1
|
Vassallo N. Poration of mitochondrial membranes by amyloidogenic peptides and other biological toxins. J Neurochem 2024. [PMID: 39213385 DOI: 10.1111/jnc.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-β, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Tal-Qroqq, Malta
| |
Collapse
|
2
|
Werry F, Mazur E, Theyse LFH, Edlich F. Apoptosis Regulation in Osteoarthritis and the Influence of Lipid Interactions. Int J Mol Sci 2023; 24:13028. [PMID: 37685835 PMCID: PMC10488181 DOI: 10.3390/ijms241713028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases in human and animal joints. The joints undergo several morphological and histological changes during the development of radiographically visible osteoarthritis. The most discussed changes include synovial inflammation, the massive destruction of articular cartilage and ongoing joint destruction accompanied by massive joint pain in the later stadium. Either the increased apoptosis of chondrocytes or the insufficient apoptosis of inflammatory macrophages and synovial fibroblasts are likely to underly this process. In this review, we discuss the current state of research on the pathogenesis of OA with special regard to the involvement of apoptosis.
Collapse
Affiliation(s)
- Frederike Werry
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Emilia Mazur
- Soft Tissue & Orthopaedic Surgery Service, Department for Small Animals, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Lars F. H. Theyse
- Soft Tissue & Orthopaedic Surgery Service, Department for Small Animals, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
3
|
Lim D, Choe SH, Jin S, Lee S, Kim Y, Shin HC, Choi JS, Oh DB, Kim SJ, Seo J, Ku B. Structural basis for proapoptotic activation of Bak by the noncanonical BH3-only protein Pxt1. PLoS Biol 2023; 21:e3002156. [PMID: 37315086 DOI: 10.1371/journal.pbio.3002156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.
Collapse
Affiliation(s)
- Dahwan Lim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - So-Hui Choe
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sein Jin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seulgi Lee
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Ho-Chul Shin
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Doo-Byoung Oh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
4
|
Shalaby R, Diwan A, Flores-Romero H, Hertlein V, Garcia-Saez AJ. Visualization of BOK pores independent of BAX and BAK reveals a similar mechanism with differing regulation. Cell Death Differ 2023; 30:731-741. [PMID: 36289446 PMCID: PMC9607731 DOI: 10.1038/s41418-022-01078-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
BOK is a poorly understood member of the BCL-2 family of proteins that has been proposed to function as a pro-apoptotic, BAX-like effector. However, the molecular mechanism and structural properties of BOK pores remain enigmatic. Here, we show that the thermal stability and pore activity of BOK depends on the presence of its C-terminus as well as on the mitochondrial lipid cardiolipin. We directly visualized BOK pores in liposomes by electron microscopy, which appeared similar to those induced by BAX, in line with comparable oligomerization properties quantified by single molecule imaging. In addition, super-resolution STED imaging revealed that BOK organized into dots and ring-shaped assemblies in apoptotic mitochondria, also reminiscent of those found for BAX and BAK. Yet, unlike BAX and BAK, the apoptotic activity of BOK was limited by partial mitochondrial localization and was independent of and unaffected by other BCL-2 proteins. These results suggest that, while BOK activity is kept in check by subcellular localization instead of interaction with BCL-2 family members, the resulting pores are structurally similar to those of BAX and BAK.
Collapse
Affiliation(s)
- Raed Shalaby
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Arzoo Diwan
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Hector Flores-Romero
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Vanessa Hertlein
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany.
| |
Collapse
|
5
|
Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays 2023; 45:e2200221. [PMID: 36650950 PMCID: PMC9975053 DOI: 10.1002/bies.202200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The pore-forming BCL-2 family proteins are effectors of mitochondrial poration in apoptosis initiation. Two atypical effectors-BOK and truncated BID (tBID)-join the canonical effectors BAK and BAX. Gene knockout revealed developmental phenotypes in the absence the effectors, supporting their roles in vivo. During apoptosis effectors are activated and change shape from dormant monomers to dynamic oligomers that associate with and permeabilize mitochondria. BID is activated by proteolysis, BOK accumulates on inhibition of its degradation by the E3 ligase gp78, while BAK and BAX undergo direct activation by BH3-only initiators, autoactivation, and crossactivation. Except tBID, effector oligomers on the mitochondria appear as arcs and rings in super-resolution microscopy images. The BH3-in-groove dimers of BAK and BAX, the tBID monomers, and uncharacterized BOK species are the putative building blocks of apoptotic pores. Effectors interact with lipids and bilayers but the mechanism of membrane poration remains elusive. I discuss effector-mediated mitochondrial poration.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences,Correspondence:
| |
Collapse
|
6
|
Iriondo MN, Etxaniz A, Varela YR, Ballesteros U, Hervás JH, Montes LR, Goñi FM, Alonso A. LC3 subfamily in cardiolipin-mediated mitophagy: a comparison of the LC3A, LC3B and LC3C homologs. Autophagy 2022; 18:2985-3003. [PMID: 35414338 PMCID: PMC9673933 DOI: 10.1080/15548627.2022.2062111] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Externalization of the phospholipid cardiolipin (CL) to the outer mitochondrial membrane has been proposed to act as a mitophagy trigger. CL would act as a signal for binding the LC3 macroautophagy/autophagy proteins. As yet, the behavior of the LC3-subfamily members has not been directly compared in a detailed way. In the present contribution, an analysis of LC3A, LC3B and LC3C interaction with CL-containing model membranes, and of their ability to translocate to mitochondria, is described. Binding of LC3A to CL was stronger than that of LC3B; both proteins showed a similar ability to colocalize with mitochondria upon induction of CL externalization in SH-SY5Y cells. Besides, the double silencing of LC3A and LC3B proteins was seen to decrease CCCP-induced mitophagy. Residues 14 and 18 located in the N-terminal region of LC3A were shown to be important for its recognition of damaged mitochondria during rotenone- or CCCP-induced mitophagy. Moreover, the in vitro results suggested a possible role of LC3A, but not of LC3B, in oxidized-CL recognition as a counterweight to excessive apoptosis activation. In the case of LC3C, even if this protein showed a stronger CL binding than LC3B or LC3A, the interaction was less specific, and colocalization of LC3C with mitochondria was not rotenone dependent. These results suggest that, at variance with LC3A, LC3C does not participate in cargo recognition during CL-mediated-mitophagy. The data support the notion that the various LC3-subfamily members might play different roles during autophagy initiation, identifying LC3A as a novel stakeholder in CL-mediated mitophagy. Abbreviations: ACTB/β-actin: actin beta; Atg8: autophagy-related 8; CL: cardiolipin; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; DOPE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DTT: DL-dithiothreitol; FKBP8: FKBP prolyl isomerase 8; GABARAP: GABA type A receptor associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; IMM: inner mitochondrial membrane; LUV/LUVs: large unilamellar vesicle/s; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP1LC3C/LC3C: microtubule associated protein 1 light chain 3 gamma; NME4/NDPK-D/Nm23-H4: NME/NM23 nucleoside diphosphate kinase 4; O/A: oligomycin A + antimycin A; OMM: outer mitochondrial membrane; PA: phosphatidic acid; PC: phosphatidylcholine; PG: phosphatidylglycerol; PINK1: PTEN induced putative kinase 1; PtdIns4P: phosphatidylinositol-4-phosphate; Rho-PE: lissamine rhodamine phosphatidylethanolamine; SUV/SUVs: small unilamellar vesicle/s.
