1
|
Jiang H, Fu Q, Yang J, Qin H, Li A, Liu S, Liu M. Blue light irradiation suppresses oral squamous cell carcinoma through induction of endoplasmic reticulum stress and mitochondrial dysfunction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112963. [PMID: 38908147 DOI: 10.1016/j.jphotobiol.2024.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The therapeutic potential of blue light photobiomodulation in cancer treatment, particularly in inhibiting cell proliferation and promoting cell death, has attracted significant interest. Oral squamous cell carcinoma (OSCC) is a prevalent form of oral cancer, necessitating innovative treatment approaches to improve patient outcomes. In this study, we investigated the effects of 420 nm blue LED light on OSCC and explored the underlying mechanisms. Our results demonstrated that 420 nm blue light effectively reduced OSCC cell viability and migration, and induced G2/M arrest. Moreover, we observed that 420 nm blue light triggered endoplasmic reticulum (ER) stress and mitochondrial dysfunction in OSCC cells, leading to activation of the CHOP signal pathway and alterations in the levels of Bcl-2 and Bax proteins, ultimately promoting cell apoptosis. Additionally, blue light suppressed mitochondrial gene expression, likely due to its damage to mitochondrial DNA. This study highlights the distinct impact of 420 nm blue light on OSCC cells, providing valuable insights into its potential application as a clinical treatment for oral cancer.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Angze Li
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China.
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China; Zhongshan DB-light Technology Co., Ltd, 14th Floor, South Wing, Shumao Building, Torch Development Zone, Zhongshan City, Guangdong Province 528437, China.
| |
Collapse
|
2
|
Zhao LZ, Liang Y, Yin T, Liao HL, Liang B. Identification of Potential Crucial Biomarkers in STEMI Through Integrated Bioinformatic Analysis. Arq Bras Cardiol 2024; 121:e20230462. [PMID: 38597542 DOI: 10.36660/abc.20230462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/14/2023] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND ST-segment elevation myocardial infarction (STEMI) is one of the leading causes of fatal cardiovascular diseases, which have been the prime cause of mortality worldwide. Diagnosis in the early phase would benefit clinical intervention and prognosis, but the exploration of the biomarkers of STEMI is still lacking. OBJECTIVES In this study, we conducted a bioinformatics analysis to identify potential crucial biomarkers in the progress of STEMI. METHODS We obtained GSE59867 for STEMI and stable coronary artery disease (SCAD) patients. Differentially expressed genes (DEGs) were screened with the threshold of |log2fold change| > 0.5 and p <0.05. Based on these genes, we conducted enrichment analysis to explore the potential relevance between genes and to screen hub genes. Subsequently, hub genes were analyzed to detect related miRNAs and DAVID to detect transcription factors for further analysis. Finally, GSE62646 was utilized to assess DEGs specificity, with genes demonstrating AUC results exceeding 75%, indicating their potential as candidate biomarkers. RESULTS 133 DEGs between SCAD and STEMI were obtained. Then, the PPI network of DEGs was constructed using String and Cytoscape, and further analysis determined hub genes and 6 molecular complexes. Functional enrichment analysis of the DEGs suggests that pathways related to inflammation, metabolism, and immunity play a pivotal role in the progression from SCAD to STEMI. Besides, related-miRNAs were predicted, has-miR-124, has-miR-130a/b, and has-miR-301a/b regulated the expression of the largest number of genes. Meanwhile, Transcription factors analysis indicate that EVI1, AML1, GATA1, and PPARG are the most enriched gene. Finally, ROC curves demonstrate that MS4A3, KLRC4, KLRD1, AQP9, and CD14 exhibit both high sensitivity and specificity in predicting STEMI. CONCLUSIONS This study revealed that immunity, metabolism, and inflammation are involved in the development of STEMI derived from SCAD, and 6 genes, including MS4A3, KLRC4, KLRD1, AQP9, CD14, and CCR1, could be employed as candidate biomarkers to STEMI.
Collapse
Affiliation(s)
- Li-Zhi Zhao
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou - China
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou - China
| | - Yi Liang
- Department of Geriatrics, Sichuan Second Hospital of T.C.M., Chengdu - China
| | - Ting Yin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou - China
| | - Hui-Ling Liao
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou - China
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou - China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing - China
| |
Collapse
|
3
|
Kuang R, Xu Z, Zhou H, Zhang Z, Peng H, Wang D, Xu X, Zhao S, Zhao Y, Zhu M. H3K27ac modification and transcription characteristics of adipose and muscle tissues in Chuxiang Black pig. Anim Genet 2024; 55:217-229. [PMID: 38296601 DOI: 10.1111/age.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/25/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
The establishment of high-quality pork breeds for improving meat quality in the pig industry is needed. The Chuxiang Black (CX) pig is a new breed developed from Chinese local pigs and Western lean pigs that has a high proportion of lean meat and excellent meat quality. However, the characteristics of cis-regulatory elements in CX pigs are still unknown. In this study, cis-regulatory elements of muscle and adipose tissues in CX pigs were investigated using ChIP-seq and RNA sequencing. Compared with the reported cis-regulatory elements of muscle and adipose tissues, 1768 and 1012 highly activated enhancers and 433 and 275 highly activated promoters in CX muscle and adipose tissues were identified, respectively. Motif analysis showed that transcription factors, such as MEF2A and MEF2C, were core regulators of highly activated enhancers and promoters in muscle. Similarly, the transcription factors JUNB and CUX1 were identified as essential for highly activated enhancers and promoters in CX adipose tissue. These results enrich the resources for the analysis of cis-regulatory elements in the pig genome and provide new basic data for further meat quality improvement through breeding in pigs.
Collapse
Affiliation(s)
- Renzhuo Kuang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhixiang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Honghong Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhao Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hao Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Daoyuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yunxia Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
4
|
Yöntem FD, Ayaz S, Bulut Ş, Aldoğan EH, Ahbab MA. Endoplasmic reticulum stress and pro-inflammatory responses induced by phthalate metabolites monoethylhexyl phthalate and monobutyl phthalate in 1.1B4 pancreatic beta cells. Toxicology 2024; 501:153695. [PMID: 38048874 DOI: 10.1016/j.tox.2023.153695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
In recent years, phthalates and their metabolites have been associated with metabolic diseases such as diabetes mellitus. To investigate the effects of phthalate metabolites exposure on insulin production and release, 1.1B4 pancreatic beta cells were treated with different concentrations (0.001-1000 µM) of monoethylhexyl phthalate (MEHP) and monobutyl phthalate (MBP). For such purpose, the 1.1B4 cells were evaluated for their viability, apoptosis rate, lysosomal membrane permeabilization (LMP), mitochondrial membrane potential (ΔΨm), oxidative stress, ER stress status, in addition to their secretory functions. MEHP, not MBP, exhibited a notable reduction in metabolic viability, particularly at higher concentrations (500 and 1000 µM) following 24-hour exposure. Similarly, both MEHP and MBP induced decreased metabolic viability at high concentrations after 48- and 72-hour exposure. Notably, neither MEHP nor MBP demonstrated a significant impact on apoptosis rates after 24-hour exposure, and MBP induced mild necrosis at 1000 µM concentration. Cell proliferation rates, indicated by PCNA expression, decreased with 10 and 1000 µM MEHP and 0.1 and 10 µM MBP exposures. LMP analysis revealed an increase in 1000 µM MBP group. Exposure to 0.001 µM of both MEHP and MBP significantly reduced cellular glutathione (GSH) levels. No significant change in intracellular reactive oxygen species (ROS) levels and ΔΨm was observed, but MBP-exposed cells exhibited elevated levels of lipid peroxidation. Functional assessments of pancreatic beta cells unveiled reduced insulin secretion at low glucose concentrations following exposure to both MEHP and MBP, with concurrent alterations in the expression levels of key proteins associated with beta cell function, including GLUT1, GCK, PDX1, and MafA. Moreover, MEHP and MBP exposures were associated with alterations in ER stress-related pathways, including JNK, GADD153, and NF-κB expression, as well as PPARα and PPARγ levels. In conclusion, this study provides comprehensive insights into the diverse impacts of MEHP and MBP on 1.1B4 pancreatic beta cells, emphasizing their potential role in modulating cell survival, metabolic function, and stress response pathways.
Collapse
Affiliation(s)
- Fulya Dal Yöntem
- Koç University, Faculty of Medicine, Department of Biophysics, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Sinem Ayaz
- Istanbul University, Cerrahpasa, Institute of Graduate Studies, Department of Clinical Microbiology, Istanbul, Turkey; Haliç University, Faculty of Medicine, Department of Clinical Microbiology, Istanbul, Turkey
| | - Şeyma Bulut
- Bezmialem Vakif University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey; Bezmialem Vakıf University, Institute of Health Sciences, Department of Biotechnology, Istanbul, Turkey
| | | | - Müfide Aydoğan Ahbab
- University of Health Sciences Türkiye, Hamidiye Vocational School of Health Services, Istanbul, Turkey.
| |
Collapse
|
5
|
Guan HR, Li B, Zhang ZH, Wu HS, He XL, Dong YJ, Su J, Lv GY, Chen SH. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Bailing capsule on polycystic ovary syndrome. BMC Complement Med Ther 2023; 23:458. [PMID: 38102584 PMCID: PMC10722827 DOI: 10.1186/s12906-023-04280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder that is common in women of reproductive age. The clinical features of PCOS include hyperandrogenemia and polycystic ovarian changes. Bailing capsule (BL), a proprietary Chinese medicine that contains fermented Cordyceps sinensis powder, has been applied to treat PCOS. However, the specific active ingredients of BL and its mechanisms of action are yet to be elucidated. METHODS Initially, the effectiveness of BL on PCOS model mice was evaluated. Subsequently, the active ingredients of BL were searched in the TCMSP and TCM Systems Pharmacology databases, and their targets were predicted using Swiss Target Prediction and SEA databases. Furthermore, the GEO gene database was used to screen for differentially expressed genes (DEGs) related to PCOS. Data from Gene Card, OMIM, DDT, and Drugbank databases were then combined to establish a PCOS disease gene library. Cross targets were imported into the STRING database to construct a protein-protein interaction network. In addition, GO and KEGG pathway enrichment analyses were performed using Metascape and DAVID databases and visualized using Cytoscape software and R 4.2.3. The core targets were docked with SYBYL-X software, and their expressions in PCOS mice were further verified using qPCR. RESULTS The core active ingredients of BL were identified to be linoleyl acetate, cholesteryl palmitate, arachidonic acid, among others. Microarray data sets from four groups containing disease and normal samples were obtained from the GEO database. A total of 491 DEGs and 106 drug-disease cross genes were selected. Estrous cycle and ovarian lesions were found to be improved in PCOS model mice following BL treatment. While the levels of testosterone, progesterone, and prolactin decreased, that of estradiol increased. qPCR findings indicated that the expressions of JAK2, PPARG, PI3K, and AKT1 were upregulated, whereas those of ESR1 and IRS1 were downregulated in PCOS model mice. After the administration of BL, the expressions of associated genes were regulated. This study demonstrated that BL exerted anti-PCOS effects via PIK3CA, ESR1, AKT, PPARG, and IRS1 targets affecting PI3K-Akt signaling pathways. DISCUSSION This research clarified the multicomponent, multitarget, and multichannel action of BL and provided a theoretical reference for further investigations on its pharmacological basis and molecular mechanisms against PCOS.
