1
|
Skwarczynski M, Alharbi N, Nahar UJ, Shalash AO, Azuar A, Koirala P, Khisty SJ, Wang J, Marasini N, Hussein WM, Khalil ZG, Toth I. Influence of component structural arrangement on cholesterol-antigen conjugate immunogenicity and antisera bactericidal activity against group A Streptococcus. Bioorg Chem 2025; 157:108248. [PMID: 39952060 DOI: 10.1016/j.bioorg.2025.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Immune stimulants (adjuvants) are essential vaccine components; however, clinically approved adjuvants are limited with the majority being derived from pathogenic components. In this study, the adjuvanting capacity of cholesterol, a natural human lipid, was explored following conjugation with peptide antigens. A structure-activity relationship study was conducted to compare linear and branched cholesterol conjugates with other lipopeptide vaccines and commercial adjuvants. Group A Streptococcus (GAS) M protein-derived J8 B-cell epitope and a universal helper T-cell epitope P25 were selected as an antigen. In addition, liposomal formulations of the cholesterol-based vaccines were also evaluated in the mouse model. Following subcutaneous and intranasal administration, conjugates comprised of cholesterol, P25 and J8 induced the highest antibody production. Linear cholesterol peptide vaccines triggered strong antibody responses that killed GAS clinical isolates as effectively as responses triggered by commercial adjuvants. The immunogenicity of the vaccines was greatly influenced by the structural arrangement of the vaccine conjugate components. The lead cholesterol conjugate was self-adjuvanting and induced the desired immune response without any exogenous immune stimulation.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Nedaa Alharbi
- Applied College at Khulais, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Ummey J Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shefali J Khisty
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nirmal Marasini
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Waleed M Hussein
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Vasilieva MI, Shatalova RO, Matveeva KS, Shindyapin VV, Minskaia E, Ivanov RA, Shevyrev DV. Senolytic Vaccines from the Central and Peripheral Tolerance Perspective. Vaccines (Basel) 2024; 12:1389. [PMID: 39772050 PMCID: PMC11680330 DOI: 10.3390/vaccines12121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Preventive medicine has proven its long-term effectiveness and economic feasibility. Over the last century, vaccination has saved more lives than any other medical technology. At present, preventative measures against most infectious diseases are successfully used worldwide; in addition, vaccination platforms against oncological and even autoimmune diseases are being actively developed. At the same time, the development of medicine led to an increase in both life expectancy and the proportion of age-associated diseases, which pose a heavy socio-economic burden. In this context, the development of vaccine-based approaches for the prevention or treatment of age-related diseases opens up broad prospects for extending the period of active longevity and has high economic potential. It is well known that the development of age-related diseases is associated with the accumulation of senescent cells in various organs and tissues. It has been demonstrated that the elimination of such cells leads to the restoration of functions, rejuvenation, and extension of the lives of experimental animals. However, the development of vaccines against senescent cells is complicated by their antigenic heterogeneity and the lack of a unique marker. In addition, senescent cells are the body's own cells, which may be the reason for their low immunogenicity. This mini-review discusses the mechanisms of central and peripheral tolerance that may influence the formation of an anti-senescent immune response and be responsible for the accumulation of senescent cells with age.