Collapse
Affiliation(s)
- Marina N. Iriondo
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Asier Etxaniz
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Yaiza R. Varela
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Uxue Ballesteros
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Javier H. Hervás
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain,The Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - L. Ruth Montes
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Félix M. Goñi
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain,CONTACT Alicia Alonso Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
7
|
Role of Oxidative Stress in Liver Disorders. LIVERS 2022. [DOI: 10.3390/livers2040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oxygen is vital for life as it is required for many different enzymatic reactions involved in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur as a consequence of an unbalance between antioxidant strategies. Given the important role of hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes to the development of many liver diseases. The present review, which is part of the special issue “Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition, current antioxidant therapies as treatment options for such disorders and their limitations for future trial design are discussed.
Collapse
|
8
|
Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119317. [PMID: 35752202 DOI: 10.1016/j.bbamcr.2022.119317] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.
Collapse
Affiliation(s)
- Philipp Wolf
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
9
|
Kushnareva Y, Moraes V, Suess J, Peters B, Newmeyer DD, Kuwana T. Disruption of mitochondrial quality control genes promotes caspase-resistant cell survival following apoptotic stimuli. J Biol Chem 2022; 298:101835. [PMID: 35304098 PMCID: PMC9018395 DOI: 10.1016/j.jbc.2022.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
In cells undergoing cell-intrinsic apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically marks an irreversible step in the cell death process. However, in some cases, a subpopulation of treated cells can exhibit a sublethal response, termed "minority MOMP." In this phenomenon, the affected cells survive, despite a low level of caspase activation and subsequent limited activation of the endonuclease caspase-activated DNase (DNA fragmentation factor subunit beta). Consequently, these cells can experience DNA damage, increasing the probability of oncogenesis. However, little is known about the minority MOMP response. To discover genes that affect the MOMP response in individual cells, we conducted an imaging-based phenotypic siRNA screen. We identified multiple candidate genes whose downregulation increased the heterogeneity of MOMP within single cells, among which were genes related to mitochondrial dynamics and mitophagy that participate in the mitochondrial quality control (MQC) system. Furthermore, to test the hypothesis that functional MQC is important for reducing the frequency of minority MOMP, we developed an assay to measure the clonogenic survival of caspase-engaged cells. We found that cells deficient in various MQC genes were indeed prone to aberrant post-MOMP survival. Our data highlight the important role of proteins involved in mitochondrial dynamics and mitophagy in preventing apoptotic dysregulation and oncogenesis.
Collapse
Affiliation(s)
- Yulia Kushnareva
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Vivian Moraes
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Julian Suess
- Department of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Bjoern Peters
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Donald D Newmeyer
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Tomomi Kuwana
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA.
| |
Collapse
|
10
|
Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol 2021; 434:167378. [PMID: 34838807 DOI: 10.1016/j.jmb.2021.167378] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
Cell death is an essential process in all living organisms and occurs through different mechanisms. The three main types of programmed cell death are apoptosis, pyroptosis, and necroptosis, and each of these pathways employs complex molecular and cellular mechanisms. Although there are mechanisms and outcomes specific to each pathway, they share common components and features. In this review, we discuss recent discoveries in these three best understood modes of cell death, highlighting their singularities, and examining the intriguing notion that common players shape different individual pathways in this highly interconnected and coordinated cell death system. Understanding the similarities and differences of these cell death processes is crucial to enable targeted strategies to manipulate these pathways for therapeutic benefit.
Collapse
|
11
|
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, Hagn F. High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane. EMBO J 2021; 40:e107159. [PMID: 34523144 PMCID: PMC8521305 DOI: 10.15252/embj.2020107159] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.
Collapse
Affiliation(s)
- Laura E Sperl
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Anita Schiller
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Franz Hagn
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
12
|
Flores‐Romero H, Ros U, Garcia‐Saez AJ. Pore formation in regulated cell death. EMBO J 2020; 39:e105753. [PMID: 33124082 PMCID: PMC7705454 DOI: 10.15252/embj.2020105753] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
The discovery of alternative signaling pathways that regulate cell death has revealed multiple strategies for promoting cell death with diverse consequences at the tissue and organism level. Despite the divergence in the molecular components involved, membrane permeabilization is a common theme in the execution of regulated cell death. In apoptosis, the permeabilization of the outer mitochondrial membrane by BAX and BAK releases apoptotic factors that initiate the caspase cascade and is considered the point of no return in cell death commitment. Pyroptosis and necroptosis also require the perforation of the plasma membrane at the execution step, which involves Gasdermins in pyroptosis, and MLKL in the case of necroptosis. Although BAX/BAK, Gasdermins and MLKL share certain molecular features like oligomerization, they form pores in different cellular membranes via distinct mechanisms. Here, we compare and contrast how BAX/BAK, Gasdermins, and MLKL alter membrane permeability from a structural and biophysical perspective and discuss the general principles of membrane permeabilization in the execution of regulated cell death.
Collapse
Affiliation(s)
- Hector Flores‐Romero
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Ana J Garcia‐Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
13
|
Dudko HV, Urban VA, Davidovskii AI, Veresov VG. Structure-based modeling of turnover of Bcl-2 family proteins bound to voltage-dependent anion channel 2 (VDAC2): Implications for the mechanisms of proapoptotic activation of Bak and Bax in vivo. Comput Biol Chem 2020; 85:107203. [DOI: 10.1016/j.compbiolchem.2020.107203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
|
14
|
The Incomplete Puzzle of the BCL2 Proteins. Cells 2019; 8:cells8101176. [PMID: 31569576 PMCID: PMC6830314 DOI: 10.3390/cells8101176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
The proteins of the BCL2 family are key players in multiple cellular processes, chief amongst them being the regulation of mitochondrial integrity and apoptotic cell death. These proteins establish an intricate interaction network that expands both the cytosol and the surface of organelles to dictate the cell fate. The complexity and unpredictability of the BCL2 interactome resides in the large number of family members and of interaction surfaces, as well as on their different behaviours in solution and in the membrane. Although our current structural knowledge of the BCL2 proteins has been proven therapeutically relevant, the precise structure of membrane-bound complexes and the regulatory effect that membrane lipids exert over these proteins remain key questions in the field. Here, we discuss the complexity of BCL2 interactome, the new insights, and the black matter in the field.
