1
|
Guo Z, Cao J, Xu R, Zhang H, He L, Gao H, Zhu L, Jia M, Yang Z, Xiong W. Novel Photoelectron-Assisted Microbial Reduction of Arsenate Driven by Photosensitive Dissolved Organic Matter in Mine Stream Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22170-22182. [PMID: 39526867 DOI: 10.1021/acs.est.4c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The microbial reduction of arsenate (As(V)) significantly contributes to arsenic migration in mine stream sediment, primarily driven by heterotrophic microorganisms using dissolved organic matter (DOM) as a carbon source. This study reveals a novel reduction pathway in sediments that photosensitive DOM generates photoelectrons to stimulate diverse nonphototrophic microorganisms to reduce As(V). This microbial photoelectrophic As(V) reduction (PEAsR) was investigated using microcosm incubation, which showed the transfer of photoelectrons from DOM to indigenous sediment microorganisms, thereby leading to a 50% higher microbial reduction rate of As(V). The abundance of two marker genes for As(V) reduction, arrA and arsC, increased substantially, confirming the microbial nature of PEAsR rather than a photoelectrochemical process. Photoelectron ion is unlikely to stimulate photolithoautotrophic growth. Instead, diverse nonphototrophic genera, e.g., Cupriavidus, Sphingopyxis, Mycobacterium, and Bradyrhizobium, spanning 13 orders became enriched by 10-50 folds. Metagenomic binning revealed their genetic potential to mediate the photoelectron-assisted reduction of As(V). These microorganisms contain essential genes involved in respiratory As(V) reduction, detoxification As(V) reduction, dimethyl sulfoxide reductase family, c-type cytochromes, and multiple heavy-metal resistance but lack a complete photosynthesis system. The novel microbial PEAsR pathway offers new insights into the interaction between photoelectron utilization and nonphototrophic As(V)-reducing microorganisms, which may have profound implications for arsenic pollution transportation in mine stream sediment.
Collapse
Affiliation(s)
- Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Jie Cao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Linao Zhu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Meiying Jia
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| |
Collapse
|
2
|
Yang BY, Chen C, Gao A, Xue XM, Huang K, Zhang J, Zhao FJ. Arsenic Methylation by a Sulfate-Reducing Bacterium from Paddy Soil Harboring a Novel ArsSM Fusion Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19266-19276. [PMID: 39404172 DOI: 10.1021/acs.est.4c04730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Microbial arsenic (As) methylation is an important process of As biogeochemistry. Only a few As-methylating microorganisms have been isolated from paddy soil, hindering the mechanistic understanding of the process involved. We isolated 54 anaerobic and 32 aerobic bacteria from paddy soil with a high As methylation potential. Among the 86 isolates, 14 anaerobes, including 7 sulfate-reducing bacteria (SRB), but none of the aerobes were able to methylate arsenite [As(III)] or monomethylarsenite [MMA(III)] or both, suggesting that the As-methylating ability is much more prevalent in anaerobes than in aerobes. We performed a detailed investigation on As methylation by a SRB isolate, Solidesulfovibrio sp. TC1, and identified a novel bifunctional enzyme consisting of a fusion of As(III) S-adenosylmethionine (SAM) methyltransferase (ArsM) and a radical SAM protein. The enzyme (ArsSM) can catalyze As(III) methylation to MMA and DMA and subsequent adenosylation of DMA to form 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), which is a key intermediate in the biosynthesis of arsenosugars. High concentrations of sulfide produced by SRB did not affect As(III) methylation to MMA but inhibited MMA methylation to DMA. Genes encoding ArsSM fusion proteins are widespread in anaerobes, particularly SRB, suggesting that ArsSM-carrying anaerobes may play an important role in As methylation in an anoxic environment.
Collapse
Affiliation(s)
- Bao-Yun Yang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Axiang Gao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Gao Z, Jiang Y, Li W, Chen H, Ye M, Liang Y. Evidence for the role of microbes in the silicon-regulated arsenic concentrations of rice roots in the soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168321. [PMID: 37949137 DOI: 10.1016/j.scitotenv.2023.168321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Soil arsenic (As) pollution poses a threat to human health. The role of silicon (Si) in decreasing the xylem loading of arsenite in rice has been demonstrated; however, whether microorganisms are involved in the Si-mediated in-planta and ex-planta As translocation and absorption remains unclear. Here we combined hydroponic and potted experiments to elucidate how Si previously accumulated in plants and the microbial traits of bulk soil, rhizosphere and root endosphere impact on As absorption by plants. For the pot experiment, both native and sterilized soils added exogenously with Si were established. The results obtained showed that the addition of Si to rice and soil reduced the root As levels by 20-54 % in the native soils, but not in the sterilized soils. The reassembled microbial communities in the sterilized soils exhibited no effects of Si on reducing root As absorption, whereas such Si effects were observed in the native soils. This ex-planta effect of Si on As absorption was processed by signal molecules or interactions among microorganisms. More importantly, Mycobacterium, Streptomyces, Anaeromyxobacter, and Geotalea were closely linked to this Si-regulated effect, either independently or jointly. Furthermore, Si previously accumulated in shoots decreased root-to-shoot As translocation, and such in-planta regulation was not easily affected by the reassembled microbial communities. This study provides evidence that microorganisms play a crucial role in Si-mediated root As absorption in the soil environment.
Collapse
Affiliation(s)
- Zixiang Gao
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yishun Jiang
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Li
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mujun Ye
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Local Attraction of Substrates and Co-Substrates Enhances Weak Acid and Base Transmembrane Transport. Biomolecules 2022; 12:biom12121794. [PMID: 36551222 PMCID: PMC9775063 DOI: 10.3390/biom12121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The transmembrane transport of weak acid and base metabolites depends on the local pH conditions that affect the protonation status of the substrates and the availability of co-substrates, typically protons. Different protein designs ensure the attraction of substrates and co-substrates to the transporter entry sites. These include electrostatic surface charges on the transport proteins and complexation with seemingly transport-unrelated proteins that provide substrate and/or proton antenna, or enzymatically generate substrates in place. Such protein assemblies affect transport rates and directionality. The lipid membrane surface also collects and transfers protons. The complexity in the various systems enables adjustability and regulation in a given physiological or pathophysiological situation. This review describes experimentally shown principles in the attraction and facilitation of weak acid and base transport substrates, including monocarboxylates, ammonium, bicarbonate, and arsenite, plus protons as a co-substrate.
