ATPase stabilized by the inhibitor beryllium fluoride (denoted E2-BeFx). E2-BeFx is expected to mimic properties of the E2P phosphoenzyme, yet with unknown characteristics of ion and ligand binding. The structure resembles the E2P form obtained by phosphorylation from inorganic phosphate (Pi) and stabilized by cardiotonic steroids, including a low-affinity Mg2+ site near ion binding site II. Our anomalous Fourier analysis of the crystals soaked in Rb+ (a K+ congener) followed by a low-resolution rigid-body refinement (6.9-7.5 Å) revealed pre-occlusion transitions leading to activation of the dephosphorylation reaction. We show that the Mg2+ location indicates a site of initial K+ recognition and acceptance upon binding to the outward-open E2P state after Na+ release. Furthermore, using binding and activity studies, we find that the BeFx-inhibited enzyme is also able to bind ADP/ATP and Na+. These results relate the E2-BeFx complex to a transient K+- and ADP-sensitive E*P intermediate of the functional cycle of the Na+,K+-ATPase, prior to E2P.
Collapse
Affiliation(s)
- Marlene U Fruergaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Ingrid Dach
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Jacob L Andersen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, DK - 8000 Aarhus C, Denmark
| | - Mette Ozol
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Azadeh Shasavar
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Esben M Quistgaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Hanne Poulsen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Natalya U Fedosova
- Department of Biomedicine, Aarhus University, DK - 8000 Aarhus C, Denmark.
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
10
|
Mehrabian M, Wang X, Eid S, Yan BQ, Grinberg M, Siegner M, Sackmann C, Sulman M, Zhao W, Williams D, Schmitt-Ulms G. Cardiac glycoside-mediated turnover of Na, K-ATPases as a rational approach to reducing cell surface levels of the cellular prion protein. PLoS One 2022; 17:e0270915. [PMID: 35776750 PMCID: PMC9249225 DOI: 10.1371/journal.pone.0270915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
It is widely anticipated that a reduction of brain levels of the cellular prion protein (PrPC) can prolong survival in a group of neurodegenerative diseases known as prion diseases. To date, efforts to decrease steady-state PrPC levels by targeting this protein directly with small molecule drug-like compounds have largely been unsuccessful. Recently, we reported Na,K-ATPases to reside in immediate proximity to PrPC in the brain, unlocking an opportunity for an indirect PrPC targeting approach that capitalizes on the availability of potent cardiac glycosides (CGs). Here, we report that exposure of human co-cultures of neurons and astrocytes to non-toxic nanomolar levels of CGs causes profound reductions in PrPC levels. The mechanism of action underpinning this outcome relies primarily on a subset of CGs engaging the ATP1A1 isoform, one of three α subunits of Na,K-ATPases expressed in brain cells. Upon CG docking to ATP1A1, the ligand receptor complex, and PrPC along with it, is internalized by the cell. Subsequently, PrPC is channeled to the lysosomal compartment where it is digested in a manner that can be rescued by silencing the cysteine protease cathepsin B. These data signify that the repurposing of CGs may be beneficial for the treatment of prion disorders.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Bei Qi Yan
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Murdock Siegner
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Sackmann
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Muhammad Sulman
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Biondo ED, Spontarelli K, Ababioh G, Méndez L, Artigas P. Diseases caused by mutations in the Na +/K + pump α1 gene ATP1A1. Am J Physiol Cell Physiol 2021; 321:C394-C408. [PMID: 34232746 DOI: 10.1152/ajpcell.00059.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cell survival requires function of the Na+/K+ pump; the heteromeric protein that hydrolyzes ATP to extrude Na+ and import K+ across the plasmalemma, thereby building and maintaining these ions' electrochemical gradients. Numerous dominant diseases caused by mutations in genes encoding for Na+/K+ pump catalytic (α) subunit isoforms highlight the importance of this protein. Here, we review literature describing disorders caused by missense mutations in ATP1A1, the gene encoding the ubiquitously expressed α1 isoform of the Na+/K+ pump. These various maladies include primary aldosteronism with secondary hypertension, an endocrine syndrome, Charcot-Marie-Tooth disease, a peripheral neuropathy, complex spastic paraplegia, another neuromuscular disorder, as well as hypomagnesemia accompanied by seizures and cognitive delay, a condition affecting the renal and central nervous systems. This article focuses on observed commonalities among these mutations' functional effects, as well as on the special characteristics that enable each particular mutation to exclusively affect a certain system, without affecting others. In this respect, it is clear how somatic mutations localized to adrenal adenomas increase aldosterone production without compromising other systems. However, it remains largely unknown how and why some but not all de novo germline or familial mutations (where the mutant must be expressed in numerous tissues) produce a specific disease and not the other diseases. We propose hypotheses to explain this observation and the approaches that we think will drive future research on these debilitating disorders to develop novel patient-specific treatments by combining the use of heterologous protein-expression systems, patient-derived pluripotent cells, and gene-edited cell and mouse models.
Collapse
Affiliation(s)
- Elisa D Biondo
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Giovanna Ababioh
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Lois Méndez
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
12
|
Arystarkhova E, Ozelius LJ, Brashear A, Sweadner KJ. Misfolding, altered membrane distributions, and the unfolded protein response contribute to pathogenicity differences in Na,K-ATPase ATP1A3 mutations. J Biol Chem 2021; 296:100019. [PMID: 33144327 PMCID: PMC7949067 DOI: 10.1074/jbc.ra120.015271] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Missense mutations in ATP1A3, the α3 isoform of Na,K-ATPase, cause neurological phenotypes that differ greatly in symptoms and severity. A mechanistic basis for differences is lacking, but reduction of activity alone cannot explain them. Isogenic cell lines with endogenous α1 and inducible exogenous α3 were constructed to compare mutation properties. Na,K-ATPase is made in the endoplasmic reticulum (ER), but the glycan-free catalytic α subunit complexes with glycosylated β subunit in the ER to proceed through Golgi and post-Golgi trafficking. We previously observed classic evidence of protein misfolding in mutations with severe phenotypes: differences in ER retention of endogenous β1 subunit, impaired trafficking of α3, and cytopathology, suggesting that they misfold during biosynthesis. Here we tested two mutations associated with different phenotypes: D923N, which has a median age of onset of hypotonia or dystonia at 3 years, and L924P, with severe infantile epilepsy and profound impairment. Misfolding during biosynthesis in the ER activates the unfolded protein response, a multiarmed program that enhances protein folding capacity, and if that fails, triggers apoptosis. L924P showed more nascent protein retention in ER than D923N; more ER-associated degradation of α3 (ERAD); larger differences in Na,K-ATPase subunit distributions among subcellular fractions; and greater inactivation of eIF2α, a major defensive step of the unfolded protein response. In L924P there was also altered subcellular distribution of endogenous α1 subunit, analogous to a dominant negative effect. Both mutations showed pro-apoptotic sensitization by reduced phosphorylation of BAD. Encouragingly, however, 4-phenylbutyrate, a pharmacological corrector, reduced L924P ER retention, increased α3 expression, and restored morphology.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison Brashear
- Department of Medicine, University of California at Davis Medical School, Sacramento, California, USA
| | - Kathleen J Sweadner
- Laboratory of Membrane Biology, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Lazarov E, Hillebrand M, Schröder S, Ternka K, Hofhuis J, Ohlenbusch A, Barrantes-Freer A, Pardo LA, Fruergaard MU, Nissen P, Brockmann K, Gärtner J, Rosewich H. Comparative analysis of alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism ATP1A3 mutations reveals functional deficits, which do not correlate with disease severity. Neurobiol Dis 2020; 143:105012. [PMID: 32653672 DOI: 10.1016/j.nbd.2020.105012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Heterozygous mutations in the ATP1A3 gene, coding for an alpha subunit isoform (α3) of Na+/K+-ATPase, are the primary genetic cause for rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). Recently, cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss (CAPOS), early infantile epileptic encephalopathy (EIEE), childhood rapid onset ataxia (CROA) and relapsing encephalopathy with rapid onset ataxia (RECA) extend the clinical spectrum of ATP1A3 related disorders. AHC and RDP demonstrate distinct clinical features, with AHC symptoms being generally more severe compared to RDP. Currently, it is largely unknown what determines the disease severity, and whether severity is linked to the degree of functional impairment of the α3 subunit. Here we compared the effect of twelve different RDP and AHC specific mutations on the expression and function of the α3 Na+/K+-ATPase in transfected HEK cells and oocytes. All studied mutations led to functional impairment of the pump, as reflected by lower survival rate and reduced pump current. No difference in the extent of impairment, nor in the expression level, was found between the two phenotypes, suggesting that these measures of pump dysfunction do not exclusively determine the disease severity.