Collapse
|
15
|
Abstract
Autophagy is an important cellular process in which cell components are degraded in a controlled way and their building blocks are recycled into new macromolecules. Autophagy starts within a double-membrane container, the autophagosome, itself the result of a number of interconversions of cell membranous elements. In our recent work, we have described reconstituted model systems for the interactions of autophagy proteins with membrane lipid bilayers and for the autophagy protein-mediated vesicle tethering and fusion, with the aim of ultimately reconstituting the autophagosome formation. The present chapter describes in detail (a) the steps required for the preparation of semisynthetic lipid vesicles (liposomes), including giant unilamellar vesicles, (b) ultracentrifugation and fluorescence methods for assaying protein binding to membranes, and (c) procedures for assessing vesicle-vesicle aggregation and fusion. The latter include methods for intervesicular total lipid mixing, mixing of lipids in the vesicle inner monolayers, and aqueous contents mixing.
Collapse
Affiliation(s)
- Javier H Hervás
- Instituto Biofisika (CSIC, UPV/EHU), Bilbao, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Bilbao, Spain
| | - Zuriñe Antón
- Instituto Biofisika (CSIC, UPV/EHU), Bilbao, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), Bilbao, Spain. .,Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
16
|
Ugarte-Uribe B, García-Sáez AJ. Apoptotic foci at mitochondria: in and around Bax pores. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630156 DOI: 10.1098/rstb.2016.0217] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The permeabilization of the mitochondrial outer membrane by Bax and Bak during apoptosis is considered a key step and a point of no return in the signalling pathway. It is always closely related to the reorganization of mitochondrial cristae that frees cytochrome c to the intermembrane space and to massive mitochondrial fragmentation mediated by the dynamin-like protein Drp1. Despite multiple evidence in favour of a functional link between these processes, the molecular mechanisms that connect them and their relevance for efficient apoptosis signalling remain obscure. In this review, we discuss recent progress on our understanding of how Bax forms pores in the context of Drp1-stabilized signalling platforms at apoptotic foci in mitochondria.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Begoña Ugarte-Uribe
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe Seyler Straße 4, 72076 Tübingen, Germany.,Biofisika Institute (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe Seyler Straße 4, 72076 Tübingen, Germany .,Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
17
|
Uren RT, Iyer S, Kluck RM. Pore formation by dimeric Bak and Bax: an unusual pore? Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630157 DOI: 10.1098/rstb.2016.0218] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptotic cell death via the mitochondrial pathway occurs in all vertebrate cells and requires the formation of pores in the mitochondrial outer membrane. Two Bcl-2 protein family members, Bak and Bax, form these pores during apoptosis, and how they do so has been investigated for the last two decades. Many of the conformation changes that occur during their transition to pore-forming proteins have now been delineated. Notably, biochemical, biophysical and structural studies indicate that symmetric homodimers are the basic unit of pore formation. Each dimer contains an extended hydrophobic surface that lies on the outer membrane, and is anchored at either end by a transmembrane domain. Membrane-remodelling events such as positive membrane curvature have been reported to accompany apoptotic pore formation, suggesting Bak and Bax form lipidic pores rather than proteinaceous pores. However, it remains unclear how symmetric dimers assemble to porate the membrane. Here, we review how clusters of dimers and their lipid-mediated interactions provide a molecular explanation for the heterogeneous assemblies of Bak and Bax observed during apoptosis.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Rachel T Uren
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Sweta Iyer
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Ruth M Kluck
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia .,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
18
|
Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport. Oncotarget 2018; 7:51435-51449. [PMID: 27283492 PMCID: PMC5239486 DOI: 10.18632/oncotarget.9843] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/22/2016] [Indexed: 02/04/2023] Open
Abstract
Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax.
Collapse
|
19
|
Schlattner U, Tokarska-Schlattner M, Epand RM, Boissan M, Lacombe ML, Kagan VE. NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. J Transl Med 2018. [PMID: 29035377 DOI: 10.38/labinvest.2017.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Mitophagy is an emerging paradigm for mitochondrial quality control and cell homeostasis. Dysregulation of mitophagy can lead to human pathologies such as neurodegenerative disorders and contributes to the aging process. Complex protein signaling cascades have been described that regulate mitophagy. We have identified a novel lipid signaling pathway that involves the phospholipid cardiolipin (CL). CL is synthesized and normally confined at the inner mitochondrial membrane. However, upon a mitophagic trigger, ie, collapse of the inner membrane potential, CL is rapidly externalized to the mitochondrial surface with the assistance of the hexameric nucleoside diphosphate kinase D (NME4, NDPK-D, or NM23-H4). In addition to its NDP kinase activity, NME4/NDPK-D shows intermembrane phospholipid transfer activity in vitro and in cellular systems, which relies on NME4/NDPK-D interaction with CL, CL-dependent crosslinking of inner and outer mitochondrial membranes by symmetrical, hexameric NME4/NDPK-D, and a putative NME4/NDPK-D-based CL-transfer pathway. CL exposed at the mitochondrial surface then serves as an 'eat me' signal for the mitophagic machinery; it is recognized by the LC3 receptor of autophagosomes, targeting the dysfunctional mitochondrion to lysosomal degradation. Similar NME4-supported CL externalization is likely also involved in apoptosis and inflammatory reactions.
Collapse
Affiliation(s)
- Uwe Schlattner
- University Grenoble Alpes, Inserm, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- University Grenoble Alpes, Inserm, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMRS938, Saint-Antoine Research Center, Paris, France
- Hôpitaux Universitaires Est Parisien-Tenon, Assistance Publique Hôpitaux de Paris, Laboratoire de Biochimie et Hormonologie, Paris, France
| | - Marie-Lise Lacombe
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMRS938, Saint-Antoine Research Center, Paris, France
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. J Transl Med 2018; 98:228-232. [PMID: 29035377 DOI: 10.1038/labinvest.2017.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/12/2023] Open
Abstract
Mitophagy is an emerging paradigm for mitochondrial quality control and cell homeostasis. Dysregulation of mitophagy can lead to human pathologies such as neurodegenerative disorders and contributes to the aging process. Complex protein signaling cascades have been described that regulate mitophagy. We have identified a novel lipid signaling pathway that involves the phospholipid cardiolipin (CL). CL is synthesized and normally confined at the inner mitochondrial membrane. However, upon a mitophagic trigger, ie, collapse of the inner membrane potential, CL is rapidly externalized to the mitochondrial surface with the assistance of the hexameric nucleoside diphosphate kinase D (NME4, NDPK-D, or NM23-H4). In addition to its NDP kinase activity, NME4/NDPK-D shows intermembrane phospholipid transfer activity in vitro and in cellular systems, which relies on NME4/NDPK-D interaction with CL, CL-dependent crosslinking of inner and outer mitochondrial membranes by symmetrical, hexameric NME4/NDPK-D, and a putative NME4/NDPK-D-based CL-transfer pathway. CL exposed at the mitochondrial surface then serves as an 'eat me' signal for the mitophagic machinery; it is recognized by the LC3 receptor of autophagosomes, targeting the dysfunctional mitochondrion to lysosomal degradation. Similar NME4-supported CL externalization is likely also involved in apoptosis and inflammatory reactions.
