1
|
Huang Z, Qin D, Abuduwupuer X, Cao L, Piao Y, Shao Z, Jiang L, Guo Z, Gao R. Regulate catalytic performance by engineering non-regular structure of extradiol dioxygenase: An entrance to bottom strategy. Int J Biol Macromol 2024; 281:136246. [PMID: 39366601 DOI: 10.1016/j.ijbiomac.2024.136246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Extradiol dioxygenase Tcu3516 is a home-sourced enzyme demonstrating potent aromatic phenol degradation capacity. To add to the advantageous modifications inside active cavity, this work reported a novel strategy to engineer rarely concerned non-regular structures around the entrance towards the active site at the bottom of cavity. Three structures, Loop region 1 (Loop1: Met173-Arg185), Loop region 2 (Loop2: Ala201-Val212) and C-terminal (C-tail: His290-Lys306) were therefore identified through structural flexibility analysis. Highly rigid prolines within the structures were mutated into smaller alanine, glycine, or serine to improve structural flexibilities; while only P183S on Loop1 showed 3-fold activity enhancement vs the WT when subjected to cleavage of mono-cyclic catechol analogues. The analysis of Root Mean Square Fluctuation showed that P183S presents certain enhancement on Loop1 flexibility without dramatic changes of other domains. Furthermore, the synergetic effects from mutation P183S and cavity-based mutations V186L, V212N and D285A were evaluated by characterizing combinatorial mutants. Temperature dependence and thermostability of the combined mutants showed a more flexible catalytic domain without sacrificing structural integrity and stability. kcat value of P183S/V186L (SL) towards monocyclic catechols significantly surpasses any other combinatorial mutants around Tcu3516 active sites. Moreover, the synergetic effects on conformational plasticity were analyzed by molecular dynamic simulations to shed light into the interplay between structural changes and catalytic performance.
Collapse
Affiliation(s)
- Zihao Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Deyuan Qin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiemuxinuer Abuduwupuer
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Luxin Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingdan Piao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhengkang Shao
- GeneScience Pharmaceuticals Co., Ltd., Changchun 130012, China
| | - Liyan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark.
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Ma J, Zhuang Y, Wang Y, Zhu N, Wang T, Xiao H, Chen J. Update on new trend and progress of the mechanism of polycyclic aromatic hydrocarbon biodegradation by Rhodococcus, based on the new understanding of relevant theories: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93345-93362. [PMID: 37548784 DOI: 10.1007/s11356-023-28894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Rapid industrial and societal developments have led to substantial increases in the use and exploitation of petroleum, and petroleum hydrocarbon pollution has become a serious threat to human health and the environment. Polycyclic aromatic hydrocarbons (PAHs) are primary components of petroleum hydrocarbons. In recent years, microbial remediation of PAHs pollution has been regarded as the most promising and cost-effective treatment measure because of its low cost, robust efficacy, and lack of secondary pollution. Rhodococcus bacteria are regarded as one of main microorganisms that can effectively degrade PAHs because of their wide distribution, broad degradation spectrum, and network-like evolution of degradation gene clusters. In this review, we focus on the biological characteristics of Rhodococcus; current trends in PAHs degradation based on knowledge maps; and the cellular structural, biochemical, and enzymatic basis of degradation mechanisms, along with whole genome and transcriptional regulation. These research advances provide clues for the prospects of Rhodococcus-based applications in environmental protection.
