1
|
Carestia A, Godin LC, Jenne CN. Step up to the platelet: Role of platelets in inflammation and infection. Thromb Res 2023; 231:182-194. [PMID: 36307228 DOI: 10.1016/j.thromres.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Platelets are anucleated cells derived from megakaryocytes that are primarily responsible for hemostasis. However, in recent years, these cytoplasts have become increasingly recognized as immune cells, able to detect, interact with, and kill pathogens. As platelets are involved in both immunity and coagulation, they have a central role in immunothrombosis, a physiological process in which immune cells induce the formation of microthrombi to both prevent the spread of pathogens, and to help facilitate clearance. In this review, we will highlight the role of platelets as key players in the inflammatory and innate immune response against bacterial and viral infection, including direct and indirect interactions with pathogens and other immune cells.
Collapse
Affiliation(s)
- Agostina Carestia
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Laura C Godin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
2
|
Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A. Platelets in Viral Infections - Brave Soldiers or Trojan Horses. Front Immunol 2022; 13:856713. [PMID: 35419008 PMCID: PMC9001014 DOI: 10.3389/fimmu.2022.856713] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are often associated with platelet activation and haemostatic complications. In line, low platelet counts represent a hallmark for poor prognosis in many infectious diseases. The underlying cause of platelet dysfunction in viral infections is multifaceted and complex. While some viruses directly interact with platelets and/or megakaryocytes to modulate their function, also immune and inflammatory responses directly and indirectly favour platelet activation. Platelet activation results in increased platelet consumption and degradation, which contributes to thrombocytopenia in these patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed by a state of platelet exhaustion and/or hypo-responsiveness, which together with low platelet counts promotes bleeding events. Thereby infectious diseases not only increase the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical complication. Treatment options in these patients are limited and new therapeutic strategies are urgently needed to prevent adverse outcome. This review summarizes the current literature on platelet-virus interactions and their impact on viral pathologies and discusses potential intervention strategies. As pandemics and concomitant haemostatic dysregulations will remain a recurrent threat, understanding the role of platelets in viral infections represents a timely and pivotal challenge.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Identification of the Genome Segments of Bluetongue Virus Type 26/Type 1 Reassortants Influencing Horizontal Transmission in a Mouse Model. Viruses 2021; 13:v13112208. [PMID: 34835014 PMCID: PMC8620829 DOI: 10.3390/v13112208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/20/2023] Open
Abstract
Bluetongue virus serotypes 1 to 24 are transmitted primarily by infected Culicoides midges, in which they also replicate. However, “atypical” BTV serotypes (BTV-25, -26, -27 and -28) have recently been identified that do not infect and replicate in adult Culicoides, or a Culicoides derived cell line (KC cells). These atypical viruses are transmitted horizontally by direct contact between infected and susceptible hosts (primarily small ruminants) causing only mild clinical signs, although the exact transmission mechanisms involved have yet to be determined. We used reverse genetics to generate a strain of BTV-1 (BTV-1 RGC7) which is less virulent, infecting IFNAR(−/−) mice without killing them. Reassortant viruses were also engineered, using the BTV-1 RGC7 genetic backbone, containing individual genome segments derived from BTV-26. These reassortant viruses were used to explore the genetic control of horizontal transmission (HT) in the IFNAR(−/−) mouse model. Previous studies showed that genome segments 1, 2 and 3 restrict infection of Culicoides cells, along with a minor role for segment 7. The current study demonstrates that genome segments 2, 5 and 10 of BTV-26 (coding for proteins VP2, NS1 and NS3/NS3a/NS5, respectively) are individually sufficient to promote HT.
