1
|
Beigl TB, Paul A, Fellmeth TP, Nguyen D, Barber L, Weller S, Schäfer B, Gillissen BF, Aulitzky WE, Kopp HG, Rehm M, Andrews DW, Pluhackova K, Essmann F. BCL-2 and BOK regulate apoptosis by interaction of their C-terminal transmembrane domains. EMBO Rep 2024; 25:3896-3924. [PMID: 39048751 PMCID: PMC11387410 DOI: 10.1038/s44319-024-00206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The Bcl-2 family controls apoptosis by direct interactions of pro- and anti-apoptotic proteins. The principle mechanism is binding of the BH3 domain of pro-apoptotic proteins to the hydrophobic groove of anti-apoptotic siblings, which is therapeutically exploited by approved BH3-mimetic anti-cancer drugs. Evidence suggests that also the transmembrane domain (TMD) of Bcl-2 proteins can mediate Bcl-2 interactions. We developed a highly-specific split luciferase assay enabling the analysis of TMD interactions of pore-forming apoptosis effectors BAX, BAK, and BOK with anti-apoptotic Bcl-2 proteins in living cells. We confirm homotypic interaction of the BAX-TMD, but also newly identify interaction of the TMD of anti-apoptotic BCL-2 with the TMD of BOK, a peculiar pro-apoptotic Bcl-2 protein. BOK-TMD and BCL-2-TMD interact at the endoplasmic reticulum. Molecular dynamics simulations confirm dynamic BOK-TMD and BCL-2-TMD dimers and stable heterotetramers. Mutation of BCL-2-TMD at predicted key residues abolishes interaction with BOK-TMD. Also, inhibition of BOK-induced apoptosis by BCL-2 depends specifically on their TMDs. Thus, TMDs of Bcl-2 proteins are a relevant interaction interface for apoptosis regulation and provide a novel potential drug target.
Collapse
Affiliation(s)
- Tobias B Beigl
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Alexander Paul
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Thomas P Fellmeth
- Cluster of Excellence SimTech, University of Stuttgart, Stuttgart, Germany
| | - Dang Nguyen
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Lynn Barber
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Sandra Weller
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | | | - Bernhard F Gillissen
- Department of Hematology, Oncology, and Tumorimmunology, Charité University Medicine, Berlin, Germany
| | | | - Hans-Georg Kopp
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
- Robert-Bosch-Hospital, Stuttgart, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - David W Andrews
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Frank Essmann
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Nguyen D, Osterlund E, Kale J, Andrews DW. The C-terminal sequences of Bcl-2 family proteins mediate interactions that regulate cell death. Biochem J 2024; 481:903-922. [PMID: 38985308 PMCID: PMC11346437 DOI: 10.1042/bcj20210352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.
Collapse
Affiliation(s)
- Dang Nguyen
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - Elizabeth Osterlund
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Justin Kale
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - David W. Andrews
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Rajana N, Chary PS, Pooja YS, Bhavana V, Singh H, Guru SK, Singh SB, Mehra NK. Quality by design approach-based fabrication and evaluation of self-nanoemulsifying drug delivery system for improved delivery of venetoclax. Drug Deliv Transl Res 2024; 14:1277-1300. [PMID: 37953430 DOI: 10.1007/s13346-023-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
Breast cancer is reported as one of the most prevalent non-cutaneous malignancies in women. Venetoclax (VEN) is an approved BCl-2 inhibitor for the treatment of chronic myeloid leukemia with very limited oral bioavailability and exhibits an enormous impact on breast cancer. In the current investigation, venetoclax-loaded self-nanoemulsifying drug delivery systems (VEN-SNEDDS) were designed and fabricated to improve the aqueous solubility, permeability, and anticancer efficacy of VEN. Various surface-active parameters of the reconstituted SNEDDS were determined to scrutinize the performance of the selected surfactant mixture. Central composite design (CCD) was used to optimize the VEN-SNEDDS. The globule size of reconstituted VEN-SNEDDS was 71.3 ± 2.8 nm with a polydispersity index of 0.113 ± 0.01. VEN-SNEDDS displayed approximately 3-4 fold, 6-7 fold, and 5-6 fold reduced IC50 as compared to free VEN in MDA-MB-231, MCF-7, and T47 D cells, respectively. VEN-SNEDDS showed greater cellular uptake, apoptosis, reactive oxygen species generation, and higher BAX/BCL2 ratio with decreased caspase 3 and 8 and BCL-2 levels in the MDA-MB-231 cells compared to pure VEN. VEN-SNEDDS exhibited approximately fivefold enhancement in Cmax and an improved oral bioavailability compared to VEN suspension in in vivo pharmacokinetic studies.
Collapse
Affiliation(s)
- Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Yeruva Sri Pooja
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Sun H, Tian Y, Fu Y, Lei Y, Wang Y, Yan X, Wang J. Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds. Phys Chem Chem Phys 2023; 25:31791-31803. [PMID: 37966041 DOI: 10.1039/d3cp04351g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and in silico approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yani Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Xinrui Yan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
5
|
Wu C, Wang P, Wang B, Nijiati M, Hou M. Effects of Cooling Interventions with Different Target Temperatures on Heat Stroke Rats. J Inflamm Res 2023; 16:2345-2355. [PMID: 37284704 PMCID: PMC10239648 DOI: 10.2147/jir.s408316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose To investigate the optimal target temperature of cooling intervention in heat stroke (HS) rats and explore the potential mechanisms of cooling intervention in alleviating heat stroke-induced damage. Materials and Methods A total of 32 Sprague-Dawley rats were randomly divided into 4 groups (n=8/group), including control, HS[core body temperature (Tc)], HS(Tc-1°C) and HS(Tc+1°C) group. Heat stroke model was established in rats of HS(Tc), HS(Tc-1°C) and HS(Tc+1°C) group. Rats in HS(Tc) group were cooled to baseline core body temperature after establishing heat stroke model, HS(Tc-1°C) group to baseline core body temperature minus 1°C and HS(Tc+1°C) group to baseline core body temperature plus 1°C. We compared the histopathological changes of lung, liver and renal tissue, as well as cell apoptosis and expression of critical proteins in phosphatidylinositol 3´-kinase (PI3K)/Akt signaling pathway. Results Heat stroke caused the histopathological damage and cell apoptosis of lung, liver and renal tissue, which could be alleviated by cooling intervention to a certain extent. Notably, HS(Tc+1°C) group demonstrated a better effect on alleviating cell apoptosis although the differences were not significant. Heat stroke lead to the elevated expression of p-Akt, which subsequently induced the elevated expression of Caspase-3 and Bax, as well as the decreased expression of Bcl-2. Cooling intervention could reverse this trend. Notably, the expression level of Bax in lung tissue of HS(Tc+1°C) group was significantly lower than that of HS(Tc) and HS(Tc-1°C) group. Conclusion The mechanisms of cooling intervention in alleviating heat stroke-induced damage were associated with the expression changes of p-Akt, Caspase-3, Bax and Bcl-2. The better effect of Tc+1°C might be associated with low expression of Bax.
Collapse
Affiliation(s)
- Changdong Wu
- Xinjiang Emergency Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, People’s Republic of China
| | - Ping Wang
- Xinjiang Emergency Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, People’s Republic of China
| | - Bin Wang
- Xinjiang Emergency Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, People’s Republic of China
| | - Muyesai Nijiati
- Xinjiang Emergency Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, People’s Republic of China
| | - Ming Hou
- Xinjiang Emergency Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, People’s Republic of China
| |
Collapse
|
6
|
Gonzalo Ó, Benedi A, Vela L, Anel A, Naval J, Marzo I. Study of the Bcl-2 Interactome by BiFC Reveals Differences in the Activation Mechanism of Bax and Bak. Cells 2023; 12:cells12050800. [PMID: 36899936 PMCID: PMC10000386 DOI: 10.3390/cells12050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Evasion of apoptosis is one of the hallmarks of cancer cells. Proteins of the Bcl-2 family are key regulators of the intrinsic pathway of apoptosis, and alterations in some of these proteins are frequently found in cancer cells. Permeabilization of the outer mitochondrial membrane, regulated by pro- and antiapoptotic members of the Bcl-2 family of proteins, is essential for the release of apoptogenic factors leading to caspase activation, cell dismantlement, and death. Mitochondrial permeabilization depends on the formation of oligomers of the effector proteins Bax and Bak after an activation event mediated by BH3-only proteins and regulated by antiapoptotic members of the Bcl-2 family. In the present work, we have studied interactions between different members of the Bcl-2 family in living cells via the BiFC technique. Despite the limitations of this technique, present data suggest that native proteins of the Bcl-2 family acting inside living cells establish a complex network of interactions, which would fit nicely into "mixed" models recently proposed by others. Furthermore, our results point to differences in the regulation of Bax and Bak activation by proteins of the antiapoptotic and BH3-only subfamilies. We have also applied the BiFC technique to explore the different molecular models proposed for Bax and Bak oligomerization. Bax and Bak's mutants lacking the BH3 domain were still able to associate and give BiFC signals, suggesting the existence of alternative surfaces of interaction between two Bax or Bak molecules. These results agree with the widely accepted symmetric model for the dimerization of these proteins and also suggest that other regions, different from the α6 helix, could be involved in the oligomerization of BH3-in groove dimers.