Collapse
|
21
|
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2018; 25:46-55. [PMID: 29053143 PMCID: PMC5729535 DOI: 10.1038/cdd.2017.179] [Citation(s) in RCA: 424] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Apoptosis shapes development and differentiation, has a key role in tissue homeostasis, and is deregulated in cancer. In most cases, successful apoptosis is triggered by mitochondrial outer membrane permeabilization (MOMP), which defines the mitochondrial or intrinsic pathway and ultimately leads to caspase activation and protein substrate cleavage. The mitochondrial apoptotic pathway centered on MOMP is controlled by an intricate network of events that determine the balance of the cell fate choice between survival and death. Here we will review how MOMP proceeds and how the main effectors cytochrome c, a heme protein that has a crucial role in respiration, and second mitochondria-derived activator of caspase (SMAC), as well as other intermembrane space proteins, orchestrate caspase activation. Moreover, we discuss recent insights on the interplay of the upstream coordinators and initiators of MOMP, the BCL-2 family. This review highlights how our increasing knowledge on the regulation of critical checkpoints of apoptosis integrates with understanding of cancer development and has begun to translate into therapeutic clinical benefit.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
22
|
Peña‐Blanco A, García‐Sáez AJ. Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J 2017; 285:416-431. [DOI: 10.1111/febs.14186] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Aida Peña‐Blanco
- Interfaculty Institute of Biochemistry Tübingen University Germany
| | - Ana J. García‐Sáez
- Interfaculty Institute of Biochemistry Tübingen University Germany
- Max‐Planck Institute for Intelligent Systems Stuttgart Germany
| |
Collapse
|
23
|
Rostovtseva TK, Hoogerheide DP, Rovini A, Bezrukov SM. Lipids in Regulation of the Mitochondrial Outer Membrane Permeability, Bioenergetics, and Metabolism. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-55539-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Fernández-Marrero Y, Bleicken S, Das KK, Bachmann D, Kaufmann T, Garcia-Saez AJ. The membrane activity of BOK involves formation of large, stable toroidal pores and is promoted by cBID. FEBS J 2017; 284:711-724. [PMID: 28064468 DOI: 10.1111/febs.14008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022]
Abstract
The BCL-2 family members are key regulators of the intrinsic apoptotic pathway, which is defined by permeabilization of the mitochondrial outer membrane by members of the BAX-like subfamily. BOK is classified as a BAX-like protein; however, its (patho-)physiological role remains largely unclear. We therefore assessed the membrane permeabilization potential of C-terminally truncated recombinant BOK, BOK∆C . We show that BOK∆C can permeabilize liposomes mimicking the composition of mitochondrial outer membrane, but not of endoplasmic reticulum, forming large and stable pores over time. Importantly, pore formation was enhanced by the presence of cBID and refractory to the addition of antiapoptotic BCL-XL . However, isolated mitochondria from Bax-/- Bak-/- cells were resistant to BOK-induced cytochrome c release, even in the presence of cBID. Taken together, we show that BOK∆C can permeabilize liposomes, and cooperate with cBID, but its role in directly mediating mitochondrial permeabilization is unclear and may underlie a yet to be determined negative regulation.
Collapse
Affiliation(s)
| | | | - Kushal Kumar Das
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | | | | | - Ana J Garcia-Saez
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| |
Collapse
|
25
|
Cosentino K, García-Sáez AJ. Bax and Bak Pores: Are We Closing the Circle? Trends Cell Biol 2016; 27:266-275. [PMID: 27932064 DOI: 10.1016/j.tcb.2016.11.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Abstract
Bax and its homolog Bak are key regulators of the mitochondrial pathway of apoptosis. On cell stress Bax and Bak accumulate at distinct foci on the mitochondrial surface where they undergo a conformational change, oligomerize, and mediate cytochrome c release, leading to cell death. The molecular mechanisms of Bax and Bak assembly and mitochondrial permeabilization have remained a longstanding question in the field. Recent structural and biophysical studies at several length scales have shed light on key aspects of Bax and Bak function that have shifted how we think this process occurs. These discoveries reveal an unexpected molecular mechanism in which Bax (and likely Bak) dimers assemble into oligomers with an even number of molecules that fully or partially delineate pores of different sizes to permeabilize the mitochondrial outer membrane (MOM) during apoptosis.
Collapse
Affiliation(s)
- Katia Cosentino
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany; Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, Germany.
| |
Collapse
|
26
|
de Sousa FCM, Jorge ARC, de Menezes RRPPB, Torres AFC, Mello CP, Lima DB, Borges Nojosa DM, Havt A, Alves RS, Martins AMC, Monteiro HSA. Bothrops erythromelas ( ) venom induces apoptosis on renal tubular epithelial cells. Toxicon 2016; 118:82-5. [DOI: 10.1016/j.toxicon.2016.04.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/28/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
27
|
Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med 2016; 5:22. [PMID: 27455839 PMCID: PMC4960093 DOI: 10.1186/s40169-016-0106-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 12/15/2022] Open
Abstract
Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways.
Collapse
|
28
|
Luna-Vargas MP, Chipuk JE. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J 2016; 283:2676-89. [PMID: 26662859 PMCID: PMC4907887 DOI: 10.1111/febs.13624] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/11/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
Abstract
Apoptosis is a biological process that removes damaged, excess or infected cells through a genetically controlled mechanism. This process plays a crucial role in organismal development, immunity and tissue homeostasis, and alterations in apoptosis contribute to human diseases including cancer and auto-immunity. In the past two decades, significant efforts have focused on understanding the function of the BCL-2 proteins, a complex family of pro-survival and pro-apoptotic α-helical proteins that directly control the mitochondrial pathway of apoptosis. Diverse structural investigations of the BCL-2 family members have broadened our mechanistic understanding of their individual functions. However, an often over-looked aspect of the mitochondrial pathway of apoptosis is how the BCL-2 family specifically interacts with and targets the outer mitochondrial membrane to initiate apoptosis. Structural information on the relationship between the BCL-2 family and the outer mitochondrial membrane is missing; likewise, knowledge of the biophysical mechanisms by which the outer mitochondrial membrane affects and effects apoptosis is lacking. In this mini-review, we provide a current overview of the BCL-2 family members and discuss the latest structural insights into BAK/BAX activation and oligomerization in the context of the outer mitochondrial membrane and mitochondrial biology.