Collapse
Affiliation(s)
- Jinglin Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yan Zhuang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ning Zhu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ting Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Hongbin Xiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
3
|
Babicz JT, Rogers MS, DeWeese DE, Sutherlin KD, Banerjee R, Böttger LH, Yoda Y, Nagasawa N, Saito M, Kitao S, Kurokuzu M, Kobayashi Y, Tamasaku K, Seto M, Lipscomb JD, Solomon EI. Nuclear Resonance Vibrational Spectroscopy Definition of Peroxy Intermediates in Catechol Dioxygenases: Factors that Determine Extra- versus Intradiol Cleavage. J Am Chem Soc 2023; 145:15230-15250. [PMID: 37414058 PMCID: PMC10804917 DOI: 10.1021/jacs.3c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The extradiol dioxygenases (EDOs) and intradiol dioxygenases (IDOs) are nonheme iron enzymes that catalyze the oxidative aromatic ring cleavage of catechol substrates, playing an essential role in the carbon cycle. The EDOs and IDOs utilize very different FeII and FeIII active sites to catalyze the regiospecificity in their catechol ring cleavage products. The factors governing this difference in cleavage have remained undefined. The EDO homoprotocatechuate 2,3-dioxygenase (HPCD) and IDO protocatechuate 3,4-dioxygenase (PCD) provide an opportunity to understand this selectivity, as key O2 intermediates have been trapped for both enzymes. Nuclear resonance vibrational spectroscopy (in conjunction with density functional theory calculations) is used to define the geometric and electronic structures of these intermediates as FeII-alkylhydroperoxo (HPCD) and FeIII-alkylperoxo (PCD) species. Critically, in both intermediates, the initial peroxo bond orientation is directed toward extradiol product formation. Reaction coordinate calculations were thus performed to evaluate both the extra- and intradiol O-O cleavage for the simple organic alkylhydroperoxo and for the FeII and FeIII metal catalyzed reactions. These results show the FeII-alkylhydroperoxo (EDO) intermediate undergoes facile extradiol O-O bond homolysis due to its extra e-, while for the FeIII-alkylperoxo (IDO) intermediate the extradiol cleavage involves a large barrier and would yield the incorrect extradiol product. This prompted our evaluation of a viable mechanism to rearrange the FeIII-alkylperoxo IDO intermediate for intradiol cleavage, revealing a key role in the rebinding of the displaced Tyr447 ligand in this rearrangement, driven by the proton delivery necessary for O-O bond cleavage.
Collapse
Affiliation(s)
- Jeffrey T. Babicz
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, California 94305, United States
| | - Melanie S. Rogers
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391, United States
| | - Dory E. DeWeese
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, California 94305, United States
| | - Kyle D. Sutherlin
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, California 94305, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391, United States
| | - Lars H. Böttger
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, California 94305, United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Nobumoto Nagasawa
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Makina Saito
- Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shinji Kitao
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - Masayuki Kurokuzu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5148, Japan
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
García MM, García de Llasera MP. Electrophoretic characterization of cellular and extracellular proteins from Selenastrum capricornutum cultures degrading benzo(a)pyrene and their identification by UPLC-ESI-TOF mass spectrometry. CHEMOSPHERE 2023:139284. [PMID: 37348613 DOI: 10.1016/j.chemosphere.2023.139284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Selenastrum capricornutum efficiently degrades benzo(a)pyrene (BaP) but few proteins related to BaP degradation have been identified in this microalgae. So far, it has only been suggested that it could degrade BaP via the monooxygenase and/or dioxygenase pathways. To know more about this fact, in this work, cultures of S. capricornutum incubated with BaP were used to obtain the molecular weights (MWs) of proteins existing in its extra- and cellular extracts by electrophoresis and UPLC-ESI(+)-TOF MS analysis. The results of this proteomic approach indicated that BaP markedly induces the MWs: 6-20, 30, 45, and 65 kDa in cells; 6-20, 30.3, 38-45, and 55 kDa in liquid medium. So, these proteins could be related to BaP biodegradation. An identified protein with monooxygenase activity and rubredoxins (Rds) show to be related to BaP degradation: Rds could participate, together with the monooxygenase in the electron transfer during the formation of monohydroxylated-BaP metabolites. Rds may be also associated with a dioxygenase system that degrades BaP to form dihydrodiol-BaP metabolites. A multi-pass membrane protein was identified too, and it can regulate the transport of molecules like enzymes from inside the cell to the outside environment. At the same time, the presence of a dihydrolipoamide acetyltransferase validated the stress caused by the exposure to BaP. It is noteworthy that these findings provide valuable and original information on the characterization of the proteins of S. capricornutum cultures degrading BaP, whose enzymes have so far not been known. It is important to highlight that the functions of the identified proteins can help in understanding the metabolic and environmental behavior of this microalgae, and the extracts containing the degrading enzymes could be utilized in bioremediation applications.