Collapse
Affiliation(s)
- Mariia I. Vasilieva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Rimma O. Shatalova
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Kseniia S. Matveeva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia;
| | - Vadim V. Shindyapin
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia;
| | - Ekaterina Minskaia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Roman A. Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Daniil V. Shevyrev
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| |
Collapse
|
3
|
Mukherjee A, Biswas S, Roy I. Immunotherapy: An emerging treatment option for neurodegenerative diseases. Drug Discov Today 2024; 29:103974. [PMID: 38555032 DOI: 10.1016/j.drudis.2024.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Accumulation of misfolded proteins and protein aggregates leading to degeneration of neurons is a hallmark of several neurodegenerative diseases. Therapy mostly relies on symptomatic relief. Immunotherapy offers a promising approach for the development of disease-modifying routes. Such strategies have shown remarkable results in oncology, and this promise is increasingly being realized for neurodegenerative diseases in advanced preclinical and clinical studies. This review highlights cases of passive and active immunotherapies in Parkinson's and Alzheimer's diseases. The reasons for success and failure, wherever available, and strategies to cross the blood-brain barrier, are discussed. The need for conditional modulation of the immune response is also reflected on.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
4
|
Wu R, Sun F, Zhang W, Ren J, Liu GH. Targeting aging and age-related diseases with vaccines. NATURE AGING 2024; 4:464-482. [PMID: 38622408 DOI: 10.1038/s43587-024-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Aging is a major risk factor for numerous chronic diseases. Vaccination offers a promising strategy to combat these age-related diseases by targeting specific antigens and inducing immune responses. Here, we provide a comprehensive overview of recent advances in vaccine-based interventions targeting these diseases, including Alzheimer's disease, type II diabetes, hypertension, abdominal aortic aneurysm, atherosclerosis, osteoarthritis, fibrosis and cancer, summarizing current approaches for identifying disease-associated antigens and inducing immune responses against these targets. Further, we reflect on the recent development of vaccines targeting senescent cells, as a strategy for more broadly targeting underlying causes of aging and associated pathologies. In addition to highlighting recent progress in these areas, we discuss important next steps to advance the therapeutic potential of these vaccines, including improving and robustly demonstrating efficacy in human clinical trials, as well as rigorously evaluating the safety and long-term effects of these vaccine strategies.
Collapse
Affiliation(s)
- Ruochen Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Liu N, Liang X, Chen Y, Xie L. Recent trends in treatment strategies for Alzheimer 's disease and the challenges: A topical advancement. Ageing Res Rev 2024; 94:102199. [PMID: 38232903 DOI: 10.1016/j.arr.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
Alzheimer's Disease (AD) is an irreversible and progressive neurological disease that has affected at least 50 million people around the globe. Considering the severity of the disease and the continuous increase in the number of patients, the development of new effective drugs or intervention strategies for AD has become urgent. AD is caused by a combination of genetic, environmental, and lifestyle factors, but its exact cause has not yet been clarified. Given the current challenges being faced in the clinical treatment of AD, such as complex AD pathological network and insufficient early diagnosis, herein, we have focused on the three core pathological features of AD, including amyloid-β (Aβ) aggregation, tau phosphorylation and tangles, and activation of inflammatory factors. In this review, we have briefly underscored the primary evidence supporting each pathology and discuss AD pathological network among Aβ, tau, and inflammation. We have also comprehensively summarized the most instructive drugs and their treatment strategies against Aβ, tau, or neuroinflammation used in basic research and clinical trials. Finally, we have discussed and outlined the pros and cons of each pathological approach and looked forward to potential personalized diagnosis and treatment strategies that are beneficial to AD patients.
Collapse
Affiliation(s)
- Ni Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yu Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Samudra N, Lane-Donovan C, VandeVrede L, Boxer AL. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest 2023; 133:e168553. [PMID: 37317972 PMCID: PMC10266783 DOI: 10.1172/jci168553] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Tauopathies are disorders associated with tau protein dysfunction and insoluble tau accumulation in the brain at autopsy. Multiple lines of evidence from human disease, as well as nonclinical translational models, suggest that tau has a central pathologic role in these disorders, historically thought to be primarily related to tau gain of toxic function. However, a number of tau-targeting therapies with various mechanisms of action have shown little promise in clinical trials in different tauopathies. We review what is known about tau biology, genetics, and therapeutic mechanisms that have been tested in clinical trials to date. We discuss possible reasons for failures of these therapies, such as use of imperfect nonclinical models that do not predict human effects for drug development; heterogeneity of human tau pathologies which may lead to variable responses to therapy; and ineffective therapeutic mechanisms, such as targeting of the wrong tau species or protein epitope. Innovative approaches to human clinical trials can help address some of the difficulties that have plagued our field's development of tau-targeting therapies thus far. Despite limited clinical success to date, as we continue to refine our understanding of tau's pathogenic mechanism(s) in different neurodegenerative diseases, we remain optimistic that tau-targeting therapies will eventually play a central role in the treatment of tauopathies.