Collapse
|
5
|
A comparative study indicates vertical inheritance and horizontal gene transfer of arsenic resistance-related genes in eukaryotes. Mol Phylogenet Evol 2022; 173:107479. [DOI: 10.1016/j.ympev.2022.107479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/10/2022] [Accepted: 04/05/2022] [Indexed: 12/27/2022]
|
6
|
Identification and Genome Analysis of an Arsenic-Metabolizing Strain of Citrobacter youngae IITK SM2 in Middle Indo-Gangetic Plain Groundwater. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6384742. [PMID: 35309170 PMCID: PMC8930248 DOI: 10.1155/2022/6384742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
Whole-genome sequencing (WGS) data of a bacterial strain IITK SM2 isolated from an aquifer located in the middle Indo-Gangetic plain is reported here, along with its physiological, morphological, biochemical, and redox-transformation characteristics in the presence of dissolved arsenic (As). The aquifer exhibits oxidizing conditions relative to As speciation. Analyses based on 16S rRNA and recN sequences indicate that IITK SM2 was clustered with C. youngae NCTC 13708T and C. pasteuri NCTC UMH17T. However, WGS analyses using the digital DNA-DNA hybridization and Rapid Annotations using Subsystems Technology suggest that IITK SM2 belongs to a strain of C. youngae. This strain can effectively reduce As(V) to As(III) but cannot oxidize As(III) to As(V). It exhibited high resistance to As(V) [32,000 mg L-1] and As(III) [1,100 mg L-1], along with certain other heavy metals typically found in contaminated groundwater. WGS analysis also indicates the presence of As-metabolizing genes such as arsC, arsB, arsA, arsD, arsR, and arsH in this strain. Although these genes have been identified in several As(V)-reducers, the clustering of these genes in the forms of arsACBADR, arsCBRH, and an independent arsC gene has not been observed in any other Citrobacter species or other selected As(V)-reducing strains of Enterobacteriaceae family. Moreover, there were differences in the number of genes corresponding to membrane transporters, virulence and defense, motility, protein metabolism, phages, prophages, and transposable elements in IITK SM2 when compared to other strains. This genomic dataset will facilitate subsequent molecular and biochemical analyses of strain IITK SM2 to identify the reasons for high arsenic resistance in Citrobacter youngae and understand its role in As mobilization in middle Indo-Gangetic plain aquifers.
Collapse
|
7
|
Chen J, Galván AE, Nadar VS, Yoshinaga M, Rosen BP. An ArsRC fusion protein enhances arsenate sensing and detoxification. Environ Microbiol 2022; 24:1977-1987. [PMID: 35229439 DOI: 10.1111/1462-2920.15957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Arsenical resistance (ars) operons encode genes for arsenic resistance and biotransformation. The majority are composed of individual genes, but fusion of ars genes is not uncommon, although it is not clear if the fused gene products are functional. Here we report identification of a four-gene ars operon from Paracoccus sp. SY that has two arsR-arsC gene fusions. ArsRC1 and ArsRC2 are related proteins that consist of an N-terminal ArsR arsenite (As(III))-responsive repressor with a C-terminal ArsC arsenate reductase. The other two genes in the operon are gapdh and arsJ. GAPDH, glyceraldehyde 3-phosphate dehydrogenase, forms 1-arseno-3-phosphoglycerate (1As3PGA) from 3-phosphoglyceraldehyde and arsenate (As(V)), ArsJ is an efflux permease for 1As3PGA that dissociates into extracellular As(V) and 3-phosphoglycerate. The net effect is As(V) extrusion and resistance. ArsRs are usually selective for As(III) and do not respond to As(V). However, the substrates and products of this operon are pentavalent, which would not be inducers of the operon. We propose that ArsRC fusions overcome this limitation by channelling the ArsC product into the ArsR binding site without diffusion through the cytosol, a de facto mechanism for As(V) induction. This novel mechanism for arsenate sensing can confer an evolutionary advantage for detoxification of inorganic arsenate.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
8
|
Pánico P, Velasco M, Salazar AM, Picones A, Ortiz-Huidobro RI, Guerrero-Palomo G, Salgado-Bernabé ME, Ostrosky-Wegman P, Hiriart M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front Endocrinol (Lausanne) 2022; 13:878280. [PMID: 35651975 PMCID: PMC9150370 DOI: 10.3389/fendo.2022.878280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Picones
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Guerrero-Palomo
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Eduardo Salgado-Bernabé
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
9
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. Decreases in arsenic accumulation by the plasma membrane intrinsic protein PIP2;2 in Arabidopsis and yeast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116646. [PMID: 33561751 DOI: 10.1016/j.envpol.2021.116646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is a toxic pollutant that mainly enters the human body via plants. Therefore, understanding the strategy for reducing arsenic accumulation in plants is important to human health and the environment. Aquaporins are ubiquitous water channel proteins that bidirectionally transport water across cell membranes and play a role in the transportation of other molecules, such as glycerol, ammonia, boric acid, and arsenic acid. Previously, we observed that Arabidopsis PIP2;2, encoding a plasma membrane intrinsic protein, is highly expressed in NtCyc07-expressing Arabidopsis, which shows a higher tolerance to arsenite (As(III)). In this study, we report that the overexpression of AtPIP2;2 enhanced As(III) tolerance and reduced As(III) levels in yeast. Likewise, AtPIP2;2-overexpressing Arabidopsis exhibited improved As(III) tolerance and lower accumulation of As(III). In contrast, atpip2;2 knockout Arabidopsis showed reduced As(III) tolerance but no significant change in As(III) levels. Interestingly, the AtPIP2;2 transcript and protein levels were increased in roots and shoots of Arabidopsis in response to As(III). Furthermore, As(III) efflux was enhanced and As(III) influx/accumulation was reduced in AtPIP2;2-expressing plants. The expression of AtPIP2;2 rescued the As(III)-sensitive phenotype of acr3 mutant yeast by reducing As levels and slightly reduced the As(III)-tolerant phenotype of fps1 mutant yeast by enhancing As content, suggesting that AtPIP2; 2 functions as a bidirectional channel of As(III), while the As(III) exporter activity is higher than the As(III) importer activity. All these results indicate that AtPIP2;2 expression promotes As(III) tolerance by decreasing As(III) accumulation through enhancing As(III) efflux in Arabidopsis. This finding can be applied to the generation of low arsenic crops for human health.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
10
|
Kim D, Bahmani R, Modareszadeh M, Hwang S. Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco. PLANTS 2020; 9:plants9111480. [PMID: 33153165 PMCID: PMC7692962 DOI: 10.3390/plants9111480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/24/2023]
Abstract
Arsenite [As(III)] is a highly toxic chemical to all organisms. Previously, we reported that the overexpression of NtCyc07 enhanced As(III) tolerance and reduced As(III) accumulation in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana tabacum). To understand a mechanism for higher As(III) tolerance and lower As(III) accumulation in NtCyc07-overexpressing tobacco, we examined the expression levels of various putative As(III) transporters (aquaporin). The expressions of putative As(III) exporter NIP1;1, PIP1;1, 1;5, 2;1, 2;2, and 2;7 were enhanced, while the expressions of putative As(III) importer NIP3;1, 4;1, and XIP2;1 were decreased, contributing to the reduced accumulation of As(III) in NtCyc07-overexpressing tobacco. In addition, the levels of oxidative stress indicators (H2O2, superoxide and malondialdehyde) were lower, and the activities of antioxidant enzymes (catalase, superoxide dismutase and glutathione reductase) were higher in NtCyc07-tobacco than in the control tobacco. This suggests that the lower oxidative stress in transgenic tobacco may be attributed to the higher activities of antioxidant enzymes and lower As(III) levels. Taken together, the overexpression of NtCyc07 enhances As(III) tolerance by reducing As(III) accumulation through modulation of expressions of putative As(III) transporters in tobacco.