Collapse
Affiliation(s)
- Manuel Méndez García
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F., 04510, Mexico
| | - Martha Patricia García de Llasera
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F., 04510, Mexico.
| |
Collapse
|
5
|
The ArsI C-As lyase: Elucidating the catalytic mechanism of degradation of organoarsenicals. J Inorg Biochem 2022; 232:111836. [DOI: 10.1016/j.jinorgbio.2022.111836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
|
6
|
Zhang X, Huang Z, Wang D, Zhang Y, Eser BE, Gu Z, Dai R, Gao R, Guo Z. A new thermophilic extradiol dioxygenase promises biodegradation of catecholic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126860. [PMID: 34399224 DOI: 10.1016/j.jhazmat.2021.126860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Extradiol dioxygenases (EDOs) catalyze the meta cleavage of catechol into 2-hydroxymuconaldehyde, a critical step in the degradation of aromatic compounds in the environment. In the present work, a novel thermophilic extradiol dioxygenase from Thermomonospora curvata DSM43183 was cloned, expressed, and characterized by phylogenetic and biochemical analyses. This enzyme exhibited excellent thermo-tolerance, displaying optimal activity at 50 °C, remaining >40% activity at 70 °C. Structural modeling and molecular docking demonstrated that both active center and pocket-construction loops locate at the C-terminal domain. Site-specific mutants D285A, H205V, F301V based on a rational design were obtained to widen the entrance of substrates; resulting in significantly improved catalytic performance for all the 3 mutants. Compared to the wild-type, the mutant D285A showed remarkably improved activities with respect to the 3,4-dihydroxyphenylacetic acid, catechol, and 3-chlorocatechol, by 17.7, 6.9, and 3.7-fold, respectively. The results thus verified the effectiveness of modeling guided design; and confirmed that the C-terminal loop structure indeed plays a decisive role in determining catalytic ring-opening efficiency and substrate specificity of the enzyme. This study provided a novel thermostable dioxygenase with a broad substrate promiscuity for detoxifying environmental pollutants and provided a new thinking for further enzyme engineering of EDOs.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China; Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zihao Huang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Dan Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zhenyu Gu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Rongrong Dai
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China.
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark.
| |
Collapse
|
7
|
A novel Bacillus ligniniphilus catechol 2,3-dioxygenase shows unique substrate preference and metal requirement. Sci Rep 2021; 11:23982. [PMID: 34907211 PMCID: PMC8671467 DOI: 10.1038/s41598-021-03144-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
Identification of novel enzymes from lignin degrading microorganisms will help to develop biotechnologies for biomass valorization and aromatic hydrocarbons degradation. Bacillus ligniniphilus L1 grows with alkaline lignin as the single carbon source and is a great candidate for ligninolytic enzyme identification. The first dioxygenase from strain L1 was heterologously expressed, purified, and characterized with an optimal temperature and pH of 32.5 °C and 7.4, respectively. It showed the highest activity with 3-ethylcatechol and significant activities with other substrates in the decreasing order of 3-ethylcatechol > 3-methylcatechol > 3-isopropyl catechol > 2, 3-dihydroxybiphenyl > 4-methylcatechol > catechol. It did not show activities against other tested substrates with similar structures. Most reported catechol 2,3-dioxygenases (C23Os) are Fe2+-dependent whereas Bacillus ligniniphilus catechol 2,3-dioxygenase (BLC23O) is more Mn2+- dependent. At 1 mM, Mn2+ led to 230-fold activity increase and Fe2+ led to 22-fold increase. Sequence comparison and phylogenetic analyses suggested that BL23O is different from other Mn-dependent enzymes and uniquely grouped with an uncharacterized vicinal oxygen chelate (VOC) family protein from Paenibacillus apiaries. Gel filtration analysis showed that BLC23O is a monomer under native condition. This is the first report of a C23O from Bacillus ligniniphilus L1 with unique substrate preference, metal-dependency, and monomeric structure.