Collapse
|
7
|
Mushtaq AU, Ådén J, Ali K, Gröbner G. Domain-specific insight into the recognition of BH3-death motifs by the pro-survival Bcl-2 protein. Biophys J 2022; 121:4517-4525. [PMID: 36325615 PMCID: PMC9748362 DOI: 10.1016/j.bpj.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Programmed mammalian cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of dysfunctional cells. In its intrinsic (mitochondrial) pathway, opposing members of the Bcl-2 (B cell lymphoma 2) protein family meet at the mitochondrial outer membrane (MOM) to control its integrity. Any imbalance can cause disorders, with upregulation of the cell-guarding antiapoptotic Bcl-2 protein itself being common in many, often incurable, cancers. Normally, the Bcl-2 protein itself is embedded in the MOM where it sequesters cell-killing apoptotic proteins such as Bax (Bcl-2-associated X protein) that would otherwise perforate the MOM and subsequently cause cell death. However, the molecular basis of Bcl-2's ability to recognize those apoptotic proteins via their common BH3 death motifs remains elusive due to the lack of structural insight. By employing nuclear magnetic resonance on fully functional human Bcl-2 protein in membrane-mimicking micelles, we identified glycine residues across all functional domains of the Bcl-2 protein and could monitor their residue-specific individual response upon the presence of a Bax-derived 36aa long BH3 domain. The observed chemical shift perturbations allowed us to determine the response and individual affinity of each glycine residue and provide an overall picture of the individual roles by which Bcl-2's functional domains engage in recognizing and inhibiting apoptotic proteins via their prominent BH3 motifs. This way, we provide a unique residue- and domain-specific insight into the molecular functioning of Bcl-2 at the membrane level, an insight also opening up for interfering with this cell-protecting mechanism in cancer therapy.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | - Katan Ali
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | | |
Collapse
|
8
|
Remote communication between unstructured and structured regions of Bcl-2 tunes its ligand binding capacity: Mechanistic insights. Comput Biol Chem 2022; 100:107736. [DOI: 10.1016/j.compbiolchem.2022.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022]
|
9
|
Ray R, Saha S, Paul S. Two novel compounds, ergosterol and ergosta-5,8-dien-3-ol, from Termitomyces heimii Natarajan demonstrate promising anti-hepatocarcinoma activity. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Shapovalov G, Ritaine A, Essonghe NC, de Ridder I, Ivanova H, Karamanou S, Economou A, Bultynck G, Skryma R, Prevarskaya N. Allosteric cross-talk between the hydrophobic cleft and the BH4 domain of Bcl-2 in control of inositol 1,4,5-trisphosphate receptor activity. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:375-391. [PMID: 36045908 PMCID: PMC9400710 DOI: 10.37349/etat.2022.00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Aim: Inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitous calcium (Ca2+) channel involved in the regulation of cellular fate and motility. Its modulation by anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) plays an important role in cancer progression. Disrupting this interaction could overcome apoptosis avoidance, one of the hallmarks of cancer, and is, thus, of great interest. Earlier reports have shown the involvement of both the Bcl-2 homology 4 (BH4) and the transmembrane domains (TMDs) of Bcl-2 in regulating IP3R activity, while the Bcl-2 hydrophobic cleft was associated primarily with its anti-apoptotic and IP3R-independent action at the mitochondria (Oncotarget. 2016;7:55704–20. doi: 10.18632/oncotarget.11005). The aim of this study was to investigate how targeting the BH3 hydrophobic cleft of Bcl-2 affects IP3R:Bcl-2 interaction. Methods: Organelle membrane-derived (OMD) patch-clamp and circular dichroism (CD) thermal melting experiments were used to elucidate the effects of the ABT-199 (venetoclax) on the IP3R:Bcl-2 interaction. Molecular dynamics (MD) simulations of free and ABT-199 bound Bcl-2 were used to propose a molecular model of such interaction. Results: It was shown that occlusion of Bcl-2’s hydrophobic cleft by the drug ABT-199 finely modulates IP3R gating in the low open probability (Po) regime, characteristic of the basal IP3R activity in non-excited cells. Complementary MD simulations allowed to propose a model of this modulation, involving an allosteric interaction with the BH4 domain on the opposite side of Bcl-2. Conclusions: Bcl-2 is an important regulator of IP3R activity and, thus of Ca2+ release from internal stores and associated processes, including cellular proliferation and death. The presence of multiple regulatory domains in both proteins suggests a complex interaction. Thus, it was found that the occlusion of the hydrophobic cleft of Bcl-2 by ABT-199 disrupts IP3R activity, leading to Bcl-2 rebinding with smaller affinity and lesser inhibitory effect. MDs simulations of free and ABT-199 bound Bcl-2 propose a molecular model of such disruption, involving an allosteric interaction with the BH4 domain on the opposite side of Bcl-2.
Collapse
Affiliation(s)
- George Shapovalov
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Abigaël Ritaine
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France.,KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Nadege Charlene Essonghe
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Ian de Ridder
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Hristina Ivanova
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, Herestraat 49, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Roman Skryma
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
11
|
Akram KM, Frost LI, Anumba DOC. Impaired autophagy with augmented apoptosis in a Th1/Th2-imbalanced placental micromilieu is associated with spontaneous preterm birth. Front Mol Biosci 2022; 9:897228. [PMID: 36090032 PMCID: PMC9460763 DOI: 10.3389/fmolb.2022.897228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Despite decades of research, the pathogenesis of spontaneous preterm birth (PTB) remains largely unknown. Limited currently available data on PTB pathogenesis are based on rodent models, which do not accurately reflect the complexity of the human placenta across gestation. While much study has focused on placental infection and inflammation associated with PTB, two key potentially important cellular events in the placenta-apoptosis and autophagy-remained less explored. Understanding the role of these processes in the human placenta may unravel currently ill-understood processes in the pathomechanism of PTB. Methods: To address this necessity, we conducted qRT-PCR and ELISA assays on placental villous tissue from 20 spontaneous preterm and 20 term deliveries, to assess the inter-relationships between inflammation, apoptosis, and autophagy in villous tissue in order to clarify their roles in the pathogenesis of PTB. Results: We found disrupted balance between pro-apoptotic BAX and anti-apoptotic BCL2 gene/protein expression in preterm placenta, which was associated with significant reduction of BCL2 and increase of BAX proteins along with upregulation of active CASP3 and CASP8 suggesting augmented apoptosis in PTB. In addition, we detected impaired autophagy in the same samples, evidenced by significant accumulation of autophagosome cargo protein p62/SQSTM1 in the preterm villous placentas, which was associated with simultaneous downregulation of an essential autophagy gene ATG7 and upregulation of Ca2+-activated cysteine protease CAPN1. Placental aggregation of p62 was inversely correlated with newborn birth weight, suggesting a potential link between placental autophagy impairment and fetal development. These two aberrations were detected in a micromilieu where the genes of the Th2 cytokines IL10 and IL13 were downregulated, suggesting an alteration in the Th1/Th2 immune balance in the preterm placenta. Conclusion: Taken together, our observations suggest that impaired autophagy and augmented apoptosis in a Th1/Th2 imbalanced placental micro-environment may be associated with the pathogenesis of spontaneous PTB.