Collapse
|
11
|
Bader A, Beitz E. Transmembrane Facilitation of Lactate/H + Instead of Lactic Acid Is Not a Question of Semantics but of Cell Viability. MEMBRANES 2020; 10:membranes10090236. [PMID: 32942665 PMCID: PMC7557405 DOI: 10.3390/membranes10090236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/15/2022]
Abstract
Transmembrane transport of monocarboxylates is conferred by structurally diverse membrane proteins. Here, we describe the pH dependence of lactic acid/lactate facilitation of an aquaporin (AQP9), a monocarboxylate transporter (MCT1, SLC16A1), and a formate–nitrite transporter (plasmodium falciparum FNT, PfFNT) in the equilibrium transport state. FNTs exhibit a channel-like structure mimicking the aquaporin-fold, yet act as secondary active transporters. We used radiolabeled lactate to monitor uptake via yeast-expressed AQP9, MCT1, and PfFNT for long enough time periods to reach the equilibrium state in which import and export rates are balanced. We confirmed that AQP9 behaved perfectly equilibrative for lactic acid, i.e., the neutral lactic acid molecule enters and passes the channel. MCT1, in turn, actively used the transmembrane proton gradient and acted as a lactate/H+ co-transporter. PfFNT behaved highly similar to the MCT in terms of transport properties, although it does not adhere to the classical alternating access transporter model. Instead, the FNT appears to use the proton gradient to neutralize the lactate anion in the protein’s vestibule to generate lactic acid in a place that traverses the central hydrophobic transport path. In conclusion, we propose to include FNT-type proteins into a more generalized, function-based transporter definition.
Collapse
Affiliation(s)
| | - Eric Beitz
- Correspondence: ; Tel.: +49-431-880-1809
| |
Collapse
|
12
|
Zhu Y, Zhou C, Wang Y, Li C. Transporter Engineering for Microbial Manufacturing. Biotechnol J 2020; 15:e1900494. [PMID: 32298528 DOI: 10.1002/biot.201900494] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Indexed: 01/08/2023]
Abstract
Microbes play an important role in biotransformation and biosynthesis of biofuels, natural products, and polymers. Therefore, microbial manufacturing has been widely used in medicine, industry, and agriculture. However, common strategies including enzyme engineering, pathway optimization, and host engineering are generally inadequate to obtain an efficient microbial production system. Transporter engineering provides an alternative strategy to promote the transmembrane transfer of substrates, intermediates, and final products in microbial cells and thus enhances production by alleviating feedback inhibition and cytotoxicity caused by final products. According to the current studies in transport engineering, native transporters usually have low expression and poor transportation ability, resulting in inefficient transport processes and microbial production. In this review, current approaches for transporter mining, characterization, and verification are comprehensively summarized. Practical approaches to enhance the transport system in engineered cells, such as balancing transporter overexpression and cell growth, and evolution of native transporters are discussed. Furthermore, the applications of transporter engineering in microbial manufacturing, including enhancement of substrate utilization, concentration of metabolic flux to the target pathway, and acceleration of efflux and recovery of products, demonstrate its outstanding advantages and promising prospects.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chen Zhou
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Wang
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chun Li
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
13
|
Oreb M. Construction of artificial membrane transport metabolons – an emerging strategy in metabolic engineering. FEMS Microbiol Lett 2020; 367:5735437. [DOI: 10.1093/femsle/fnaa027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT
The term ‘membrane transport metabolon’ refers to the physical association of membrane transporters with enzymes that metabolize the transported substrates. In naturally evolved systems, physiological relevance of coupling transport with sequential enzymatic reactions resides, for instance, in faster turnover rates, protection of substrates from competing pathways or shielding the cellular environment from toxic compounds. Such underlying principles offer attractive possibilities for metabolic engineering approaches and concepts for constructing artificial transporter-enzyme complexes are recently being developed. In this minireview, the modes of substrate channeling across biological membranes and design principles for artificial transport metabolons are discussed.