Collapse
|
8
|
Wang Y, Liu KF, Yang Y, Davis I, Liu A. Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens. Proc Natl Acad Sci U S A 2020; 117:19720-19730. [PMID: 32732435 PMCID: PMC7443976 DOI: 10.1073/pnas.2005327117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The synthesis of quinolinic acid from tryptophan is a critical step in the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in mammals. Herein, the nonheme iron-based 3-hydroxyanthranilate-3,4-dioxygenase responsible for quinolinic acid production was studied by performing time-resolved in crystallo reactions monitored by UV-vis microspectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray crystallography. Seven catalytic intermediates were kinetically and structurally resolved in the crystalline state, and each accompanies protein conformational changes at the active site. Among them, a monooxygenated, seven-membered lactone intermediate as a monodentate ligand of the iron center at 1.59-Å resolution was captured, which presumably corresponds to a substrate-based radical species observed by EPR using a slurry of small-sized single crystals. Other structural snapshots determined at around 2.0-Å resolution include monodentate and subsequently bidentate coordinated substrate, superoxo, alkylperoxo, and two metal-bound enol tautomers of the unstable dioxygenase product. These results reveal a detailed stepwise O-atom transfer dioxygenase mechanism along with potential isomerization activity that fine-tunes product profiling and affects the production of quinolinic acid at a junction of the metabolic pathway.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yu Yang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249;
| |
Collapse
|
9
|
Zeng XH, Du H, Zhao HM, Xiang L, Feng NX, Li H, Li YW, Cai QY, Mo CH, Wong MH, He ZL. Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122211. [PMID: 32036315 DOI: 10.1016/j.jhazmat.2020.122211] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
This study aims to clarify the interaction mechanism of substrate with catechol 2,3-dioxygenase (C23O) through multi-technique combination. A novel C23O (named C23O-2G) was cloned, heterogeneously expressed, and identified as a new member in subfamily I.2 of extradiol dioxygenases. Based on the simulations of molecular docking and dynamics, the exact binding sites of catechol on C23O-2G were identified, and the catalytic mechanism mediated by key residues was proposed. The roles of the predicted residues during catalysis were confirmed by site-directed mutagenesis, and the mutation of Thr254 could significantly increase catalytic efficiency and substrate specificity of C23O-2G. The binding and thermodynamic parameters obtained from fluorescence spectra suggested that catechol could effectively quench the intrinsic fluorescence of C23O-2G via static and dynamic quenching mechanisms and spontaneously formed C23O-2G/catechol complex by the binding forces of hydrogen bond and van der Waals force. The results of UV-vis spectra, synchronous fluorescence, and CD spectra revealed obvious changes in the microenvironment and conformation of C23O-2G, especially for the secondary structure. The atomic force microscope images further demonstrated the changes from an appearance point of view. This study could improve our mechanistic understanding of representative dioxygenases involved in aromatic compound degradation.
Collapse
Affiliation(s)
- Xian-Hong Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, 34945, USA.
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhen-Li He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, 34945, USA
| |
Collapse
|
10
|
Wang Y, Shin I, Fu Y, Colabroy KL, Liu A. Crystal Structures of L-DOPA Dioxygenase from Streptomyces sclerotialus. Biochemistry 2019; 58:5339-5350. [PMID: 31180203 DOI: 10.1021/acs.biochem.9b00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extradiol dioxygenases are essential biocatalysts for breaking down catechols. The vicinal oxygen chelate (VOC) superfamily contains a large number of extradiol dioxygenases, most of which are found as part of catabolic pathways degrading a variety of natural and human-made aromatic rings. The l-3,4-dihydroxyphenylalanine (L-DOPA) extradiol dioxygenases compose a multitude of pathways that produce various antibacterial or antitumor