Collapse
Affiliation(s)
| | | | - Dilly OC. Anumba
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Caro-Gómez LA, Rosas-Trigueros JL, Mixcoha E, Zamorano-Carrillo A, Martínez-Martínez J, Benítez-Cardoza CG. Anti-apoptotic Bcl-2 protein in apo and holo conformation anchored to the membrane: comparative molecular dynamics simulations. J Biomol Struct Dyn 2022:1-15. [DOI: 10.1080/07391102.2022.2101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Jorge L. Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, SEPI de la ESCOM del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Mixcoha
- Catedrático-CONACYT Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, Mexico
| | - Absalom Zamorano-Carrillo
- Laboratorio de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | |
Collapse
|
13
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
14
|
Cui J, Zhang B, Gao M, Liu B, Dai C, Dong Y, Meng F. The Protective Effect of Tetrahydroxystilbene Glucoside on High Glucose-Induced Injury in Human Umbilical Vein Endothelial Cells through the PI3K/Akt/eNOS Pathway and Regulation of Bcl-2/Bax. J Vasc Res 2021; 58:301-310. [PMID: 34218226 DOI: 10.1159/000511035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
Endothelial dysfunction plays a central role in the patho-genesis of diabetic vascular complications. 2,3,5,4'-tetra-hydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from the roots of Polygonum multiflorum Thunb, has been shown to have strong antioxidant and antiapoptotic activities. In the present study, we investigated the protective effect of TSG on apoptosis induced by high glucose in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms. Our data demonstrated that TSG significantly reversed the high glucose-induced decrease in cell viability, suppressed high glucose-induced generation of intracellular reactive oxygen species (ROS), the activity of caspase-3, and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, we found that TSG not only increased the expression of Bcl-2, while decreasing Bax expression, but also activated phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) with subsequent nitric oxide production and ultimately reduced high glucose-induced apoptosis. However, the antiapoptotic effects of TSG were abrogated by pretreatment of the cells with PI3K inhibitor (LY294002) or eNOS inhibitor NG-L-nitro-arginine methyl ester, respectively. These results suggest that TSG inhibits high glucose-induced apoptosis in HUVECs through inhibition of ROS production, activation of the PI3K/Akt/eNOS pathway, and upregulation of the Bcl-2/Bax ratio, and thus may demonstrate significant potential for preventing diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Jiankun Cui
- Department of Cardiology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Gao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baohai Liu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Cong Dai
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yumei Dong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - FanJi Meng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Alhoshani A, Alatawi FO, Al-Anazi FE, Attafi IM, Zeidan A, Agouni A, El Gamal HM, Shamoon LS, Khalaf S, Korashy HM. BCL-2 Inhibitor Venetoclax Induces Autophagy-Associated Cell Death, Cell Cycle Arrest, and Apoptosis in Human Breast Cancer Cells. Onco Targets Ther 2020; 13:13357-13370. [PMID: 33414642 PMCID: PMC7783200 DOI: 10.2147/ott.s281519] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Venetoclax (VCX) is a selective BCL-2 inhibitor approved for the treatment of leukemia and lymphoma. However, the mechanisms of anti-cancer effect of VCX either as a monotherapy or in combination with other chemotherapeutic agents against breast cancer need investigation. Methods Breast cancer cell lines with different molecular subtypes (MDA-MB-231, MCF-7, and SKBR-3) were treated with different concentrations of VCX for indicated time points. The expression of cell proliferative, apoptotic, and autophagy genes was determined by qRT-PCR and Western blot analyses. In addition, the percentage of MDA-MB-231 cells underwent apoptosis, expressed higher oxidative stress levels, and the changes in the cell cycle phases were determined by flow cytometry. Results Treatment of human breast cancer cells with increasing concentrations of VCX caused a significant decrease in cells growth and proliferation. This effect was associated with a significant increase in the percentage of apoptotic MDA-MB-231 cells and in the expression of the apoptotic genes, caspase 3, caspase 7, and BAX, with inhibition of anti-apoptotic gene, BCL-2 levels. Induction of apoptosis by VCX treatment induced cell cycle arrest at G0/G1 phase with inhibition of cell proliferator genes, cyclin D1 and E2F1. Furthermore, VCX treatment increased the formation of reactive oxygen species and the expression level of autophagy markers, Beclin 1 and LC3-II. Importantly, these cellular changes by VCX increased the chemo-sensitivity of MDA-MB-231 cells to doxorubicin. Discussion The present study explores the molecular mechanisms of VCX-mediated inhibitory effects on the growth and proliferation of TNBC MDA-MB-231 cells through the induction of apoptosis, cell cycle arrest, and autophagy. The study also explores the role of BCL-2 as a novel targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad O Alatawi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz E Al-Anazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibraheem M Attafi
- Poison Control & Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Asad Zeidan
- Department of Biomedical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Heba M El Gamal
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Licia S Shamoon
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sarah Khalaf
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
16
|
The Mysteries around the BCL-2 Family Member BOK. Biomolecules 2020; 10:biom10121638. [PMID: 33291826 PMCID: PMC7762061 DOI: 10.3390/biom10121638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
BOK is an evolutionarily conserved BCL-2 family member that resembles the apoptotic effectors BAK and BAX in sequence and structure. Based on these similarities, BOK has traditionally been classified as a BAX-like pro-apoptotic protein. However, the mechanism of action and cellular functions of BOK remains controversial. While some studies propose that BOK could replace BAK and BAX to elicit apoptosis, others attribute to this protein an indirect way of apoptosis regulation. Adding to the debate, BOK has been associated with a plethora of non-apoptotic functions that makes this protein unpredictable when dictating cell fate. Here, we compile the current knowledge and open questions about this paradoxical protein with a special focus on its structural features as the key aspect to understand BOK biological functions.
Collapse
|
17
|
Ivanova H, Vervliet T, Monaco G, Terry LE, Rosa N, Baker MR, Parys JB, Serysheva II, Yule DI, Bultynck G. Bcl-2-Protein Family as Modulators of IP 3 Receptors and Other Organellar Ca 2+ Channels. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035089. [PMID: 31501195 DOI: 10.1101/cshperspect.a035089] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pro- and antiapoptotic proteins belonging to the B-cell lymphoma-2 (Bcl-2) family exert a critical control over cell-death processes by enabling or counteracting mitochondrial outer membrane permeabilization. Beyond this mitochondrial function, several Bcl-2 family members have emerged as critical modulators of intracellular Ca2+ homeostasis and dynamics, showing proapoptotic and antiapoptotic functions. Bcl-2 family proteins specifically target several intracellular Ca2+-transport systems, including organellar Ca2+ channels: inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), Ca2+-release channels mediating Ca2+ flux from the endoplasmic reticulum, as well as voltage-dependent anion channels (VDACs), which mediate Ca2+ flux across the mitochondrial outer membrane into the mitochondria. Although the formation of protein complexes between Bcl-2 proteins and these channels has been extensively studied, a major advance during recent years has been elucidating the complex interaction of Bcl-2 proteins with IP3Rs. Distinct interaction sites for different Bcl-2 family members were identified in the primary structure of IP3Rs. The unique molecular profiles of these Bcl-2 proteins may account for their distinct functional outcomes when bound to IP3Rs. Furthermore, Bcl-2 inhibitors used in cancer therapy may affect IP3R function as part of their proapoptotic effect and/or as an adverse effect in healthy cells.
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Nicolas Rosa
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
18
|
Al-Khafaji K, Taskin Tok T. Understanding the mechanism of amygdalin's multifunctional anti-cancer action using computational approach. J Biomol Struct Dyn 2020; 39:1600-1610. [PMID: 32107968 DOI: 10.1080/07391102.2020.1736159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amygdalin possesses anticancer properties and induces apoptosis. Based on experimental studies the presence of amygdalin with cancer cells led to activate the caspase-3 and BAX and inhibits Bcl-2 and Poly (ADP-ribose) polymerase-1 (PARP-1) but without deep information on action mode of these activities. Herein, we leaped forward to examine the molecular dynamics of the bound amygdalin and free ligand proteins, to identify precise action (conformation changes in targeted proteins) of amygdalin through using double docking and molecular dynamics (MD) simulations for 50 ns time scale. The MD simulations revealed that the binding of amygdalin led to disrupting the interaction between the Bcl-2/BAX complex. We furthermore conducted MD simulation for Bcl-2/amygdalin to investigate the stability of the complex which is responsible for inhibition of Bcl-2. It has been obtained a stable Bcl-2/amygdalin complex during the 50 ns. The results give a detail explanation of how amygdalin activates BAX and inhibits Bcl-2. For caspase-3, the matter is different, we found that amygdalin led to disrupting the interaction of caspase-3's two chains for intervals during 50 ns and then bind together repeatedly. The mechanism of caspase-3's activation through switching by disrupt the interacts for periodic intervals manner. For PARP-1, the dynamics simulations results indicated amygdalin interacts with PARP-1's binding site and forms stable interaction during simulation to render it inactive. Hence, amygdalin revealed a supernatural behavior through the MD simulations: it revealed a further clarification of the mystery amygdalin's experimental action which can act as a multifunctional drug in the cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khattab Al-Khafaji
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
| | - Tugba Taskin Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey.,Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
19
|
Distelhorst CW, Bootman MD. Creating a New Cancer Therapeutic Agent by Targeting the Interaction between Bcl-2 and IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035196. [PMID: 31110129 DOI: 10.1101/cshperspect.a035196] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bcl-2 is a member of a family of proteins that regulate cell survival. Expression of Bcl-2 is aberrantly elevated in many types of cancer. Within cells of the immune system, Bcl-2 has a physiological role in regulating immune responses. However, in cancers arising from cells of the immune system Bcl-2 promotes cell survival and proliferation. This review summarizes discoveries over the past 30 years that have elucidated Bcl-2's role in the normal immune system, including its actions in regulating calcium (Ca2+) signals necessary for the immune response, and for Ca2+-mediated apoptosis at the end of an immune response. How Bcl-2 modulates the release of Ca2+ from intracellular stores via inositol 1,4,5-trisphosphate receptors (IP3R) is discussed, and in particular, the role of Bcl-2/IP3R interactions in promoting the survival of cancer cells by preventing Ca2+-mediated cell death. The development and usage of a peptide, referred to as TAT-Pep8, or more recently, BIRD-2, that induces death of cancer cells by inhibiting Bcl-2's control over IP3R-mediated Ca2+ elevation is discussed. Studies aimed at discovering a small molecule that mimics BIRD-2's anticancer mechanism of action are summarized, along with the prospect of such a compound becoming a novel therapeutic option for cancer.