Collapse
|
9
|
Mees I, Nisbet R, Hannan A, Renoir T. Implications of Tau Dysregulation in Huntington's Disease and Potential for New Therapeutics. J Huntingtons Dis 2023; 12:1-13. [PMID: 37092231 DOI: 10.3233/jhd-230569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The disease, characterized by motor, cognitive, and psychiatric impairments, is caused by the expansion of a CAG repeat in the huntingtin gene. Despite the discovery of the mutation in 1993, no disease-modifying treatments are yet available. Understanding the molecular and cellular mechanisms involved in HD is therefore crucial for the development of novel treatments. Emerging research has found that HD might be classified as a secondary tauopathy, with the presence of tau insoluble aggregates in late HD. Increased total tau protein levels have been observed in both HD patients and animal models of HD. Tau hyperphosphorylation, the main feature of tau pathology, has also been investigated and our own published results suggest that the protein phosphorylation machinery is dysregulated in the early stages of HD in R6/1 transgenic mice, primarily in the cortex and striatum. Protein phosphorylation, catalysed by kinases, regulates numerous cellular mechanisms and has been shown to be dysregulated in other neurodegenerative disorders, including Alzheimer's disease. While it is still unclear how the mutation in the huntingtin gene leads to tau dysregulation in HD, several hypotheses have been explored. Evidence suggests that the mutant huntingtin does not directly interact with tau, but instead interacts with tau kinases, phosphatases, and proteins involved in tau alternative splicing, which could result in tau dysregulation as observed in HD. Altogether, there is increasing evidence that tau is undergoing pathological changes in HD and may be a good therapeutic target.
Collapse
Affiliation(s)
- Isaline Mees
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Rebecca Nisbet
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
10
|
Plascencia-Villa G, Perry G. Lessons from antiamyloid-β immunotherapies in Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:267-292. [PMID: 36803816 DOI: 10.1016/b978-0-323-85555-6.00019-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The amyloid hypothesis, that established amyloid-β (Aβ) peptide as the primary cause of Alzheimer's disease (AD) and related dementia, has driven the development of treatments for neurodegeneration for 30 years. During the last decades, more than 200 clinical trials testing more than 30 anti-Aβ immunotherapies have been assessed as potential treatments for AD. A vaccine against Aβ was the first immunotherapy intended to avoid aggregation of Aβ into fibrils and senile plaques, but it dramatically failed. Several other vaccines have been proposed as potential AD treatments, targeting different domains or structural motifs of Aβ aggregates, but without clear clinical benefits or effectiveness. In contrast, anti-Aβ therapeutic antibodies have focused on recognizing and removing Aβ aggregates (oligomers, fibrils, or plaques) by eliciting immune clearance. In 2021, the first anti-Aβ antibody, aducanumab (branded as Aduhelm), received FDA approval under an accelerated approval process. The effectiveness and the overall processes regarding the approval of Aduhelm have been under major criticism and scrutiny, prompting a vote of no confidence by public and private health providers, limiting the coverage only to patients enrolled in clinical trials and not for the general elderly patients. Additionally, another three therapeutic anti-Aβ antibodies are following the same path for potential FDA approval. Here, we present the current status of anti-Aβ immunotherapies under evaluation in preclinical and clinical trials for the treatment of AD and related dementia, with a discussion of the main findings and critical lessons learned from the observations from Phase III, II, and I clinical trials of anti-Aβ vaccines and antibodies.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neurosciences, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX, United States
| | - George Perry
- Department of Neurosciences, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX, United States.
| |
Collapse
|
11
|
Parrocha CMT, Nowick JS. Current Peptide Vaccine and Immunotherapy Approaches Against Alzheimer's Disease. Pept Sci (Hoboken) 2023; 115:e24289. [PMID: 36778914 PMCID: PMC9916509 DOI: 10.1002/pep2.24289] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/06/2022]
Abstract
Peptide vaccines and immunotherapies against aggregating proteins involved in the pathogenesis and progression of Alzheimer's disease (AD) - the β-amyloid peptide (Aβ) and tau - are promising therapeutic avenues against AD. Two decades of effort has led to the controversial FDA approval of the monoclonal antibody Aducanumab (Aduhelm), which has subsequentially sparked the revival and expedited review of promising monoclonal antibody immunotherapies that target Aβ. In this review, we explore the development of Aβ and tau peptide vaccines and immunotherapies with monoclonal antibodies in clinical trials against AD.