natural products. The structural features of these dioxygenases are anticipated to be distinct from those of other VOC extradiol dioxygenases. Herein, we identified a new L-DOPA dioxygenase from the thermophilic bacterium Streptomyces sclerotialus (SsDDO) through a sequence and genome context analysis. The activity of SsDDO was kinetically characterized with L-DOPA using an ultraviolet-visible spectrophotometer and an oxygen electrode. The optimal temperature of the assay was 55 °C, at which the Km and kcat of SsDDO were 110 ± 10 μM and 2.0 ± 0.1 s-1, respectively. We determined the de novo crystal structures of SsDDO in the ligand-free form and as a substrate-bound complex, refined to 1.99 and 2.31 Å resolution, respectively. These structures reveal that SsDDO possesses a form IV arrangement of βαβββ modules, the first characterization of this assembly from among the VOC/type I extradiol dioxygenase protein family. Electron paramagnetic resonance spectra of Fe-NO adducts for the resting and substrate-bound enzyme were obtained. This work contributes to our understanding of a growing class of topologically distinct VOC dioxygenases, and the obtained structural features will improve our understanding of the extradiol cleavage reaction within the VOC superfamily.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Inchul Shin
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Yizhi Fu
- Department of Chemistry , Muhlenberg College , Allentown , Pennsylvania 18104 , United States
| | - Keri L Colabroy
- Department of Chemistry , Muhlenberg College , Allentown , Pennsylvania 18104 , United States
| | - Aimin Liu
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| |
Collapse
|
11
|
Sutherlin KD, Wasada-Tsutsui Y, Mbughuni MM, Rogers MS, Park K, Liu LV, Kwak Y, Srnec M, Böttger LH, Frenette M, Yoda Y, Kobayashi Y, Kurokuzu M, Saito M, Seto M, Hu M, Zhao J, Alp EE, Lipscomb JD, Solomon EI. Nuclear Resonance Vibrational Spectroscopy Definition of O 2 Intermediates in an Extradiol Dioxygenase: Correlation to Crystallography and Reactivity. J Am Chem Soc 2018; 140:16495-16513. [PMID: 30418018 DOI: 10.1021/jacs.8b06517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The extradiol dioxygenases are a large subclass of mononuclear nonheme Fe enzymes that catalyze the oxidative cleavage of catechols distal to their OH groups. These enzymes are important in bioremediation, and there has been significant interest in understanding how they activate O2. The extradiol dioxygenase homoprotocatechuate 2,3-dioxygenase (HPCD) provides an opportunity to study this process, as two O2 intermediates have been trapped and crystallographically defined using the slow substrate 4-nitrocatechol (4NC): a side-on Fe-O2-4NC species and a Fe-O2-4NC peroxy bridged species. Also with 4NC, two solution intermediates have been trapped in the H200N variant, where H200 provides a second-sphere hydrogen bond in the wild-type enzyme. While the electronic structure of these solution intermediates has been defined previously as FeIII-superoxo-catecholate and FeIII-peroxy-semiquinone, their geometric structures are unknown. Nuclear resonance vibrational spectroscopy (NRVS) is an important tool for structural definition of nonheme Fe-O2 intermediates, as all normal modes with Fe displacement have intensity in the NRVS spectrum. In this study, NRVS is used to define the geometric structure of the H200N-4NC solution intermediates in HPCD as an end-on FeIII-superoxo-catecholate and an end-on FeIII-hydroperoxo-semiquinone. Parallel calculations are performed to define the electronic structures and protonation states of the crystallographically defined wild-type HPCD-4NC intermediates, where the side-on intermediate is found to be a FeIII-hydroperoxo-semiquinone. The assignment of this crystallographic intermediate is validated by correlation to the NRVS data through computational removal of H200. While the side-on hydroperoxo semiquinone intermediate is computationally found to be nonreactive in peroxide bridge formation, it is isoenergetic with a superoxo catecholate species that is competent in performing this reaction. This study provides insight into the relative reactivities of FeIII-superoxo and FeIII-hydroperoxo intermediates in nonheme Fe enzymes and into the role H200 plays in facilitating extradiol catalysis.