Collapse
Affiliation(s)
- Clark W Distelhorst
- Departments of Medicine and Pharmacology, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
| | - Martin D Bootman
- School of Life, Health, and Chemical Science, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
20
|
健愉 冯, 玉山 朱, 陈 权, 凌 林, Jianyu F, Yushan Z, Quan C, Jialing L. [Physiological Function and Structural Basis of Bcl-2 Family Proteins]. ZHONGGUO XI BAO SHENG WU XUE XUE BAO 2019; 41:1477-1489. [PMID: 34249113 PMCID: PMC8265309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apoptosis is an important biological process that plays a key role in the regulation of cell fate and homeostasis. The B-cell lymphoma-2 (Bcl-2) family proteins are important regulators of the apoptotic pathway, and their dysfunction is associated with a variety of diseases, including cancer, neurodegenerative and autoimmune diseases. In the past decade, a large number of research work on the physiological functions and atomic structures of Bcl-2 family proteins have been reported, which has deepened our understanding of the molecular mechanism and pathological significance of Bcl-2 family proteins. Recently, new drugs targeting different Bcl-2 proteins have been developed and used in clinics or tested in clinical trials. However, the complexity and diversity in functions and structures of Bcl-2 family have left many unsolved problems. This article summarizes current knowledge of the structure and function of Bcl-2 family proteins and discusses the pharmacological significance of Bcl-2 proteins as effective therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - 林家 凌
- 俄克拉荷马大学健康科学中心生物化学与分子生物学系, 俄克拉何马城 73126-0901
| | - Feng Jianyu
- College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Zhu Yushan
- College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Chen Quan
- College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Lin Jialing
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 73126, USA
| |
Collapse
|
21
|
Hassan AI, Ibrahim RY. Some genetic profiles in liver of Ehrlich ascites tumor-bearing mice under the stress of irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amal I. Hassan
- Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Malaeb El-Gamaa St., P.O. 12311, Dokki, Giza, 11231, Egypt
| | - Rasha Y.M. Ibrahim
- Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Malaeb El-Gamaa St., P.O. 12311, Dokki, Giza, 11231, Egypt
| |
Collapse
|
22
|
Lee EF, Smith NA, Soares da Costa TP, Meftahi N, Yao S, Harris TJ, Tran S, Pettikiriarachchi A, Perugini MA, Keizer DW, Evangelista M, Smith BJ, Fairlie WD. Structural insights into BCL2 pro-survival protein interactions with the key autophagy regulator BECN1 following phosphorylation by STK4/MST1. Autophagy 2019; 15:785-795. [PMID: 30626284 DOI: 10.1080/15548627.2018.1564557] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
BECN1/Beclin 1 is a critical protein in the initiation of autophagosome formation. Recent studies have shown that phosphorylation of BECN1 by STK4/MST1 at threonine 108 (T108) within its BH3 domain blocks macroautophagy/autophagy by increasing BECN1 affinity for its negative regulators, the anti-apoptotic proteins BCL2/Bcl-2 and BCL2L1/Bcl-xL. It was proposed that this increased binding is due to formation of an electrostatic interaction with a conserved histidine residue on the anti-apoptotic molecules. Here, we performed biophysical studies which demonstrated that a peptide corresponding to the BECN1 BH3 domain in which T108 is phosphorylated (p-T108) does show increased affinity for anti-apoptotic proteins that is significant, though only minor (<2-fold). We also determined X-ray crystal structures of BCL2 and BCL2L1 with T108-modified BECN1 BH3 peptides, but only showed evidence of an interaction between the BH3 peptide and the conserved histidine residue when the histidine flexibility was restrained due to crystal contacts. These data, together with molecular dynamics studies, indicate that the histidine is highly flexible, even when complexed with BECN1 BH3. Binding studies also showed that detergent can increase the affinity of the interaction. Although this increase was similar for both the phosphorylated and non-phosphorylated peptides, it suggests factors such as membranes could impact on the interaction between BECN1 and BCL2 proteins, and therefore, on the regulation of autophagy. Hence, we propose that phosphorylation of BECN1 by STK4/MST1 can increase the affinity of the interaction between BECN1 and anti-apoptotic proteins and this interaction can be stabilized by local environmental factors. Abbreviations: asu: asymmetric unit; BH3: BCL2/Bcl-2 homology 3; DAPK: death associated protein kinase; MD: molecular dynamics; MST: microscale thermophoresis; NMR: nuclear magnetic resonance; PDB: protein data bank; p-T: phosphothreonine; SPR: surface plasmon resonance; STK4/MST1: serine/threonine kinase 4.
Collapse
Affiliation(s)
- Erinna F Lee
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia.,b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Nicholas A Smith
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | | | - Nastaran Meftahi
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Shenggen Yao
- d Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Australia
| | - Tiffany J Harris
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
| | - Sharon Tran
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Anne Pettikiriarachchi
- e Structural Biology Division , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
| | - Matthew A Perugini
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - David W Keizer
- d Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Australia
| | - Marco Evangelista
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
| | - Brian J Smith
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - W Douglas Fairlie
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia.,b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| |
Collapse
|
23
|
Abstract
The Bcl-2 family of proteins regulates mitochondrial outer membrane permeability thereby making life or death decisions for cells. Most of Bcl-2 proteins contain hydrophobic regions that are embedded in intracellular membranes such as mitochondria. These membrane proteins are difficult to express and purify thereby preluding biochemical and biophysical characterizations. Here, we describe a photocrosslinking approach based on in vitro synthesis of Bcl-2 proteins with photoreactive amino acid analogs incorporated at specific locations. These photoreactive proteins are reconstituted into liposomal membranes with defined phospholipids or mitochondrial membranes isolated from animals, and their interactions with other Bcl-2 proteins are detected by photocrosslinking.
Collapse
|
24
|
Monaco G, La Rovere R, Karamanou S, Welkenhuyzen K, Ivanova H, Vandermarliere E, Di Martile M, Del Bufalo D, De Smedt H, Parys JB, Economou A, Bultynck G. A double point mutation at residues Ile14 and Val15 of Bcl-2 uncovers a role for the BH4 domain in both protein stability and function. FEBS J 2017; 285:127-145. [PMID: 29131545 DOI: 10.1111/febs.14324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 09/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
B-cell lymphoma 2 (Bcl-2) protein is the archetype apoptosis suppressor protein. The N-terminal Bcl-2-homology 4 (BH4) domain of Bcl-2 is required for the antiapoptotic function of this protein at the mitochondria and endoplasmic reticulum (ER). The involvement of the BH4 domain in Bcl-2's antiapoptotic functions has been proposed based on Gly-based substitutions of the Ile14/Val15 amino acids, two hydrophobic residues located in the center of Bcl-2's BH4 domain. Following this strategy, we recently showed that a BH4-domain-derived peptide in which Ile14 and Val15 have been replaced by Gly residues, was unable to dampen proapoptotic Ca2+ -release events from the ER. Here, we investigated the impact of these mutations on the overall structure, stability, and function of full-length Bcl-2 as a regulator of Ca2+ signaling and cell death. Our results indicate that full-length Bcl-2 Ile14Gly/Val15Gly, in contrast to wild-type Bcl-2, (a) displayed severely reduced structural stability and a shortened protein half-life; (b) failed to interact with Bcl-2-associated X protein (BAX), to inhibit the inositol 1,4,5-trisphosphate receptor (IP3 R) and to protect against Ca2+ -mediated apoptosis. We conclude that the hydrophobic face of Bcl-2's BH4 domain (Ile14, Val15) is an important structural regulatory element by affecting protein stability and turnover, thereby likely reducing Bcl-2's ability to modulate the function of its targets, like IP3 R and BAX. Therefore, Bcl-2 structure/function studies require pre-emptive and reliable determination of protein stability upon introduction of point mutations at the level of the BH4 domain.
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Elien Vandermarliere
- Center for Medical Biotechnology, Department of Biochemistry, VIB-UGent, Ghent University, Belgium
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| |
Collapse
|
25
|
Lin ML, Chen SS. Activation of Casein Kinase II by Gallic Acid Induces BIK-BAX/BAK-Mediated ER Ca ++-ROS-Dependent Apoptosis of Human Oral Cancer Cells. Front Physiol 2017; 8:761. [PMID: 29033852 PMCID: PMC5627504 DOI: 10.3389/fphys.2017.00761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 01/18/2023] Open
Abstract
Induction of the generation of endoplasmic reticulum (ER) calcium (Ca++)-mediated reactive oxygen species (ROS) by gallic acid (GA) has been implicated in the mitochondrial apoptotic death of human oral cancer (OC) cells, but the molecular mechanism by which GA causes ER Ca++ release of OC cells to undergo cell death remains unclear. Here, we report that GA-induced phosphorylation of B-cell lymphoma 2 (BCL-2)-interacting killer (BIK) (threonine (Thr) 33/Serine (Ser) 35) and p53 (Ser 15 and Ser 392), Bcl-2-associated x protein (BAX)/BCL-2 antagonist killer 1 (BAK) oligomerization on the ER and mitochondria, rising of cytosolic Ca++ and ROS, cytochrome c (Cyt c) release from the mitochondria, Ψm loss, and apoptosis were suppressed in cells co-treated with a specific inhibitor of casein kinase II (CK II) (4,5,6,7-tetrabromobenzotriazole). Small interfering RNA (siRNA)-mediated suppression of BIK inhibited GA-induced oligomeric complex of BAX/BAK in the ER and mitochondria, increase of cytosolic Ca++ and ROS, and apoptosis, but did not attenuate the increase in the level of Ser 15-phosphated p53 induced by GA. Blockade of p53 expression by short hairpin RNA suppressed BAX/BAK oligomerization and ER Ca++–ROS-associated apoptosis induced by GA but did not affect GA-induced phospho-BIK (Thr 33/Ser 35) levels. Induction of mitochondrial Cyt c release and ROS generation, increased cytosolic Ca++ level, and apoptosis by GA was attenuated by expression of the BAX or BAK siRNA. Over-expression of BCL-2 (but not BCL-XL) inhibited formation of ER oligomeric BAX/BAK by GA. Our results demonstrated that activation of the CK II by GA is required for the BIK-mediated ROS-dependent apoptotic activity of ER-associated BAX/BAK.