Collapse
Affiliation(s)
- Hao-Ru Guan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang Province, 313200, PR China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Han-Song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xing-Lishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang Province, 313200, PR China.
| |
Collapse
|
6
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Ran Y, Hu C, Wan J, Kang Q, Zhou R, Liu P, Ma D, Wang J, Tang L. Integrated investigation and experimental validation of PPARG as an oncogenic driver: implications for prognostic assessment and therapeutic targeting in hepatocellular carcinoma. Front Pharmacol 2023; 14:1298341. [PMID: 38044948 PMCID: PMC10690586 DOI: 10.3389/fphar.2023.1298341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG), a key transcription factor involved in lipid metabolism and glucose homeostasis, has been implicated in various types of cancer. However, its precise role in cancer remains unclear. In this study, we conducted a comprehensive pan-cancer analysis of PPARG expression using various types of cancer obtained from public databases. We observed significant heterogeneity in PPARG expression across different types of cancer. The association between PPARG expression and patient prognosis was investigated using Cox proportional hazards regression models and survival analysis. Clinical features and protein expression levels in the cohort showed that PPARG expression was strongly associated, suggesting its potential as a therapeutic target. We also evaluated the prognostic potential of PPARG by analyzing immune infiltration and genomic stability. We experimentally validated the potential of PPARG as a therapeutic target by analyzing drug sensitivity profiles, molecular docking simulations, and in vitro cell proliferation assays associated with PPARG expression. We identified common expression patterns of PPARG with other genes involved in key carcinogenic pathways. This provides deeper insights into the molecular mechanisms underlying its carcinogenic role. Additionally, functional enrichment analysis revealed significant enrichment of genes related to drug metabolism, cell proliferation, and immune response pathways associated with PPARG. Our findings highlight the importance of PPARG in the broader biology of cancer and suggest its potential as a diagnostic and therapeutic target for specific types of cancer. The results of our study provide strong support for the potential role of PPARG as a promising prognostic biomarker and immunotherapeutic target across various types of cancer.
Collapse
Affiliation(s)
- Yunsheng Ran
- School of Pharmacy, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Chujiao Hu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Junzhao Wan
- School of Pharmacy, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Qian Kang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ruixian Zhou
- Department of Acupuncture and Moxibustion, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianta Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Sweet LA, Kuss-Duerkop SK, Byndloss MX, Keestra-Gounder AM. Nitrate-mediated luminal expansion of Salmonella Typhimurium is dependent on the ER stress protein CHOP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565559. [PMID: 37961401 PMCID: PMC10635149 DOI: 10.1101/2023.11.03.565559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Salmonella Typhimurium is an enteric pathogen that employs a variety of mechanisms to exploit inflammation resulting in expansion in the intestinal tract, but host factors that contribute to or counteract the luminal expansion are not well-defined. Endoplasmic reticulum (ER) stress induces inflammation and plays an important role in the pathogenesis of infectious diseases. However, little is known about the contribution of ER stress-induced inflammation during Salmonella pathogenesis. Here, we demonstrate that the ER stress markers Hspa5 and Xbp1 are induced in the colon of S. Typhimurium infected mice, but the pro-apoptotic transcription factor Ddit3, that encodes for the protein CHOP, is significantly downregulated. S. Typhimurium-infected mice deficient for CHOP displayed a significant decrease in inflammation, colonization, dissemination, and pathology compared to littermate control mice. Preceding the differences in S. Typhimurium colonization, a significant decrease in Nos2 gene and iNOS protein expression was observed. Deletion of Chop decreased the bioavailability of nitrate in the colon leading to reduced fitness advantage of wild type S. Typhimurium over a napA narZ narG mutant strain (deficient in nitrate respiration). CD11b+ myeloid cells, but not intestinal epithelial cells, produced iNOS resulting in nitrate bioavailability for S. Typhimurium to expand in the intestinal tract in a CHOP-dependent manner. Altogether our work demonstrates that the host protein CHOP facilitates iNOS expression in CD11b+ cells thereby contributing to luminal expansion of S. Typhimurium via nitrate respiration.
Collapse
Affiliation(s)
- Lydia A. Sweet
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon K. Kuss-Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mariana X. Byndloss
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN 37235, USA
| | - A. Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Ouyang X, Wang X, Li P, Huang Q, Zhou L, Li J, Gao L, Sun Q, Chai F, Guo S, Zhou Z, Liu X, Dai L, Cheng W, Ren H. Bacterial effector restricts liquid-liquid phase separation of ZPR1 to antagonize host UPR ER. Cell Rep 2023; 42:112700. [PMID: 37379216 DOI: 10.1016/j.celrep.2023.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
How pathogens manipulate host UPRER to mediate immune evasion is largely unknown. Here, we identify the host zinc finger protein ZPR1 as an interacting partner of the enteropathogenic E. coli (EPEC) effector NleE using proximity-enabled protein crosslinking. We show that ZPR1 assembles via liquid-liquid phase separation (LLPS) in vitro and regulates CHOP-mediated UPRER at the transcriptional level. Interestingly, in vitro studies show that the ZPR1 binding ability with K63-ubiquitin chains, which promotes LLPS of ZPR1, is disrupted by NleE. Further analyses indicate that EPEC restricts host UPRER pathways at the transcription level in a NleE-ZPR1 cascade-dependent manner. Together, our study reveals the mechanism by which EPEC interferes with CHOP-UPRER via regulating ZPR1 to help pathogens escape host defense.
Collapse
Affiliation(s)
- Xiaoxiao Ouyang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyun Wang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pan Li
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Huang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhou
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingxiang Li
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Gao
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and Sichuan University, Chengdu 610041, China
| | - Qi Sun
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangni Chai
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shupan Guo
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihui Zhou
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Liu
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lunzhi Dai
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and Sichuan University, Chengdu 610041, China
| | - Wei Cheng
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Haiyan Ren
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Yu JE, Yeo IJ, Yoo SS, Kim SH, Son DJ, Yun J, Han SB, Hong JT. Induction of ER stress-mediated apoptosis through SOD1 upregulation by deficiency of CHI3L1 inhibits lung metastasis. Theranostics 2023; 13:2693-2709. [PMID: 37215572 PMCID: PMC10196820 DOI: 10.7150/thno.82898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1), which is secreted by immune and inflammatory cells, is associated with several inflammatory diseases. However, the basic cellular pathophysiological functions of CHI3L1 are not well characterized. To investigate the novel pathophysiological function of CHI3L1, we performed LC-MS/MS analysis of cells transfected with Myc-vector and Myc-CHI3L1. We analyzed the changes in the protein distribution in Myc-CHI3L1 transfected-cells, and identified 451 differentially expressed proteins (DEPs) compared with Myc-vector-transfected-cells. The biological function of the 451 DEPs was analyzed and it was found that the proteins with endoplasmic reticulum (ER)-associated function were much more highly expressed in CHI3L1-overexpressing cells. We then compared and analyzed the effect of CHI3L1 on the ER chaperon levels in normal lung cells and cancer cells. We identified that CHI3L1 is localized in the ER. In normal cells, the depletion of CHI3L1 did not induce ER stress. However, the depletion of CHI3L1 induces ER stress and eventually activates the unfolded protein response, especially the activation of Protein kinase R-like endoplasmic reticulum kinase (PERK), which regulates protein synthesis in cancer cells. CHI3L1 may not affect ER stress owing to the lack of misfolded proteins in normal cells, but instead activate ER stress as a defense mechanism only in cancer cells. Under ER stress conditions induced by the application of thapsigargin, the depletion of CHI3L1 induces ER stress through the upregulation of PERK and PERK downstream factors (eIF2α and ATF4) in both normal and cancer cells. However, these signaling activations occur more often in cancer cells than in normal cells. The expression of Grp78 and PERK in the tissues of patients with lung cancer was higher compared with healthy tissues. It is well known that ER stress-mediated PERK-eIF2α-ATF4 signaling activation causes apoptotic cell death. ER stress-mediated apoptosis induced by the depletion of CHI3L1 occurs in cancer cells, but rarely occurs in normal cells. Consistent with results from the in vitro model, ER stress-mediated apoptosis was greatly increased during tumor growth and in the lung metastatic tissue of CHI3L1-knockout (KO) mice. The analysis of "big data" identified superoxide dismutase-1 (SOD1) as a novel target of CHI3L1 and interacted with CHI3L1. The depletion of CHI3L1 increased SOD1 expression, resulting in ER stress. Furthermore, the depletion of SOD1 reduced the expression of ER chaperones and ER-mediated apoptotic marker proteins, as well as apoptotic cell death induced by the depletion of CHI3L1 in in vivo and in vitro models. These results suggest that the depletion of CHI3L1 increases ER stress-mediated apoptotic cell death through SOD1 expression, and subsequently inhibits lung metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| |
Collapse
|
11
|
Deka D, D'Incà R, Sturniolo GC, Das A, Pathak S, Banerjee A. Role of ER Stress Mediated Unfolded Protein Responses and ER Stress Inhibitors in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:5392-5406. [PMID: 35318552 DOI: 10.1007/s10620-022-07467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/28/2022] [Indexed: 01/05/2023]
Abstract
Previous investigations have increased the knowledge about the pathological processes of inflammatory bowel diseases. Besides the complex organization of immune reactions, the mucosal epithelial lining has been recognized as a crucial regulator in the commencement and persistence of intestinal inflammation. As the intestinal epithelium is exposed to various environmental factors, the intestinal epithelial cells are confronted with diverse cellular stress conditions. In eukaryotic cells, an imbalance in the endoplasmic reticulum (ER) might cause aggregation of unfolded or misfolded proteins in the lumen of ER, a condition known as endoplasmic reticulum stress. This cellular mechanism stimulates the unfolded protein response (UPR), which elevates the potential of the endoplasmic reticulum protein folding, improves protein production and its maturation, and also stimulates ER-associated protein degradation. Current analyses reported that in the epithelium, the ER stress might cause the pathogenesis of inflammatory bowel disease that affects the synthesis of protein, inducing the apoptosis of the epithelial cell and stimulating the proinflammatory reactions in the gut. There have been significant efforts to develop small molecules or molecular chaperones that will be potent in ameliorating ER stress. The restoration of UPR balance in the endoplasmic reticulum via pharmacological intervention might be a novel therapeutic approach for the treatment of inflammatory bowel diseases (IBDs). This review provides novel insights into the role of chemical chaperone UPR modulators to modify ER stress levels. We further discuss the future directions/challenges in the development of therapeutic strategies for IBDs by targeting the ER stress. Figure depicting the role of endoplasmic reticulum stress-mediated inflammatory bowel disease and the therapeutic role of endoplasmic reticulum stress inhibitors in alleviating the diseased condition.