Collapse
Affiliation(s)
- Kyle D Sutherlin
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Yuko Wasada-Tsutsui
- Department of Life Science and Applied Chemistry, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Michael M Mbughuni
- Department of Biochemistry, Molecular Biology, & Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Melanie S Rogers
- Department of Biochemistry, Molecular Biology, & Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Kiyoung Park
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Lei V Liu
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Yeonju Kwak
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Martin Srnec
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Lars H Böttger
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Mathieu Frenette
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute , Hyogo 679-5198 , Japan
| | | | - Masayuki Kurokuzu
- Research Reactor Institute, Kyoto University , Osaka 590-0494 , Japan
| | - Makina Saito
- Research Reactor Institute, Kyoto University , Osaka 590-0494 , Japan
| | - Makoto Seto
- Research Reactor Institute, Kyoto University , Osaka 590-0494 , Japan
| | - Michael Hu
- Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Jiyong Zhao
- Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - E Ercan Alp
- Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology, & Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States.,SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| |
Collapse
|
12
|
Biodegradation of 7-Hydroxycoumarin in Pseudomonas mandelii 7HK4 via ipso-Hydroxylation of 3-(2,4-Dihydroxyphenyl)-propionic Acid. Molecules 2018; 23:molecules23102613. [PMID: 30321993 PMCID: PMC6222606 DOI: 10.3390/molecules23102613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
A gene cluster, denoted as hcdABC, required for the degradation of 3-(2,4-dihydroxyphenyl)-propionic acid has been cloned from 7-hydroxycoumarin-degrading Pseudomonas mandelii 7HK4 (DSM 107615), and sequenced. Bioinformatic analysis shows that the operon hcdABC encodes a flavin-binding hydroxylase (HcdA), an extradiol dioxygenase (HcdB), and a putative hydroxymuconic semialdehyde hydrolase (HcdC). The analysis of the recombinant HcdA activity in vitro confirms that this enzyme belongs to the group of ipso-hydroxylases. The activity of the proteins HcdB and HcdC has been analyzed by using recombinant Escherichia coli cells. Identification of intermediate metabolites allowed us to confirm the predicted enzyme functions and to reconstruct the catabolic pathway of 3-(2,4-dihydroxyphenyl)-propionic acid. HcdA catalyzes the conversion of 3-(2,4-dihydroxyphenyl)-propionic acid to 3-(2,3,5-trihydroxyphenyl)-propionic acid through an ipso-hydroxylation followed by an internal (1,2-C,C)-shift of the alkyl moiety. Then, in the presence of HcdB, a subsequent oxidative meta-cleavage of the aromatic ring occurs, resulting in the corresponding linear product (2E,4E)-2,4-dihydroxy-6-oxonona-2,4-dienedioic acid. Here, we describe a Pseudomonas mandelii strain 7HK4 capable of degrading 7-hydroxycoumarin via 3-(2,4-dihydroxyphenyl)-propionic acid pathway.
Collapse
|
13
|
Chang CY, Yan X, Crnovcic I, Annaval T, Chang C, Nocek B, Rudolf JD, Yang D, Hindra, Babnigg G, Joachimiak A, Phillips GN, Shen B. Resistance to Enediyne Antitumor Antibiotics by Sequestration. Cell Chem Biol 2018; 25:1075-1085.e4. [PMID: 29937405 PMCID: PMC6208323 DOI: 10.1016/j.chembiol.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022]
Abstract
The enediynes, microbial natural products with extraordinary cytotoxicities, have been translated into clinical drugs. Two self-resistance mechanisms are known in the enediyne producers-apoproteins for the nine-membered enediynes and self-sacrifice proteins for the ten-membered enediyne calicheamicin. Here we show that: (1) tnmS1, tnmS2, and tnmS3 encode tiancimycin (TNM) resistance in its producer Streptomyces sp. CB03234, (2) tnmS1, tnmS2, and tnmS3 homologs are found in all anthraquinone-fused enediyne producers, (3) TnmS1, TnmS2, and TnmS3 share a similar β barrel-like structure, bind TNMs with nanomolar KD values, and confer resistance by sequestration, and (4) TnmS1, TnmS2, and TnmS3 homologs are widespread in nature, including in the human microbiome. These findings unveil an unprecedented resistance mechanism for the enediynes. Mechanisms of self-resistance in producers serve as models to predict and combat future drug resistance in clinical settings. Enediyne-based chemotherapies should now consider the fact that the human microbiome harbors genes encoding enediyne resistance.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ivana Crnovcic
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thibault Annaval