Collapse
Affiliation(s)
- Elinor Lazarov
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Merle Hillebrand
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Simone Schröder
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Katharina Ternka
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Julia Hofhuis
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Andreas Ohlenbusch
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | | | - Luis A Pardo
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Marlene U Fruergaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Dept. Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Dept. Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.
| | - Knut Brockmann
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Jutta Gärtner
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Hendrik Rosewich
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| |
Collapse
|
14
|
Capuano A, Garone G, Tiralongo G, Graziola F. Alternating Hemiplegia of Childhood: Understanding the Genotype-Phenotype Relationship of ATP1A3 Variations. APPLICATION OF CLINICAL GENETICS 2020; 13:71-81. [PMID: 32280259 PMCID: PMC7125306 DOI: 10.2147/tacg.s210325] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Alternating hemiplegia of childhood (AHC) is a rare neurological disorder affecting children with an onset before 18 months. Diagnostic clues include transient episodes of hemiplegia alternating in the laterality or quadriparesis, nystagmus and other paroxysmal attacks as tonic and dystonic spells. Epilepsy is also a common feature. In the past, a great effort has been done to understand the genetic basis of the disease leading to the discovery of mutations in the ATP1A3 gene encoding for the alpha3 subunit of Na+/K+ATPase, a protein already related to another disease named Rapid Onset Dystonia Parkinsonism (RDP). ATP1A3 mutations account for more than 70% of cases of AHC. In particular, three hotspot mutations account for about 60% of all cases, and these data have been confirmed in large population studies. Specifically, the p.Asp801Asn variant has been found to cause 30–43% of all cases, p.Glu815Lys is responsible for 16–35% of cases and p.Gly947Arg accounts for 8–15%. These three mutations are associated with different clinical phenotype in terms of symptoms, severity and prognosis. In vitro and in vivo models reveal that a crucial role of Na+/K+ATPase pump activity emerges in maintaining a correct membrane potential, survival and homeostasis of neurons. Herein, we attempt to summarize all clinical, genetic and molecular aspects of AHC considering ATP1A3 as its primary disease-causing determinant.
Collapse
Affiliation(s)
- Alessandro Capuano
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giacomo Garone
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,University Hospital Pediatric Department, IRCCS Bambino Gesù Children's Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Tiralongo
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica Graziola
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
15
|
Factors in the disease severity of ATP1A3 mutations: Impairment, misfolding, and allele competition. Neurobiol Dis 2019; 132:104577. [PMID: 31425744 DOI: 10.1016/j.nbd.2019.104577] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Dominant mutations of ATP1A3, a neuronal Na,K-ATPase α subunit isoform, cause neurological disorders with an exceptionally wide range of severity. Several new mutations and their phenotypes are reported here (p.Asp366His, p.Asp742Tyr, p.Asp743His, p.Leu924Pro, and a VUS, p.Arg463Cys). Mutations associated with mild or severe phenotypes [rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), or early infantile epileptic encephalopathy (EIEE)] were expressed in HEK-293 cells. Paradoxically, the severity of human symptoms did not correlate with whether there was enough residual activity to support cell survival. We hypothesized that distinct cellular consequences may result not only from pump inactivation but also from protein misfolding. Biosynthesis was investigated in four tetracycline-inducible isogenic cell lines representing different human phenotypes. Two cell biological complications were found. First, there was impaired trafficking of αβ complex to Golgi apparatus and plasma membrane, as well as changes in cell morphology, for two mutations that produced microcephaly or regions of brain atrophy in patients. Second, there was competition between exogenous mutant ATP1A3 (α3) and endogenous ATP1A1 (α1) so that their sum was constant. This predicts that in patients, the ratio of normal to mutant ATP1A3 proteins will vary when misfolding occurs. At the two extremes, the results suggest that a heterozygous mutation that only impairs Na,K-ATPase activity will produce relatively mild disease, while one that activates the unfolded protein response could produce severe disease and may result in death of neurons independently of ion pump inactivation.
Collapse
|
16
|
Sabouraud P, Riquet A, Spitz MA, Deiva K, Nevsimalova S, Mignot C, Lesca G, Bednarek N, Doummar D, Pietrement C, Laugel V. Relapsing encephalopathy with cerebellar ataxia are caused by variants involving p.Arg756 in ATP1A3. Eur J Paediatr Neurol 2019; 23:448-455. [PMID: 30862413 DOI: 10.1016/j.ejpn.2019.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/10/2019] [Accepted: 02/17/2019] [Indexed: 01/06/2023]
Abstract
Mutations in ATP1A3 lead to different phenotypes having in common acute neurological decompensation episodes triggered by a specific circumstance and followed by sequelae. Alongside Alternating Hemiplegia of Childhood (AHC), Rapid-onset Dystonia Parkinsonism (RDP) and Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, Sensorineural hearing loss syndrome (CAPOS), a new Relapsing Encephalopathy with Cerebellar Ataxia (RECA) phenotype was published in 2015. We describe herein eight new pediatric cases. Most of them had no specific history when the first neurological decompensation episode occurred, before the age of 5 years, triggered by fever with severe paralytic hypotonia followed by ataxia with or without abnormal movements. Neurological sequelae with ataxia as the predominant symptom were present after the first episode in three cases and after at least one subsequent relapse in five cases. Five of the eight cases had a familial involvement with one of the two parents affected. The phenotype-genotype correlation is unequivocal with the causal substitution always located at position 756. The pathophysiology of the dysfunctions of the mutated ATPase pump, triggered by fever is unknown. Severe recurrent neurological decompensation episodes triggered by fever, without any metabolic cause, should lead to the sequencing of ATP1A3.