Collapse
Affiliation(s)
- Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Renata D'Incà
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35128, Padua, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35128, Padua, Italy
| | - Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
12
|
Yu Y, Yang A, Yu G, Wang H. Endoplasmic Reticulum Stress in Chronic Obstructive Pulmonary Disease: Mechanisms and Future Perspectives. Biomolecules 2022; 12:1637. [PMID: 36358987 PMCID: PMC9687722 DOI: 10.3390/biom12111637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
The endoplasmic reticulum (ER) is an integral organelle for maintaining protein homeostasis. Multiple factors can disrupt protein folding in the lumen of the ER, triggering ER stress and activating the unfolded protein response (UPR), which interrelates with various damage mechanisms, such as inflammation, apoptosis, and autophagy. Numerous studies have linked ER stress and UPR to the progression of chronic obstructive pulmonary disease (COPD). This review focuses on the mechanisms of other cellular processes triggered by UPR and summarizes drug intervention strategies targeting the UPR pathway in COPD to explore new therapeutic approaches and preventive measures for COPD.
Collapse
Affiliation(s)
| | | | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
13
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
14
|
Hussain Y, Khan H, Efferth T, Alam W. Regulation of endoplasmic reticulum stress by hesperetin: Focus on antitumor and cytoprotective effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:153985. [PMID: 35358935 DOI: 10.1016/j.phymed.2022.153985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/14/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cancer is still an all-times issue due to a large and even increasing number of deaths. Impaired genes regulating cell proliferation and apoptosis are targets for the development of novel cancer treatments. HYPOTHESIS Increased transcription of NADPH oxidase activator (NOXA), Bcl2-like11 (BIM), BH3-only proteins and p53 unregulated apoptosis modulator (PUMA) is caused by the imbalance between pro- and anti-apoptotic Bcl-2 proteins due to endoplasmic reticulum (ER) stress. The membranous network of ER is present in all eukaryotic cells. ER stress facilitates the interaction between Bax and PUMA, triggering the release of cytochrome C. As a main intracellular organelle, ER is responsible for translocation as well as post-translation modification and protein folding. RESULTS Hesperetin is a cytoprotective flavonone, which acts against ER stress and protects from cell damage induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Hesperetin inhibits lipid peroxidation induced by Fe2+ and l-ascorbic acid in rat brain homogenates. CONCLUSION This review deals with the anticancer effects of hesperetin regarding the regulation of ER stress as a principal mechanism in the pathogenesis of tumors.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, 215123, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| |
Collapse
|
15
|
Paracrine signal emanating from stressed cardiomyocytes aggravates inflammatory microenvironment in diabetic cardiomyopathy. iScience 2022; 25:103973. [PMID: 35281739 PMCID: PMC8905320 DOI: 10.1016/j.isci.2022.103973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.
Collapse
|
16
|
Gan L, Liu D, Xie D, Bond Lau W, Liu J, Christopher TA, Lopez B, Liu L, Hu H, Yao P, He Y, Gao E, Koch WJ, Zhao J, Ma XL, Cao Y, Wang Y. Ischemic Heart-Derived Small Extracellular Vesicles Impair Adipocyte Function. Circ Res 2022; 130:48-66. [PMID: 34763521 DOI: 10.1161/circresaha.121.320157] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with acute myocardial infarction suffer systemic metabolic dysfunction via incompletely understood mechanisms. Adipocytes play critical role in metabolic homeostasis. The impact of acute myocardial infarction upon adipocyte function is unclear. Small extracellular vesicles (sEVs) critically contribute to organ-organ communication. Whether and how small extracellular vesicle mediate post-MI cardiomyocyte/adipocyte communication remain unknown. METHODS Plasma sEVs were isolated from sham control (Pla-sEVSham) or 3 hours after myocardial ischemia/reperfusion (Pla-sEVMI/R) and incubated with adipocytes for 24 hours. Compared with Pla-sEVSham, Pla-sEVMI/R significantly altered expression of genes known to be important in adipocyte function, including a well-known metabolic regulatory/cardioprotective adipokine, APN (adiponectin). Pla-sEVMI/R activated 2 (PERK-CHOP and ATF6 [transcription factor 6]-EDEM [ER degradation enhancing alpha-mannosidase like protein 1] pathways) of the 3 endoplasmic reticulum (ER) stress pathways in adipocytes. These pathological alterations were also observed in adipocytes treated with sEVs isolated from adult cardiomyocytes subjected to in vivo myocardial ischemia/reperfusion (MI/R) (Myo-sEVMI/R). Bioinformatic/RT-qPCR analysis demonstrates that the members of miR-23-27-24 cluster are significantly increased in Pla-sEVMI/R, Myo-sEVMI/R, and adipose tissue of MI/R animals. Administration of cardiomyocyte-specific miR-23-27-24 sponges abolished adipocyte miR-23-27-24 elevation in MI/R animals, supporting the cardiomyocyte origin of adipocyte miR-23-27-24 cluster. In similar fashion to Myo-sEVMI/R, a miR-27a mimic activated PERK-CHOP and ATF6-EDEM-mediated ER stress. Conversely, a miR-27a inhibitor significantly attenuated Myo-sEVMI/R-induced ER stress and restored APN production. RESULTS An unbiased approach identified EDEM3 (ER degradation enhancing alpha-mannosidase like protein 3) as a novel downstream target of miR-27a. Adipocyte EDEM3 deficiency phenocopied multiple pathological alterations caused by Myo-sEVMI/R, whereas EDEM3 overexpression attenuated Myo-sEVMI/R-resulted ER stress. Finally, administration of GW4869 or cardiomyocyte-specific miR-23-27-24 cluster sponges attenuated adipocyte ER stress, improved adipocyte endocrine function, and restored plasma APN levels in MI/R animals. CONCLUSIONS We demonstrate for the first time that MI/R causes significant adipocyte ER stress and endocrine dysfunction by releasing miR-23-27-24 cluster-enriched small extracellular vesicle. Targeting small extracellular vesicle-mediated cardiomyocyte-adipocyte pathological communication may be of therapeutic potential to prevent metabolic dysfunction after MI/R.
Collapse
Affiliation(s)
- Lu Gan
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China (D.L.)
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Jing Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Theodore A Christopher
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Bernard Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Lian Liu
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
| | - Hang Hu
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Yarong He
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
| | - Erhe Gao
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
- Center for Translational Medicine, Temple University, Philadelphia, PA (E.G., W.J.K.)
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA (E.G., W.J.K.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Yu Cao
- Disaster Medical Center (Y.C.), Sichuan University, Chengdu, China
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| |
Collapse
|
17
|
Wu Y, Liu X, Li G. Integrated bioinformatics and network pharmacology to identify the therapeutic target and molecular mechanisms of Huangqin decoction on ulcerative Colitis. Sci Rep 2022; 12:159. [PMID: 34997010 PMCID: PMC8741777 DOI: 10.1038/s41598-021-03980-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Huangqin decoction (HQD) is a Traditional Chinese Medicine formula for ulcerative colitis. However, the pharmacology and molecular mechanism of HQD on ulcerative colitis is still unclear. Combined microarray analysis, network pharmacology, and molecular docking for revealing the therapeutic targets and molecular mechanism of HQD against ulcerative colitis. TCMSP, DrugBank, Swiss Target Prediction were utilized to search the active components and effective targets of HQD. Ulcerative colitis effective targets were obtained by microarray data from the GEO database (GSE107499). Co-targets between HQD and ulcerative colitis are obtained by Draw Venn Diagram. PPI (Protein–protein interaction) network was constructed by the STRING database. To obtain the core target, topological analysis is exploited by Cytoscape 3.7.2. GO and KEGG enrichment pathway analysis was performed to Metascape platform, and molecular docking through Autodock Vina 1.1.2 finished. 161 active components with 486 effective targets of HQD were screened. 1542 ulcerative colitis effective targets were obtained with |Log2FC|> 1 and adjusted P-value < 0.05. The Venn analysis was contained 79 co-targets. Enrichment analysis showed that HQD played a role in TNF signaling pathway, IL-17 signaling pathway, Th17 cell differentiation, etc. IL6, TNF, IL1B, PTGS2, ESR1, and PPARG with the highest degree from PPI network were successfully docked with 19 core components of HQD, respectively. According to ZINC15 database, quercetin (ZINC4175638), baicalein (ZINC3871633), and wogonin (ZINC899093) recognized as key compounds of HQD on ulcerative colitis. PTGS2, ESR1, and PPARG are potential therapeutic targets of HQD. HQD can act on multiple targets through multi-pathway, to carry out its therapeutic role in ulcerative colitis.
Collapse
Affiliation(s)
- Yi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China. .,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, China.