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Changsoo Chang
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Boguslaw Nocek
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hindra
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60637, USA
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60637, USA
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX 77251, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
14
|
Xi L, Liu D, Wang L, Qiao N, Liu J. Catechol 2,3-dioxygenase from a new phenolic compound degraderThauerasp. K11: purification and biochemical characterization. J Basic Microbiol 2018; 58:255-262. [DOI: 10.1002/jobm.201700566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Lijun Xi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao P.R. China
| | - Dejian Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao P.R. China
| | - Lingling Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao P.R. China
| | - Nenghu Qiao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao P.R. China
| | - Jianguo Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao P.R. China
| |
Collapse
|
15
|
Pawitwar SS, Nadar VS, Kandegedara A, Stemmler TL, Rosen BP, Yoshinaga M. Biochemical Characterization of ArsI: A Novel C-As Lyase for Degradation of Environmental Organoarsenicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11115-11125. [PMID: 28936873 PMCID: PMC5870903 DOI: 10.1021/acs.est.7b03180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organoarsenicals such as the methylarsenical methylarsenate (MAs(V)) and aromatic arsenicals including roxarsone (4-hydroxy-3-nitrobenzenearsenate or Rox(V)) have been extensively used as an herbicide and growth enhancers in animal husbandry, respectively. They undergo environmental degradation to more toxic inorganic arsenite (As(III)) that contaminates crops and drinking water. We previously identified a bacterial gene (arsI) responsible for aerobic demethylation of methylarsenite (MAs(III)). The gene product, ArsI, is an Fe(II)-dependent extradiol dioxygenase that cleaves the carbon-arsenic (C-As) bond in MAs(III) and in trivalent aromatic arsenicals. The objective of this study was to elucidate the ArsI mechanism. Using isothermal titration calorimetry, we determined the dissociation constants and ligand-to-protein stoichiometry of ArsI for Fe(II), MAs(III), and aromatic phenylarsenite. Using a combination of methods including chemical modification, site-directed mutagenesis, and fluorescent spectroscopy, we demonstrated that amino acid residues predicted to participate in Fe(II)-binding (His5-His62-Glu115) and substrate binding (Cys96-Cys97) are involved in catalysis. Finally, the products of Rox(III) degradation were identified as As(III) and 2-nitrohydroquinone, demonstrating that ArsI is a dioxygenase that incorporates one oxygen atom from dioxygen into the carbon and the other to the arsenic to catalyze cleavage of the C-As bond. These results augment our understanding of the mechanism of this novel C-As lyase.
Collapse
Affiliation(s)
- Shashank S. Pawitwar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Venkadesh S. Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Ashoka Kandegedara
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Corresponding Author: Phone: 305-348-1489; fax: 305-348-0651; ; http://orcid.org/0000-0002-7243-1761
| |
Collapse
|
16
|
Liu Y, Tu N, Xie W, Li Y. Theoretical investigation on proton transfer mechanism of extradiol dioxygenase. RSC Adv 2017. [DOI: 10.1039/c7ra08080h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation mechanism of alkyl(hydro)peroxo species is performed via two parallel pathways.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Faculty of Environmental & Biological Engineering
| | - Ningyu Tu
- Faculty of Environmental & Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Wenyu Xie
- Faculty of Environmental & Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Youming Li
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
17
|
Yan Y, Ye J, Xue XM, Zhu YG. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14350-14358. [PMID: 26544154 DOI: 10.1021/acs.est.5b03357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.
Collapse
Affiliation(s)
- Yu Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jun Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
| | - Xi-Mei Xue
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| |
Collapse
|
18
|
Guo G, Fang T, Wang C, Huang Y, Tian F, Cui Q, Wang H. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium. Sci Rep 2015; 5:17603. [PMID: 26621792 PMCID: PMC4664950 DOI: 10.1038/srep17603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023] Open
Abstract
Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0–30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.