Collapse
Affiliation(s)
- Mark P.A. Luna-Vargas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Jerry E. Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
29
|
Bleicken S, Hofhaus G, Ugarte-Uribe B, Schröder R, García-Sáez AJ. cBid, Bax and Bcl-xL exhibit opposite membrane remodeling activities. Cell Death Dis 2016; 7:e2121. [PMID: 26913610 PMCID: PMC4849160 DOI: 10.1038/cddis.2016.34] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
The proteins of the Bcl-2 family have a crucial role in mitochondrial outer membrane permeabilization during apoptosis and in the regulation of mitochondrial dynamics. Current models consider that Bax forms toroidal pores at mitochondria that are responsible for the release of cytochrome c, whereas Bcl-xL inhibits pore formation. However, how Bcl-2 proteins regulate mitochondrial fission and fusion remains poorly understood. By using a systematic analysis at the single vesicle level, we found that cBid, Bax and Bcl-xL are able to remodel membranes in different ways. cBid and Bax induced a reduction in vesicle size likely related to membrane tethering, budding and fission, besides membrane permeabilization. Moreover, they are preferentially located at highly curved membranes. In contrast, Bcl-xL not only counterbalanced pore formation but also membrane budding and fission. Our findings support a mechanism of action by which cBid and Bax induce or stabilize highly curved membranes including non-lamellar structures. This molecular activity reduces the energy for membrane remodeling, which is a necessary step in toroidal pore formation, as well as membrane fission and fusion, and provides a common mechanism that links the two main functions of Bcl-2 proteins.
Collapse
Affiliation(s)
- S Bleicken
- Membrane Biophysics, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart 70569, Germany.,German Cancer Research Center, Im Neuenheimer Feld 267, Heidelberg 69120, Germany.,Membrane Biophysics, Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, Tübingen 72076, Germany
| | - G Hofhaus
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - B Ugarte-Uribe
- Membrane Biophysics, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart 70569, Germany.,German Cancer Research Center, Im Neuenheimer Feld 267, Heidelberg 69120, Germany.,Membrane Biophysics, Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, Tübingen 72076, Germany
| | - R Schröder
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - A J García-Sáez
- Membrane Biophysics, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart 70569, Germany.,German Cancer Research Center, Im Neuenheimer Feld 267, Heidelberg 69120, Germany.,Membrane Biophysics, Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, Tübingen 72076, Germany
| |
Collapse
|
30
|
Lu P, Bruno BJ, Rabenau M, Lim CS. Delivery of drugs and macromolecules to the mitochondria for cancer therapy. J Control Release 2015; 240:38-51. [PMID: 26482081 DOI: 10.1016/j.jconrel.2015.10.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022]
Abstract
Mitochondria are organelles that have pivotal functions in producing the energy necessary for life and executing the cell death pathway. Targeting drugs and macromolecules to the mitochondria may provide an effective means of inducing cell death for cancer therapy, and has been actively pursued in the last decade. This review will provide a brief overview of mitochondrial structure and function, how it relates to cancer, and importantly, will discuss different strategies of mitochondrial delivery including delivery using small molecules, peptides, genes encoding proteins and MTSs, and targeting polymers/nanoparticles with payloads to the mitochondria. The advantages and disadvantages for each strategy will be discussed. Specific examples using the latest strategies for mitochondrial targeting will be evaluated, as well as potential opportunities for specific mitochondrial compartment localization, which may lead to improvements in mitochondrial therapeutics. Future perspectives in mitochondrial targeting of drugs and macromolecules will be discussed. Currently this is an under-explored area that is prime for new discoveries in cancer therapeutics.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin J Bruno
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA
| | - Malena Rabenau
- Department of Pharmaceutics and Biopharmacy, Phillips-Universität, 35037 Marburg, Germany
| | - Carol S Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
31
|
Kim J, Yang Y, Song SS, Na JH, Oh KJ, Jeong C, Yu YG, Shin YK. Beta-amyloid oligomers activate apoptotic BAK pore for cytochrome c release. Biophys J 2015; 107:1601-8. [PMID: 25296312 DOI: 10.1016/j.bpj.2014.07.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/20/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer's disease, cytochrome c-dependent apoptosis is a crucial pathway in neuronal cell death. Although beta-amyloid (Aβ) oligomers are known to be the neurotoxins responsible for neuronal cell death, the underlying mechanisms remain largely elusive. Here, we report that the oligomeric form of synthetic Aβ of 42 amino acids elicits death of HT-22 cells. But, when expression of a bcl-2 family protein BAK is suppressed by siRNA, Aβ oligomer-induced cell death was reduced. Furthermore, significant reduction of cytochrome c release was observed with mitochondria isolated from BAK siRNA-treated HT-22 cells. Our in vitro experiments demonstrate that Aβ oligomers bind to BAK on the membrane and induce apoptotic BAK pores and cytochrome c release. Thus, the results suggest that Aβ oligomers function as apoptotic ligands and hijack the intrinsic apoptotic pathway to cause unintended neuronal cell death.
Collapse
Affiliation(s)
- Jaewook Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seung Soo Song
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Jung-Hyun Na
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyoung Joon Oh
- Department of Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Cherlhyun Jeong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yeon Gyu Yu
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Yeon-Kyun Shin
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa.
| |
Collapse
|
32
|
Landeta O, Landajuela A, Garcia-Saez A, Basañez G. Minimalist Model Systems Reveal Similarities and Differences between Membrane Interaction Modes of MCL1 and BAK. J Biol Chem 2015; 290:17004-19. [PMID: 25987560 DOI: 10.1074/jbc.m114.602193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 11/06/2022] Open
Abstract
Proteins belonging to the BCL2 family are key modulators of apoptosis that establish a complex network of interactions among themselves and with other cellular factors to regulate cell fate. It is well established that mitochondrial membranes are the main locus of action of all BCL2 family proteins, but it is difficult to obtain a precise view of how BCL2 family members operate at the native mitochondrial membrane environment during apoptosis. Here, we used minimalist model systems and multiple fluorescence-based techniques to examine selected membrane activities of MCL1 and BAK under apoptotic-like conditions. We show that three distinct apoptosis-related factors (i.e. the BCL2 homology 3 ligand cBID, the mitochondrion-specific lipid cardiolipin, and membrane geometrical curvature) all promote membrane association of BCL2-like structural folds belonging to both MCL1 and BAK. However, at the same time, the two proteins exhibited distinguishing features in their membrane association modes under apoptotic-like conditions. In addition, scanning fluorescence cross-correlation spectroscopy and FRET measurements revealed that the BCL2-like structural fold of MCL1, but not that of BAK, forms stable heterodimeric complexes with cBID in a manner adjustable by membrane cardiolipin content and curvature degree. Our results add significantly to a growing body of evidence indicating that the mitochondrial membrane environment plays a complex and active role in the mode of action of BCL2 family proteins.