Collapse
|
5
|
Yang J, Park J, Koehler M, Simpson J, Luque D, Rodríguez JM, Alsteens D. Rotavirus Binding to Cell Surface Receptors Directly Recruiting α
2
Integrin. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology Université Catholique de Louvain Louvain-la-Neuve 1348 Belgium
| | | | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology Université Catholique de Louvain Louvain-la-Neuve 1348 Belgium
| | - Joshua Simpson
- Louvain Institute of Biomolecular Science and Technology Université Catholique de Louvain Louvain-la-Neuve 1348 Belgium
| | - Daniel Luque
- Centro Nacional de Microbiología/ISCIII Madrid 28220 Spain
| | | | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology Université Catholique de Louvain Louvain-la-Neuve 1348 Belgium
| |
Collapse
|
6
|
Page MJ, Pretorius E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020; 46:302-319. [PMID: 32279287 PMCID: PMC7339151 DOI: 10.1055/s-0040-1708827] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Liu D, Geng H, Zhang Z, Xing Y, Yang D, Liu Z, Wang D. An Effective Platform for Exploring Rotavirus Receptors by Bacterial Surface Display System. Virol Sin 2019; 35:103-109. [PMID: 31777010 PMCID: PMC7035415 DOI: 10.1007/s12250-019-00174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is a major foodborne pathogen. For RV prevention and control, it is a key to uncover the interaction mechanism between virus and its receptors. However, it is hard to specially purify the viral receptors, including histo-blood group antigens (HBGAs). Previously, the protruding domain protein (P protein) of human norovirus (genotype II.4) was displayed on the surface of Escherichia coli, and it specifically recognized and captured the viral ligands. In order to further verify the feasibility of the system, P protein was replaced by VP8* of RV (G9P[8]) in this study. In the system, VP8* could be correctly released by thrombin treatment with antigenicity retaining, which was confirmed by Western blot and Enzyme-Linked Immunosorbent Assays. Type A HBGAs from porcine gastric mucin (PGM) were recognized and captured by this system. From saliva mixture, the captured viral receptor bound with displayed VP8* was confirmed positive with monoclonal antibody against type A HBGAs. It indicated that the target ligands could be easily separated from the complex matrix. These results demonstrate that the bacterial surface display system will be an effective platform to explore viral receptors/ligands from cell lines or food matrix.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Haoran Geng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zilei Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Yifan Xing
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danlu Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhicheng Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Food Safety and Engineering Technology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Rodríguez JM, Luque D. Structural Insights into Rotavirus Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:45-68. [DOI: 10.1007/978-3-030-14741-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Averbukh LD, Wu GY. Evidence for Viral Induction of Biliary Atresia: A Review. J Clin Transl Hepatol 2018; 6:410-419. [PMID: 30637219 PMCID: PMC6328731 DOI: 10.14218/jcth.2018.00046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Biliary atresia (BA) is a childhood disease which manifests with abnormal narrowing, blockage or complete absence of bile ducts within the liver. Many possible etiologies have been reported for the development of BA, including congenital, perinatal and acquired conditions. Since the 1970's, there has been increasing evidence linking BA development to viral perinatal infections. The viral vectors most commonly implicated include members of the herpesviridae family (cytomegalovirus and Epstein-Barr virus) as well as those of the reoviridae family (reovirus and rotavirus). While extensive work has been done on a murine model of disease, the current review focuses primarily on evidence from human studies of viral vectors in children afflicted with BA.
Collapse
Affiliation(s)
- Leon D. Averbukh
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence to: Leon D. Averbukh, Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, 236 Farmington Ave., Farmington, CT 06030, USA. Tel: +1-347-306-4752, E-mail:
| | | |
Collapse
|
10
|
Seyoum M, Enawgaw B, Melku M. Human blood platelets and viruses: defense mechanism and role in the removal of viral pathogens. Thromb J 2018; 16:16. [PMID: 30026673 PMCID: PMC6048695 DOI: 10.1186/s12959-018-0170-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets are small non-nucleated cell fragments and the second most abundant cell that play crucial role in managing vascular integrity and regulating hemostasis. Recent finding shows, beyond its hemostatic function platelets also play a main role in fighting against pathogen including viruses. With their receptors, platelet interacts with viral pathogen and this interaction between platelets and viral pathogens result in activation of platelets. Activated platelet releases different molecules that have antiviral activity including kinocidins and other platelet microbicidal peptides. In addition, activated platelet has antiviral role by different mechanism including; phagocytosis of viral pathogen, produce reactive oxygen species and interact with and activate other immune cells. In other side, antiplatelet treatments are one of defending mechanism of viral pathogen. This narrative review summarizes what is known regarding the role of human platelets in fighting viral pathogen.