Collapse
Affiliation(s)
- Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Willson BJ, Chapman LNM, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58-59:76-86. [DOI: 10.1016/j.gde.2019.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
|
15
|
Firrincieli A, Presentato A, Favoino G, Marabottini R, Allevato E, Stazi SR, Scarascia Mugnozza G, Harfouche A, Petruccioli M, Turner RJ, Zannoni D, Cappelletti M. Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1. Front Microbiol 2019; 10:888. [PMID: 31133997 PMCID: PMC6514093 DOI: 10.3389/fmicb.2019.00888] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022] Open
Abstract
Arsenic (As) ranks among the priority metal(loid)s that are of public health concern. In the environment, arsenic is present in different forms, organic or inorganic, featured by various toxicity levels. Bacteria have developed different strategies to deal with this toxicity involving different resistance genetic determinants. Bacterial strains of Rhodococcus genus, and more in general Actinobacteria phylum, have the ability to cope with high concentrations of toxic metalloids, although little is known on the molecular and genetic bases of these metabolic features. Here we show that Rhodococcus aetherivorans BCP1, an extremophilic actinobacterial strain able to tolerate high concentrations of organic solvents and toxic metalloids, can grow in the presence of high concentrations of As(V) (up to 240 mM) under aerobic growth conditions using glucose as sole carbon and energy source. Notably, BCP1 cells improved their growth performance as well as their capacity of reducing As(V) into As(III) when the concentration of As(V) is within 30–100 mM As(V). Genomic analysis of BCP1 compared to other actinobacterial strains revealed the presence of three gene clusters responsible for organic and inorganic arsenic resistance. In particular, two adjacent and divergently oriented ars gene clusters include three arsenate reductase genes (arsC1/2/3) involved in resistance mechanisms against As(V). A sequence similarity network (SSN) and phylogenetic analysis of these arsenate reductase genes indicated that two of them (ArsC2/3) are functionally related to thioredoxin (Trx)/thioredoxin reductase (TrxR)-dependent class and one of them (ArsC1) to the mycothiol (MSH)/mycoredoxin (Mrx)-dependent class. A targeted transcriptomic analysis performed by RT-qPCR indicated that the arsenate reductase genes as well as other genes included in the ars gene cluster (possible regulator gene, arsR, and arsenite extrusion genes, arsA, acr3, and arsD) are transcriptionally induced when BCP1 cells were exposed to As(V) supplied at two different sub-lethal concentrations. This work provides for the first time insights into the arsenic resistance mechanisms of a Rhodococcus strain, revealing some of the unique metabolic requirements for the environmental persistence of this bacterial genus and its possible use in bioremediation procedures of toxic metal contaminated sites.
Collapse
Affiliation(s)
- Andrea Firrincieli
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Alessandro Presentato
- Department of Biotechnology, University of Verona, Verona, Italy.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Giusi Favoino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rosita Marabottini
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Enrica Allevato
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Silvia Rita Stazi
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Giuseppe Scarascia Mugnozza
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Antoine Harfouche
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Maurizio Petruccioli
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Helmstetter F, Arnold P, Höger B, Petersen LM, Beitz E. Formate-nitrite transporters carrying nonprotonatable amide amino acids instead of a central histidine maintain pH-dependent transport. J Biol Chem 2018; 294:623-631. [PMID: 30455351 DOI: 10.1074/jbc.ra118.006340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/09/2018] [Indexed: 01/25/2023] Open
Abstract
Microbial formate-nitrite transporter-type proteins (FNT) exhibit dual transport functionality. At neutral pH, electrogenic anion currents are detectable, whereas upon acidification transport of the neutral, protonated monoacid predominates. Physiologically, FNT-mediated proton co-transport is vital when monocarboxylic acid products of the energy metabolism, such as l-lactate, are released from the cell. Accordingly, Plasmodium falciparum malaria parasites can be killed by small-molecule inhibitors of PfFNT. Two opposing hypotheses on the site of substrate protonation are plausible. The proton relay mechanism postulates proton transfer from a highly conserved histidine centrally positioned in the transport path. The dielectric slide mechanism assumes decreasing acidity of substrates entering the lipophilic vestibules and protonation via the bulk water. Here, we defined the transport mechanism of the FNT from the amoebiasis parasite Entamoeba histolytica, EhFNT, and also show that BtFdhC from Bacillus thuringiensis is a functional formate transporter. Both FNTs carry a nonprotonatable amide amino acid, asparagine or glutamine, respectively, at the central histidine position. Despite having a nonprotonatable residue, EhFNT displayed the same substrate selectivity for larger monocarboxylates including l-lactate, a low substrate affinity as is typical for FNTs, and, strikingly, proton motive force-dependent transport as observed for PfFNT harboring a central histidine. These results argue against a proton relay mechanism, indicating that substrate protonation must occur outside of the central histidine region, most likely in the vestibules. Furthermore, EhFNT is the sole annotated FNT in the Entamoeba genome suggesting that it could be a putative new drug target with similar utility as that of the malarial PfFNT.
Collapse
Affiliation(s)
| | - Philipp Arnold
- the Anatomical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Bastian Höger
- From the Department of Pharmaceutical and Medicinal Chemistry, and
| | | | - Eric Beitz
- From the Department of Pharmaceutical and Medicinal Chemistry, and
| |
Collapse
|
17
|
Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C. Distribution of Arsenic Resistance Genes in Prokaryotes. Front Microbiol 2018; 9:2473. [PMID: 30405552 PMCID: PMC6205960 DOI: 10.3389/fmicb.2018.02473] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Arsenic is a metalloid that occurs naturally in aquatic and terrestrial environments. The high toxicity of arsenic derivatives converts this element in a serious problem of public health worldwide. There is a global arsenic geocycle in which microbes play a relevant role. Ancient exposure to arsenic derivatives, both inorganic and organic, has represented a selective pressure for microbes to evolve or acquire diverse arsenic resistance genetic systems. In addition, arsenic compounds appear to have been used as a toxin in chemical warfare for a long time selecting for an extended range of arsenic resistance determinants. Arsenic resistance strategies rely mainly on membrane transport pathways that extrude the toxic compounds from the cell cytoplasm. The ars operons, first discovered in bacterial R-factors almost 50 years ago, are the most common microbial arsenic resistance systems. Numerous ars operons, with a variety of genes and different combinations of them, populate the prokaryotic genomes, including their accessory plasmids, transposons, and genomic islands. Besides these canonical, widespread ars gene clusters, which confer resistance to the inorganic forms of arsenic, additional genes have been discovered recently, which broadens the spectrum of arsenic tolerance by detoxifying organic arsenic derivatives often used as toxins. This review summarizes the presence, distribution, organization, and redundance of arsenic resistance genes in prokaryotes.