Collapse
Affiliation(s)
| | - James S. Nowick
- Department of Pharmaceutical SciencesUniversity of California IrvineIrvineCaliforniaUSA
- Department of ChemistryUniversity of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
12
|
Rudan Njavro J, Vukicevic M, Fiorini E, Dinkel L, Müller SA, Berghofer A, Bordier C, Kozlov S, Halle A, Buschmann K, Capell A, Giudici C, Willem M, Feederle R, Lichtenthaler SF, Babolin C, Montanari P, Pfeifer A, Kosco-Vilbois M, Tahirovic S. Beneficial Effect of ACI-24 Vaccination on Aβ Plaque Pathology and Microglial Phenotypes in an Amyloidosis Mouse Model. Cells 2022; 12:cells12010079. [PMID: 36611872 PMCID: PMC9818422 DOI: 10.3390/cells12010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Amyloid-β (Aβ) deposition is an initiating factor in Alzheimer's disease (AD). Microglia are the brain immune cells that surround and phagocytose Aβ plaques, but their phagocytic capacity declines in AD. This is in agreement with studies that associate AD risk loci with genes regulating the phagocytic function of immune cells. Immunotherapies are currently pursued as strategies against AD and there are increased efforts to understand the role of the immune system in ameliorating AD pathology. Here, we evaluated the effect of the Aβ targeting ACI-24 vaccine in reducing AD pathology in an amyloidosis mouse model. ACI-24 vaccination elicited a robust and sustained antibody response in APPPS1 mice with an accompanying reduction of Aβ plaque load, Aβ plaque-associated ApoE and dystrophic neurites as compared to non-vaccinated controls. Furthermore, an increased number of NLRP3-positive plaque-associated microglia was observed following ACI-24 vaccination. In contrast to this local microglial activation at Aβ plaques, we observed a more ramified morphology of Aβ plaque-distant microglia compared to non-vaccinated controls. Accordingly, bulk transcriptomic analysis revealed a trend towards the reduced expression of several disease-associated microglia (DAM) signatures that is in line with the reduced Aβ plaque load triggered by ACI-24 vaccination. Our study demonstrates that administration of the Aβ targeting vaccine ACI-24 reduces AD pathology, suggesting its use as a safe and cost-effective AD therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Lina Dinkel
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 80333 Munich, Germany
| | - Anna Berghofer
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 80333 Munich, Germany
| | - Chiara Bordier
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Stanislav Kozlov
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Annett Halle
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Katrin Buschmann
- Biomedical Center (BMC), Ludwig-Maximilians University Munich, 80539 Munich, Germany
| | - Anja Capell
- Biomedical Center (BMC), Ludwig-Maximilians University Munich, 80539 Munich, Germany
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians University Munich, 80539 Munich, Germany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 80333 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | | | | | | | | | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
13
|
Karimi N, Bayram Çatak F, Arslan E, Saghazadeh A, Rezaei N. Tau immunotherapy in Alzheimer’s disease and progressive supranuclear palsy. Int Immunopharmacol 2022; 113:109445. [DOI: 10.1016/j.intimp.2022.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
|
14
|
"Endothelial Antibody Factory" at the Blood Brain Barrier: Novel Approach to Therapy of Neurodegenerative Diseases. Pharmaceutics 2022; 14:pharmaceutics14071418. [PMID: 35890313 PMCID: PMC9320725 DOI: 10.3390/pharmaceutics14071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The failures of anti-β-amyloid immunotherapies suggested that the very low fraction of injected antibodies reaching the brain parenchyma due to the filtering effect of the BBB may be a reason for the lack of therapeutic effect. However, there is no treatment, as yet, for the amyotrophic lateral sclerosis (ALS) despite substantial evidence existing of the involvement of TDP-43 protein in the evolution of ALS. To circumvent this filtering effect, we have developed a novel approach to facilitate the penetration of antibody fragments (Fabs) into the brain parenchyma. Leveraging the homing properties of endothelial progenitor cells (EPCs), we transfected, ex vivo, such cells with vectors encoding anti-β-amyloid and anti-TDP43 Fabs turning them into an “antibody fragment factory”. When injected these cells integrate into the BBB, where they secrete anti-TDP43 Fabs. The results showed the formation of tight junctions between the injected engineered EPCs and the unlabeled resident endothelial cells. When the EPCs were further modified to express the anti-TDP43 Fab, we could observe integration of these cells into the vasculature and the secretion of Fabs. Results confirm that production and secretion of Fabs at the BBB level leads to their migration to the brain parenchyma where they might exert a therapeutic effect.