Collapse
Affiliation(s)
- Olatz Landeta
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain,
| | - Ane Landajuela
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ana Garcia-Saez
- the Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and the Max-Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany, and the German Cancer Research Center, BioQuant, ImNeuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Gorka Basañez
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain,
| |
Collapse
|
33
|
Hill RB, MacKenzie KR, Harwig MC. The Tail-End Is Only the Beginning: NMR Study Reveals a Membrane-Bound State of BCL-XL. J Mol Biol 2015; 427:2257-61. [PMID: 25896456 DOI: 10.1016/j.jmb.2015.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kevin R MacKenzie
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Megan Cleland Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
34
|
Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KLB, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1658-71. [PMID: 25827952 DOI: 10.1016/j.bbamcr.2015.03.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 02/07/2023]
Abstract
Bcl-2, the founding member of a family of apoptotic regulators, was initially identified as the protein product of a gene that is translocated and overexpressed in greater than 85% of follicular lymphomas (FLs). Thirty years later we now understand that anti-apoptotic Bcl-2 family members modulate the intrinsic apoptotic pathway by binding and neutralizing the mitochondrial permeabilizers Bax and Bak as well as a variety of pro-apoptotic proteins, including the cellular stress sensors Bim, Bid, Puma, Bad, Bmf and Noxa. Despite extensive investigation of all of these proteins, important questions remain. For example, how Bax and Bak breach the outer mitochondrial membrane remains poorly understood. Likewise, how the functions of anti-apoptotic Bcl-2 family members such as eponymous Bcl-2 are affected by phosphorylation or cancer-associated mutations has been incompletely defined. Finally, whether Bcl-2 family members can be successfully targeted for therapeutic advantage is only now being investigated in the clinic. Here we review recent advances in understanding Bcl-2 family biology and biochemistry that begin to address these questions.
Collapse
Affiliation(s)
- Cristina Correia
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hee Lee
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - X Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole D Vincelette
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine L B Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Husheng Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grzegorz S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
35
|
Triatoma virus recombinant VP4 protein induces membrane permeability through dynamic pores. J Virol 2015; 89:4645-54. [PMID: 25673713 DOI: 10.1128/jvi.00011-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED In naked viruses, membrane breaching is a key step that must be performed for genome transfer into the target cells. Despite its importance, the mechanisms behind this process remain poorly understood. The small protein VP4, encoded by the genomes of most viruses of the order Picornavirales, has been shown to be involved in membrane alterations. Here we analyzed the permeabilization activity of the natively nonmyristoylated VP4 protein from triatoma virus (TrV), a virus belonging to the Dicistroviridae family within the Picornavirales order. The VP4 protein was produced as a C-terminal maltose binding protein (MBP) fusion to achieve its successful expression. This recombinant VP4 protein is able to produce membrane permeabilization in model membranes in a membrane composition-dependent manner. The induced permeability was also influenced by the pH, being greater at higher pH values. We demonstrate that the permeabilization activity elicited by the protein occurs through discrete pores that are inserted on the membrane. Sizing experiments using fluorescent dextrans, cryo-electron microscopy imaging, and other, additional techniques showed that recombinant VP4 forms heterogeneous proteolipidic pores rather than common proteinaceous channels. These results suggest that the VP4 protein may be involved in the membrane alterations required for genome transfer or cell entry steps during dicistrovirus infection. IMPORTANCE During viral infection, viruses need to overcome the membrane barrier in order to enter the cell and replicate their genome. In nonenveloped viruses membrane fusion is not possible, and hence, other mechanisms are implemented. Among other proteins, like the capsid-forming proteins and the proteins required for viral replication, several viruses of the order Picornaviridae contain a small protein called VP4 that has been shown to be involved in membrane alterations. Here we show that the triatoma virus VP4 protein is able to produce membrane permeabilization in model membranes by the formation of heterogeneous dynamic pores. These pores formed by VP4 may be involved in the genome transfer or cell entry steps during viral infection.
Collapse
|
36
|
Li L, Yu Q, Liang W. Molecular pathways of mitochondrial dysfunctions: Possible cause of cell death in anesthesia-induced developmental neurotoxicity. Brain Res Bull 2015; 110:14-9. [DOI: 10.1016/j.brainresbull.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 02/05/2023]
|
37
|
Landeta O, Valero JG, Flores-Romero H, Bustillo-Zabalbeitia I, Landajuela A, Garcia-Porras M, Terrones O, Basañez G. Lipid-dependent bimodal MCL1 membrane activity. ACS Chem Biol 2014; 9:2852-63. [PMID: 25314294 DOI: 10.1021/cb500592e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence indicates that the mitochondrial lipid membrane environment directly modulates the BCL2 family protein function, but the underlying mechanisms are still poorly understood. Here, we used minimalistic reconstituted systems to examine the influence of mitochondrial lipids on MCL1 activity and conformation. Site-directed mutagenesis and fluorescence spectroscopic analyses revealed that the BCL2 homology region of MCL1 (MCL1ΔNΔC) inhibits permeabilization of MOM-like membranes exclusively via canonical BH3-into-groove interactions with both cBID-like activators and BAX-like effectors. Contrary to currently popular models, MCL1ΔNΔC did not require becoming embedded into the membrane to inhibit membrane permeabilization, and interaction with cBID was more productive for MCL1ΔNΔC inhibitory activity than interaction with BAX. We also report that membranes rich in cardiolipin (CL), but not phosphatidylinositol (PI), trigger a profound conformational change in MCL1ΔNΔC leading to membrane integration and unleashment of an intrinsic lipidic pore-forming activity of the molecule. Cholesterol (CHOL) reduces both the conformational change and the lipidic pore-forming activity of MCL1ΔNΔC in CL-rich membranes, but it does not affect the interaction of MCL1ΔNΔC with proapoptotic partners in MOM-like liposomes. In addition, we identified MCL1α5 as the minimal domain of the protein responsible for its membrane-permeabilizing function both in model membranes and at the mitochondrial level. Our results provide novel mechanistic insight into MCL1 function in the context of a membrane milieu and add significantly to a growing body of evidence supporting an active role of mitochondrial membrane lipids in BCL2 protein function.