| | - Xinqiao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Guiwei Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| |
Collapse
|
18
|
Zhang Y, Mu T, Yang Y, Zhang J, Ren F, Wu Z. Lactobacillus johnsonii Attenuates Citrobacter rodentium-Induced Colitis by Regulating Inflammatory Responses and Endoplasmic Reticulum Stress in Mice. J Nutr 2021; 151:3391-3399. [PMID: 34383918 DOI: 10.1093/jn/nxab250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Probiotics are beneficial in intestinal disorders. However, the benefits of Lactobacillus johnsonii in experimental colitis remain unknown. OBJECTIVES This study aimed to investigate the benefits of L. johnsonii against Citrobacter rodentium-induced colitis. METHODS Thirty-six 5-wk-old female C57BL/6J mice were randomly assigned to 3 groups (n = 12): control (Ctrl) group, Citrobacter rodentium treatment (CR) group (2 × 109 CFU C. rodentium), and Lactobacillus johnsonii and Citrobacter rodentium cotreatment (LJ + CR) group (109 CFU L. johnsonii with C. rodentium). Colon length, mucosal thickness, proinflammatory cytokine genes, and endoplasmic reticulum stress were tested. RESULTS The CR group had greater spleen weight, mucosal thickness, and Ki67+ cells (0.4-4.7 times), and a 23.8% shorter colon length than the Ctrl group, which in the LJ + CR group were 22.4%-77.6% lower and 30% greater than in the CR group, respectively. Relative to the Ctrl group, serum proinflammatory cytokines and immune cell infiltration were greater by 0.3-1.6 times and 6.2-8.8 times in the CR group, respectively; relative to the CR group, these were 19.9%-61.9% and 69.5%-84.2% lower in the LJ + CR group, respectively. The mRNA levels of lysozyme (Lyz) and regenerating islet-derived protein III were 22.7%-36.5% lower and 1.5-2.7 times greater in the CR group than in the Ctrl group, respectively, whereas they were 22.2%-25.7% greater and 57.2%-76.9% lower in the LJ + CR group than in the CR group, respectively. Cell apoptosis was 11.9 times greater in the CR group than in the Ctrl group, and 87.4% lower in the LJ + CR group than in the CR group. Consistently, the protein abundances of C/EBP homologous protein (CHOP), cleaved caspase 1 and 3, activating transcription factor 6α (ATF6A), and phospho-inositol-requiring enzyme 1α (P-IRE1A) were 0.3-2.1 times greater in the CR group and 31.1%-60.4% lower in the LJ + CR group. All these indexes did not differ between the Ctrl and LJ + CR groups, except for CD8+ T lymphocytes and CD11b+ and F4/80+ macrophages (1-1.5 times greater in LJ + CR) and mRNA concentration of Lyz2 (20.1% lower in LJ + CR). CONCLUSIONS L. johnsonii supplementation is a promising nutritional strategy for preventing C. rodentium-induced colitis in mice.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Zhang Y, Jiang D, Jin Y, Jia H, Yang Y, Kim IH, Dai Z, Zhang J, Ren F, Wu Z. Glycine Attenuates Citrobacter rodentium-Induced Colitis by Regulating ATF6-Mediated Endoplasmic Reticulum Stress in Mice. Mol Nutr Food Res 2021; 65:e2001065. [PMID: 34075695 DOI: 10.1002/mnfr.202001065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/17/2021] [Indexed: 12/20/2022]
Abstract
SCOPE Inflammatory bowel disease (IBD) is an inflammatory gastrointestinal disorder in which endoplasmic reticulum (ER) stress and dysbiosis of the intestinal microbiota are implicated. Glycine supplementation is reported to reduce inflammatory responses in experimental colitis. However, the underlying mechanisms responsible for the beneficial effects remain unclear. METHODS AND RESULTS Female C57BL/6 mice are orally administered with glycine (3.5 or 5.2 g kg-1 body weight) for 14 continuous days. On day 8 post-glycine supplementation, the mice are orally inoculated with 2 × 109 CFU Citrobacter rodentium (C. rodentium). The results show that glycine alleviates C. rodentium-induced body weight loss, increased disease activity index and spleen weight, colon length shortening, and colonic hyperplasia. Glycine suppresses the activation and infiltration of inflammatory cells, and secretion of pro-inflammatory cytokines in the colon tissues. The apoptosis of colon epithelial cells is also abrogated by glycine, which is associated with the inactivation of activating transcription factor 6α (ATF6α)-C/EBP homologous protein (CHOP) signaling. In addition, glycine administration increases α diversity, restores β diversity, and abolishes the reduction in Lactobacillus, Bifidobacterium, Alistipes, Turicibacter, and Alloprevotella in the colon. CONCLUSIONS Glycine supplementation is a nutritional strategy that may ameliorate C. rodentium-induced colitis by regulating ATF6α-CHOP-mediated ER stress and enhancing the abundance of Lactobacillus.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Da Jiang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, 330-714, South Korea
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
20
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Yang N, Wang H, Zhang R, Niu Z, Zheng S, Zhang Z. C/EBP β Mediates the Aberrant Inflammatory Response and Cell Cycle Arrest in Lps-stimulated Human Renal Tubular Epithelial Cells by Regulating NF-κB Pathway. Arch Med Res 2021; 52:603-610. [PMID: 33947580 DOI: 10.1016/j.arcmed.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS The main cause of sepsis-induced Acute kidney injury (AKI) is acute infection after surgery and subsequent progression. However, the mechanism by which AKI is caused and developed from sepsis are not completely known. Herein, we determined the role of CCAAT/enhancer-binding protein β (C/EBP β) in sepsis-induced AKI METHODS: C/EBP β expression was up or down-regulated in LPS-stimulated human renal tubular epithelial cells in vitro by recombinant adenoviruses or siRNA. Subsequent analyses included the test of TNF-α and IL-6 levels by ELISA, cell cycle assay by flow cytometry. RESULTS C/EBP β was aberrantly expressed in renal tubular epithelial HK-2 cells exposed to LPS. C/EBP β overexpression significantly enhanced, but C/EBP β silencing obviously decreased the production and secretion of inflammatory cytokines TNF-α and IL-6 induced by LPS stimulus in HK-2 cells. And the cell cycle arrest of HK-2 cells induced by LPS was also enhanced after C/EBP β overexpression while attenuated after C/EBP β silencing. Consistent pattern of changes in Cyclin D1 and p21 expression were observed in LPS-stimulated HK-2 cells after C/EBP β silencing and C/EBP β overexpression. Additionally, the increased p-NF-κB levels induced by LPS were found to be obviously decreased after C/EBP β silencing in HK-2 cells. And the enhanced TNF-α and IL-6 secretion as well as cell cycle arrest by C/EBP β overexpression were blocked by BAY11-7082 inhibitor of NF-κB pathway. CONCLUSIONS C/EBP β could mediate the LPS-induced aberrant inflammatory response and cell cycle arrest in tubular epithelial cells by NF-κB pathway.
Collapse
Affiliation(s)
- Ni Yang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Hai Wang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Rui Zhang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Zequn Niu
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Shaowei Zheng
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Zhengliang Zhang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China.
| |
Collapse
|
22
|
Su Y, Li X, Li D, Sun J. Fecal Microbiota Transplantation Shows Marked Shifts in the Multi-Omic Profiles of Porcine Post-weaning Diarrhea. Front Microbiol 2021; 12:619460. [PMID: 33708182 PMCID: PMC7940351 DOI: 10.3389/fmicb.2021.619460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Weaning is the most critical phase in pig production and is generally associated with significant impacts on intestinal morphology, structure, physiology, and immune responses, which can lead to subsequent production inefficiencies such as decreases in growth and intake and increases in morbidity and mortality. In the present study, we attempted to explore the effects of fecal microbiota transplantation (FMT) on the fecal microbiota, fecal metabolites, and transcriptome in the jejunum, colon, liver, spleen, and oral mucosa in piglets with post-weaning diarrhea and to evaluate the therapeutic potential of FMT in piglets with post-weaning diarrhea. We found that FMT partially relieved the symptoms of diarrhea in piglets, and microbiota analysis results indicated that unclassified_f_Prevotellaceae was identified as an FMT-associated bacterial family at 66 day and that the Shannon index in the healthy group at 34, 38, and 66 days were higher than that at 21 day. Functional enrichment analysis of the oral mucosa, liver, jejunum, and colon showed that most of the differentially expressed genes (DEGs) were enriched in the terms metabolic process, immune response, and inflammatory response. Moreover, the enriched fecal metabolites focused mostly on apoptosis, beta-alanine metabolism, glutathione metabolism, and sphingolipid metabolism. We tried to detect specific "metabolite-bacterium" pairs, such as "g_Catenisphaera-stigmastentriol," "p_Bacteroidetes-(6beta,22E)-6-hydroxystigmasta-4,22-dien-3-one," and "g_Prevotellaceae_NK3B31_group-stenocereol." Overall, the present study provides a theoretical basis for the alleviation of weaning stress and contributes to the realization of effective and sustainable application of FMT in the pig production industry in the future.
Collapse
Affiliation(s)
- Yuan Su
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolei Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Chongqing Academy of Animal Sciences, Chongqing, China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| |
Collapse
|
23
|
Koksal AR, Verne GN, Zhou Q. Endoplasmic reticulum stress in biological processing and disease. J Investig Med 2021; 69:309-315. [PMID: 33472886 DOI: 10.1136/jim-2020-001570] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The ability of translated cellular proteins to perform their functions requires their proper folding after synthesis. The endoplasmic reticulum (ER) is responsible for coordinating protein folding and maturation. Infections, genetic mutations, environmental factors and many other conditions can lead to challenges to the ER known as ER stress. Altering ER homeostasis results in accumulation of misfolded or unfolded proteins. To eliminate this problem, a response is initiated by the cell called the unfolded protein response (UPR), which involves multiple signaling pathways. Prolonged ER stress or a dysregulated UPR can lead to premature apoptosis and an exaggerated inflammatory response. Following these discoveries, ER stress was shown to be related to several chronic diseases, such as diabetes mellitus, neurodegenerative disorders, fatty liver disease and inflammatory bowel disease that have not yet been clearly demonstrated pathophysiologically. Here, we review the field and present up-to-date information on the relationship between biological processing, ER stress, UPR, and several chronic diseases.
Collapse
Affiliation(s)
- Ali Riza Koksal
- Gastroenterology & Hepatology, Tulane University School of Medicine, New Orleans, Lousiana, USA
| | | | - QiQi Zhou
- Medicine, Division of Gastroenterology, UTHSC COM, Memphis, Tennessee, USA
| |
Collapse
|
24
|
UPR modulation of host immunity by Pseudomonas aeruginosa in cystic fibrosis. Clin Sci (Lond) 2020; 134:1911-1934. [PMID: 32537652 DOI: 10.1042/cs20200066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.
Collapse
|
25
|
Liu CH, Chou CT, Chen CH, Chen CH, Yang SY, Ko YA, Wu YT, Wang CC, Liu FC, Yue CT, Hung SC, Tzeng IS, Tsai WC, Lin KI. Aberrant distribution and function of plasmacytoid dendritic cells in patients with ankylosing spondylitis are associated with unfolded protein response. Kaohsiung J Med Sci 2020; 36:441-449. [PMID: 31961055 DOI: 10.1002/kjm2.12184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/31/2019] [Indexed: 01/02/2023] Open
Abstract
Although human leucocyte antigen (HLA)-B27 is strongly associated with ankylosing spondylitis (AS), the association of unfolded protein response (UPR) induced by HLA-B27 misfolding in AS remains controversial. Since dendritic cells (DCs) are crucial in induction of AS in HLA-B27-transgenic rats, and plasmacytoid DCs (pDCs) belong to one type of DCs, we here aim to study the relevance of pDCs and UPR in AS. Peripheral pDCs were isolated from 27 HLA-B27(+) AS patients and 37 controls. The bone marrow (BM) and synovium of inflamed hips from AS patients and controls were obtained. We found a significantly higher frequency of pDCs in the peripheral blood, BM, or inflamed synovium of hips, which is associated with the enhanced expression of pDC trafficking molecules, CCR6 and CCL20 in the synovium of AS patients. Functional analysis further revealed that several inflammatory cytokines, including TNFα, IL-6, and IL-23, secreted by pDCs were significantly increased in AS patients as compared with those in controls. Remarkably, protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway in UPR was up-regulated in pDCs of AS patients. Notably, PERK inhibitor treatment significantly inhibited the enhanced cytokine production by pDCs of AS patients. Further, the extent of PERK activation was significantly associated with the increased disease severity of AS patients. Our data uncover the aberrant distribution and function of pDCs in AS patients. The up-regulated PERK pathway in UPR of pDCs not only contributes to enhanced cytokine production of pDCs, but also is associated with increased disease activity of AS patients.