Collapse
Affiliation(s)
- Guang Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tingting Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yong Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fang Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qijia Cui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
A C⋅As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc Natl Acad Sci U S A 2014; 111:7701-6. [PMID: 24821808 DOI: 10.1073/pnas.1403057111] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arsenic is the most widespread environmental toxin. Substantial amounts of pentavalent organoarsenicals have been used as herbicides, such as monosodium methylarsonic acid (MSMA), and as growth enhancers for animal husbandry, such as roxarsone (4-hydroxy-3-nitrophenylarsonic acid) [Rox(V)]. These undergo environmental degradation to more toxic inorganic arsenite [As(III)]. We previously demonstrated a two-step pathway of degradation of MSMA to As(III) by microbial communities involving sequential reduction to methylarsonous acid [MAs(III)] by one bacterial species and demethylation from MAs(III) to As(III) by another. In this study, the gene responsible for MAs(III) demethylation was identified from an environmental MAs(III)-demethylating isolate, Bacillus sp. MD1. This gene, termed arsenic inducible gene (arsI), is in an arsenic resistance (ars) operon and encodes a nonheme iron-dependent dioxygenase with C ⋅ As lyase activity. Heterologous expression of ArsI conferred MAs(III)-demethylating activity and MAs(III) resistance to an arsenic-hypersensitive strain of Escherichia coli, demonstrating that MAs(III) demethylation is a detoxification process. Purified ArsI catalyzes Fe(2+)-dependent MAs(III) demethylation. In addition, ArsI cleaves the C ⋅ As bond in trivalent roxarsone and other aromatic arsenicals. ArsI homologs are widely distributed in prokaryotes, and we propose that ArsI-catalyzed organoarsenical degradation has a significant impact on the arsenic biogeocycle. To our knowledge, this is the first report of a molecular mechanism for organoarsenic degradation by a C ⋅ As lyase.
Collapse
|
20
|
Activity of a carboxyl-terminal truncated form of catechol 2,3-dioxygenase from Planococcus sp. S5. ScientificWorldJournal 2014; 2014:598518. [PMID: 24693238 PMCID: PMC3943285 DOI: 10.1155/2014/598518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/26/2013] [Indexed: 11/17/2022] Open
Abstract
Catechol 2,3-dioxygenases (C23Os, E.C.1.13.12.2) are two domain enzymes that catalyze degradation of monoaromatic hydrocarbons. The catalytically active C-domain of all known C23Os comprises ferrous ion ligands as well as residues forming active site pocket. The aim of this work was to examine and discuss the effect of nonsense mutation at position 289 on the activity of catechol 2,3-dioxygenase from Planococcus strain. Although the mutant C23O showed the same optimal temperature for activity as the wild-type protein (35°C), it exhibited activity slightly more tolerant to alkaline pH. Mutant enzyme exhibited also higher affinity to catechol as a substrate. Its Km (66.17 µM) was approximately 30% lower than that of wild-type enzyme. Interestingly, removal of the C-terminal residues resulted in 1.5- to 1.8-fold (P < 0.05) increase in the activity of C23OB61 against 4-methylcatechol and 4-chlorocatechol, respectively, while towards catechol the activity of the protein dropped to about 80% of that of the wild-type enzyme. The results obtained may facilitate the engineering of the C23O for application in the bioremediation of polluted areas.
Collapse
|
21
|
Ma HM, Zhou Q, Tang YM, Zhang Z, Chen YS, He HY, Pan HX, Tang MC, Gao JF, Zhao SY, Igarashi Y, Tang GL. Unconventional origin and hybrid system for construction of pyrrolopyrrole moiety in kosinostatin biosynthesis. ACTA ACUST UNITED AC 2014; 20:796-805. [PMID: 23790490 DOI: 10.1016/j.chembiol.2013.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/14/2022]
Abstract
Kosinostatin (KST), an antitumor antibiotic, features a pyrrolopyrrole moiety spirally jointed to a five-membered ring of an anthraquinone framework glycosylated with a γ-branched octose. By a combination of in silico analysis, genetic characterization, biochemical assay, and precursor feeding experiments, a biosynthetic pathway for KST was proposed, which revealed (1) the pyrrolopyrrole moiety originates from nicotinic acid and ribose, (2) the bicyclic amidine is constructed by a process similar to the tryptophan biosynthetic pathway, and (3) a discrete adenylation enzyme and a peptidyl carrier protein (PCP) are responsible for producing a PCP-tethered building block parallel to type II polyketide synthase (PKS) rather than for the PKS priming step by providing the starter unit. These findings provide an opportunity to further explore the inexplicable enzymatic logic that governs the formation of pyrrolopyrrole moiety and the spirocyclic skeleton.
Collapse
Affiliation(s)
- Hong-Min Ma
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|