Collapse
Affiliation(s)
- Pascal Sabouraud
- Department of Pediatrics, American Memorial Hospital, CHU Reims, Reims, France.
| | - Audrey Riquet
- Department of Pediatric Neurology, Hopital Roger Salengro, CHU Lille, Lille, France.
| | - Marie-Aude Spitz
- Department of Pediatrics, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Kumaran Deiva
- Department of Pediatric Neurology, AP-HP, Hôpital Bicêtre, Paris, France.
| | - Sona Nevsimalova
- Department of Neurology, 1st Medical Faculty, Charles University, Prague, Czech Republic.
| | - Cyril Mignot
- Department of Genetics, Groupe Hospitalier Pitié Salpêtrière, AP-HP, Paris, France.
| | - Gaëtan Lesca
- Department of Medical Genetics, Hospices Civils de Lyon, Lyon, France.
| | - Nathalie Bednarek
- Department of Pediatrics, American Memorial Hospital, CHU Reims, Reims, France.
| | - Diane Doummar
- Department of Pediatric Neurology, AP-HP, Hôpital Armand Trousseau, Paris, France.
| | | | - Vincent Laugel
- Department of Pediatrics, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Sweadner KJ, Arystarkhova E, Penniston JT, Swoboda KJ, Brashear A, Ozelius LJ. Genotype-structure-phenotype relationships diverge in paralogs ATP1A1, ATP1A2, and ATP1A3. NEUROLOGY-GENETICS 2019; 5:e303. [PMID: 30842972 PMCID: PMC6384024 DOI: 10.1212/nxg.0000000000000303] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/08/2018] [Indexed: 11/15/2022]
Abstract
Objective We tested the assumption that closely related genes should have similar pathogenic variants by analyzing >200 pathogenic variants in a gene family with high neurologic impact and high sequence identity, the Na,K-ATPases ATP1A1, ATP1A2, and ATP1A3. Methods Data sets of disease-associated variants were compared. Their equivalent positions in protein crystal structures were used for insights into pathogenicity and correlated with the phenotype and conservation of homology. Results Relatively few mutations affected the corresponding amino acids in 2 genes. In the membrane domain of ATP1A3 (primarily expressed in neurons), variants producing milder neurologic phenotypes had different structural positions than variants producing severe phenotypes. In ATP1A2 (primarily expressed in astrocytes), membrane domain variants characteristic of severe phenotypes in ATP1A3 were absent from patient data. The known variants in ATP1A1 fell into 2 distinct groups. Sequence conservation was an imperfect indicator: it varied among structural domains, and some variants with demonstrated pathogenicity were in low conservation sites. Conclusions Pathogenic variants varied between genes despite high sequence identity, and there is a genotype-structure-phenotype relationship in ATP1A3 that correlates with neurologic outcomes. The absence of "severe" pathogenic variants in ATP1A2 patients predicts that they will manifest either in a different tissue or by death in utero and that new ATP1A1 variants will produce additional phenotypes. It is important that some variants in poorly conserved amino acids are nonetheless pathogenic and could be incorrectly predicted to be benign.
Collapse
Affiliation(s)
- Kathleen J Sweadner
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Elena Arystarkhova
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - John T Penniston
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Kathryn J Swoboda
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison Brashear
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Laurie J Ozelius
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
18
|
Shrivastava AN, Triller A, Melki R. Cell biology and dynamics of Neuronal Na +/K +-ATPase in health and diseases. Neuropharmacology 2018; 169:107461. [PMID: 30550795 DOI: 10.1016/j.neuropharm.2018.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/17/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Neuronal Na+/K+-ATPase is responsible for the maintenance of ionic gradient across plasma membrane. In doing so, in a healthy brain, Na+/K+-ATPase activity accounts for nearly half of total brain energy consumption. The α3-subunit containing Na+/K+-ATPase expression is restricted to neurons. Heterozygous mutations within α3-subunit leads to Rapid-onset Dystonia Parkinsonism, Alternating Hemiplegia of Childhood and other neurological and neuropsychiatric disorders. Additionally, proteins such as α-synuclein, amyloid-β, tau and SOD1 whose aggregation is associated to neurodegenerative diseases directly bind and impair α3-Na+/K+-ATPase activity. The review will provide a summary of neuronal α3-Na+/K+-ATPase functional properties, expression pattern, protein-protein interactions at the plasma membrane, biophysical properties (distribution and lateral diffusion). Lastly, the role of α3-Na+/K+-ATPase in neurological and neurodegenerative disorders will be discussed. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL, Research University, 46 Rue d'Ulm, 75005 Paris, France
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
19
|
Cornelius F, Tsunekawa N, Toyoshima C. Distinct pH dependencies of Na +/K + selectivity at the two faces of Na,K-ATPase. J Biol Chem 2017; 293:2195-2205. [PMID: 29247005 DOI: 10.1074/jbc.ra117.000700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
The sodium pump (Na,K-ATPase) in animal cells is vital for actively maintaining ATP hydrolysis-powered Na+ and K+ electrochemical gradients across the cell membrane. These ion gradients drive co- and countertransport and are critical for establishing the membrane potential. It has been an enigma how Na,K-ATPase discriminates between Na+ and K+, despite the pumped ion on each side being at a lower concentration than the other ion. Recent crystal structures of analogs of the intermediate conformations E2·Pi·2K+ and Na+-bound E1∼P·ADP suggest that the dimensions of the respective binding sites in Na,K-ATPase are crucial in determining its selectivity. Here, we found that the selectivity at each membrane face is pH-dependent and that this dependence is unique for each face. Most notable was a strong increase in the specific affinity for K+ at the extracellular face (i.e. E2 conformation) as the pH is lowered from 7.5 to 5. We also observed a smaller increase in affinity for K+ on the cytoplasmic side (E1 conformation), which reduced the selectivity for Na+ Theoretical analysis of the pKa values of ion-coordinating acidic amino acid residues suggested that the face-specific pH dependences and Na+/K+ selectivities may arise from the protonation or ionization of key residues. The increase in K+ selectivity at low pH on the cytoplasmic face, for instance, appeared to be associated with Asp808 protonation. We conclude that changes in the ionization state of coordinating residues in Na,K-ATPase could contribute to altering face-specific ion selectivity.