Collapse
Affiliation(s)
- Chin-Hsiu Liu
- Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,PhD Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Tei Chou
- Division of Allergy Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Hung Chen
- Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Hsiung Chen
- Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shii-Yi Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-An Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Chien Wang
- Department of Orthopedics, Tri-Service General Hospital, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Allergy Immunology and Rheumatology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Tai Yue
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Shih-Chieh Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Integrative Stem Cell Center, Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.,Institute of New Drug Development, New Drug Development Center, China Medical University, Taichung, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Wen-Chan Tsai
- Division of Allergy, Immunology, and Rheumatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Ștefanache T, Forna N, Bădescu M, Jitaru D, Dragos ML, Rezuș C, Diaconescu BM, Bădulescu O, Rezuș E, Ciocoiu M, Bădescu C. Modulation of the activity of certain genes involved in tumor cell metabolism in the presence of the cytotoxic peptides defensin and cathelicidin LL37. Exp Ther Med 2019; 18:5033-5040. [PMID: 31819768 PMCID: PMC6895780 DOI: 10.3892/etm.2019.8117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/30/2019] [Indexed: 11/06/2022] Open
Abstract
It is common knowledge that some natural antimicrobial peptides also have a tumoricidal effect. We have shown that the peptides defensin and cathelicidin LL37 have cytostatic effects on human tumor cell lines HT29 (colorectal carcinoma) and A549 (alveolar carcinoma). In order to determine the modulating mechanism of these peptides we assessed the gene expression of the AKT, HIF-1α, XBP, NRF2, PERK, CHOP, BCL2, IRE1α and PI3K molecular targets involved in the survival, growth, proliferation and apoptosis pathways of tumor cells in the presence or absence of the studied peptides. Thus, this research enabled us to determine molecular markers and methods of assessment and monitoring of tumor cell cytotoxicity by high-performance molecular biology techniques. Defensin and cathelicidin LL37 activated tumor cell apoptosis, especially for the HT29, but also for A549 line, by increasing gene expression of CHOP and by lowering BCL2 gene expression. Oxidative stress determined the increase in gene expression of XBP, which directly influenced CHOP. The decrease in NRF2 gene expression highlighted the inhibition of cell proliferation, while the decrease in HIF1α gene expression evidenced the decrease in cell survival.
Collapse
Affiliation(s)
- Teodor Ștefanache
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Norina Forna
- Department of Implantology, Dental Medicine, 700115 Iaşi, Romania
| | - Magda Bădescu
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Daniela Jitaru
- Regional Institute of Oncology Iasi, 700115 Iaşi, Romania
| | | | - Ciprian Rezuș
- Department of Internal Medicine, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Bogdan Mihail Diaconescu
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Oana Bădulescu
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Elena Rezuș
- Rehabilitation Hospital of Iasi, Rheumatology Clinic, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Codruta Bădescu
- Department of Internal Medicine, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| |
Collapse
|
27
|
Duvigneau JC, Luís A, Gorman AM, Samali A, Kaltenecker D, Moriggl R, Kozlov AV. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 2019; 124:154577. [DOI: 10.1016/j.cyto.2018.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
28
|
Ebstein F, Poli Harlowe MC, Studencka-Turski M, Krüger E. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS). Front Immunol 2019; 10:2756. [PMID: 31827472 PMCID: PMC6890838 DOI: 10.3389/fimmu.2019.02756] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type I interferonopathies cover a phenotypically heterogeneous group of rare genetic diseases including the recently described proteasome-associated autoinflammatory syndromes (PRAAS). By definition, PRAAS are caused by inherited and/or de novo loss-of-function mutations in genes encoding proteasome subunits such as PSMB8, PSMB9, PSMB7, PSMA3, or proteasome assembly factors including POMP and PSMG2, respectively. Disruption of any of these subunits results in perturbed intracellular protein homeostasis including accumulation of ubiquitinated proteins which is accompanied by a type I interferon (IFN) signature. The observation that, similarly to pathogens, proteasome dysfunctions are potent type I IFN inducers is quite unexpected and, up to now, the underlying molecular mechanisms of this process remain largely unknown. One promising candidate for triggering type I IFN under sterile conditions is the unfolded protein response (UPR) which is typically initiated in response to an accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum (ER) (also referred to as ER stress). The recent observation that the UPR is engaged in subjects carrying POMP mutations strongly suggests its possible implication in the cause-and-effect relationship between proteasome impairment and interferonopathy onset. The purpose of this present review is therefore to discuss the possible role of the UPR in the pathogenesis of PRAAS. We will particularly focus on pathways initiated by the four ER-membrane proteins ATF6, PERK, IRE1-α, and TCF11/Nrf1 which undergo activation under proteasome inhibition. An overview of the current understanding of the mechanisms and potential cross-talk between the UPR and inflammatory signaling casacades is provided to convey a more integrated picture of the pathophysiology of PRAAS and shed light on potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - María Cecilia Poli Harlowe
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Perra L, Balloy V, Foussignière T, Moissenet D, Petat H, Mungrue IN, Touqui L, Corvol H, Chignard M, Guillot L. CHAC1 Is Differentially Expressed in Normal and Cystic Fibrosis Bronchial Epithelial Cells and Regulates the Inflammatory Response Induced by Pseudomonas aeruginosa. Front Immunol 2018; 9:2823. [PMID: 30555487 PMCID: PMC6282009 DOI: 10.3389/fimmu.2018.02823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
In cystic fibrosis (CF), Pseudomonas aeruginosa (Pa) colonizes the lungs, leading to chronic inflammation of the bronchial epithelium. ChaC glutathione-specific γ-glutamylcyclotransferase 1 (CHAC1) mRNA is differentially expressed in primary human airway epithelial cells from bronchi (hAECBs) from patients with CF and healthy patients at baseline and upon infection with Pa. CHAC1 degrades glutathione and is associated with ER stress and apoptosis pathways. In this study, we examined the roles of CHAC1 in the inflammatory response and apoptosis in lung epithelial cells. First, we confirmed by reverse transcription quantitative polymerase chain reaction that CHAC1 mRNA was overexpressed in hAECBs from patients without CF compared with the expression in hAECBs from patients with CF upon Pa (PAK strain) infection. Moreover, the Pa virulence factors LPS and flagellin were shown to induce CHAC1 expression in cells from patients without CF. Using NCI-H292 lung epithelial cells, we found that LPS-induced CHAC1 mRNA expression was PERK-independent and involved ATF4. Additionally, using CHAC1 small interfering RNA, we showed that reduced CHAC1 expression in the context of LPS and flagellin stimulation was associated with modulation of inflammatory markers and alteration of NF-κB signaling. Finally, we showed that Pa was not able to induce apoptosis in NCI-H292 cells. Our results suggest that CHAC1 is involved in the regulation of inflammation in bronchial cells during Pa infection and may explain the excessive inflammation present in the respiratory tracts of patients with CF.
Collapse
Affiliation(s)
- Léa Perra
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Viviane Balloy
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Tobias Foussignière
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Didier Moissenet
- Department of Bacteriology, APHP, Hôpital St-Antoine, Paris, France
| | - Hortense Petat
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Imran N Mungrue
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lhousseine Touqui
- Equipe mixte Institut Pasteur/Paris V "Mucoviscidose et Bronchopathies Chroniques" Institut Pasteur, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France.,Pneumologie Pédiatrique, APHP, Hôpital Trousseau, Paris, France
| | - Michel Chignard
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Loic Guillot
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
30
|
Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-mediated apoptosis through the induction of endoplasmic reticulum stress. Exp Mol Med 2018; 50:1-11. [PMID: 30120227 PMCID: PMC6098103 DOI: 10.1038/s12276-018-0138-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023] Open
Abstract
Multiple cancer cells highly express cathepsin S, which has pro-tumoral effects. However, it was previously unknown whether knockdown or a pharmacological inhibitor (ZFL) of cathepsin S acts as an inducer of ER stress. Here, ZFL and knockdown of cathepsin S markedly induced ER stress through the up-regulation of calcium levels in the cytosol. Induction of calcium levels by inhibition of cathepsin S is markedly blocked by an inhibitor of the IP3 receptor and the ryanodine receptor Ca2+ channel in the ER, but an inhibitor of a mitochondrial Ca2+ uniporter had no effect on ZFL-induced calcium levels. Furthermore, production of mitochondrial ROS by ZFL was associated with an increase in cytosolic calcium levels. ZFL-mediated ER stress enhanced anti-cancer drug-induced apoptotic cell death, and pretreatment with chemical chaperones or down-regulation of ATF4 and CHOP by small interfering RNA markedly reduced ZFL plus oxaliplatin-induced apoptosis. Taken together, our findings reveal that inhibition of cathepsin S is an inducer of ER stress; these findings may contribute to the enhancement of therapeutic efficiency in cancer cells. A drug that inhibits a key cancer enzyme could be used in combination with anti-cancer drugs to improve sensitivity to treatment. The intracellular endoplasmic reticulum (ER) is involved in several vital processes in cells, including folding and processing proteins. Taeg Kyu Kwon at Keimyung University, Daegu, South Korea, and co-workers have demonstrated how inhibition of cathepsin S, which is expressed in many cancer cells, induces ER stress. In trials on human kidney cancer cells grafted onto mice and in vitro, the team found that ZFL (cathepsin S inhibitor) triggered transient ER stress by increasing calcium levels inside cells. Subsequent treatment with the anti-cancer drug oxaliplatin resulted in increased cancer cell death.