Collapse
|
15
|
Delbreil P, Rabanel JM, Banquy X, Brambilla D. Therapeutic nanotechnologies for Alzheimer's disease: a critical analysis of recent trends and findings. Adv Drug Deliv Rev 2022; 187:114397. [PMID: 35738546 DOI: 10.1016/j.addr.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease for which no disease modifying therapies are presently available. Besides the identification of pathological targets, AD presents numerous clinical and pharmacological challenges such as efficient active delivery to the central nervous system, cell targeting, and long-term dosing. Nanoparticles have been explored to overcome some of these challenges as drug delivery vehicles or drugs themselves. However, early promises have failed to materialize as no nanotechnology-based product has been able to reach the market and very few have moved past preclinical stages. In this review, we perform a critical analysis of the past decade's research on nanomedicine-based therapies for AD at the preclinical and clinical stages. The main obstacles to nanotechnology products and the most promising approaches were also identified, including renewed promise with gene editing, gene modulation, and vaccines.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Davide Brambilla
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
16
|
Rafii MS, Sol O, Mobley WC, Delpretti S, Skotko BG, Burke AD, Sabbagh MN, Yuan SH, Rissman RA, Pulsifer M, Evans C, Evans AC, Beth G, Fournier N, Gray JA, dos Santos AM, Hliva V, Vukicevic M, Kosco-Vilbois M, Streffer J, Pfeifer A, Feldman HH. Safety, Tolerability, and Immunogenicity of the ACI-24 Vaccine in Adults With Down Syndrome: A Phase 1b Randomized Clinical Trial. JAMA Neurol 2022; 79:565-574. [PMID: 35532913 PMCID: PMC9086937 DOI: 10.1001/jamaneurol.2022.0983] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
Importance Individuals with Down syndrome (DS) are at high risk of developing Alzheimer disease due to an increased dose of the amyloid precursor protein gene, APP, which leads to increased levels of full-length APP and its products, including amyloid-β (Aβ). The liposome-based antiamyloid ACI-24 vaccine is intended to treat neurological disorders caused by misfolded Aβ pathological protein. However, the safety, tolerability, and immunogenicity of the ACI-24 vaccine among adults with DS have not been fully examined. Objective To assess the safety and tolerability of the ACI-24 vaccine among adults with DS as well as its ability to induce immunogenicity measured by anti-Aβ immunoglobulin G titers. Design, Setting, and Participants This multicenter double-blind placebo-controlled dose-escalation phase 1b randomized clinical trial was conducted at 3 US academic medical centers with affiliated Down syndrome clinics between March 30, 2016, and June 29, 2020. A total of 20 adults with DS were screened; of those, 16 adults were eligible to participate. Eligibility criteria included men or women aged 25 to 45 years with cytogenetic diagnosis of either trisomy 21 or complete unbalanced translocation of chromosome 21. Between April 27, 2016, and July 2, 2018, participants were randomized 3:1 into 2 dose-level cohorts (8 participants per cohort, with 6 participants receiving the ACI-24 vaccine and 2 receiving placebo) in a 96-week study. Participants received 48 weeks of treatment followed by an additional 48 weeks of safety follow-up. Interventions Participants were randomized to receive 7 subcutaneous injections of ACI-24, 300 μg or 1000 μg, or placebo. Main Outcomes and Measures Primary outcomes were measures of safety and tolerability as well as antibody titers. Results Among 16 enrolled participants, the mean (SD) age was 32.6 (4.4) years; 9 participants were women, and 7 were men. All participants were White, and 1 participant had Hispanic or Latino ethnicity. Treatment adherence was 100%. There were no cases of meningoencephalitis, death, or other serious adverse events (AEs) and no withdrawals as a result of AEs. Most treatment-emergent AEs were of mild intensity (110 of 132 events [83.3%]) and unrelated or unlikely to be related to the ACI-24 vaccine (113 of 132 events [85.6%]). No amyloid-related imaging abnormalities with edema or cerebral microhemorrhage and no evidence of central nervous system inflammation were observed on magnetic resonance imaging scans. Increases in anti-Aβ immunoglobulin G titers were observed in 4 of 12 participants (33.3%) receiving ACI-24 (2 receiving 300 μg and 2 receiving 1000 μg) compared with 0 participants receiving placebo. In addition, a greater increase was observed in plasma Aβ1-40 and Aβ1-42 levels among individuals receiving ACI-24. Conclusions and Relevance In this study, the ACI-24 vaccine was safe and well tolerated in adults with DS. Evidence of immunogenicity along with pharmacodynamic and target engagement were observed, and anti-Aβ antibody titers were not associated with any adverse findings. These results support progression to clinical trials using an optimized formulation of the ACI-24 vaccine among individuals with DS. Trial Registration ClinicalTrials.gov Identifier: NCT02738450.