Collapse
Affiliation(s)
- Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhao
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Quaiser Saquib
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Carlos Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, Morelia, Mexico
| |
Collapse
|
18
|
Zhang J, Chen X, Xue Y, Gamper N, Zhang X. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes. J Cell Physiol 2018; 233:6377-6385. [PMID: 29667735 DOI: 10.1002/jcp.26555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Abstract
Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2 , PIP2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xingjuan Chen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Beijing Key Laboratory of Diabetes Prevention and Research, Lu He Hospital, Capital Medical University, Beijing, China
| | - Yucong Xue
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Nikita Gamper
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
19
|
Meier A, Erler H, Beitz E. Targeting Channels and Transporters in Protozoan Parasite Infections. Front Chem 2018; 6:88. [PMID: 29637069 PMCID: PMC5881087 DOI: 10.3389/fchem.2018.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e., channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease), and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Collapse
Affiliation(s)
- Anna Meier
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
20
|
The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:103-137. [PMID: 28438267 DOI: 10.1016/bs.aambs.2017.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arsenic (As) is widespread in the environment and highly toxic. It has been released by volcanic and anthropogenic activities and causes serious health problems worldwide. To survive arsenic-rich environments, soil and saprophytic microorganisms have developed molecular detoxification mechanisms to survive arsenic-rich environments, mainly by the enzymatic conversion of inorganic arsenate (AsV) to arsenite (AsIII) by arsenate reductases, which is then extruded by arsenite permeases. One of these Gram-positive bacteria, Corynebacterium glutamicum, the workhorse of biotechnological research, is also resistant to arsenic. To sanitize contaminated soils and waters, C. glutamicum strains were modified to work as arsenic "biocontainers." Two chromosomally encoded ars operons (ars1 and ars2) are responsible for As resistance. The genes within these operons encode for metalloregulatory proteins (ArsR1/R2), arsenite permeases (Acr3-1/-2), and arsenate reductases (ArsC1/C2/C1'). ArsC1/C2 arsenate reductases are coupled to the low molecular weight thiol mycothiol (MSH) and to the recently discovered mycoredoxin-1 (Mrx-1) present in most Actinobacteria. This MSH/Mrx-1 redox system protects cells against different forms of stress, including reactive oxygen species (ROS), metals, and antibiotics. ROS can modify functional sulfur cysteines by oxidizing the thiol (-SH) to a sulfenic acid (-SOH). These oxidation-sensitive protein cysteine thiols are redox regulated by the MSH/Mrx-1 couple in Corynebacterium and Mycobacterium. In summary, the molecular mechanisms involved in arsenic resistance system in C. glutamicum have paved the way for understanding the cellular response against oxidative stress in Actinobacteria.
Collapse
|
21
|
|
22
|
Li Q, Li C, Xie L, Zhang C, Feng Y, Xie J. Characterization of a putative ArsR transcriptional regulator encoded by Rv2642 from Mycobacterium tuberculosis. J Biomol Struct Dyn 2016; 35:2031-2039. [DOI: 10.1080/07391102.2016.1206037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiming Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunyan Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Longxiang Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chenhui Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yonghong Feng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Song J, Baker N, Rothert M, Henke B, Jeacock L, Horn D, Beitz E. Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2. PLoS Pathog 2016; 12:e1005436. [PMID: 26828608 PMCID: PMC4734766 DOI: 10.1371/journal.ppat.1005436] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glycero)porin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis.
Collapse
Affiliation(s)
- Jie Song
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nicola Baker
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Monja Rothert
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Björn Henke
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Laura Jeacock
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - David Horn
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
24
|
Andres J, Bertin PN. The microbial genomics of arsenic. FEMS Microbiol Rev 2016; 40:299-322. [DOI: 10.1093/femsre/fuv050] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
|
25
|
Beitz E, Golldack A, Rothert M, von Bülow J. Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol Ther 2015; 155:22-35. [PMID: 26277280 DOI: 10.1016/j.pharmthera.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aquaporin (AQP) water and solute channels have basic physiological functions throughout the human body. AQP-facilitated water permeability across cell membranes is required for rapid reabsorption of water from pre-urine in the kidneys and for sustained near isosmolar water fluxes e.g. in the brain, eyes, inner ear, and lungs. Cellular water permeability is further connected to cell motility. AQPs of the aquaglyceroporin subfamily are necessary for lipid degradation in adipocytes and glycerol uptake into the liver, as well as for skin moistening. Modulation of AQP function is desirable in several pathophysiological situations, such as nephrogenic diabetes insipidus, Sjögren's syndrome, Menière's disease, heart failure, or tumors to name a few. Attempts to design or to find effective small molecule AQP inhibitors have yielded only a few hits. Challenges reside in the high copy number of AQP proteins in the cell membranes, and spatial restrictions in the protein structure. This review gives an overview on selected physiological and pathophysiological conditions in which modulation of AQP functions appears beneficial and discusses first achievements in the search of drug-like AQP inhibitors.
Collapse
Affiliation(s)
- Eric Beitz
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany.
| | - André Golldack
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Monja Rothert
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Julia von Bülow
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| |
Collapse
|
26
|
Von Bülow J, Beitz E. Number and regulation of protozoan aquaporins reflect environmental complexity. THE BIOLOGICAL BULLETIN 2015; 229:38-46. [PMID: 26338868 DOI: 10.1086/bblv229n1p38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship.