Collapse
Affiliation(s)
- Flemming Cornelius
- From the Department of Biomedicine, University of Aarhus, Ole Worms Allé 6, 8000 Aarhus C, Denmark and
| | - Naoki Tsunekawa
- the Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032
| | - Chikashi Toyoshima
- the Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032
| |
Collapse
|
20
|
Han M, Kopec W, Solov’yov IA, Khandelia H. Glutamate Water Gates in the Ion Binding Pocket of Na + Bound Na +, K +-ATPase. Sci Rep 2017; 7:39829. [PMID: 28084301 PMCID: PMC5233988 DOI: 10.1038/srep39829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/25/2016] [Indexed: 11/15/2022] Open
Abstract
The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na+, K+ -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na+ or K+ selectivity. We use molecular dynamics (MD) and density functional theory (DFT) simulations to determine the protonation scheme of the Na+ bound conformation of NKA. MD simulations of all possible protonation schemes show that the bound Na+ ions are most stably bound when three or four protons reside in the binding sites, and that Glu954 in site III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na+ binding energies, we conclude that three protons in the binding site are needed to effectively bind Na+ from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na+ release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na+ bound occluded conformation. Our data provides key insights into the role of protons in the Na+ binding and release mechanism of NKA.
Collapse
Affiliation(s)
- Minwoo Han
- MEMPHYS−Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Wojciech Kopec
- MEMPHYS−Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ilia A. Solov’yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Himanshu Khandelia
- MEMPHYS−Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
21
|
Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na +,K +-ATPase: Structural and functional perspectives and rescue of compromised function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1807-1828. [PMID: 27577505 DOI: 10.1016/j.bbabio.2016.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Na+,K+-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na+,K+-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na+,K+-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na+,K+-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na+ and K+ binding. In several cases the compromised function can be traced to disturbance of the Na+ specific binding site III. Recently, a secondary mutation was found to rescue the defective Na+ binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.
Collapse
Affiliation(s)
- Rikke Holm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Anja P Einholm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
22
|
Rui H, Artigas P, Roux B. The selectivity of the Na(+)/K(+)-pump is controlled by binding site protonation and self-correcting occlusion. eLife 2016; 5. [PMID: 27490484 PMCID: PMC5026471 DOI: 10.7554/elife.16616] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023] Open
Abstract
The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI:http://dx.doi.org/10.7554/eLife.16616.001 A protein called the sodium-potassium pump resides in the membrane that surrounds living cells. The role of this protein is to 'pump' sodium and potassium ions across the membrane to help restore their concentration inside and outside of the cell. About 25% of the body's energy is used to keep the pump going, rising to nearly 70% in the brain. Problems that affect the pump have been linked to several disorders, including heart, kidney and metabolic diseases, as well as severe neurological conditions. The sodium-potassium pump must be able to effectively pick out the correct ions to transport from a mixture of many different types of ions. However, it was not clear how the pump succeeds in doing this efficiently. Rui et al. have now used a computational method called molecular dynamics simulations to model how the sodium-potassium pump transports the desired ions across the cell membrane. The pump works via a so-called 'alternating-access' mechanism, repeatedly transitioning between inward-facing and outward-facing conformations. In each cycle, it binds three sodium ions from the cell’s interior and exports them to the outside. Then, the pump binds to two potassium ions from outside the cell and imports them inside. Although the bound sodium and potassium ions interact with similar binding sites in the pump, the pump sometimes preferentially binds sodium, and sometimes potassium. The study performed by Rui et al. shows that this preference is driven by how protons (hydrogen ions) bind to the amino acids that make up the binding site. The simulations also suggest that the pump uses a ‘self-correcting’ mechanism to prevent the pump from transporting the wrong types of ions. When incorrect ions are present at the binding sites, the pump cycle pauses temporarily until the ions detach from the pump. Only when the correct ions are bound will the pump cycle continue again. In the future, Rui et al. hope to use long time-scale molecular dynamics simulations to show the conformational transition in action. In addition, the 'self-correcting' mechanism will be directly tested by letting the wrong and correct ions compete for the binding sites to see whether the pump will transport only the correct ions. DOI:http://dx.doi.org/10.7554/eLife.16616.002
Collapse
Affiliation(s)
- Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
23
|
Larsen BR, Stoica A, MacAulay N. Managing Brain Extracellular K(+) during Neuronal Activity: The Physiological Role of the Na(+)/K(+)-ATPase Subunit Isoforms. Front Physiol 2016; 7:141. [PMID: 27148079 PMCID: PMC4841311 DOI: 10.3389/fphys.2016.00141] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
During neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
24
|
Einholm AP, Nielsen HN, Holm R, Toustrup-Jensen MS, Vilsen B. Importance of a Potential Protein Kinase A Phosphorylation Site of Na+,K+-ATPase and Its Interaction Network for Na+ Binding. J Biol Chem 2016; 291:10934-47. [PMID: 27013656 DOI: 10.1074/jbc.m115.701201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 12/29/2022] Open
Abstract
The molecular mechanism underlying PKA-mediated regulation of Na(+),K(+)-ATPase was explored in mutagenesis studies of the potential PKA site at Ser-938 and surrounding charged residues. The phosphomimetic mutations S938D/E interfered with Na(+) binding from the intracellular side of the membrane, whereas Na(+) binding from the extracellular side was unaffected. The reduction of Na(+) affinity is within the range expected for physiological regulation of the intracellular Na(+) concentration, thus supporting the hypothesis that PKA-mediated phosphorylation of Ser-938 regulates Na(+),K(+)-ATPase activity in vivo Ser-938 is located in the intracellular loop between transmembrane segments M8 and M9. An extended bonding network connects this loop with M10, the C terminus, and the Na(+) binding region. Charged residues Asp-997, Glu-998, Arg-1000, and Lys-1001 in M10, participating in this bonding network, are crucial to Na(+) interaction. Replacement of Arg-1005, also located in the vicinity of Ser-938, with alanine, lysine, methionine, or serine resulted in wild type-like Na(+) and K(+) affinities and catalytic turnover rate. However, when combined with the phosphomimetic mutation S938E only lysine substitution of Arg-1005 was compatible with Na(+),K(+)-ATPase function, and the Na(+) affinity of this double mutant was reduced even more than in single mutant S938E. This result indicates that the positive side chain of Arg-1005 or the lysine substituent plays a mechanistic role as interaction partner of phosphorylated Ser-938, transducing the phosphorylation signal into a reduced affinity of Na(+) site III. Electrostatic interaction of Glu-998 is of minor importance for the reduction of Na(+) affinity by phosphomimetic S938E as revealed by combining S938E with E998A.