Collapse
Affiliation(s)
- Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Shih-Shun Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
26
|
Tao S, Ren Y, Zheng H, Zhao M, Zhang X, Zhu Y, Yang J, Zheng S. Salvianolic acid B inhibits intermittent high glucose-induced INS-1 cell apoptosis through regulation of Bcl-2 proteins and mitochondrial membrane potential. Eur J Pharmacol 2017; 814:56-62. [PMID: 28800882 DOI: 10.1016/j.ejphar.2017.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
Blood glucose fluctuations, also referred to as intermittent high glucose, have been validated to be more harmful than sustained high glucose in exacerbating pancreatic dysfunction by inducing β cell apoptosis. Salvianolic acid B (Sal B), an aqueous component of Salvia miltiorrhiza, has been proved beneficial to pancreatic islet function in diabetes, but the underlying mechanisms remain to be elucidated. The present study investigated the protective effect of Sal B on INS-1 cells exposed to intermittent high glucose and the possible mechanisms implicated. The results indicated that Sal B was able to restore cell viability and suppress INS-1 cell apoptosis induced by intermittent high glucose. Preincubation with Sal B led to a significant decrease of caspase-9 and caspase-3 activity and poly ADP-ribose polymerase (PARP) cleavage. Exposure to intermittent high glucose induced significant up-regulation of proapoptotic proteins, down-regulation of antiapoptotic protein and depolarization of mitochondrial membrane potential (MMP) in INS-1 cells, while these changes were reversed effectively in Sal B treated groups. In addition, Sal B markedly attenuated intermittent high glucose-induced oxidative stress as manifested by notably decreased levels of intracellular reactive oxygen species and malondialdehyde (MDA). Taken together, these results indicate that Sal B is able to suppress intermittent high glucose-induced INS-1 cell apoptosis, which might be ascribed to regulation of Bcl-2 family protein expression and preservation of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Shanjun Tao
- Department of Pharmacology, Wannan Medical College, 22 West Wenchang Road, Wuhu 241002, China
| | - Younan Ren
- Department of Pharmacology, Wannan Medical College, 22 West Wenchang Road, Wuhu 241002, China
| | - Haowen Zheng
- Department of Pharmacology, Wannan Medical College, 22 West Wenchang Road, Wuhu 241002, China
| | - Mengqiu Zhao
- Department of Basic Medicine, Anhui Vocational Institute of Population, Chizhou 247009, China
| | - Xu Zhang
- Department of Pharmacology, Wannan Medical College, 22 West Wenchang Road, Wuhu 241002, China
| | - Yuanmei Zhu
- Department of Pharmacology, Wannan Medical College, 22 West Wenchang Road, Wuhu 241002, China
| | - Jieren Yang
- Department of Pharmacology, Wannan Medical College, 22 West Wenchang Road, Wuhu 241002, China
| | - Shuguo Zheng
- Department of Pharmacology, Wannan Medical College, 22 West Wenchang Road, Wuhu 241002, China.
| |
Collapse
|
27
|
Vervliet T, Clerix E, Seitaj B, Ivanova H, Monaco G, Bultynck G. Modulation of Ca 2+ Signaling by Anti-apoptotic B-Cell Lymphoma 2 Proteins at the Endoplasmic Reticulum-Mitochondrial Interface. Front Oncol 2017; 7:75. [PMID: 28516063 PMCID: PMC5413508 DOI: 10.3389/fonc.2017.00075] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are important regulators of cell death and cell survival. Mitochondrial Ca2+ levels are critically involved in both of these processes. On the one hand, excessive mitochondrial Ca2+ leads to Ca2+-induced mitochondrial outer membrane permeabilization and thus apoptosis. On the other hand, mitochondria need Ca2+ in order to efficiently fuel the tricarboxylic acid cycle and maintain adequate mitochondrial bioenergetics. For obtaining this Ca2+, the mitochondria are largely dependent on close contact sites with the endoplasmic reticulum (ER), the so-called mitochondria-associated ER membranes. There, the inositol 1,4,5-trisphosphate receptors are responsible for the Ca2+ release from the ER. It comes as no surprise that this Ca2+ release from the ER and the subsequent Ca2+ uptake at the mitochondria are finely regulated. Cancer cells often modulate ER-Ca2+ transfer to the mitochondria in order to promote cell survival and to inhibit cell death. Important regulators of these Ca2+ signals and the onset of cancer are the B-cell lymphoma 2 (Bcl-2) family of proteins. An increasing number of reports highlight the ability of these Bcl-2-protein family members to finely regulate Ca2+ transfer from ER to mitochondria both in healthy cells and in cancer. In this review, we focus on recent insights into the dynamic regulation of ER-mitochondrial Ca2+ fluxes by Bcl-2-family members and how this impacts cell survival, cell death and mitochondrial energy production.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Eva Clerix
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Bruno Seitaj
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Cytosolic BNIP3 Dimer Interacts with Mitochondrial BAX Forming Heterodimers in the Mitochondrial Outer Membrane under Basal Conditions. Int J Mol Sci 2017; 18:ijms18040687. [PMID: 28333095 PMCID: PMC5412273 DOI: 10.3390/ijms18040687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 02/03/2023] Open
Abstract
The primary function of mitochondria is energy production, a task of particular importance especially for cells with a high energy demand like cardiomyocytes. The B-cell lymphoma (BCL-2) family member BCL-2 adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is linked to mitochondrial targeting after homodimerization, where it functions in inner membrane depolarization and permeabilization of the mitochondrial outer membrane (MOM) mediating cell death. We investigated the basal distribution of cardiac BNIP3 in vivo and its physical interaction with the pro-death protein BCL2 associated X, apoptosis regulator (BAX) and with mitochondria using immunoblot analysis, co-immunoprecipitation, and continuous wave and pulsed electron paramagnetic resonance spectroscopy techniques. We found that BNIP3 is present as a dimer in the cytosol and in the outer membrane of cardiac mitochondria under basal conditions. It forms disulfide-bridged, but mainly non-covalent dimers in the cytosol. Heterodimers with BAX are formed exclusively in the MOM. Furthermore, our results suggest that BNIP3 interacts with the MOM directly via mitochondrial BAX. However, the physical interactions with BAX and the MOM did not affect the membrane potential and cell viability. These findings suggest that another stimulus other than the mere existence of the BNIP3/BAX dimer in the MOM is required to promote BNIP3 cell-death activity; this could be a potential disturbance of the BNIP3 distribution homeostasis, namely in the direction of the mitochondria.
Collapse
|
29
|
Zabala-Uncilla N, Miranda JI, Laso A, Fernández X, Ganboa JI, Palomo C. Linear and Cyclic Depsipeptidomimetics with β-Lactam Cores: A Class of New αvβ3Integrin Receptor Inhibitors. Chembiochem 2017; 18:654-665. [DOI: 10.1002/cbic.201600642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Nerea Zabala-Uncilla
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| | - José I. Miranda
- SGIKer NMR Facility; Universidad del País Vasco UPV/EHU; Joxe Mari Korta R&D Center; Avenida Tolosa-72 20018 San Sebastian Spain
| | - Antonio Laso
- Genetadi Biotech A. G.; Edificio 502 Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Xavier Fernández
- Genetadi Biotech A. G.; Edificio 502 Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Jose I. Ganboa
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| | - Claudio Palomo
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| |
Collapse
|
30
|
Verma S, Singh A, Kumari A, Tyagi C, Goyal S, Jamal S, Grover A. Natural polyphenolic inhibitors against the antiapoptotic BCL-2. J Recept Signal Transduct Res 2017; 37:391-400. [DOI: 10.1080/10799893.2017.1298129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sharad Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aditi Singh
- Department of Biotechnology, TERI University, Vasant Kunj, New Delhi, India
| | - Anchala Kumari
- Department of Biotechnology, TERI University, Vasant Kunj, New Delhi, India
| | - Chetna Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
| | - Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, Ganesan YT, Malashkevich VN, Cheng EH, Gavathiotis E. An Autoinhibited Dimeric Form of BAX Regulates the BAX Activation Pathway. Mol Cell 2016; 63:485-97. [PMID: 27425408 PMCID: PMC4975667 DOI: 10.1016/j.molcel.2016.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022]
Abstract
Pro-apoptotic BAX is a cell fate regulator playing an important role in cellular homeostasis and pathological cell death. BAX is predominantly localized in the cytosol, where it has a quiescent monomer conformation. Following a pro-apoptotic trigger, cytosolic BAX is activated and translocates to the mitochondria to initiate mitochondrial dysfunction and apoptosis. Here, cellular, biochemical, and structural data unexpectedly demonstrate that cytosolic BAX also has an inactive dimer conformation that regulates its activation. The full-length crystal structure of the inactive BAX dimer revealed an asymmetric interaction consistent with inhibition of the N-terminal conformational change of one protomer and the displacement of the C-terminal helix α9 of the second protomer. This autoinhibited BAX dimer dissociates to BAX monomers before BAX can be activated. Our data support a model whereby the degree of apoptosis induction is regulated by the conformation of cytosolic BAX and identify an unprecedented mechanism of cytosolic BAX inhibition.