Collapse
Affiliation(s)
- Julia Von Bülow
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| |
Collapse
|
27
|
Markowska K, Maciaszczyk‐Dziubinska E, Migocka M, Wawrzycka D, Wysocki R. Identification of critical residues for transport activity of
A
cr3p, the
S
accharomyces cerevisiae
A
s(
III
)/
H
+
antiporter. Mol Microbiol 2015; 98:162-74. [DOI: 10.1111/mmi.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Katarzyna Markowska
- Institute of Experimental Biology University of Wroclaw 50‐328 Wroclaw Poland
| | | | - Magdalena Migocka
- Institute of Experimental Biology University of Wroclaw 50‐328 Wroclaw Poland
| | - Donata Wawrzycka
- Institute of Experimental Biology University of Wroclaw 50‐328 Wroclaw Poland
| | - Robert Wysocki
- Institute of Experimental Biology University of Wroclaw 50‐328 Wroclaw Poland
| |
Collapse
|
28
|
Furnholm TR, Tisa LS. The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics 2014; 15:1092. [PMID: 25495525 PMCID: PMC4531530 DOI: 10.1186/1471-2164-15-1092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frankia are actinobacteria that form a symbiotic nitrogen-fixing association with actinorhizal plants, and play a significant role in actinorhizal plant colonization of metal contaminated areas. Many Frankia strains are known to be resistant to several toxic metals and metalloids including Pb(2+), Al(+3), SeO2, Cu(2+), AsO4, and Zn(2+). With the availability of eight Frankia genome databases, comparative genomics approaches employing phylogeny, amino acid composition analysis, and synteny were used to identify metal homeostasis mechanisms in eight Frankia strains. Characterized genes from the literature and a meta-analysis of 18 heavy metal gene microarray studies were used for comparison. RESULTS Unlike most bacteria, Frankia utilize all of the essential trace elements (Ni, Co, Cu, Se, Mo, B, Zn, Fe, and Mn) and have a comparatively high percentage of metalloproteins, particularly in the more metal resistant strains. Cation diffusion facilitators, being one of the few known metal resistance mechanisms found in the Frankia genomes, were strong candidates for general divalent metal resistance in all of the Frankia strains. Gene duplication and amino acid substitutions that enhanced the metal affinity of CopA and CopCD proteins may be responsible for the copper resistance found in some Frankia strains. CopA and a new potential metal transporter, DUF347, may be involved in the particularly high lead tolerance in Frankia. Selenite resistance involved an alternate sulfur importer (CysPUWA) that prevents sulfur starvation, and reductases to produce elemental selenium. The pattern of arsenate, but not arsenite, resistance was achieved by Frankia using the novel arsenite exporter (AqpS) previously identified in the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Based on the presence of multiple tellurite resistance factors, a new metal resistance (tellurite) was identified and confirmed in Frankia. CONCLUSIONS Each strain had a unique combination of metal import, binding, modification, and export genes that explain differences in patterns of metal resistance between strains. Frankia has achieved similar levels of metal and metalloid resistance as bacteria from highly metal-contaminated sites. From a bioremediation standpoint, it is important to understand mechanisms that allow the endosymbiont to survive and infect actinorhizal plants in metal contaminated soils.
Collapse
Affiliation(s)
- Teal R Furnholm
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
29
|
Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 2014; 12:e1002009. [PMID: 25464340 PMCID: PMC4251824 DOI: 10.1371/journal.pbio.1002009] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/21/2014] [Indexed: 12/17/2022] Open
Abstract
Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.
Collapse
Affiliation(s)
- Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (DYC); (FJZ); (DES)
| | - Yi Chen
- Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Jiugeng Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shulin Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ziru Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - John M. Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- * E-mail: (DYC); (FJZ); (DES)
| | - David E. Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (DYC); (FJZ); (DES)
| |
Collapse
|
30
|
Rambow J, Wu B, Rönfeldt D, Beitz E. Aquaporins with anion/monocarboxylate permeability: mechanisms, relevance for pathogen-host interactions. Front Pharmacol 2014; 5:199. [PMID: 25225485 PMCID: PMC4150397 DOI: 10.3389/fphar.2014.00199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
Classically, aquaporins are divided based on pore selectivity into water specific, orthodox aquaporins and solute-facilitating aquaglyceroporins, which conduct, e.g., glycerol and urea. However, more aquaporin-passing substrates have been identified over the years, such as the gasses ammonia and carbon dioxide or the water-related hydrogen peroxide. It became apparent that not all aquaporins clearly fit into one of only two subfamilies. Furthermore, certain aquaporins from both major subfamilies have been reported to conduct inorganic anions, such as chloride, or monoacids/monocarboxylates, such as lactic acid/lactate. Here, we summarize the findings on aquaporin anion transport, analyze the pore layout of such aquaporins in comparison to prototypical non-selective anion channels, monocarboxylate transporters, and formate–nitrite transporters. Finally, we discuss in which scenarios anion conducting aquaporins may be of physiological relevance.
Collapse
Affiliation(s)
- Janis Rambow
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Binghua Wu
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Deike Rönfeldt
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel Kiel, Germany
| |
Collapse
|
31
|
Almasalmeh A, Krenc D, Wu B, Beitz E. Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J 2013; 281:647-56. [PMID: 24286224 DOI: 10.1111/febs.12653] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 12/27/2022]
Abstract
Aquaporins (AQP) conduct small, uncharged molecules, such as water (orthodox AQPs), ammonia (aquaammoniaporins) or glycerol (aquaglyceroporins). The physiological functions of AQPs are involved in osmotic volume regulation or the transport of biochemical precursors and metabolic waste products. The recent identification of hydrogen peroxide (H₂O₂) as a permeant of certain AQPs suggests additional roles in mitigating oxidative stress or enabling paracrine H₂O₂ signalling. Yet, an analysis of the structural requirements of the H₂O₂ permeability of AQPs is missing. We subjected a representative set of wild-type and mutant AQPs to a newly established quantitative phenotypic assay. We confirmed high H₂O₂ permeability of the human aquaammoniaporin AQP8 and found intermediate H₂O₂ permeability of the prototypical orthodox water channel AQP1 from the rat. Differences from an earlier report showing an absence of H₂O₂ permeability of human AQP1 can be explained by expression levels. By generating point mutations in the selectivity filter of rat orthodox aquaporin AQP1, we established a correlation of H₂O₂ permeability primarily with water permeability and secondarily with the pore diameter. Even the narrowest pore of the test set (i.e. rat orthodox aquaporin AQP1 H180F with a pore diameter smaller than that of natural orthodox AQPs) conducted water and H₂O₂. We further found that H₂O₂ permeability of the aquaglyceroporin from the malaria parasite Plasmodium falciparum was lower despite its wider pore diameter. The data suggest that all water-permeable AQPs are H₂O₂ channels, yet H₂O₂ permeability varies with the isoform. Thus, generally, AQPs must be considered as putative players in situations of oxidative stress (e.g. in Plasmodium-infected red blood cells, immune cells, the cardiovascular system or cells expressing AQP8 in their mitochondria).