Collapse
Affiliation(s)
- Anja P Einholm
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Hang N Nielsen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Rikke Holm
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Bente Vilsen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Viollet L, Glusman G, Murphy KJ, Newcomb TM, Reyna SP, Sweney M, Nelson B, Andermann F, Andermann E, Acsadi G, Barbano RL, Brown C, Brunkow ME, Chugani HT, Cheyette SR, Collins A, DeBrosse SD, Galas D, Friedman J, Hood L, Huff C, Jorde LB, King MD, LaSalle B, Leventer RJ, Lewelt AJ, Massart MB, Mérida MR, Ptáček LJ, Roach JC, Rust RS, Renault F, Sanger TD, Sotero de Menezes MA, Tennyson R, Uldall P, Zhang Y, Zupanc M, Xin W, Silver K, Swoboda KJ. Alternating Hemiplegia of Childhood: Retrospective Genetic Study and Genotype-Phenotype Correlations in 187 Subjects from the US AHCF Registry. PLoS One 2015; 10:e0127045. [PMID: 25996915 PMCID: PMC4440742 DOI: 10.1371/journal.pone.0127045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/11/2015] [Indexed: 11/21/2022] Open
Abstract
Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers’ questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations. Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies.
Collapse
Affiliation(s)
- Louis Viollet
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Gustavo Glusman
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Kelley J. Murphy
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Tara M. Newcomb
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Sandra P. Reyna
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew Sweney
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Benjamin Nelson
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Frederick Andermann
- Neurogenetics Unit, Montreal Neurologic Institute and Hospital, McGill University, Montreal Quebec, Canada
| | - Eva Andermann
- Neurogenetics Unit, Montreal Neurologic Institute and Hospital, McGill University, Montreal Quebec, Canada
| | - Gyula Acsadi
- Departments of Pediatrics and Neurology, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Hartford, CT, United States of America
| | - Richard L. Barbano
- Department of Neurology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Candida Brown
- Diablo Valley Child Neurology, an affiliate of Stanford Health Alliance, Pleasant Hill, California, United States of America
| | - Mary E. Brunkow
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Harry T. Chugani
- Division of Pediatric Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan, United States of America
| | - Sarah R. Cheyette
- Department of Child Neurology, Palo Alto Medical Foundation Redwood City Clinic, Redwood City, California, United States of America
| | - Abigail Collins
- Department of Pediatric Neurology, Children’s Hospital Colorado, University of Colorado Hospital, Aurora, Colorado, United States of America
| | - Suzanne D. DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, United States of America
| | - Jennifer Friedman
- Departments of Neuroscience and Pediatrics, University of California San Diego, San Diego, California, United States of America
| | - Lee Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Chad Huff
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary D. King
- Departments of Pediatrics and Neurology, University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Bernie LaSalle
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Richard J. Leventer
- Children’s Neuroscience Centre, Murdoch Childrens Research Institute, University of Melbourne Department of Paediatrics, The Royal Children’s Hospital Melbourne, Parkville Victoria, Australia
| | - Aga J. Lewelt
- Department of Pediatrics, College of Medicine Jacksonville, University of Florida, Jacksonville, Florida, United States of America
| | - Mylynda B. Massart
- Department of Family Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mario R. Mérida
- Stevens Henager College, Salt Lake City, Utah, United States of America
| | - Louis J. Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Jared C. Roach
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Robert S. Rust
- Center for Medical Ethics and Humanities in Medicine, University Of Virginia UVA health system, Charlottesville, Virginia, United States of America
| | - Francis Renault
- Departement de Neurophysiologie. Hopital Armand Trousseau APHP, Paris, France
| | - Terry D. Sanger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | | | - Rachel Tennyson
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Peter Uldall
- Department of Paediatrics and Adolescent Medicine, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yue Zhang
- Study Design and Biostatistics Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary Zupanc
- Department of Neurology, Children’s Hospital Orange County, and Department of Pediatrics, University of California, Orange, California, United States of America
| | - Winnie Xin
- Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kenneth Silver
- Departments of Pediatrics and Neurology, University of Chicago and Comer Children's Hospital, Chicago, Illinois, United States of America
| | - Kathryn J. Swoboda
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
26
|
Holm R, Einholm AP, Andersen JP, Vilsen B. Rescue of Na+ affinity in aspartate 928 mutants of Na+,K+-ATPase by secondary mutation of glutamate 314. J Biol Chem 2015; 290:9801-11. [PMID: 25713066 DOI: 10.1074/jbc.m114.625509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 11/06/2022] Open
Abstract
The Na(+),K(+)-ATPase binds Na(+) at three transport sites denoted I, II, and III, of which site III is Na(+)-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na(+) affinity in the α1-, α2-, and α3-isoforms of Na(+),K(+)-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na(+)-coordinating residues in site III. Remarkably, the Na(+) affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na(+) binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na(+) affinity is likely intrinsic to the Na(+) binding pocket, and the underlying mechanism could be a tightening of Na(+) binding at Na(+) site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na(+),K(+) pump function in intact cells. Rescue of Na(+) affinity and Na(+) and K(+) transport by second-site mutation is unique in the history of Na(+),K(+)-ATPase and points to new possibilities for treatment of neurological patients carrying Na(+),K(+)-ATPase mutations.
Collapse
Affiliation(s)
- Rikke Holm
- From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| | - Anja P Einholm
- From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| | - Jens P Andersen
- From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| | - Bente Vilsen
- From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| |
Collapse
|
27
|
P2C-Type ATPases and Their Regulation. Mol Neurobiol 2015; 53:1343-1354. [DOI: 10.1007/s12035-014-9076-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
|
28
|
LeDoux MS. Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Vedovato N, Gadsby DC. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps. ACTA ACUST UNITED AC 2014; 143:449-64. [PMID: 24688018 PMCID: PMC3971657 DOI: 10.1085/jgp.201311148] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Na+/K+ pump is a hybrid transporter that can also import protons at physiological K+ and Na+ concentrations. A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified.
Collapse
Affiliation(s)
- Natascia Vedovato
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| | | |
Collapse
|
30
|
Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB, Jóhannesson SH, Mikati MA, Neville B, Nicole S, Ozelius LJ, Poulsen H, Schyns T, Sweadner KJ, van den Maagdenberg A, Vilsen B. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 2014; 13:503-14. [PMID: 24739246 DOI: 10.1016/s1474-4422(14)70011-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the α3 subunit of Na(+)/K(+)-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in-vitro and animal model systems, and the role of Na(+)/K(+)-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases.