Collapse
|
31
|
Kumar V, Mansfield J, Fan R, MacLean A, Li J, Mohan M. miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPARγ and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514950 DOI: 10.4049/jimmunol.1701148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal epithelial barrier dysfunction is a well-known sequela of HIV/SIV infection that persists despite antiretroviral therapy. Although inflammation is a triggering factor, the underlying molecular mechanisms remain unknown. Emerging evidence suggests that epithelial barrier function is epigenetically regulated by inflammation-induced microRNAs (miRNAs). Accordingly, we profiled and characterized miRNA/mRNA expression exclusively in colonic epithelium and identified 46 differentially expressed miRNAs (20 upregulated and 26 downregulated) in chronically SIV-infected rhesus macaques (Macaca mulatta). We bioinformatically crossed the predicted miRNA targets to transcriptomic data and characterized miR-130a and miR-212 as both were predicted to interact with critical epithelial barrier-associated genes. Next, we characterized peroxisome proliferator-activated receptor γ (PPARγ) and occludin (OCLN), predicted targets of miR-130a and miR-212, respectively, as their downregulation has been strongly linked to epithelial barrier disruption and dysbiosis. Immunofluorescence, luciferase reporter, and overexpression studies confirmed the ability of miR-130a and miR-212 to decrease protein expression of PPARγ and OCLN, respectively, and reduce transepithelial electrical resistance. Because Δ-9-tetrahydrocannabinol exerted protective effects in the intestine in our previous studies, we successfully used it to reverse miR-130a- and miR-212-mediated reduction in transepithelial electrical resistance. Finally, ex vivo Δ-9-tetrahydrocannabinol treatment of colon tissue from chronically SIV-infected rhesus macaques significantly increased PPARγ expression. Our findings suggest that dysregulated miR-130a and miR-212 expression in colonic epithelium during chronic HIV/SIV infection can facilitate epithelial barrier disruption by downregulating OCLN and PPARγ expression. Most importantly, our results highlight the beneficial effects of cannabinoids on epithelial barrier function in not just HIV/SIV but potentially other chronic intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Vinay Kumar
- Eurofins Bioanalytics USA, Saint Charles, MO 63304
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Rong Fan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Andrew MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| |
Collapse
|
32
|
Poyyakkara A, Raji GR, Kunhiraman H, Edatt L, Kumar SVB. ER stress mediated regulation of miR23a confer Hela cells better adaptability to utilize glycolytic pathway. J Cell Biochem 2018; 119:4907-4917. [PMID: 29377281 DOI: 10.1002/jcb.26718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/24/2018] [Indexed: 02/04/2023]
Abstract
Cancer cells exhibit increased dependency on aerobic glycolysis, a phenomenon referred as the "Warburg effect" and therefore, blocking glycolysis by using non-metabolizable analogues of glucose, like 2-Deoxy glucose (2-DG), has been proposed to be of huge therapeutic importance. One of the major drawbacks of using 2-DG as a chemotherapeutic agent is that it can induce ER stress. ER stress is a hall mark in many solid tumors and the unfolded protein response (UPR) associated with it initiates many survival mechanisms in cancer cells. In the present study, we report a novel survival mechanism associated with ER stress, by which the cancer cells become more adapted to aerobic glycolysis. When ER stress was induced in Hela cells by treating them with 2-DG or Thapsigargin (TG) the expression and activity of LDH was significantly up regulated, conferring the cells a greater glycolytic potential. A simultaneous decrease was observed in the expression of miR-23a, which was predicted in silico to have target site on the 3'UTR of LDH A and B mRNAs. miRNA over expression studies and mRNA degradation assays suggest that miR-23a could target LDH A and LDH B mRNAs. Further on the basis of our results and previous scientific reports, we propose that "c-Myc," which is over expressed during ER stress, repress the expression of miR-23a, which in turn regulates the expression of its target genes viz., LDH A and LDH B, thereby making the cells more competent to survive in tumor microenvironment, which requires efficient use of aerobic glycolysis.
Collapse
Affiliation(s)
- Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Grace R Raji
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Haritha Kunhiraman
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Sameer V B Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| |
Collapse
|
33
|
Smith JA. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity. Front Immunol 2018; 9:422. [PMID: 29556237 PMCID: PMC5844972 DOI: 10.3389/fimmu.2018.00422] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis.
Collapse
Affiliation(s)
- Judith A Smith
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
34
|
Marwarha G, Schommer J, Lund J, Schommer T, Ghribi O. Palmitate-induced C/EBP homologous protein activation leads to NF-κB-mediated increase in BACE1 activity and amyloid beta genesis. J Neurochem 2018; 144:761-779. [PMID: 29315574 PMCID: PMC6371812 DOI: 10.1111/jnc.14292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/29/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
The etiology of Alzheimer's disease (AD) is egregiously comprehended, but epidemiological studies have posited that diets rich in the saturated fatty acid palmitic acid (palmitate) are a significant risk factor. The production and accumulation of amyloid beta peptide (Aβ) is considered the core pathological molecular event in the pathogenesis of AD. The rate-limiting step in Aβ genesis from amyloid-β precursor protein (AβPP) is catalyzed by the enzyme β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the expression and enzymatic activity of which is significantly up-regulated in the AD brain. In this study, we determined the molecular mechanisms that potentially underlie the palmitate-induced up-regulation in BACE1 expression and augmented Aβ production. We demonstrate that a palmitate-enriched diet and exogenous palmitate treatment evoke an increase in BACE1 expression and activity leading to enhanced Aβ genesis in the mouse brain and SH-SY5Y-APPSwe cells, respectively, through the activation of the transcription factor NF-κB. Chromatin immunoprecipitation (ChIP) assays and luciferase reporter assays revealed that palmitate enhances BACE1 expression by increasing the binding of NF-κB in the BACE1 promoter followed by an enhancement in the transactivation of the BACE1 promoter. Elucidation and delineation of upstream molecular events unveiled a critical role of the endoplasmic reticulum stress-associated transcription factor, C/EBP homologous protein (CHOP) in the palmitate-induced NF-κB activation, as CHOP knock-down cells and Chop-/- mice do not exhibit the same degree of NF-κB activation in response to the palmitate challenge. Our study delineates a novel CHOP-NF-κB signaling pathway that mediates palmitate-induced up-regulation of BACE1 expression and Aβ genesis.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jared Schommer
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jonah Lund
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Trevor Schommer
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Othman Ghribi
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203
| |
Collapse
|
35
|
Bernhart E, Kogelnik N, Prasch J, Gottschalk B, Goeritzer M, Depaoli MR, Reicher H, Nusshold C, Plastira I, Hammer A, Fauler G, Malli R, Graier WF, Malle E, Sattler W. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells. Redox Biol 2018; 15:441-451. [PMID: 29413957 PMCID: PMC5975063 DOI: 10.1016/j.redox.2018.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction.
Collapse
Affiliation(s)
- Eva Bernhart
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Nora Kogelnik
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Jürgen Prasch
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Madeleine Goeritzer
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| | - Maria Rosa Depaoli
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Helga Reicher
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Christoph Nusshold
- Institute of Physiological Chemistry, Medical University of Graz, Austria.
| | - Ioanna Plastira
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Astrid Hammer
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Cell Biology, Histology and Embryology, Medical University of Graz, Austria.
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria.
| | - Roland Malli
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| | - Wolfgang F Graier
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| | - Ernst Malle
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Wolfgang Sattler
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| |
Collapse
|
36
|
Lu CL, Zheng Q, Shen Q, Song C, Zhang ZM. Uncovering the relationship and mechanisms of Tartary buckwheat ( Fagopyrum tataricum) and Type II diabetes, hypertension, and hyperlipidemia using a network pharmacology approach. PeerJ 2017; 5:e4042. [PMID: 29177114 PMCID: PMC5701543 DOI: 10.7717/peerj.4042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
Background Tartary buckwheat (TB), a crop rich in protein, dietary fiber, and flavonoids, has been reported to have an effect on Type II diabetes (T2D), hypertension (HT), and hyperlipidemia (HL). However, limited information is available about the relationship between Tartary buckwheat and these three diseases. The mechanisms of how TB impacts these diseases are still unclear. Methods In this study, network pharmacology was used to investigate the relationship between the herb as well as the diseases and the mechanisms of how TB might impact these diseases. Results A total of 97 putative targets of 20 compounds found in TB were obtained. Then, an interaction network of 97 putative targets for these compounds and known therapeutic targets for the treatment of the three diseases was constructed. Based on the constructed network, 28 major nodes were identified as the key targets of TB due to their importance in network topology. The targets of ATK2, IKBKB, RAF1, CHUK, TNF, JUN, and PRKCA were mainly involved in fluid shear stress and the atherosclerosis and PI3K-Akt signaling pathways. Finally, molecular docking simulation showed that 174 pairs of chemical components and the corresponding key targets had strong binding efficiencies. Conclusion For the first time, a comprehensive systemic approach integrating drug target prediction, network analysis, and molecular docking simulation was developed to reveal the relationships and mechanisms between the putative targets in TB and T2D, HT, and HL.
Collapse
Affiliation(s)
- Chao-Long Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Wenjiang, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Zheng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Qi Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Guizhou Rapeseed Institute, Guizhou Province of Academy of Agricultural Sciences, Guiyang, China
| | - Chi Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi-Ming Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
37
|
Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang Y, Tso P, Wu G, Wu Z. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review. Front Immunol 2017; 8:1271. [PMID: 29118753 PMCID: PMC5660968 DOI: 10.3389/fimmu.2017.01271] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER) function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR) in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD). Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
39
|
Lee KY, Park SY, Park S, Hong GH, Moon KA, Kim YS, Oh YM, Kwon HS, Kim TB, Moon HB, Cho YS. Progranulin protects lung epithelial cells from cigarette smoking-induced apoptosis. Respirology 2017; 22:1140-1148. [PMID: 28273689 DOI: 10.1111/resp.13023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND OBJECTIVE Emphysema is characterized by irreversible destruction of alveolar walls with distal air space enlargement. Cigarette smoke (CS) is considered a major risk factor for emphysematous changes in COPD. Progranulin (PGRN), a glycoprotein induced by CS, has been reported to participate in apoptosis. However, the precise role of PGRN in emphysema is currently unknown. This study aimed to evaluate the role of PGRN in human alveolar epithelial cells (AECs) in response to CS. METHODS First, PGRN expression was assessed in a mouse model of CS-induced emphysema and in AECs after exposure to CS extract (CSE). Then, the effect of PGRN on CSE-mediated apoptosis was determined under PGRN silencing or overexpressing conditions. To investigate the functional mechanism of PGRN, endoplasmic reticulum (ER) stress markers and the mitogen-activated protein kinase (MAPK) pathway were also evaluated in the CSE-exposed cells. Finally, PGRN expression levels in sera and peripheral blood mononuclear cells (PBMCs) were measured and compared between patients with COPD and healthy subjects. RESULTS Our results revealed that PGRN expression was elevated in CS-exposed mouse lungs and CSE-treated AECs. CSE-induced cellular apoptosis was significantly increased in PGRN-knockdown AECs and decreased in PGRN-overexpression cells. The activation of ER stress-associated molecules correlated with PGRN expression levels. Compared with healthy controls, COPD patients exhibited significantly lower PGRN serum levels and higher PBMC intracellular PGRN levels. CONCLUSION PGRN in airway epithelial cells may regulate CS-induced AEC apoptosis and may be involved in the development of COPD.