Collapse
Affiliation(s)
- Masresha Seyoum
- University of Gondar hospital, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bamlaku Enawgaw
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Rajan A, Persson BD, Frängsmyr L, Olofsson A, Sandblad L, Heino J, Takada Y, Mould AP, Schnapp LM, Gall J, Arnberg N. Enteric Species F Human Adenoviruses use Laminin-Binding Integrins as Co-Receptors for Infection of Ht-29 Cells. Sci Rep 2018; 8:10019. [PMID: 29968781 PMCID: PMC6030200 DOI: 10.1038/s41598-018-28255-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
The enteric species F human adenovirus types 40 and 41 (HAdV-40 and -41) are the third most common cause of infantile gastroenteritis in the world. Knowledge about HAdV-40 and -41 cellular infection is assumed to be fundamentally different from that of other HAdVs since HAdV-40 and -41 penton bases lack the αV-integrin-interacting RGD motif. This motif is used by other HAdVs mainly for internalization and endosomal escape. We hypothesised that the penton bases of HAdV-40 and -41 interact with integrins independently of the RGD motif. HAdV-41 transduction of a library of rodent cells expressing specific human integrin subunits pointed to the use of laminin-binding α2-, α3- and α6-containing integrins as well as other integrins as candidate co-receptors. Specific laminins prevented internalisation and infection, and recombinant, soluble HAdV-41 penton base proteins prevented infection of human intestinal HT-29 cells. Surface plasmon resonance analysis demonstrated that HAdV-40 and -41 penton base proteins bind to α6-containing integrins with an affinity similar to that of previously characterised penton base:integrin interactions. With these results, we propose that laminin-binding integrins are co-receptors for HAdV-40 and -41.
Collapse
Affiliation(s)
- Anandi Rajan
- Department of Clinical Microbiology/Virology, and, the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - B David Persson
- Department of Clinical Microbiology/Virology, and, the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Lars Frängsmyr
- Department of Clinical Microbiology/Virology, and, the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | | | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Yoshikazu Takada
- Department of Dermatology, Biochemistry and Molecular Medicine, UC Davis School of Medicine, California, USA
| | - A Paul Mould
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lynn M Schnapp
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, USA
| | - Jason Gall
- Vaccine Research Center (VRC), NIAID, NIH, Bethesda, USA
| | - Niklas Arnberg
- Department of Clinical Microbiology/Virology, and, the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
González-Parra G, Dobrovolny HM, Aranda DF, Chen-Charpentier B, Guerrero Rojas RA. Quantifying rotavirus kinetics in the REH tumor cell line using in vitro data. Virus Res 2017; 244:53-63. [PMID: 29109019 DOI: 10.1016/j.virusres.2017.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Globally, rotavirus is the most common cause of diarrhea in children younger than 5 years of age, however, a quantitative understanding of the infection dynamics is still lacking. In this paper, we present the first study to extract viral kinetic parameters for in vitro rotavirus infections in the REH cell tumor line. We use a mathematical model of viral kinetics to extract parameter values by fitting the model to data from rotavirus infection of REH cells. While accurate results for some of the parameters of the mathematical model were not achievable due to its global non-identifiability, we are able to quantify approximately the time course of the infection for the first time. We also find that the basic reproductive number of rotavirus, which gives the number of secondary infections from a single infected cell, is much greater than one. Quantifying the kinetics of rotavirus leads not only to a better understanding of the infection process, but also provides a method for quantitative comparison of kinetics of different strains or for quantifying the effectiveness of antiviral treatment.
Collapse
Affiliation(s)
- Gilberto González-Parra
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA; Department of Mathematics, New Mexico Tech, Socorro, NM, USA
| | | | - Diego F Aranda
- Facultad de Ciencias, Departamento de Matemáticas, Universidad El Bosque, Bogotá D.C., Colombia
| | | | | |
Collapse
|
13
|
Abstract
Virus–platelet interplay is complex. Diverse virus types have been shown to associate with numerous distinct platelet receptors. This association can benefit the virus or the host, and thus the platelet is somewhat of a renegade. Evidence is accumulating to suggest that viruses are capable of entering platelets. For at least one type of RNA virus (dengue virus), the platelet has the necessary post-translational and packaging machinery required for production of replicative viral progeny. As a facilitator of immunity, the platelet also participates in eradicating the virus by direct and indirect mechanisms involving presentation of the pathogen to the innate and adaptive immune systems, thus enhancing inflammation by release of cytokines and other agonists. Virus-induced thrombocytopenia is caused by tangential imbalance of thrombopoeisis, autoimmunity, and loss of platelet function and integrity.