Collapse
Affiliation(s)
- Abdulnasser Almasalmeh
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | | | | | | |
Collapse
|
32
|
Mukhopadhyay R, Bhattacharjee H, Rosen BP. Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta Gen Subj 2013; 1840:1583-91. [PMID: 24291688 DOI: 10.1016/j.bbagen.2013.11.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. SCOPE OF REVIEW This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. MAJOR CONCLUSIONS As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. GENERAL SIGNIFICANCE The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Rita Mukhopadhyay
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA.
| |
Collapse
|
33
|
Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One 2013; 8:e58235. [PMID: 23472164 PMCID: PMC3589338 DOI: 10.1371/journal.pone.0058235] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Rationale Current tools available to study the molecular epidemiology of tuberculosis do not provide information about the directionality and sequence of transmission for tuberculosis cases occurring over a short period of time, such as during an outbreak. Recently, whole genome sequencing has been used to study molecular epidemiology of Mycobacterium tuberculosis over short time periods. Objective To describe the microevolution of M. tuberculosis during an outbreak caused by one drug-susceptible strain. Method and Measurements We included 9 patients with tuberculosis diagnosed during a period of 22 months, from a population-based study of the molecular epidemiology in San Francisco. Whole genome sequencing was performed using Illumina’s sequencing by synthesis technology. A custom program written in Python was used to determine single nucleotide polymorphisms which were confirmed by PCR product Sanger sequencing. Main results We obtained an average of 95.7% (94.1–96.9%) coverage for each isolate and an average fold read depth of 73 (1 to 250). We found 7 single nucleotide polymorphisms among the 9 isolates. The single nucleotide polymorphisms data confirmed all except one known epidemiological link. The outbreak strain resulted in 5 bacterial variants originating from the index case A1 with 0–2 mutations per transmission event that resulted in a secondary case. Conclusions Whole genome sequencing analysis from a recent outbreak of tuberculosis enabled us to identify microevolutionary events observable during transmission, to determine 0–2 single nucleotide polymorphisms per transmission event that resulted in a secondary case, and to identify new epidemiologic links in the chain of transmission.
Collapse
|
34
|
Dhuldhaj UP, Yadav IC, Singh S, Sharma NK. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 224:1-38. [PMID: 23232917 DOI: 10.1007/978-1-4614-5882-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Arsenic (As) is a nonessential element that is often present in plants and in other organisms. However, it is one of the most hazardous of toxic elements globally. In many parts of the world, arsenic contamination in groundwater is a serious and continuing threat to human health. Microbes play an important role in regulating the environmental fate of arsenic. Different microbial processes influence the biogeochemical cycling of arsenic in ways that affect the accumulation of different arsenic species in various ecosystem compartments. For example, in soil, there are bacteria that methylate arsenite to trimethylarsine gas, thereby releasing arsenic to the atmosphere.In marine ecosystems, microbes exist that can convert inorganic arsenicals to organic arsenicals (e.g., di- and tri-methylated arsenic derivatives, arsenocholine,arsenobetaine, arsenosugars, arsenolipids). The organo arsenicals are further metabolized to complete the arsenic cycle.Microbes have developed various strategies that enable them to tolerate arsenic and to survive in arsenic-rich environments. Such strategies include As exclusion from cells by establishing permeability barrier, intra- and extracellular sequestration,active efflux pumps, enzymatic reduction, and reduction in the sensitivity of cellular targets. These strategies are used either singly or in combination. In bacteria,the genes for arsenic resistance/detoxification are encoded by the arsenic resistance operons (ars operon).In this review, we have addressed and emphasized the impact of different microbial processes (e.g., arsenite oxidation, cytoplasmic arsenate reduction, respiratory arsenate reduction, arsenite methylation) on the arsenic cycle. Microbes are the only life forms reported to exist in heavy arsenic-contaminated environments. Therefore,an understanding of the strategies adopted by microbes to cope with arsenic stress is important in managing such arsenic-contaminated sites. Further future insights into the different microbial genes/proteins that are involved in arsenic resistance may also be useful for developing arsenic resistant crop plants.
Collapse
|
35
|
Slyemi D, Bonnefoy V. How prokaryotes deal with arsenic(†). ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:571-586. [PMID: 23760928 DOI: 10.1111/j.1758-2229.2011.00300.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Arsenic is a notorious poison classified as a carcinogen, a teratogen and a clastogen that ranks number one on the Environmental Protection Agency's priority list of drinking water contaminants. It is ubiquitous and relatively abundant in the Earth's crust. Its mobilization in waters by weathering, volcanic, anthropogenic or biological activities represents a major hazard to public health, exemplified in India and Bangladesh where 50 million people are acutely at risk. Since basically the origin of life, microorganisms have been exposed to this toxic compound and have evolved a variety of resistance mechanisms, such as extracellular precipitation, chelation, intracellular sequestration, active extrusion from the cell or biochemical transformation (redox or methylation). Arsenic efflux systems are widespread and are found in nearly all organisms. Some microorganisms are also able to utilize this metalloid as a metabolic energy source through either arsenite oxidation or arsenate reduction. The energy metabolism involving redox reactions of arsenic has been suggested to have evolved during early life on Earth. This review highlights the different systems evolved by prokaryotes to cope with arsenic and how they participate in its biogeochemical cycle.
Collapse
Affiliation(s)
- Djamila Slyemi
- Laboratoire de Chimie Bactérienne, UPR-CNRS 9043, Institut de Microbiologie de la Méditerranée, 31 chemin Joseph Aiguier, 13402, Marseille, Cedex 20, France. Aix-Marseille Université, Marseille, France
| | | |
Collapse
|
36
|
Couture RM, Sekowska A, Fang G, Danchin A. Linking selenium biogeochemistry to the sulfur-dependent biological detoxification of arsenic. Environ Microbiol 2012; 14:1612-23. [DOI: 10.1111/j.1462-2920.2012.02758.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Song J, Almasalmeh A, Krenc D, Beitz E. Molar concentrations of sorbitol and polyethylene glycol inhibit the Plasmodium aquaglyceroporin but not that of E. coli: involvement of the channel vestibules. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1218-24. [PMID: 22326891 DOI: 10.1016/j.bbamem.2012.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/25/2022]
Abstract
The aquaglyceroporins of Escherichia coli, EcGlpF, and of Plasmodium falciparum, PfAQP, are probably the best characterized members of the solute-conducting aquaporin (AQP) subfamily. Their crystal structures have been elucidated and numerous experimental and theoretical analyses have been conducted. However, opposing reports on their rates of water permeability require clarification. Hence, we expressed EcGlpF and PfAQP in yeast, prepared protoplasts, and compared water and glycerol permeability of both aquaglyceroporins in the presence of different osmolytes, i.e. sucrose, sorbitol, PEG300, and glycerol. We found that water permeability of PfAQP strongly depends on the external osmolyte, with full inhibition by sorbitol, and increasing water permeability when glycerol, PEG300, and sucrose were used. EcGlpF expression did not enhance water permeability over that of non-expressing control protoplasts regardless of the osmolyte. Glycerol permeability of PfAQP was also inhibited by sorbitol, but to a smaller extent, whereas EcGlpF conducted glycerol independently of the osmolyte. Mixtures of glycerol and urea passed PfAQP equally well under isosmotic conditions, whereas under hypertonic conditions in a countercurrent with water, glycerol was clearly preferred over urea. We conclude that PfAQP has high and EcGlpF low water permeability, and explain the inhibiting effect of sorbitol on PfAQP by its binding to the extracellular vestibule. The preference for glycerol under hypertonic conditions implies that in a physiological setting, PfAQP mainly acts as a water/glycerol channel rather than a urea facilitator.