Collapse
Affiliation(s)
- Kyoung Young Lee
- Department of Allergy and Immunology, Asan Institute for Life Science, Seoul, Korea
| | - So-Young Park
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Allergy, Asthma and COPD Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sunjoo Park
- Department of Allergy and Immunology, Asan Institute for Life Science, Seoul, Korea
| | - Gyong Hwa Hong
- Department of Allergy and Immunology, Asan Institute for Life Science, Seoul, Korea
| | - Keun-Ai Moon
- Department of Allergy and Immunology, Asan Institute for Life Science, Seoul, Korea
| | - You-Sun Kim
- Department of Allergy and Immunology, Asan Institute for Life Science, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Allergy, Asthma and COPD Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Pulmonary and Critical care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Clinical Research Center for Chronic Obstructive Airway Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Allergy, Asthma and COPD Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Allergy, Asthma and COPD Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Allergy, Asthma and COPD Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Allergy, Asthma and COPD Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
C/EBP homologous protein promotes NSAID-activated gene 1-linked pro-inflammatory signals and enterocyte invasion by enteropathogenic Escherichia coli. Microbes Infect 2016; 19:110-121. [PMID: 27771295 DOI: 10.1016/j.micinf.2016.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 08/24/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023]
Abstract
NSAID-activated Gene 1 (NAG-1) is a prognostic indicator of chronic inflammatory diseases and aggressive tumors. Among the stress sentinels in response to infection by enteropathogenic Escherichia coli (EPEC) or other pathogenic E. coli, C/EBP homologous protein (CHOP), a representative stress-regulated transcription factor, was prominently increased and assessed for its involvement in NAG-1-mediated pathogenic cellular responses. NAG-1 expression was transcriptionally upregulated by CHOP, which promoted chemokine production through sustained NF-κB activation. Mechanistically, NF-κB activation by NAG-1 was due to TGFβ-activated kinase 1 (TAK-1)-mediated pathway rather than SMAD-associated signals. Moreover, CHOP and subsequent TAK-1-linked signals were also involved in bacterial invasion into human cells. Therefore, CHOP as an infection-induced sentinel played crucial roles in induction of NAG-1 and subsequent prolonged activation of pro-inflammatory responses to EPEC infection or related chronic pathogenic states.
Collapse
|
41
|
Park SH, Kim J, Yu M, Park JH, Kim YS, Moon Y. Epithelial Cholesterol Deficiency Attenuates Human Antigen R-linked Pro-inflammatory Stimulation via an SREBP2-linked Circuit. J Biol Chem 2016; 291:24641-24656. [PMID: 27703009 DOI: 10.1074/jbc.m116.723973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/16/2016] [Indexed: 01/03/2023] Open
Abstract
Patients with chronic intestinal ulcerative diseases, such as inflammatory bowel disease, tend to exhibit abnormal lipid profiles, which may affect the gut epithelial integrity. We hypothesized that epithelial cholesterol depletion may trigger inflammation-checking machinery via cholesterol sentinel signaling molecules whose disruption in patients may aggravate inflammation and disease progression. In the present study, sterol regulatory element-binding protein 2 (SREBP2) as the cholesterol sentinel was assessed for its involvement in the epithelial inflammatory responses in cholesterol-depleted enterocytes. Patients and experimental animals with intestinal ulcerative injuries showed suppression in epithelial SREBP2. Moreover, SREBP2-deficient enterocytes showed enhanced pro-inflammatory signals in response to inflammatory insults, indicating regulatory roles of SREBP2 in gut epithelial inflammation. However, epithelial cholesterol depletion transiently induced pro-inflammatory chemokine expression regardless of the well known pro-inflammatory nuclear factor-κB signals. In contrast, cholesterol depletion also exerts regulatory actions to maintain epithelial homeostasis against excessive inflammation via SREBP2-associated signals in a negative feedback loop. Mechanistically, SREBP2 and its induced target EGR-1 were positively involved in induction of peroxisome proliferator-activated receptor γ (PPARγ), a representative anti-inflammatory transcription factor. As a crucial target of the SREBP2-EGR-1-PPARγ-associated signaling pathways, the mRNA stabilizer, human antigen R (HuR) was retained in nuclei, leading to reduced stability of pro-inflammatory chemokine transcripts. This mechanistic investigation provides clinical insights into protective roles of the epithelial cholesterol deficiency against excessive inflammatory responses via the SREBP2-HuR circuit, although the deficiency triggers transient pro-inflammatory signals.
Collapse
Affiliation(s)
- Seong-Hwan Park
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Juil Kim
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Mira Yu
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Jae-Hong Park
- the Department of Pediatrics, Pusan National University, Yangsan 50612
| | - Yong Sik Kim
- the Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, and
| | - Yuseok Moon
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612,; the Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Busan 46241, Korea.
| |
Collapse
|
42
|
Clément M, Basatemur G, Masters L, Baker L, Bruneval P, Iwawaki T, Kneilling M, Yamasaki S, Goodall J, Mallat Z. Necrotic Cell Sensor Clec4e Promotes a Proatherogenic Macrophage Phenotype Through Activation of the Unfolded Protein Response. Circulation 2016; 134:1039-1051. [DOI: 10.1161/circulationaha.116.022668] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/05/2016] [Indexed: 01/22/2023]
Abstract
Background:
Atherosclerotic lesion expansion is characterized by the development of a lipid-rich necrotic core known to be associated with the occurrence of complications. Abnormal lipid handling, inflammation, and alteration of cell survival or proliferation contribute to necrotic core formation, but the molecular mechanisms involved in this process are not properly understood. C-type lectin receptor 4e (Clec4e) recognizes the cord factor of Mycobacterium
tuberculosis
but also senses molecular patterns released by necrotic cells and drives inflammation.
Methods:
We hypothesized that activation of Clec4e signaling by necrosis is causally involved in atherogenesis. We addressed the impact of Clec4e activation on macrophage functions in vitro and on the development of atherosclerosis using low-density lipoprotein receptor–deficient (
Ldlr
−/−
) mice in vivo.
Results:
We show that Clec4e is expressed within human and mouse atherosclerotic lesions and is activated by necrotic lesion extracts. Clec4e signaling in macrophages inhibits cholesterol efflux and induces a Syk-mediated endoplasmic reticulum stress response, leading to the induction of proinflammatory mediators and growth factors.
Chop
and
Ire1a
deficiencies significantly limit Clec4e-dependent effects, whereas
Atf3
deficiency aggravates Clec4e-mediated inflammation and alteration of cholesterol efflux. Repopulation of
Ldlr
−/−
mice with
Clec4e
−/−
bone marrow reduces lipid accumulation, endoplasmic reticulum stress, and macrophage inflammation and proliferation within the developing arterial lesions and significantly limits atherosclerosis.
Conclusions:
Our results identify a nonredundant role for Clec4e in coordinating major biological pathways involved in atherosclerosis and suggest that it may play similar roles in other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Marc Clément
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Gemma Basatemur
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Leanne Masters
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Lauren Baker
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Patrick Bruneval
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Takao Iwawaki
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Manfred Kneilling
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Sho Yamasaki
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Jane Goodall
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| | - Ziad Mallat
- From Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK (M.C., G.B., L.M., L.B., J.G., Z.M.); Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (P.B., Z.M.); Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan (T.I.); Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center and Department of Dermatology (M.K.), Eberhard Karls
| |
Collapse
|
43
|
Tekola-Ayele F, Doumatey AP, Shriner D, Bentley AR, Chen G, Zhou J, Fasanmade O, Johnson T, Oli J, Okafor G, Eghan BA, Agyenim-Boateng K, Adebamowo C, Amoah A, Acheampong J, Adeyemo A, Rotimi CN. Genome-wide association study identifies African-ancestry specific variants for metabolic syndrome. Mol Genet Metab 2015; 116:305-13. [PMID: 26507551 PMCID: PMC5292212 DOI: 10.1016/j.ymgme.2015.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022]
Abstract
The metabolic syndrome (MetS) is a constellation of metabolic disorders that increase the risk of developing several diseases including type 2 diabetes and cardiovascular diseases. Although genome-wide association studies (GWAS) have successfully identified variants associated with individual traits comprising MetS, the genetic basis and pathophysiological mechanisms underlying the clustering of these traits remain unclear. We conducted GWAS of MetS in 1427 Africans from Ghana and Nigeria followed by replication testing and meta-analysis in another continental African sample from Kenya. Further replication testing was performed in an African American sample from the Atherosclerosis Risk in Communities (ARIC) study. We found two African-ancestry specific variants that were significantly associated with MetS: SNP rs73989312[A] near CA10 that conferred increased risk (P=3.86 × 10(-8), OR=6.80) and SNP rs77244975[C] in CTNNA3 that conferred protection against MetS (P=1.63 × 10(-8), OR=0.15). Given the exclusive expression of CA10 in the brain, our CA10 finding strengthens previously reported link between brain function and MetS. We also identified two variants that are not African specific: rs76822696[A] near RALYL associated with increased MetS risk (P=7.37 × 10(-9), OR=1.59) and rs7964157[T] near KSR2 associated with reduced MetS risk (P=4.52 × 10(-8), Pmeta=7.82 × 10(-9), OR=0.53). The KSR2 locus displayed pleiotropic associations with triglyceride and measures of blood pressure. Rare KSR2 mutations have been reported to be associated with early onset obesity and insulin resistance. Finally, we replicated the LPL and CETP loci previously found to be associated with MetS in Europeans. These findings provide novel insights into the genetics of MetS in Africans and demonstrate the utility of conducting trans-ethnic disease gene mapping studies for testing the cosmopolitan significance of GWAS signals of cardio-metabolic traits.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Johnnie Oli
- University of Nigeria Teaching Hospital, Enugu, Nigeria
| | | | - Benjami A Eghan
- University of Science and Technology, Department of Medicine, Kumasi, Ghana
| | | | - Clement Adebamowo
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Albert Amoah
- University of Ghana Medical School, Department of Medicine, Accra, Ghana
| | - Joseph Acheampong
- University of Science and Technology, Department of Medicine, Kumasi, Ghana
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Chen BL, Sheu ML, Tsai KS, Lan KC, Guan SS, Wu CT, Chen LP, Hung KY, Huang JW, Chiang CK, Liu SH. CCAAT-Enhancer-Binding Protein Homologous Protein Deficiency Attenuates Oxidative Stress and Renal Ischemia-Reperfusion Injury. Antioxid Redox Signal 2015; 23:1233-45. [PMID: 25178318 DOI: 10.1089/ars.2013.5768] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Renal ischemia-reperfusion (I/R) is a major cause of acute renal failure. The mechanisms of I/R injury include endoplasmic reticulum (ER) stress, inflammatory responses, hypoxia, and generation of reactive oxygen species (ROS). CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is involved in the ER stress signaling pathways. CHOP is a transcription factor and a major mediator of ER stress-induced apoptosis. However, the role of CHOP in renal I/R injury is still undefined. Here, we investigated whether CHOP could regulate I/R-induced renal injury using CHOP-knockout mice and cultured renal tubular cells as models. RESULTS In CHOP-knockout mice, loss of renal function induced by I/R was prevented. Renal proximal tubule damage was induced by I/R in wild-type mice; however, the degree of alteration was significantly less in CHOP-knockout mice. CHOP deficiency also decreased the I/R-induced activation of caspase-3 and -8, apoptosis, and lipid peroxidation, whereas the activity of endogenous antioxidants increased. In an in vitro I/R model, small interfering RNA targeting CHOP significantly reversed increases in H2O2 formation, inflammatory signals, and apoptotic signals, while enhancing the activity of endogenous antioxidants in renal tubular cells. INNOVATION To the best of our knowledge, this is the first study which demonstrates that CHOP deficiency attenuates oxidative stress and I/R-induced acute renal injury both in vitro and in vivo. CONCLUSION These findings suggest that CHOP regulates not only apoptosis-related signaling but also ROS formation and inflammation in renal tubular cells during I/R. CHOP may play an important role in the pathophysiology of I/R-induced renal injury.