Collapse
Affiliation(s)
- Thomas P Garner
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denis E Reyna
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amit Priyadarshi
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hui-Chen Chen
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sheng Li
- Department of Medicine and UCSD DXMS Proteomics Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Wu
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yogesh Tengarai Ganesan
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir N Malashkevich
- Department of Biochemistry and Department of Biophysics and Physiology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
32
|
Yee YH, Chong SJF, Pervaiz S. The anti-oxidant and pro-oxidant dichotomy of Bcl-2. Biol Chem 2016; 397:585-93. [DOI: 10.1515/hsz-2016-0127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/31/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Across a wide spectrum of cellular redox status, there emerges a dichotomy of responses in terms of cell survival/proliferation and cell death. Of note, there is emerging evidence that the anti-apoptotic protein, Bcl-2, in addition to its conventional activity of titrating the pro-apoptotic effects of proteins such as Bax and Bak at the mitochondria, also impacts cell fate decisions via modulating cellular redox metabolism. In this regard, both pro- and anti-oxidant effects of Bcl-2 overexpression have been described under different conditions and cellular contexts. In this short review, we attempt to analyze existing observations and present a probable explanation for the seemingly conflicting redox regulating activity of Bcl-2 from the standpoint of its pro-survival function. The consequential effect(s) of the dual redox functions of Bcl-2 are also discussed, particularly from the viewpoint of developing novel therapeutic strategies against cancers rendered refractory due to the aberrant expression of Bcl-2.
Collapse
|
33
|
Lemieszek MK, Ribeiro M, Guichard Alves H, Marques G, Nunes FM, Rzeski W. Boletus edulis ribonucleic acid – a potent apoptosis inducer in human colon adenocarcinoma cells. Food Funct 2016; 7:3163-75. [DOI: 10.1039/c6fo00132g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use.
Collapse
Affiliation(s)
| | - Miguel Ribeiro
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Helena Guichard Alves
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Guilhermina Marques
- CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences
- Department of Agronomy
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
- Portugal
| | - Fernando Milheiro Nunes
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Wojciech Rzeski
- Department of Medical Biology
- Institute of Agricultural Medicine
- 20-090 Lublin
- Poland
- Department of Virology and Immunology
| |
Collapse
|
34
|
Uchime O, Dai Z, Biris N, Lee D, Sidhu SS, Li S, Lai JR, Gavathiotis E. Synthetic Antibodies Inhibit Bcl-2-associated X Protein (BAX) through Blockade of the N-terminal Activation Site. J Biol Chem 2015; 291:89-102. [PMID: 26565029 DOI: 10.1074/jbc.m115.680918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/06/2022] Open
Abstract
The BCL-2 protein family plays a critical role in regulating cellular commitment to mitochondrial apoptosis. Pro-apoptotic Bcl-2-associated X protein (BAX) is an executioner protein of the BCL-2 family that represents the gateway to mitochondrial apoptosis. Following cellular stresses that induce apoptosis, cytosolic BAX is activated and translocates to the mitochondria, where it inserts into the mitochondrial outer membrane to form a toxic pore. How the BAX activation pathway proceeds and how this may be inhibited is not yet completely understood. Here we describe synthetic antibody fragments (Fabs) as structural and biochemical probes to investigate the potential mechanisms of BAX regulation. These synthetic Fabs bind with high affinity to BAX and inhibit its activation by the BH3-only protein tBID (truncated Bcl2 interacting protein) in assays using liposomal membranes. Inhibition of BAX by a representative Fab, 3G11, prevented mitochondrial translocation of BAX and BAX-mediated cytochrome c release. Using NMR and hydrogen-deuterium exchange mass spectrometry, we showed that 3G11 forms a stoichiometric and stable complex without inducing a significant conformational change on monomeric and inactive BAX. We identified that the Fab-binding site on BAX involves residues of helices α1/α6 and the α1-α2 loop. Therefore, the inhibitory binding surface of 3G11 overlaps with the N-terminal activation site of BAX, suggesting a novel mechanism of BAX inhibition through direct binding to the BAX N-terminal activation site. The synthetic Fabs reported here reveal, as probes, novel mechanistic insights into BAX inhibition and provide a blueprint for developing inhibitors of BAX activation.
Collapse
Affiliation(s)
- Onyinyechukwu Uchime
- From the Departments of Biochemistry and Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Zhou Dai
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Nikolaos Biris
- From the Departments of Biochemistry and Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David Lee
- the School of Medicine, University of California, San Diego, San Diego, California 92093, and
| | - Sachdev S Sidhu
- the Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Sheng Li
- the School of Medicine, University of California, San Diego, San Diego, California 92093, and
| | - Jonathan R Lai
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461,
| | - Evripidis Gavathiotis
- From the Departments of Biochemistry and Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461,
| |
Collapse
|
35
|
Wang W, Zhou PH, Xu CG, Zhou XJ, Hu W, Zhang J. Baicalein ameliorates renal interstitial fibrosis by inducing myofibroblast apoptosisin vivoandin vitro. BJU Int 2015; 118:145-52. [PMID: 26178456 DOI: 10.1111/bju.13219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wei Wang
- Department of Urology; Renmin Hospital of Wuhan University; Wuhan Hubei Province China
| | - Pang-hu Zhou
- Department of Orthopaedics; Renmin Hospital of Wuhan University; Wuhan Hubei Province China
| | - Chang-geng Xu
- Department of Urology; Renmin Hospital of Wuhan University; Wuhan Hubei Province China
| | - Xiang-jun Zhou
- Department of Urology; Renmin Hospital of Wuhan University; Wuhan Hubei Province China
| | - Wei Hu
- Department of Urology; Renmin Hospital of Wuhan University; Wuhan Hubei Province China
| | - Jie Zhang
- Department of Urology; Renmin Hospital of Wuhan University; Wuhan Hubei Province China
| |
Collapse
|
36
|
Teo JJY, Woo SS, Sarpeshkar R. Synthetic Biology: A Unifying View and Review Using Analog Circuits. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:453-474. [PMID: 26372648 DOI: 10.1109/tbcas.2015.2461446] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.
Collapse
|
37
|
Landeta O, Valero JG, Flores-Romero H, Bustillo-Zabalbeitia I, Landajuela A, Garcia-Porras M, Terrones O, Basañez G. Lipid-dependent bimodal MCL1 membrane activity. ACS Chem Biol 2014; 9:2852-63. [PMID: 25314294 DOI: 10.1021/cb500592e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence indicates that the mitochondrial lipid membrane environment directly modulates the BCL2 family protein function, but the underlying mechanisms are still poorly understood. Here, we used minimalistic reconstituted systems to examine the influence of mitochondrial lipids on MCL1 activity and conformation. Site-directed mutagenesis and fluorescence spectroscopic analyses revealed that the BCL2 homology region of MCL1 (MCL1ΔNΔC) inhibits permeabilization of MOM-like membranes exclusively via canonical BH3-into-groove interactions with both cBID-like activators and BAX-like effectors. Contrary to currently popular models, MCL1ΔNΔC did not require becoming embedded into the membrane to inhibit membrane permeabilization, and interaction with cBID was more productive for MCL1ΔNΔC inhibitory activity than interaction with BAX. We also report that membranes rich in cardiolipin (CL), but not phosphatidylinositol (PI), trigger a profound conformational change in MCL1ΔNΔC leading to membrane integration and unleashment of an intrinsic lipidic pore-forming activity of the molecule. Cholesterol (CHOL) reduces both the conformational change and the lipidic pore-forming activity of MCL1ΔNΔC in CL-rich membranes, but it does not affect the interaction of MCL1ΔNΔC with proapoptotic partners in MOM-like liposomes. In addition, we identified MCL1α5 as the minimal domain of the protein responsible for its membrane-permeabilizing function both in model membranes and at the mitochondrial level. Our results provide novel mechanistic insight into MCL1 function in the context of a membrane milieu and add significantly to a growing body of evidence supporting an active role of mitochondrial membrane lipids in BCL2 protein function.