Collapse
Affiliation(s)
- Olatz Landeta
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Juan Garcia Valero
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Hector Flores-Romero
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Itsasne Bustillo-Zabalbeitia
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ane Landajuela
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Miguel Garcia-Porras
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Oihana Terrones
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Gorka Basañez
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
38
|
Subburaj Y, Ros U, Hermann E, Tong R, García-Sáez AJ. Toxicity of an α-pore-forming toxin depends on the assembly mechanism on the target membrane as revealed by single molecule imaging. J Biol Chem 2014; 290:4856-4865. [PMID: 25525270 DOI: 10.1074/jbc.m114.600676] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Pore-forming toxins (α-PFTs) are ubiquitous defense tools that kill cells by opening pores in the target cell membrane. Despite their relevance in host/pathogen interactions, very little is known about the pore stoichiometry and assembly pathway leading to membrane permeabilization. Equinatoxin II (EqtII) is a model α-PFT from sea anemone that oligomerizes and forms pores in sphingomyelin-containing membranes. Here, we determined the spatiotemporal organization of EqtII in living cells by single molecule imaging. Surprisingly, we found that on the cell surface EqtII did not organize into a unique oligomeric form. Instead, it existed as a mixture of oligomeric species mostly including monomers, dimers, tetramers, and hexamers. Mathematical modeling based on our data supported a new model in which toxin clustering happened in seconds and proceeded via condensation of EqtII dimer units formed upon monomer association. Furthermore, altering the pathway of EqtII assembly strongly affected its toxic activity, which highlights the relevance of the assembly mechanism on toxicity.
Collapse
Affiliation(s)
- Yamunadevi Subburaj
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany; German Cancer Research Center, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Uris Ros
- Center for Protein Studies, Faculty of Biology, Calle 25 #455, Plaza de la Revolución, La Habana, Cuba
| | - Eduard Hermann
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany; German Cancer Research Center, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany,; Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Rudi Tong
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Ana J García-Sáez
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany; German Cancer Research Center, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany,; Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| |
Collapse
|
39
|
Gillies LA, Du H, Peters B, Knudson CM, Newmeyer DD, Kuwana T. Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes. Mol Biol Cell 2014; 26:339-49. [PMID: 25411335 PMCID: PMC4294680 DOI: 10.1091/mbc.e13-11-0638] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We visualized Bax-induced pores in outer membrane vesicles (OMVs) using cryo-electron microscopy and monitored dextran release from these vesicles by flow cytometry. The data argue that Bax promotes mitochondrial outer membrane permeabilization by inducing the formation of large, solitary, and growing pores through a mechanism involving membrane-curvature stress. Bax induces mitochondrial outer membrane permeabilization (MOMP), a critical step in apoptosis in which proteins are released into the cytoplasm. To resolve aspects of the mechanism, we used cryo-electron microscopy (cryo-EM) to visualize Bax-induced pores in purified mitochondrial outer membranes (MOMs). We observed solitary pores that exhibited negative curvature at their edges. Over time, the pores grew to ∼100–160 nm in diameter after 60–90 min, with some pores measuring more than 300 nm. We confirmed these results using flow cytometry, which we used to monitor the release of fluorescent dextrans from isolated MOM vesicles. The dextran molecules were released gradually, in a manner constrained by pore size. However, the release rates were consistent over a range of dextran sizes (10–500 kDa). We concluded that the pores were not static but widened dramatically to release molecules of different sizes. Taken together, the data from cryo-EM and flow cytometry argue that Bax promotes MOMP by inducing the formation of large, growing pores through a mechanism involving membrane-curvature stress.
Collapse
Affiliation(s)
| | - Han Du
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | | | | | | | | |
Collapse
|
40
|
Gillies LA, Kuwana T. Apoptosis regulation at the mitochondrial outer membrane. J Cell Biochem 2014; 115:632-40. [PMID: 24453042 DOI: 10.1002/jcb.24709] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022]
Abstract
Mitochondria play a critical role in apoptosis, or programmed cell death, by releasing apoptogenic factors from the intermembrane space. This process, known as mitochondrial outer membrane permeabilization (MOMP), is tightly regulated by the Bcl-2 family proteins. Pro-apoptotic Bcl-2 family members, Bax and Bak, change their conformation when activated by BH3 domain-only proteins in the family and permeabilize the MOM, whereas pro-survival members inhibit permeabilization. The precise nature of the apoptotic pore in the MOM is unknown, but is probably lipidic. Furthermore, it has been realized that there is another layer of MOMP regulation by a protein factor termed the catalyst in the MOM in order for Bax/Bak to achieve efficient and complete membrane permeabilization. Mitochondrial dynamics do not affect MOMP directly, but seem closely coordinated with MOMP for swift protein efflux from mitochondria. This review will present current views on the molecular mechanisms and regulation of MOMP and conclude with recent developments in clinical applications based on the knowledge gleaned from the investigation.
Collapse
|
41
|
Schlattner U, Tokarska-Schlattner M, Epand RM, Boissan M, Lacombe ML, Klein-Seetharaman J, Kagan VE. Mitochondrial NM23-H4/NDPK-D: a bifunctional nanoswitch for bioenergetics and lipid signaling. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:271-8. [PMID: 25231795 DOI: 10.1007/s00210-014-1047-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
A novel paradigm for the function of the mitochondrial nucleoside diphosphate kinase NM23-H4/NDPK-D is proposed: acting as a bifunctional nanoswitch in bioenergetics and cardiolipin (CL) trafficking and signaling. Similar to some other mitochondrial proteins like cytochrome c or AIF, NM23-H4 seems to have dual functions in bioenergetics and apoptotic signaling. In its bioenergetic phosphotransfer mode, the kinase reversibly phosphorylates NDPs into NTPs, driven by mitochondrially generated ATP. Among others, this reaction can locally supply GTP to mitochondrial GTPases as shown for the dynamin-like GTPase OPA1, found in a complex together with NM23-H4. Further, NM23-H4 is functionally coupled to adenylate translocase (ANT) of the mitochondrial inner membrane (MIM), so generated ADP can stimulate respiration to rapidly regenerate ATP. The lipid transfer mode of NM23-H4 can support, dependent on the presence of CL, the transfer of anionic lipids between membranes in vitro and the sorting of CL from its mitochondrial sites of synthesis (MIM) to the mitochondrial outer membrane (MOM) in vivo. Such (partial) collapse of MIM/MOM CL asymmetry results in CL externalization on the mitochondrial surface, where CL can serve as pro-apoptotic or pro-mitophagic "eat me"-signal. The functional state of NM23-H4 depends on its degree of CL-membrane interaction. In vitro assays have shown that only NM23-H4 that fully cross-links two membranes is lipid transfer competent, but at the same time phosphotransfer (kinase) inactive. Thus, the two functions of NM23-H4 seem to be mutually exclusive. This novel mitochondrial regulatory circuit has potential for the development of interventions in various human pathologies.
Collapse
Affiliation(s)
- Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France,
| | | | | | | | | | | | | |
Collapse
|
42
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Bustillo-Zabalbeitia I, Montessuit S, Raemy E, Basañez G, Terrones O, Martinou JC. Specific interaction with cardiolipin triggers functional activation of Dynamin-Related Protein 1. PLoS One 2014; 9:e102738. [PMID: 25036098 PMCID: PMC4103857 DOI: 10.1371/journal.pone.0102738] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.