Collapse
Affiliation(s)
- Bo Lin Chen
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Meei Ling Sheu
- 2 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan
| | - Keh Sung Tsai
- 3 Department of Laboratory Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Kuo Cheng Lan
- 4 Department of Emergency Medicine, National Defense Medical Center, Tri-Service General Hospital , Taipei, Taiwan
| | - Siao Syun Guan
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Cheng Tien Wu
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Li Ping Chen
- 5 Department of Dentistry, Taipei Chang Gang Memorial Hospital, Chang Gang University , Taipei, Taiwan
| | - Kuan Yu Hung
- 6 Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei, Taiwan
| | - Jenq Wen Huang
- 6 Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei, Taiwan
| | - Chih Kang Chiang
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,7 Department of Integrated Diagnostics and Therapeutics, College of Medicine and Hospital, National Taiwan University , Taipei, Taiwan
| | - Shing Hwa Liu
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,8 Department of Medical Research, China Medical University Hospital, China Medical University , Taichung, Taiwan .,9 Department of Pediatrics, National Taiwan University Hospital , Taipei, Taiwan
| |
Collapse
|
45
|
Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. J Transl Med 2015; 95:1157-73. [PMID: 26192086 DOI: 10.1038/labinvest.2015.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/18/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and apoptosis of peritoneal mesothelial cells are known to be the earliest mechanisms of peritoneal fibrosis in peritoneal dialysis (PD). Endoplasmic reticulum (ER) stress with an unfolded protein response is regarded to have a role in the development of organ fibrosis. To investigate the potential role of ER stress as a target to prevent and/or delay the development of peritoneal fibrosis, we examined the effect of ER stress on EMT or apoptosis of human peritoneal mesothelial cells (HPMCs) and elucidated the mechanisms underlying the protective effect of ER stress preconditioning on TGF-β1-induced EMT. ER stress inducers, tunicamycin (TM) and thapsigargin (TG), induced EMT with Smad2/3 phosphorylation, an increased nuclear translocation of β-catenin and Snail expression. Low concentrations of TM and TG did not induce apoptosis within 48 h; however, high concentrations of TM- (>1 ng/ml) and TG- (>1 nM) induced apoptosis at 12 h with a persistent increase in C/EBP homologous protein. TGF-β1 induced EMT and apoptosis in HPMCs, which was ameliorated by taurine-conjugated ursodeoxycholic acid, an ER stress blocker. Interestingly, pre-treatment with TM or TG for 4 h also protected the cells from TGF-β1-induced EMT and apoptosis, demonstrating the role of ER stress as an adaptive response to protect HPMCs from EMT and apoptosis. Peritoneal mesothelial cells isolated from PD patients displayed an increase in GRP78/94, which was correlated with the degree of EMT. These findings suggest that the modulation of ER stress in HPMCs could serve as a novel approach to ameliorate peritoneal damage in PD patients.
Collapse
|
46
|
Stohn JP, Wang Q, Siviski ME, Kennedy K, Jin YR, Kacer D, DeMambro V, Liaw L, Vary CP, Rosen CJ, Prudovsky I, Lindner V. Cthrc1 controls adipose tissue formation, body composition, and physical activity. Obesity (Silver Spring) 2015; 23:1633-42. [PMID: 26148471 PMCID: PMC4509980 DOI: 10.1002/oby.21144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study investigated the effects of loss of Cthrc1 on adipogenesis, body composition, metabolism, physical activity, and muscle physiology. METHODS Complete metabolic and activity monitoring as well as grip strength measurements and muscle myography was performed in Cthrc1 null and wildtype mice. RESULTS Compared to wildtypes, Cthrc1 null mice had similar body weights but significantly reduced energy expenditure, decreased lean mass, and increased fat mass, especially visceral fat. In vitro studies demonstrated that Cthrc1 inhibited adipocyte differentiation as well as PPAR and CREB reporter activity, while preadipocytes isolated from Cthrc1 null mice exhibited enhanced adipogenic differentiation. Voluntary physical activity in Cthrc1 null mice as assessed by wheel running was reduced to approximately half the distance covered by wildtypes. Reduced grip strength was observed in Cthrc1 null mice at the age of 15 weeks or older with reduced performance and mass of hyphenate muscle. In the brain, Cthrc1 expression was most prominent in neurons of thalamic and hypothalamic nuclei with evidence for secretion into the circulation in the median eminence. CONCLUSIONS Our data indicate that Cthrc1 regulates body composition through inhibition of adipogenesis. In addition, central Cthrc1 may be a mediator of muscle function and physical activity.
Collapse
Affiliation(s)
- J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Qiaozeng Wang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Matthew E Siviski
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Kevin Kennedy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Yong-Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Victoria DeMambro
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Calvin P Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| |
Collapse
|
47
|
Waldera-Lupa DM, Kalfalah F, Florea AM, Sass S, Kruse F, Rieder V, Tigges J, Fritsche E, Krutmann J, Busch H, Boerries M, Meyer HE, Boege F, Theis F, Reifenberger G, Stühler K. Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts. Aging (Albany NY) 2015; 6:856-78. [PMID: 25411231 PMCID: PMC4247387 DOI: 10.18632/aging.100698] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts’ aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77% of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging.
Collapse
Affiliation(s)
- Daniel M Waldera-Lupa
- Institute for Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany. Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Faiza Kalfalah
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Ana-Maria Florea
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Sass
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian Kruse
- Institute for Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany. Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Vera Rieder
- Institute for Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany. Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Tigges
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Jean Krutmann
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Helmut E Meyer
- Department of Biomedical Research, Leibniz-Institute for Analytical Science - ISAS, Dortmund, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Fabian Theis
- Department of Mathematics, Technical University Munich, Garching, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany. Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
48
|
Young CN, Li A, Dong FN, Horwath JA, Clark CG, Davisson RL. Endoplasmic reticulum and oxidant stress mediate nuclear factor-κB activation in the subfornical organ during angiotensin II hypertension. Am J Physiol Cell Physiol 2015; 308:C803-12. [PMID: 25980014 DOI: 10.1152/ajpcell.00223.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/10/2015] [Indexed: 01/14/2023]
Abstract
Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Colin N Young
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Anfei Li
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Frederick N Dong
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Julie A Horwath
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Catharine G Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, New York; and
| | - Robin L Davisson
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York; Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
49
|
Fung TS, Huang M, Liu DX. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res 2014; 194:110-23. [PMID: 25304691 PMCID: PMC7114476 DOI: 10.1016/j.virusres.2014.09.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/11/2022]
Abstract
Coronavirus replication is structurally and functionally associated with the endoplasmic reticulum (ER), a major site of protein synthesis, folding, modification and sorting in the eukaryotic cells. Disturbance of ER homeostasis may occur under various physiological or pathological conditions. In response to the ER stress, signaling pathways of the unfolded protein response (UPR) are activated. UPR is mediated by three ER transmembrane sensors, namely the PKR-like ER protein kinase (PERK), the inositol-requiring protein 1 (IRE1) and the activating transcriptional factor 6 (ATF6). UPR facilitates adaptation to ER stress by reversible translation attenuation, enhancement of ER protein folding capacity and activation of ER-associated degradation (ERAD). In cells under prolonged and irremediable ER stress, UPR can also trigger apoptotic cell death. Accumulating evidence has shown that coronavirus infection causes ER stress and induces UPR in the infected cells. UPR is closely associated with a number of major signaling pathways, including autophagy, apoptosis, the mitogen-activated protein (MAP) kinase pathways, innate immunity and pro-inflammatory response. Therefore, studies on the UPR are pivotal in elucidating the complicated issue of coronavirus-host interaction. In this paper, we present the up-to-date knowledge on coronavirus-induced UPR and discuss its potential involvement in regulation of innate immunity and apoptosis.
Collapse
Affiliation(s)
- To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Mei Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
50
|
Pellerito O, Notaro A, Sabella S, De Blasio A, Vento R, Calvaruso G, Giuliano M. WIN induces apoptotic cell death in human colon cancer cells through a block of autophagic flux dependent on PPARγ down-regulation. Apoptosis 2014; 19:1029-42. [PMID: 24696378 DOI: 10.1007/s10495-014-0985-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cannabinoids have been reported to possess anti-tumorigenic activity in cancer models although their mechanism of action is not well understood. Here, we show that the synthetic cannabinoid WIN55,212-2 (WIN)-induced apoptosis in colon cancer cell lines is accompanied by endoplasmic reticulum stress induction. The formation of acidic vacuoles and the increase in LC3-II protein indicated the involvement of autophagic process which seemed to play a pro-survival role against the cytotoxic effects of the drug. However, the enhanced lysosomal membrane permeabilization (LMP) blocked the autophagic flux after the formation of autophagosomes as demonstrated by the accumulation of p62 and LC3, two markers of autophagic degradation. Data also provided evidence for a role for nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in cannabinoid signalling. PPARγ expression, at both protein and mRNA levels, was significantly down-regulated after WIN treatment and its inhibition, either by specific antagonists or by down-regulation via gene silencing, induced effects on cell viability as well as on ER stress and autophagic markers similar to those obtained in the presence of WIN. Moreover, the observation that the increase in p62 level and the induction of LMP were also modified by PPARγ antagonists seemed to indicate that PPARγ down-regulation was crucial to determinate the block of autophagic flux, thus confirming the critical role of PPARγ in WIN action. In conclusion, at our knowledge, our results are the first to show that the reduction of PPARγ levels contributes to WIN-induced colon carcinoma cell death by blocking the pro-survival autophagic response of cells.
Collapse
Affiliation(s)
- Ornella Pellerito
- Laboratory of Cellular and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, PROTEO and IBIS, Université Laval, Quebec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|