Collapse
Affiliation(s)
- Erin L Heinzen
- Center for Human Genome Variation, Duke University, School of Medicine, Durham, NC, USA; Department of Medicine, Section of Medical Genetics, Duke University, School of Medicine, Durham, NC, USA.
| | - Alexis Arzimanoglou
- Epilepsy, Sleep and Pediatric Neurophysiology Department, HFME, University Hospitals of Lyon, France; Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique, UMR 5292, INSERM U1028, Lyon, France
| | - Allison Brashear
- Department of Neurology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | - Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica S Cuore, Rome, Italy
| | - David B Goldstein
- Center for Human Genome Variation, Duke University, School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, School of Medicine, Durham, NC, USA
| | | | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University, School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University, School of Medicine, Durham, NC, USA
| | - Brian Neville
- Institute of Child Health, University College London, London, UK
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U975, Centre de Recherche de l'Institut du Cerveau et de la Moelle, Paris, France; Centre National de la Recherche Scientifique, UMR7225, Paris, France; Université Pierre et Marie Curie Paris VI, UMRS975, Paris, France
| | - Laurie J Ozelius
- Department of Genetics and Genomic Sciences and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanne Poulsen
- Danish Research Institute for Translational Neuroscience, Nordic-EMBL Partnership of Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
| | - Tsveta Schyns
- European Network for Research on Alternating Hemiplegia (ENRAH), Brussels, Belgium
| | | | - Arn van den Maagdenberg
- Department of Human Genetics and Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
31
|
Mahmmoud YA, Shattock M, Cornelius F, Pavlovic D. Inhibition of K+ transport through Na+, K+-ATPase by capsazepine: role of membrane span 10 of the α-subunit in the modulation of ion gating. PLoS One 2014; 9:e96909. [PMID: 24816799 PMCID: PMC4016139 DOI: 10.1371/journal.pone.0096909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4-.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase.
Collapse
Affiliation(s)
- Yasser A. Mahmmoud
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
- * E-mail:
| | - Michael Shattock
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Davor Pavlovic
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
32
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Toustrup-Jensen MS, Einholm AP, Schack VR, Nielsen HN, Holm R, Sobrido MJ, Andersen JP, Clausen T, Vilsen B. Relationship between intracellular Na+ concentration and reduced Na+ affinity in Na+,K+-ATPase mutants causing neurological disease. J Biol Chem 2013; 289:3186-97. [PMID: 24356962 DOI: 10.1074/jbc.m113.543272] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na(+),K(+)-ATPase α2 and α3 isoforms, expressed in glial and neuronal cells, respectively. Although these disorders are distinct, they overlap in phenotypical presentation. Two Na(+),K(+)-ATPase mutations, extending the C terminus by either 28 residues ("+28" mutation) or an extra tyrosine ("+Y"), are associated with FHM2 and RDP, respectively. We describe here functional consequences of these and other neurological disease mutations as well as an extension of the C terminus only by a single alanine. The dependence of the mutational effects on the specific α isoform in which the mutation is introduced was furthermore studied. At the cellular level we have characterized the C-terminal extension mutants and other mutants, addressing the question to what extent they cause a change of the intracellular Na(+) and K(+) concentrations ([Na(+)]i and [K(+)]i) in COS cells. C-terminal extension mutants generally showed dramatically reduced Na(+) affinity without disturbance of K(+) binding, as did other RDP mutants. No phosphorylation from ATP was observed for the +28 mutation of α2 despite a high expression level. A significant rise of [Na(+)]i and reduction of [K(+)]i was detected in cells expressing mutants with reduced Na(+) affinity and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two mutations that increase Na(+) affinity were found to reduce [Na(+)]i. It is concluded that the Na(+) affinity of the Na(+),K(+)-ATPase is an important determinant of [Na(+)]i.
Collapse
|
34
|
Henriksen C, Kjaer-Sorensen K, Einholm AP, Madsen LB, Momeni J, Bendixen C, Oxvig C, Vilsen B, Larsen K. Molecular cloning and characterization of porcine Na⁺/K⁺-ATPase isoforms α1, α2, α3 and the ATP1A3 promoter. PLoS One 2013; 8:e79127. [PMID: 24236096 PMCID: PMC3827302 DOI: 10.1371/journal.pone.0079127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
Na⁺/K⁺-ATPase maintains electrochemical gradients of Na⁺ and K⁺ essential for a variety of cellular functions including neuronal activity. The α-subunit of the Na⁺/K⁺-ATPase exists in four different isoforms (α1-α4) encoded by different genes. With a view to future use of pig as an animal model in studies of human diseases caused by Na⁺/K⁺-ATPase mutations, we have determined the porcine coding sequences of the α1-α3 genes, ATP1A1, ATP1A2, and ATP1A3, their chromosomal localization, and expression patterns. Our ATP1A1 sequence accords with the sequences from several species at five positions where the amino acid residue of the previously published porcine ATP1A1 sequence differs. These corrections include replacement of glutamine 841 with arginine. Analysis of the functional consequences of substitution of the arginine revealed its importance for Na⁺ binding, which can be explained by interaction of the arginine with the C-terminus, stabilizing one of the Na⁺ sites. Quantitative real-time PCR expression analyses of porcine ATP1A1, ATP1A2, and ATP1A3 mRNA showed that all three transcripts are expressed in the embryonic brain as early as 60 days of gestation. Expression of α3 is confined to neuronal tissue. Generally, the expression patterns of ATP1A1, ATP1A2, and ATP1A3 transcripts were found similar to their human counterparts, except for lack of α3 expression in porcine heart. These expression patterns were confirmed at the protein level. We also report the sequence of the porcine ATP1A3 promoter, which was found to be closely homologous to its human counterpart. The function and specificity of the porcine ATP1A3 promoter was analyzed in transgenic zebrafish, demonstrating that it is active and drives expression in embryonic brain and spinal cord. The results of the present study provide a sound basis for employing the ATP1A3 promoter in attempts to generate transgenic porcine models of neurological diseases caused by ATP1A3 mutations.
Collapse
Affiliation(s)
- Carina Henriksen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | - Lone Bruhn Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- * E-mail:
| |
Collapse
|
35
|
Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature 2013; 502:201-6. [PMID: 24089211 DOI: 10.1038/nature12578] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/16/2013] [Indexed: 11/08/2022]
Abstract
Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.
Collapse
|
36
|
Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, Lindahl E, Fedosova N, Nissen P. Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science 2013; 342:123-7. [PMID: 24051246 DOI: 10.1126/science.1243352] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Na(+), K(+)-adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na(+) and K(+) across the plasma membrane--a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K(+)-bound or ouabain-blocked forms. We present the crystal structure of a Na(+)-bound Na(+), K(+)-ATPase as determined at 4.3 Å resolution. Compared with the K(+)-bound form, large conformational changes are observed in the α subunit whereas the β and γ subunit structures are maintained. The locations of the three Na(+) sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na(+) from IIIb through IIIa, followed by exchange of Na(+) for K(+) at sites I and II, is suggested.
Collapse
Affiliation(s)
- Maria Nyblom
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Danish National Research Foundation, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kirshenbaum GS, Dawson N, Mullins JGL, Johnston TH, Drinkhill MJ, Edwards IJ, Fox SH, Pratt JA, Brotchie JM, Roder JC, Clapcote SJ. Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice. PLoS One 2013; 8:e60141. [PMID: 23527305 PMCID: PMC3603922 DOI: 10.1371/journal.pone.0060141] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/21/2013] [Indexed: 12/29/2022] Open
Abstract
Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na+,K+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na+,K+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na+,K+-ATPase α3, including upon the K+ pore and predicted K+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na+,K+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC.