Collapse
Affiliation(s)
- Olatz Landeta
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Juan Garcia Valero
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Hector Flores-Romero
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Itsasne Bustillo-Zabalbeitia
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ane Landajuela
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Miguel Garcia-Porras
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Oihana Terrones
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Gorka Basañez
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
38
|
Sheng JJ, Chen Y, Chang H, Wang YY, Jiao B, Yu ZB. Multisite phosphorylation of Bcl-2 via protein kinase Cδfacilitates apoptosis of hypertrophic cardiomyocytes. Clin Exp Pharmacol Physiol 2014; 41:891-901. [DOI: 10.1111/1440-1681.12295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Juan-Juan Sheng
- Department of Aerospace Physiology; Fourth Military Medical University; Xi'an China
| | - Yan Chen
- Department of Aerospace Physiology; Fourth Military Medical University; Xi'an China
| | - Hui Chang
- Department of Aerospace Physiology; Fourth Military Medical University; Xi'an China
| | - Yun-Ying Wang
- Department of Aerospace Physiology; Fourth Military Medical University; Xi'an China
| | - Bo Jiao
- Department of Aerospace Physiology; Fourth Military Medical University; Xi'an China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology; Fourth Military Medical University; Xi'an China
| |
Collapse
|
39
|
Bleicken S, Jeschke G, Stegmueller C, Salvador-Gallego R, García-Sáez AJ, Bordignon E. Structural model of active Bax at the membrane. Mol Cell 2014; 56:496-505. [PMID: 25458844 DOI: 10.1016/j.molcel.2014.09.022] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 07/28/2014] [Accepted: 09/25/2014] [Indexed: 11/18/2022]
Abstract
Bax plays a central role in the mitochondrial pathway of apoptosis. Upon activation, cytosolic Bax monomers oligomerize on the surface of mitochondria and change conformation concertedly to punch holes into the outer membrane. The subsequent release of cytochrome c initiates cell death. However, the structure of membrane-inserted Bax and its mechanism of action remain largely unknown. Here, we propose a 3D model of active Bax at the membrane based on double electron-electron resonance (DEER) spectroscopy in liposomes and isolated mitochondria. We show that active Bax is organized at the membrane as assemblies of dimers. In addition to a stable dimerization domain, each monomer contains a more flexible piercing domain involved in interdimer interactions and pore formation. The most important structural change during Bax activation is the opening of the hairpin formed by helices 5 and 6, which adopts a clamp-like conformation central to the mechanism of mitochondrial permeabilization.
Collapse
Affiliation(s)
- Stephanie Bleicken
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany; German Cancer Research Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Carolin Stegmueller
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany; German Cancer Research Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Raquel Salvador-Gallego
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany; German Cancer Research Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Ana J García-Sáez
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany; German Cancer Research Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany.
| | - Enrica Bordignon
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland; Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
40
|
Arockiaraj J, Palanisamy R, Arasu A, Sathyamoorthi A, Kumaresan V, Bhatt P, Chaurasia MK, Pasupuleti M, Gnanam AJ. An anti-apoptotic B-cell lymphoma-2 (BCL-2) from Channa striatus: Sequence analysis and delayed and advanced gene expression in response to fungal, bacterial and poly I:C induction. Mol Immunol 2014; 63:586-94. [PMID: 25128157 DOI: 10.1016/j.molimm.2014.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
B-cell lymphoma-2 (BCL-2) is a suppressor of apoptosis and inhibits the caspase dependent apoptosis pathway. In this study, we report molecular characterization of a cDNA sequence encoded of BCL-2 from striped murrel, Channa striatus. A partial cDNA sequence of CsBCL-2 was identified from the striped murrel cDNA library during annotation. Subsequently, the full length CsBCL-2 cDNA sequence was obtained by an internal sequencing method using a forward primer. The sequence contains 699 nucleotide base pairs which encode 232 amino acid residues. The domain and motif analysis revealed that the CsBCL-2 polypeptide consists of BCL-2 homologous domain BH4 at the N-terminal region between 4 and 21 and the BCL-2 homologous domains BH1, BH2 and BH3 between 87 and 187. The CsBCL-2 polypeptide sequence does not have a signal peptide region, but it consists of two novel transmembrane regions at 134-152 and 209-226. The sequence analysis showed that the CsBCL-2 has highest sequence identity (70%) with BCL-2 like protein 1 (BCL-2 L1) from pufferfish Takifugu rubripes. The phylogenetic analysis showed that the CsBCL-2 was situated in the BCL-2 L1 fish clade. The secondary analysis showed that the CsBCL-2 protein consists of 132 amino acid residues in the α-helical region and 100 amino acid residues in the random coil region. The validated 3D structure of CsBCL-2 showed the active residues Gly(135) and Arg(136) in the 7th α-helical position, whereas Trp(178) is in the 9th α-helical region. CsBCL-2 mRNA transcription is predominately present in spleen and is upregulated upon being induced with fungus Aphanomyces invadans, bacteria Aeromonas hydrophila, Escherichia coli LPS, Laminaria digitata beta-1,3-glucan and poly I:C. Overall, the CsBCL-2 mRNA transcription results indicate the potential involvement of CsBCL-2 in immune system of C. striatus. However, further research at proteomic level is necessary to examine these predictions.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| |
Collapse
|
41
|
Verma S, Singh A, Mishra A. Complex disruption effect of natural polyphenols on Bcl-2-Bax: molecular dynamics simulation and essential dynamics study. J Biomol Struct Dyn 2014; 33:1094-106. [DOI: 10.1080/07391102.2014.931823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Del Re DP, Matsuda T, Zhai P, Maejima Y, Jain MR, Liu T, Li H, Hsu CP, Sadoshima J. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Mol Cell 2014; 54:639-50. [PMID: 24813943 DOI: 10.1016/j.molcel.2014.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/15/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
The Hippo pathway, evolutionarily conserved from flies to mammals, promotes cell death and inhibits cell proliferation to regulate organ size. The core component of this cascade, Mst1 in mammalian cells, is sufficient to promote apoptosis. However, the mechanisms underlying both its activation and its ability to elicit cell death remain largely undefined. We here identify a signaling cassette in cardiac myocytes consisting of K-Ras, the scaffold RASSF1A, and Mst1 that is localized to mitochondria and promotes Mst1 activation in response to oxidative stress. Activated Mst1 phosphorylates Bcl-xL at Ser14, which resides in the BH4 domain, thereby antagonizing Bcl-xL-Bax binding. This, in turn, causes activation of Bax and subsequent mitochondria-mediated apoptotic death. Our findings demonstrate mitochondrial localization of Hippo signaling and identify Bcl-xL as a target that is directly modified to promote apoptosis.
Collapse
Affiliation(s)
- Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Takahisa Matsuda
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
43
|
Ding J, Mooers BHM, Zhang Z, Kale J, Falcone D, McNichol J, Huang B, Zhang XC, Xing C, Andrews DW, Lin J. After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. J Biol Chem 2014; 289:11873-11896. [PMID: 24616095 DOI: 10.1074/jbc.m114.552562] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcl-XL binds to Bax, inhibiting Bax oligomerization required for mitochondrial outer membrane permeabilization (MOMP) during apoptosis. How Bcl-XL binds to Bax in the membrane is not known. Here, we investigated the structural organization of Bcl-XL·Bax complexes formed in the MOM, including the binding interface and membrane topology, using site-specific cross-linking, compartment-specific labeling, and computational modeling. We found that one heterodimer interface is formed by a specific interaction between the Bcl-2 homology 1-3 (BH1-3) groove of Bcl-XL and the BH3 helix of Bax, as defined previously by the crystal structure of a truncated Bcl-XL protein and a Bax BH3 peptide (Protein Data Bank entry 3PL7). We also discovered a novel interface in the heterodimer formed by equivalent interactions between the helix 1 regions of Bcl-XL and Bax when their helical axes are oriented either in parallel or antiparallel. The two interfaces are located on the cytosolic side of the MOM, whereas helix 9 of Bcl-XL is embedded in the membrane together with helices 5, 6, and 9 of Bax. Formation of the helix 1·helix 1 interface partially depends on the formation of the groove·BH3 interface because point mutations in the latter interface and the addition of ABT-737, a groove-binding BH3 mimetic, blocked the formation of both interfaces. The mutations and ABT-737 also prevented Bcl-XL from inhibiting Bax oligomerization and subsequent MOMP, suggesting that the structural organization in which interactions at both interfaces contribute to the overall stability and functionality of the complex represents antiapoptotic Bcl-XL·Bax complexes in the MOM.
Collapse
Affiliation(s)
- Jingzhen Ding
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Blaine H M Mooers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Domina Falcone
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jamie McNichol
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Bo Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuejun C Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - David W Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Jialing Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126.
| |
Collapse
|
44
|
Song J, Peng XL, Ji MY, Ai MH, Zhang JX, Dong WG. Hugl-1 induces apoptosis in esophageal carcinoma cells both in vitro and in vivo. World J Gastroenterol 2013; 19:4127-4136. [PMID: 23864775 PMCID: PMC3710414 DOI: 10.3748/wjg.v19.i26.4127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/15/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether the human giant larvae homolog 1 gene (Hugl-1/Llg1/Lgl1) exerts tumor suppressor effects in esophageal cancer.
METHODS: We constructed a Hugl-1 expression plasmid, pEZ-M29-Hugl1, for gene transfection. We transfected the pEZ-M29-Hugl1 plasmid into Eca109 esophageal cancer cell lines with Lipofectamine 2000 to overexpress Hugl-1. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the effects of the plasmid on Hugl-1 expression. In vitro cell proliferation and apoptosis were examined separately by cell counting Kit-8 (CCK-8) assay, flow cytometry, and Western blotting before and after the transfection of the plasmid into Eca109 cells. Cell cycle distribution was assessed with flow cytometry. The effect of Hugl-1 overexpressing on tumor growth in vivo was performed with a xenograft tumor model in nude mice. Expression of Hugl-1 in xenograft tumor was analyzed by immunohistochemistry. The transferase-mediated dUTP nick end-labeling (TUNEL) technique was performed to detect and quantitate apoptotic cell.