Collapse
|
14
|
Cagliani R, Forni D, Filippi G, Mozzi A, De Gioia L, Pontremoli C, Pozzoli U, Bresolin N, Clerici M, Sironi M. The mammalian complement system as an epitome of host-pathogen genetic conflicts. Mol Ecol 2016; 25:1324-39. [PMID: 26836579 DOI: 10.1111/mec.13558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
The complement system is an innate immunity effector mechanism; its action is antagonized by a wide array of pathogens and complement evasion determines the virulence of several infections. We investigated the evolutionary history of the complement system and of bacterial-encoded complement-interacting proteins. Complement components targeted by several pathogens evolved under strong selective pressure in primates, with selection acting on residues at the contact interface with microbial/viral proteins. Positively selected sites in CFH and C4BPA account for the human specificity of gonococcal infection. Bacterial interactors, evolved adaptively as well, with selected sites located at interaction surfaces with primate complement proteins. These results epitomize the expectation under a genetic conflict scenario whereby the host's and the pathogen's genes evolve within binding avoidance-binding seeking dynamics. In silico mutagenesis and protein-protein docking analyses supported this by showing that positively selected sites, both in the host's and in the pathogen's interacting partner, modulate binding.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126, Milan, Italy
| | - Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126, Milan, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy.,Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| |
Collapse
|
15
|
Guerrero CA, Guerrero RA, Silva E, Acosta O, Barreto E. Experimental Adaptation of Rotaviruses to Tumor Cell Lines. PLoS One 2016; 11:e0147666. [PMID: 26828934 PMCID: PMC4734670 DOI: 10.1371/journal.pone.0147666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023] Open
Abstract
A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death.
Collapse
Affiliation(s)
- Carlos A. Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Rafael A. Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Elver Silva
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Orlando Acosta
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Emiliano Barreto
- Institute of Biotechnology, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| |
Collapse
|
16
|
Affiliation(s)
- Dong Zhao
- Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Dai Long
- Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Bines JE, Kirkwood CD. Conquering rotavirus: from discovery to global vaccine implementation. J Paediatr Child Health 2015; 51:34-9. [PMID: 25586843 DOI: 10.1111/jpc.12815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 11/30/2022]
Abstract
Rotavirus, the commonest cause of severe dehydrating gastroenteritis world-wide, was discovered less than 50 years ago. It causes about 450,000 deaths per year in children <5 years of age and hospitalises millions more. Rotavirus vaccines have been shown to have a major impact on hospital admissions due to rotavirus gastroenteritis and all-cause gastroenteritis and reduce mortality in developing countries. In Australia, there has been a 71% decrease in rotavirus hospitalisations in children 0-5 years of age. From the discovery of rotavirus as the major causative agent for severe gastroenteritis, through vaccine development and vaccine post-marketing surveillance activities, Australian scientists and clinicians have played a significant role in the global effort to reduce the burden of rotavirus infection.
Collapse
Affiliation(s)
- Julie E Bines
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
18
|
Abstract
Viral hemorrhagic fevers (VHF) are acute zoonotic diseases that, early on, seem to cause platelet destruction or dysfunction. Here we present the four major ways viruses affect platelet development and function and new evidence of molecular factors that are preferentially induced by the more pathogenic members of the families Flaviviridae, Bunyaviridae, Arenaviridae, and Filoviridae. A systematic search was performed through the main medical electronic databases using as parameters all current findings concerning platelets in VHF. Additionally, the review contains information from conference proceedings.
Collapse
Affiliation(s)
- Juan C. Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Dermot Cox
- Molecular and Cellular Therapeutics School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Maria S. Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Eskova A, Knapp B, Matelska D, Reusing S, Arjonen A, Lisauskas T, Pepperkok R, Russell R, Eils R, Ivaska J, Kaderali L, Erfle H, Starkuviene V. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin. J Cell Sci 2014; 127:2433-47. [PMID: 24659801 DOI: 10.1242/jcs.137281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
α2β1 integrin is one of the most important collagen-binding receptors, and it has been implicated in numerous thrombotic and immune diseases. α2β1 integrin is a potent tumour suppressor, and its downregulation is associated with increased metastasis and poor prognosis in breast cancer. Currently, very little is known about the mechanism that regulates the cell-surface expression and trafficking of α2β1 integrin. Here, using a quantitative fluorescence-microscopy-based RNAi assay, we investigated the impact of 386 cytoskeleton-associated or -regulatory genes on α2 integrin endocytosis and found that 122 of these affected the intracellular accumulation of α2 integrin. Of these, 83 were found to be putative regulators of α2 integrin trafficking and/or expression, with no observed effect on the internalization of epidermal growth factor (EGF) or transferrin. Further interrogation and validation of the siRNA screen revealed a role for KIF15, a microtubule-based molecular motor, as a significant inhibitor of the endocytic trafficking of α2 integrin. Our data suggest a novel role for KIF15 in mediating plasma membrane localization of the alternative clathrin adaptor Dab2, thus impinging on pathways that regulate α2 integrin internalization.