Collapse
Affiliation(s)
- Itsasne Bustillo-Zabalbeitia
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Etienne Raemy
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Gorka Basañez
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Oihana Terrones
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | |
Collapse
|
44
|
Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014; 5:151. [PMID: 25024695 PMCID: PMC4079069 DOI: 10.3389/fphar.2014.00151] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
45
|
G.Veresov V, Davidovskii AI. Structural insights into proapoptotic signaling mediated by MTCH2, VDAC2, TOM40 and TOM22. Cell Signal 2014; 26:370-82. [DOI: 10.1016/j.cellsig.2013.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 01/04/2023]
|
46
|
Bleicken S, García-Sáez AJ. New biophysical methods to study the membrane activity of Bcl-2 proteins. Methods Mol Biol 2014; 1176:191-207. [PMID: 25030929 DOI: 10.1007/978-1-4939-0992-6_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The proteins of Bcl-2 family are key regulators of apoptosis. Many Bcl-2 proteins have the unique ability to switch between two possible conformations, soluble in the cytosol or associated to cellular membranes. Importantly, their membrane-inserted form is the main responsible for their apoptotic function. Unfortunately, there are only a limited number of methods available to study the membrane activity of these proteins. Here, we present a methodology to study protein binding to membranes and membrane permeabilization at the single vesicle level. It is based on purified proteins and giant unilamellar vesicles and involves directly visualization of the process with a confocal microscope. This approach allows for the characterization of the membrane activity of the Bcl-2 proteins (or of any other pore-forming molecule) with unprecedented detail.
Collapse
Affiliation(s)
- Stephanie Bleicken
- Membrane Biophysics, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | | |
Collapse
|
47
|
Kale J, Chi X, Leber B, Andrews D. Examining the molecular mechanism of bcl-2 family proteins at membranes by fluorescence spectroscopy. Methods Enzymol 2014; 544:1-23. [PMID: 24974284 DOI: 10.1016/b978-0-12-417158-9.00001-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Bcl-2 family proteins control apoptosis by regulation of outer mitochondrial membrane permeabilization. Studying the Bcl-2 family is particularly difficult because the functional interactions that regulate apoptosis occur at or within intracellular membranes. Compared to other biophysical methods, fluorescence spectroscopy is well suited to study membrane-bound proteins as experiments can be performed with intact membranes and at protein concentrations similar to those found in cells. For these reasons, fluorescence spectroscopy has been particularly useful in studying the regulation of membrane permeabilization by Bcl-2 family proteins. Here, we discuss four fluorescence-based assays used to study protein dynamics at membranes, with a focus on how these techniques can be used to study the Bcl-2 family proteins.
Collapse
Affiliation(s)
- Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Xiaoke Chi
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Chemical Biology, McMaster University, Hamilton, Canada
| | - Brian Leber
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Department of Medicine, McMaster University, Hamilton, Canada
| | - David Andrews
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Canada.
| |
Collapse
|
48
|
Renault TT, Chipuk JE. Death upon a kiss: mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis. ACTA ACUST UNITED AC 2013; 21:114-23. [PMID: 24269152 DOI: 10.1016/j.chembiol.2013.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/03/2013] [Accepted: 10/21/2013] [Indexed: 01/24/2023]
Abstract
For stressed cells to induce the mitochondrial pathway of apoptosis, a cohort of pro-apoptotic BCL-2 proteins must collaborate with the outer mitochondrial membrane to permeabilize it. BAK and BAX are the two pro-apoptotic BCL-2 family members that are required for mitochondrial outer membrane permeabilization. While biochemical and structural insights of BAK/BAX function have expanded in recent years, very little is known about the role of the outer mitochondrial membrane in regulating BAK/BAX activity. In this review, we will highlight the impact of mitochondrial composition (both protein and lipid) and mitochondrial interactions with cellular organelles on BAK/BAX function and cellular commitment to apoptosis. A better understanding of how BAK/BAX and mitochondrial biology are mechanistically linked will likely reveal novel insights into homeostatic and pathological mechanisms associated with apoptosis.
Collapse
Affiliation(s)
- Thibaud T Renault
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.
| |
Collapse
|
49
|
Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 2013; 21:196-205. [PMID: 24162660 DOI: 10.1038/cdd.2013.139] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022] Open
Abstract
The central role of the Bcl-2 family in regulating apoptotic cell death was first identified in the 1980s. Since then, significant in-roads have been made in identifying the multiple members of this family, characterizing their form and function and understanding how their interactions determine whether a cell lives or dies. In this review we focus on the recent progress made in characterizing the proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved longstanding controversies, but has also challenged established theories in the apoptosis field. We will discuss different models of how these two proteins become activated and different 'modes' by which they are inhibited by other Bcl-2 family members. We will also discuss novel conformation changes leading to Bak and Bax oligomerization and speculate how these oligomers might permeabilize the mitochondrial outer membrane.
Collapse
|
50
|
The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ 2013; 21:206-15. [PMID: 24162659 DOI: 10.1038/cdd.2013.153] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/22/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
Apoptosis, a mechanism for programmed cell death, has key roles in human health and disease. Many signals for cellular life and death are regulated by the BCL-2 family proteins and converge at mitochondria, where cell fate is ultimately decided. The BCL-2 family includes both pro-life (e.g. BCL-XL) and pro-death (e.g. BAX, BAK) proteins. Previously, it was thought that a balance between these opposing proteins, like a simple 'rheostat', could control the sensitivity of cells to apoptotic stresses. Later, this rheostat concept had to be extended, when it became clear that BCL-2 family proteins regulate each other through a complex network of bimolecular interactions, some transient and some relatively stable. Now, studies have shown that the apoptotic circuitry is even more sophisticated, in that BCL-2 family interactions are spatially dynamic, even in nonapoptotic cells. For example, BAX and BCL-XL can shuttle between the cytoplasm and the mitochondrial outer membrane (MOM). Upstream signaling pathways can regulate the cytoplasmic-MOM equilibrium of BAX and thereby adjust the sensitivity of cells to apoptotic stimuli. Thus, we can view the MOM as the central locale of a dynamic life-death rheostat. BAX invariably forms extensive homo-oligomers after activation in membranes. However, recent studies, showing that activated BAX monomers determine the kinetics of MOM permeabilization (MOMP), perturb the lipid bilayer and form nanometer size pores, pose questions about the role of the oligomerization. Other lingering questions concern the molecular mechanisms of BAX redistribution between MOM and cytoplasm and the details of BAX/BAK-membrane assemblies. Future studies need to delineate how BCL-2 family proteins regulate MOMP, in concert with auxiliary MOM proteins, in a dynamic membrane environment. Technologies aimed at elucidating the structure and function of the full-length proteins in membranes are needed to illuminate some of these critical issues.
Collapse
|