RESULTS: The transfection efficiency was confirmed with real-time RT-PCR and Western blotting. Our results show that compared with control groups the mRNA levels and protein levels of Hugl-1 in pEZ-M29-Hugl1-treated group were remarkably increased (P < 0.05). The CCK-8 assay demonstrated that the growth of cells overexpressing Hugl-1 was significantly lower than control cells. Cell cycle distribution showed there was a G0/G1 cell cycle arrest in cells overexpressing Hugl-1 (64.09% ± 3.14% vs 50.32% ± 4.60%, 64.09% ± 3.14% vs 49.13% ± 2.24%). Annexin V-fluorescein isothiocyanate revealed that apoptosis was significantly increased in cells overexpressing Hugl-1 compared with control group (17.33% ± 4.76% vs 6.90% ± 1.61%, 17.33% ± 4.76% vs 6.27% ± 0.38%). Moreover, we found that Hugl-1 changes the level of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax and the activation of both caspase-3 and caspase-9. With a TUNEL assay, we found that Hugl-1 markedly increased the apoptosis rate of Eca109 cells in vivo (60.50% ± 9.11% vs 25.00% ± 12.25%). It was shown that Hugl-1 represents a significantly more effective tumor suppressor gene alone in a xenograft tumor mouse model. This data suggest that Hugl-1 inhibited tumor growth and induced cell apoptosis in vivo.
CONCLUSION: These results suggest that Hugl-1 induces growth suppression and apoptosis in a human esophageal squamous cell carcinoma cell line both in vitro and in vivo.
Collapse
|
45
|
McNally MA, Soane L, Roelofs BA, Hartman AL, Hardwick JM. The N-terminal helix of Bcl-xL targets mitochondria. Mitochondrion 2013; 13:119-24. [PMID: 23333404 DOI: 10.1016/j.mito.2013.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 12/16/2012] [Accepted: 01/07/2013] [Indexed: 11/26/2022]
Abstract
Anti- and pro-apoptotic Bcl-2 family members regulate the mitochondrial phase of apoptotic cell death. The mitochondrial targeting mechanisms of Bcl-2 family proteins are tightly regulated. Known outer mitochondrial membrane targeting sequences include the C-terminal tail and central helical hairpin. Bcl-xL also localizes to the inner mitochondrial membrane, but these targeting sequences are unknown. Here we investigate the possibility that the N-terminus of Bcl-xL also contains mitochondrial targeting information. Amino acid residues 1-28 of Bcl-xL fused to EGFP are sufficient to target mitochondria. Although positive charges and helical propensity are required for targeting, similar to import sequences the N-terminus is not sufficient for efficient mitochondrial import.
Collapse
Affiliation(s)
- Melanie A McNally
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
46
|
Vela L, Gonzalo O, Naval J, Marzo I. Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem 2013; 288:4935-46. [PMID: 23283967 DOI: 10.1074/jbc.m112.422204] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The key event in the mitochondrial pathway of apoptosis is the activation of Bax and Bak by BH3-only proteins through a molecular mechanism that is still a matter of debate. Here we studied interactions among anti- and proapoptotic proteins of the Bcl-2 family in living cells by using bimolecular fluorescence complementation analysis. Our results indicate that the antiapoptotic proteins Mcl-1 and Bcl-x(L) bind preferably to the BH3-only proteins Bim, PUMA, and Noxa but can also bind to Bak and Bax. We also found a direct interaction between Bim, PUMA, or Noxa with either Bax or Bak during apoptosis induction. In HeLa cells, interaction of Bim with Bax occurs in cytosol, and then Bim-Bax complexes translocate to mitochondria. Complexes of either PUMA or Noxa with Bax or Bak were always detected at mitochondria. Overexpression of Bcl-x(L) or Mcl-1 delayed Bim/Bax translocation to mitochondria. These results reveal the ability of main BH3-only proteins to directly activate Bax and Bak in living cells and suggest that a complex network of interactions regulate the function of Bcl-2 family members during apoptosis.
Collapse
Affiliation(s)
- Laura Vela
- Department of Biochemistry, Facultad de Ciencias, Universidad de Zaragoza, 5009 Zaragoza, Spain
| | | | | | | |
Collapse
|
47
|
Sutton VR, Sedelies K, Dewson G, Christensen ME, Bird PI, Johnstone RW, Kluck RM, Trapani JA, Waterhouse NJ. Granzyme B triggers a prolonged pressure to die in Bcl-2 overexpressing cells, defining a window of opportunity for effective treatment with ABT-737. Cell Death Dis 2012; 3:e344. [PMID: 22764103 PMCID: PMC3406577 DOI: 10.1038/cddis.2012.73] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/23/2012] [Accepted: 05/02/2012] [Indexed: 01/08/2023]
Abstract
Overexpression of Bcl-2 contributes to resistance of cancer cells to human cytotoxic lymphocytes (CL) by blocking granzyme B (GraB)-induced mitochondrial outer membrane permeabilization (MOMP). Drugs that neutralise Bcl-2 (e.g., ABT-737) may therefore be effective adjuvants for immunotherapeutic strategies that use CL to kill cancer cells. Consistent with this we found that ABT-737 effectively restored MOMP in Bcl-2 overexpressing cells treated with GraB or natural killer cells. This effect was observed even if ABT-737 was added up to 16 h after GraB, after which the cells reset their resistant phenotype. Sensitivity to ABT-737 required initial cleavage of Bid by GraB (gctBid) but did not require ongoing GraB activity once Bid had been cleaved. This gctBid remained detectable in cells that were sensitive to ABT-737, but Bax and Bak were only activated if ABT-737 was added to the cells. These studies demonstrate that GraB generates a prolonged pro-apoptotic signal that must remain active for ABT-737 to be effective. The duration of this signal is determined by the longevity of gctBid but not activation of Bax or Bak. This defines a therapeutic window in which ABT-737 and CL synergise to cause maximum death of cancer cells that are resistant to either treatment alone, which will be essential in defining optimum treatment regimens.
Collapse
Affiliation(s)
- V R Sutton
- Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K Sedelies
- Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G Dewson
- Cell Signalling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M E Christensen
- Apoptosis and Cytotoxicity Laboratory, Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia
| | - P I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - R W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Gene Regulation Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
- Victorian Comprehensive Cancer Centre, Parkville, Victoria 3052, Australia
| | - R M Kluck
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J A Trapani
- Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
- Victorian Comprehensive Cancer Centre, Parkville, Victoria 3052, Australia
| | - N J Waterhouse
- Apoptosis and Cytotoxicity Laboratory, Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia
- Department of Medicine, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
48
|
Zhang L, Ma J, Shen T, Wang S, Ma C, Liu Y, Ran Y, Wang L, Liu L, Zhu D. Platelet-derived growth factor (PDGF) induces pulmonary vascular remodeling through 15-LO/15-HETE pathway under hypoxic condition. Cell Signal 2012; 24:1931-9. [PMID: 22735810 DOI: 10.1016/j.cellsig.2012.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/16/2012] [Accepted: 06/16/2012] [Indexed: 11/30/2022]
Abstract
15-lipoxygenase (15-LO) is known to play an important role in chronic pulmonary hypertension. Accumulating evidence for its down-stream participants in the vasoconstriction and remodeling processes of pulmonary arteries, while how hypoxia regulates 15-LO/15-hydroxyeicosatetraenoic acid (15-HETE) to mediate hypoxic pulmonary hypertension is still unknown. Platelet-derived growth factor (PDGF) is an important vascular regulator whose concentration increases under hypoxic condition in the lungs of both humans and mice with pulmonary hypertension. The present study was carried out to determine whether hypoxia advances the pulmonary vascular remodeling through the PDGF/15-LO/15-HETE pathway. We found that pulmonary arterial medial thickening caused by hypoxia was alleviated after a treatment of the hypoxic rats with imatinib, which was associated with down-regulations of 15-LO-2 expression and 15-HETE production. Moreover, the increases in cell proliferation and endogenous 15-HETE content by hypoxia were attenuated by the inhibitors of PDGF-β receptor in pulmonary artery smooth muscle cells (PASMCs). The effects of PDGF-BB on cell proliferation and survival were weakened after the administration of 15-LO inhibitors or 15-LO RNA interference. These results suggest that hypoxia promotes PASMCs proliferation and survival, contributing to pulmonary vascular medial hypertrophy, which is likely to be mediated via the PDGF-BB/15-LO-2/15-HETE pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Daqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hawley RG, Chen Y, Riz I, Zeng C. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates. ACTA ACUST UNITED AC 2012; 5:6-16. [PMID: 22754595 DOI: 10.2174/1874196701205010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.
Collapse
Affiliation(s)
- Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
50
|
Staying alive: defensive strategies in the BCL-2 family playbook. Mol Cell 2012; 44:509-10. [PMID: 22099298 DOI: 10.1016/j.molcel.2011.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much debate surrounds how prosurvival members of the BCL-2 family repress opening of the BAX/BAK channel to block apoptosis; in this issue Llambi et al. (2011) identify two modes of apoptosis inhibition that exhibit surprisingly different behavior upon repeat proapoptotic challenges by BH3-only proteins.
Collapse
|