Collapse
Affiliation(s)
- Greer S. Kirshenbaum
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neil Dawson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jonathan G. L. Mullins
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Tom H. Johnston
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - Mark J. Drinkhill
- Division of Cardiovascular and Neuronal Remodelling, Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, Leeds, United Kingdom
| | - Ian J. Edwards
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Susan H. Fox
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - Judith A. Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jonathan M. Brotchie
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - John C. Roder
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Steven J. Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Ye Q, Lai F, Banerjee M, Duan Q, Li Z, Si S, Xie Z. Expression of mutant α1 Na/K-ATPase defective in conformational transition attenuates Src-mediated signal transduction. J Biol Chem 2013; 288:5803-14. [PMID: 23288841 DOI: 10.1074/jbc.m112.442608] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The α1 Na/K-ATPase possesses both pumping and signaling functions. Using purified enzyme we found that the α1 Na/K-ATPase might interact with and regulate Src activity in a conformation-dependent manner. Here we further explored the importance of the conformational transition capability of α1 Na/K-ATPase in regulation of Src-related signal transduction in cell culture. We first rescued the α1-knockdown cells by wild-type rat α1 or α1 mutants (I279A and F286A) that are known to be defective in conformational transition. Stable cell lines with comparable expression of wild type α1, I279A, and F286A were characterized. As expected, the defects in conformation transition resulted in comparable degree of inhibition of pumping activity in the mutant-rescued cell lines. However, I279A was more effective in inhibiting basal Src activity than either the wild-type or the F286A. Although much higher ouabain concentration was required to stimulate Src in I279A-rescued cells, extracellular K(+) was comparably effective in regulating Src in both control and I279A cells. In contrast, ouabain and extracellular K(+) failed to produce detectable changes in Src activity in F286A-rescued cells. Furthermore, expression of either mutant inhibited integrin-induced activation of Src/FAK pathways and slowed cell spreading processes. Finally, the expression of these mutants inhibited cell growth, with I279A being more potent than that of F286A. Taken together, the new findings suggest that the α1 Na/K-ATPase may be a key player in dynamic regulation of cellular Src activity and that the capability of normal conformation transition is essential for both pumping and signaling functions of α1 Na/K-ATPase.
Collapse
Affiliation(s)
- Qiqi Ye
- Department of Physiology, University of Toledo College of Medicine, Toledo Ohio 43614, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Dystonia has been defined as a syndrome of involuntary, sustained muscle contractions affecting one or more sites of the body, frequently causing twisting and repetitive movements or abnormal postures. Dystonia is also a clinical sign that can be the presenting or prominent manifestation of many neurodegenerative and neurometabolic disorders. Etiological categories include primary dystonia, secondary dystonia, heredodegenerative diseases with dystonia, and dystonia plus. Primary dystonia includes syndromes in which dystonia is the sole phenotypic manifestation with the exception that tremor can be present as well. Most primary dystonia begins in adults, and approximately 10% of probands report one or more affected family members. Many cases of childhood- and adolescent-onset dystonia are due to mutations in TOR1A and THAP1. Mutations in THAP1 and CIZ1 have been associated with sporadic and familial adult-onset dystonia. Although significant recent progress had been made in defining the genetic basis for most of the dystonia-plus and heredodegenerative diseases with dystonia, a major gap remains in understanding the genetic etiologies for most cases of adult-onset primary dystonia. Common themes in the cellular biology of dystonia include G1/S cell cycle control, monoaminergic neurotransmission, mitochondrial dysfunction, and the neuronal stress response.
Collapse
Affiliation(s)
- Mark S LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
40
|
Abstract
Identifying genes involved in behavioural disorders in man is a challenge as the cause is often multigenic and the phenotype is modulated by environmental cues. Mouse mutants are a valuable tool for identifying novel pathways underlying specific neurological phenotypes and exploring the influence both genetic and non-genetic factors. Many human variants causing behavioural disorders are not gene deletions but changes in levels of expression or activity of a gene product; consequently, large-scale mouse ENU mutagenesis has the advantage over the study of null mutants in that it generates a range of point mutations that frequently mirror the subtlety and heterogeneity of human genetic lesions. ENU mutants have provided novel and clinically relevant functional information on genes that influence many aspects of mammalian behaviour, from neuropsychiatric endophenotypes to circadian rhythms. This review will highlight some of the most important findings that have been made using this method in several key areas of neurological disease research.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
41
|
Kirshenbaum GS, Clapcote SJ, Petersen J, Vilsen B, Ralph MR, Roder JC. Genetic suppression of agrin reduces mania-like behavior in Na+ , K+ -ATPase α3 mutant mice. GENES BRAIN AND BEHAVIOR 2012; 11:436-43. [PMID: 22520507 DOI: 10.1111/j.1601-183x.2012.00800.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myshkin mice heterozygous for an inactivating mutation in the neuron-specific Na(+) ,K(+) -ATPase α3 isoform show behavior analogous to mania, including an abnormal endogenous circadian period. Agrin is a proteoglycan implicated as a regulator of synapses that has been proposed to inhibit activity of Na(+) ,K(+) -ATPase α3. We examined whether the mania-related behavior of Myshkin mice could be rescued by a reduction in the expression of agrin through genetic knockout. The suppression of agrin reduced hyperambulation and holeboard exploration, restored anxiety-like behavior (or reduced risk-taking behavior), improved prepulse inhibition and shortened the circadian period. Hence, agrin is important for regulating mania-like behavior and circadian rhythms. In Myshkin mice, the suppression of agrin increased brain Na(+) ,K(+) -ATPase activity by 11 ± 4%, whereas no effect on Na(+) ,K(+) -ATPase activity was detected when agrin was suppressed in mice without the Myshkin mutation. These results introduce agrin as a potential therapeutic target for the treatment of mania and other neurological disorders associated with reduced Na(+) ,K(+) -ATPase activity and neuronal hyperexcitability.