Collapse
Affiliation(s)
- Jie Song
- Department of Medicinal amd Pharmaceutical Chemistry, University of Kiel, Gutenbergstrasse 76, 24118, Kiel, Germany
| | | | | | | |
Collapse
|
38
|
von Bülow J, Müller-Lucks A, Kai L, Bernhard F, Beitz E. Functional characterization of a novel aquaporin from Dictyostelium discoideum amoebae implies a unique gating mechanism. J Biol Chem 2012; 287:7487-94. [PMID: 22262860 DOI: 10.1074/jbc.m111.329102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a widely used model organism for studying basic functions of protozoan and metazoan cells, such as osmoregulation and cell motility. There is evidence from other species that cellular water channels, aquaporins (AQP), are central to both processes. Yet, data on D. discoideum AQPs is almost absent. Despite cloning of two putative D. discoideum AQPs, WacA, and AqpA, water permeability has not been shown. Further, WacA and AqpA are expressed at the late multicellular stage and in spores but not in amoebae. We cloned a novel AQP, AqpB, from amoeboidal D. discoideum cells. Wild-type AqpB was impermeable to water, glycerol, and urea when expressed in Xenopus laevis oocytes. Neither stepwise truncation of the N terminus nor selected point mutations activated the water channel. However, mutational truncation by 12 amino acids of an extraordinary long intracellular loop induced water permeability of AqpB, hinting at a novel gating mechanism. This AqpB mutant was inhibited by mercuric chloride, confirming the presence of a cysteine residue in the selectivity filter as predicted by our structure model. We detected AqpB by Western blot analysis in a glycosylated and a non-glycosylated form throughout all developmental stages. When expressed in D. discoideum amoebae, AqpB-GFP fusion constructs localized to vacuolar structures, to the plasma membrane, and to lamellipodia-like membrane protrusions. We conclude that the localization pattern in conjunction with channel gating may be indicative of AqpB functions in osmoregulation as well as cell motility of D. discoideum.
Collapse
Affiliation(s)
- Julia von Bülow
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | | | | | | | | |
Collapse
|
39
|
Song J, Wu B, Beitz E. Functional and evolutional implications of natural channel-enzyme fusion proteins. Biomol Concepts 2011; 2:439-44. [PMID: 25962046 DOI: 10.1515/bmc.2011.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/20/2011] [Indexed: 11/15/2022] Open
Abstract
Channeling of ions or substrates across membranes and enzymatic activity are two highly distinct biochemical concepts. They are usually studied by different research groups, which focus on either subject. Nature has provided a challenge for specialized scientists by fusing genes coding for a transmembrane channel domain with an enzyme domain. There are examples of fusion proteins consisting of an N-terminal ion channel or sensor and a C-terminal, cytosolic kinase domain (or other enzymes involved in signaling) of which either domain may influence the functionality of the other. The physiological role of such fusions may reside in coupling ion flux or membrane potential sensing to cellular responses or vice-versa. Other examples can be found in metabolism. We have identified and characterized an ar-senite-conducting aquaglyceroporin carrying a C-terminal ar-senate reductase domain. Here, a function in the detoxification of arsenic is obvious, with the enzyme domain generating the substrate for the channel domain, which immediately shuttles the toxic metabolite out of the cell. We see two advantages in this latter concept: lowering of the cellular toxicity due to rapid release of the substrate and energetic coupling of the reaction enthalpy to extrusion due to high local substrate gradients. In this overview, we summarize and discuss the current view on functional and physiological aspects of channel/enzyme fusion proteins.
Collapse
|
40
|
Acr3p is a plasma membrane antiporter that catalyzes As(III)/H(+) and Sb(III)/H(+) exchange in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1855-9. [PMID: 21447319 DOI: 10.1016/j.bbamem.2011.03.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/09/2011] [Accepted: 03/21/2011] [Indexed: 11/27/2022]
Abstract
Resistance to arsenical compounds in Saccharomyces cerevisiae as well as in a growing number of prokaryotes and eukaryotes is mediated by members of the Acr3 family of transporters. In yeast cells, it has been clearly shown that Acr3p is localized to the plasma membrane and facilitates efflux of trivalent arsenic and antimony. However, until now, the energy dependence and kinetic properties of Acr3 proteins remained uncharacterized. In this work, we show that arsenite and antimonite uptake into everted membrane vesicles via the yeast Acr3 transporter is coupled to the electrochemical potential gradient of protons generated by the plasma membrane H(+)-translocating P-type ATPase. These results strongly indicate that Acr3p acts as a metalloid/H(+) antiporter. Two differential kinetic assays revealed that Acr3p-mediated arsenite/H(+) and antimonite/H(+) exchange demonstrates Michaelis-Menten-type saturation kinetics characterized by a maximum flux for permeating metalloids. The approximate K(m) values for arsenite and antimonite transport were the same, suggesting that Acr3p exhibits similar low affinity for both metalloids. Nevertheless, the maximal velocity of the transport at saturation concentrations of metalloids was approximately 3 times higher for arsenite than for antimonite. These findings may explain a predominant role of Acr3p in conferring arsenite tolerance in S. cerevisiae.
Collapse
|