Collapse
Affiliation(s)
| | - Bettina Knapp
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Dorota Matelska
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Susanne Reusing
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Antti Arjonen
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | | | | | - Robert Russell
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Roland Eils
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Lars Kaderali
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Holger Erfle
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
20
|
Relative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection. J Virol 2014; 88:4558-71. [PMID: 24501414 DOI: 10.1128/jvi.03431-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED N-acetyl- and N-glycolylneuraminic acids (Sia) and α2β1 integrin are frequently used by rotaviruses as cellular receptors through recognition by virion spike protein VP4. The VP4 subunit VP8*, derived from Wa rotavirus, binds the internal N-acetylneuraminic acid on ganglioside GM1. Wa infection is increased by enhanced internal Sia access following terminal Sia removal from main glycan chains with sialidase. The GM1 ligand cholera toxin B (CTB) reduces Wa infectivity. Here, we found sialidase treatment increased cellular GM1 availability and the infectivity of several other human (including RV-3) and animal rotaviruses, typically rendering them susceptible to methyl α-d-N-acetylneuraminide treatment, but did not alter α2β1 usage. CTB reduced the infectivity of these viruses. Aceramido-GM1 inhibited Wa and RV-3 infectivity in untreated and sialidase-treated cells, and GM1 supplementation increased their infectivity, demonstrating the importance of GM1 for infection. Wa recognition of α2β1 and internal Sia were at least partially independent. Rotavirus usage of GM1 was mapped to VP4 using virus reassortants, and RV-3 VP8* bound aceramido-GM1 by saturation transfer difference nuclear magnetic resonance (STD NMR). Most rotaviruses recognizing terminal Sia did not use GM1, including RRV. RRV VP8* interacted minimally with aceramido-GM1 by STD NMR. Unusually, TFR-41 rotavirus infectivity depended upon terminal Sia and GM1. Competition of CTB, Sia, and/or aceramido-GM1 with cell binding by VP8* from representative rotaviruses showed that rotavirus Sia and GM1 preferences resulted from VP8*-cell binding. Our major finding is that infection by human rotaviruses of commonly occurring VP4 serotypes involves VP8* binding to cell surface GM1 glycan, typically including the internal N-acetylneuraminic acid. IMPORTANCE Rotaviruses, the major cause of severe infantile gastroenteritis, recognize cell surface receptors through virus spike protein VP4. Several animal rotaviruses are known to bind sialic acids at the termini of main carbohydrate chains. Conversely, only a single human rotavirus is known to bind sialic acid. Interestingly, VP4 of this rotavirus bound to sialic acid that forms a branch on the main carbohydrate chain of the GM1 ganglioside. Here, we use several techniques to demonstrate that other human rotaviruses exhibit similar GM1 usage properties. Furthermore, binding by VP4 to cell surface GM1, involving branched sialic acid recognition, is shown to facilitate infection. In contrast, most animal rotaviruses that bind terminal sialic acids did not utilize GM1 for VP4 cell binding or infection. These studies support a significant role for GM1 in mediating host cell invasion by human rotaviruses.
Collapse
|
21
|
Díaz-Salinas MA, Romero P, Espinosa R, Hoshino Y, López S, Arias CF. The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells. J Virol 2013; 87:1658-63. [PMID: 23175367 PMCID: PMC3554179 DOI: 10.1128/jvi.02086-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses are internalized into MA104 cells by endocytosis, with different endocytic pathways used depending on the virus strain. The bovine rotavirus UK strain enters cells through a clathrin-mediated endocytic process, while the simian rhesus rotavirus (RRV) strain uses a poorly defined endocytic pathway that is clathrin and caveolin independent. The viral surface protein VP7 and the spike protein VP4 interact with cellular receptors during cell binding and penetration. To determine the viral protein that defines the mechanism of internalization, we used a panel of UK × RRV reassortant viruses having different combinations of the viral structural proteins. Characterization of the infectivities of these reassortants in MA104 cells either transfected with a small interfering RNA (siRNA) against the heavy chain of clathrin or incubated with hypertonic medium that destabilizes the clathrin coat clearly showed that VP4 determines the pathway of virus entry. Of interest, the characterization of Nar3, a sialic acid-independent variant of RRV, showed that a single amino acid change in VP4 shifts the route of entry from being clathrin dependent to clathrin independent. Furthermore, characterizations of several additional rotavirus strains that differ in their use of cellular receptors showed that all entered cells by clathrin-mediated endocytosis, suggesting that diverse VP4-cell surface interactions can lead to rotavirus cell entry through this endocytic pathway.