Collapse
Affiliation(s)
- G S Kirshenbaum
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Critical role of a transmembrane lysine in aminophospholipid transport by mammalian photoreceptor P4-ATPase ATP8A2. Proc Natl Acad Sci U S A 2012; 109:1449-54. [PMID: 22307598 DOI: 10.1073/pnas.1108862109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATP8A2 is a P(4)-ATPase ("flippase") located in membranes of retinal photoreceptors, brain cells, and testis, where it mediates transport of aminophospholipids toward the cytoplasmic leaflet. It has long been an enigma whether the mechanism of P(4)-ATPases resembles that of the well-characterized cation-transporting P-type ATPases, and it is unknown whether the flippases interact directly with the lipid and with counterions. Our results demonstrate that ATP8A2 forms a phosphoenzyme intermediate at the conserved aspartate (Asp(416)) in the P-type ATPase signature sequence and exists in E(1)P and E(2)P forms similar to the archetypical P-type ATPases. Using the properties of the phosphoenzyme, the partial reaction steps of the transport cycle were examined, and the roles of conserved residues Asp(196), Glu(198), Lys(873), and Asn(874) in the transport mechanism were elucidated. The former two residues in the A-domain T/D-G-E-S/T motif are involved in catalysis of E(2)P dephosphorylation, the glutamate being essential. Transported aminophospholipids activate the dephosphorylation similar to K(+) activation of dephosphorylation in Na(+),K(+)-ATPase. Lys(873) mutants (particularly K873A and K873E) display a markedly reduced sensitivity to aminophospholipids. Hence, Lys(873), located in transmembrane segment M5 at a "hot spot" for cation binding in Ca(2+)-ATPase and Na(+),K(+)-ATPase, appears to participate directly in aminophospholipid binding or to mediate a crucial interaction within the ATP8A2-CDC50 complex. By contrast, Lys(865) is unimportant for aminophospholipid sensitivity. Binding of Na(+), H(+), K(+), Cl(-), or Ca(2+) to the E(1) form as a counterion is not required for activation of phosphorylation from ATP. Therefore, phospholipids could be the only substrate transported by ATP8A2.
Collapse
|
43
|
Schack VR, Holm R, Vilsen B. Inhibition of phosphorylation of na+,k+-ATPase by mutations causing familial hemiplegic migraine. J Biol Chem 2011; 287:2191-202. [PMID: 22117059 DOI: 10.1074/jbc.m111.323022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurological disorder familial hemiplegic migraine type II (FHM2) is caused by mutations in the α2-isoform of the Na(+),K(+)-ATPase. We have studied the partial reaction steps of the Na(+),K(+)-pump cycle in nine FHM2 mutants retaining overall activity at a level still compatible with cell growth. Although it is believed that the pathophysiology of FHM2 results from reduced extracellular K(+) clearance and/or changes in Na(+) gradient-dependent transport processes in neuroglia, a reduced affinity for K(+) or Na(+) is not a general finding with the FHM2 mutants. Six of the FHM2 mutations markedly affect the maximal rate of phosphorylation from ATP leading to inhibition by intracellular K(+), thereby likely compromising pump function under physiological conditions. In mutants R593W, V628M, and M731T, the defective phosphorylation is caused by local perturbations within the Rossmann fold, possibly interfering with the bending of the P-domain during phosphoryl transfer. In mutants V138A, T345A, and R834Q, long range effects reaching from as far away as the M2 transmembrane helix perturb the function of the catalytic site. Mutant E700K exhibits a reduced rate of E(2)P dephosphorylation without effect on phosphorylation from ATP. An extremely reduced vanadate affinity of this mutant indicates that the slow dephosphorylation reflects a destabilization of the phosphoryl transition state. This seems to be caused by insertion of the lysine between two other positively charged residues of the Rossmann fold. In mutants R202Q and T263M, effects on the A-domain structure are responsible for a reduced rate of the E(1)P to E(2)P transition.
Collapse
|
44
|
Bøttger P, Doğanlı C, Lykke-Hartmann K. Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 2011; 36:855-71. [PMID: 22067897 DOI: 10.1016/j.neubiorev.2011.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
The two autosomal dominantly inherited neurological diseases: familial hemiplegic migraine type 2 (FHM2) and familial rapid-onset of dystonia-parkinsonism (Familial RDP) are caused by in vivo mutations of specific alpha subunits of the sodium-potassium pump (Na(+)/K(+)-ATPase). Intriguingly, patients with classical FHM2 and RDP symptoms additionally suffer from other manifestations, such as epilepsy/seizures and developmental disabilities. Recent studies of FHM2 and RDP mouse models provide valuable tools for dissecting the vital roles of the Na(+)/K(+)-ATPases, and we discuss their relevance to the complex patient symptoms and manifestations. Thus, it is interesting that mouse models targeting a specific α-isoform cause different, although still comparable, phenotypes consistent with classical symptoms and other manifestations observed in FHM2 and RDP patients. This review highlights that use of mouse models have broad potentials for future research concerning migraine and dystonia-related diseases, which will contribute towards understanding the, yet unknown, pathophysiologies.
Collapse
Affiliation(s)
- Pernille Bøttger
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Denmark; Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, Denmark
| | | | | |
Collapse
|
45
|
Mania-like behavior induced by genetic dysfunction of the neuron-specific Na+,K+-ATPase α3 sodium pump. Proc Natl Acad Sci U S A 2011; 108:18144-9. [PMID: 22025725 DOI: 10.1073/pnas.1108416108] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bipolar disorder is a debilitating psychopathology with unknown etiology. Accumulating evidence suggests the possible involvement of Na(+),K(+)-ATPase dysfunction in the pathophysiology of bipolar disorder. Here we show that Myshkin mice carrying an inactivating mutation in the neuron-specific Na(+),K(+)-ATPase α3 subunit display a behavioral profile remarkably similar to bipolar patients in the manic state. Myshkin mice show increased Ca(2+) signaling in cultured cortical neurons and phospho-activation of extracellular signal regulated kinase (ERK) and Akt in the hippocampus. The mood-stabilizing drugs lithium and valproic acid, specific ERK inhibitor SL327, rostafuroxin, and transgenic expression of a functional Na(+),K(+)-ATPase α3 protein rescue the mania-like phenotype of Myshkin mice. These findings establish Myshkin mice as a unique model of mania, reveal an important role for Na(+),K(+)-ATPase α3 in the control of mania-like behavior, and identify Na(+),K(+)-ATPase α3, its physiological regulators and downstream signal transduction pathways as putative targets for the design of new antimanic therapies.
Collapse
|
46
|
Abstract
The last 25 years have seen remarkable advances in our understanding of the genetic etiologies of dystonia, new approaches into dissecting underlying pathophysiology, and independent progress in identifying effective treatments. In this review we highlight some of these advances, especially the genetic findings that have taken us from phenomenological to molecular-based diagnoses. Twenty DYT loci have been designated and 10 genes identified, all based on linkage analyses in families. Hand in hand with these genetic findings, neurophysiological and imaging techniques have been employed that have helped illuminate the similarities and differences among the various etiological dystonia subtypes. This knowledge is just beginning to yield new approaches to treatment including those based on DYT1 animal models. Despite the lag in identifying genetically based therapies, effective treatments, including impressive benefits from deep brain stimulation and botulinum toxin chemodenervation, have marked the last 25 years. The challenge ahead includes continued advancement into understanding dystonia's many underlying causes and associated pathology and using this knowledge to advance treatment including preventing genetic disease expression.
Collapse
Affiliation(s)
- Laurie J Ozelius
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
47
|
Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 2011; 12:60-70. [PMID: 21179061 DOI: 10.1038/nrm3031] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.
Collapse
Affiliation(s)
- J Preben Morth
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Denmark
| | | | | | | | | | | | | |
Collapse
|