Collapse
Affiliation(s)
- Marco A. Díaz-Salinas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Pedro Romero
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Rafaela Espinosa
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Yasutaka Hoshino
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Carlos F. Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| |
Collapse
|
22
|
Integrins and small GTPases as modulators of phagocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:321-54. [PMID: 23351714 DOI: 10.1016/b978-0-12-407699-0.00006-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake.
Collapse
|
23
|
Shi M, Pedchenko V, Greer BH, Van Horn WD, Santoro SA, Sanders CR, Hudson BG, Eichman BF, Zent R, Pozzi A. Enhancing integrin α1 inserted (I) domain affinity to ligand potentiates integrin α1β1-mediated down-regulation of collagen synthesis. J Biol Chem 2012; 287:35139-35152. [PMID: 22888006 DOI: 10.1074/jbc.m112.358648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin α1β1 binding to collagen IV, which is mediated by the α1-inserted (I) domain, down-regulates collagen synthesis. When unligated, a salt bridge between Arg(287) and Glu(317) is thought to keep this domain in a low affinity conformation. Ligand binding opens the salt bridge leading to a high-affinity conformation. How modulating integrin α1β1 affinity alters collagen homeostasis is unknown. To address this question, we utilized a thermolysin-derived product of the α1α2α1 network of collagen IV (α1α2α1(IV) truncated protomer) that selectively binds integrin α1β1. We show that an E317A substitution enhanced binding to the truncated protomer, consistent with a previous finding that this substitution eliminates the salt bridge. Surprisingly, we show that an R287A substitution did not alter binding, whereas R287E/E317R substitutions enhanced binding to the truncated protomer. NMR spectroscopy and molecular modeling suggested that eliminating the Glu(317) negative charge is sufficient to induce a conformational change toward the open state. Thus, the role played by Glu(317) is largely independent of the salt bridge. We further show that cells expressing E317A or R287E/E317R substitutions have enhanced down-regulation of collagen IV synthesis, which is mediated by the ERK/MAPK pathway. In conclusion, we have demonstrated that modulating the affinity of the extracellular α1 I domain to collagen IV enhances outside-in signaling by potentiating ERK activation and enhancing the down-regulation of collagen synthesis.
Collapse
Affiliation(s)
- Mingjian Shi
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232
| | - Vadim Pedchenko
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Briana H Greer
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232
| | - Wade D Van Horn
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Samuel A Santoro
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37232
| | - Charles R Sanders
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Billy G Hudson
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Brandt F Eichman
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Roy Zent
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Medicine, Veterans Affairs Medical Center, Nashville, Tennessee 37212
| | - Ambra Pozzi
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Medicine, Veterans Affairs Medical Center, Nashville, Tennessee 37212.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW New knowledge on rotavirus infection in children and well established mouse models has renewed interest in whether rotavirus could cause biliary atresia, an idiopathic, obliterative infantile disease of bile ducts that is the primary indication for liver transplant in children. RECENT FINDINGS Studies in the rotavirus mouse model of biliary atresia indicate that infection of biliary epithelium is an inaugural event leading to biliary inflammation and obstruction, which is preceded by systemic spread of rotavirus, which also occurs during human rotavirus enteric infections. Viral factors, including rotavirus gene 4, are important for biliary infection and biliary atresia in mice. Specific host factors related to inflammatory processes (natural killer and T cells, interferon) are also critical, and a paucity of regulatory T cells in neonates may play a key role in pathogenesis in experimental biliary atresia. Rotavirus vaccination has substantially decreased rotavirus diarrheal disease worldwide and might enable demonstration of a cause-effect relationship between rotavirus infection and biliary atresia in humans. SUMMARY Rotavirus can be detected in the serum of mice and children and causes biliary atresia in neonatal mice. Approaches to re-examine whether rotavirus causes biliary atresia in children are discussed based on concepts from the mouse model of biliary atresia and rotavirus vaccination programs.
Collapse
|