Collapse
Affiliation(s)
- Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, San Diego
| | | | - William C. Mobley
- Department of Neuroscience, University of California, San Diego, San Diego
| | | | - Brian G. Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston
| | | | | | - Shauna H. Yuan
- Department of Neurology, University of Minnesota, Minneapolis
| | - Robert A. Rissman
- Department of Neuroscience, University of California, San Diego, San Diego
| | - Margaret Pulsifer
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston
| | - Casey Evans
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston
| | - A. Carol Evans
- Department of Neuroscience, University of California, San Diego, San Diego
| | | | | | | | | | | | | | | | | | | | - Howard H. Feldman
- Department of Neuroscience, University of California, San Diego, San Diego
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, San Diego
| |
Collapse
|
17
|
Golde TE. Disease-Modifying Therapies for Alzheimer's Disease: More Questions than Answers. Neurotherapeutics 2022; 19:209-227. [PMID: 35229269 PMCID: PMC8885119 DOI: 10.1007/s13311-022-01201-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
Scientific advances over the last four decades have steadily infused the Alzheimer's disease (AD) field with great optimism that therapies targeting Aβ, amyloid, tau, and innate immune activation states in the brain would provide disease modification. Unfortunately, this optimistic scenario has not yet played out. Though a recent approval of the anti-Aβ aggregate binding antibody, Aduhelm (aducanumab), as a "disease-modifying therapy for AD" is viewed by some as a breakthrough, many remain unconvinced by the data underlying this approval. Collectively, we have not succeeded in changing AD from a largely untreatable, inevitable, and incurable disease to a treatable, preventable, and curable one. Here, I will review the major foci of the AD "disease-modifying" therapeutic pipeline and some of the "open questions" that remain in terms of these therapeutic approaches. I will conclude the review by discussing how we, as a field, might adjust our approach, learning from our past failures to ensure future success.
Collapse
Affiliation(s)
- Todd E Golde
- Departments of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, Evelyn F. and William L. McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Vukicevic M, Fiorini E, Siegert S, Carpintero R, Rincon-Restrepo M, Lopez-Deber P, Piot N, Ayer M, Rentero I, Babolin C, Bravo-Veyrat S, Giriens V, Morici C, Beuzelin M, Gesbert A, Rivot S, Depretti S, Donati P, Streffer J, Pfeifer A, Kosco-Vilbois MH. OUP accepted manuscript. Brain Commun 2022; 4:fcac022. [PMID: 35479516 PMCID: PMC9037369 DOI: 10.1093/braincomms/fcac022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
Abstract
Pyroglutamate amyloid beta3–42 (pGlu-Abeta3–42), a highly
amyloidogenic and neurotoxic form of Abeta, is N-terminally truncated to form a
pyroglutamate and has recently been proposed as a key target for immunotherapy.
Optimized ACI-24, a vaccine in development for the treatment and prevention of
Alzheimer’s disease, focuses the antibody response on the first 15
N-terminal amino acids of Abeta (Abeta1–15). Importantly, clinical data
with an initial version of ACI-24 incorporating Abeta1–15, established
the vaccine’s safety and tolerability with evidence of immunogenicity. To
explore optimized ACI-24’s capacity to generate antibodies to
pGlu-Abeta3–42, pre-clinical studies were carried out. Vaccinating mice
and non-human primates demonstrated that optimized ACI-24 was well-tolerated and
induced an antibody response against Abeta1–42 as expected, as well as
high titres of IgG reactive with pyroGlu-Abeta. Epitope mapping of the
polyclonal response confirmed these findings revealing broad coverage of
epitopes particularly for Abeta peptides mimicking where cleavage occurs to form
pGlu-Abeta3–42. These data are in striking contrast to results obtained
with other clinically tested Abeta targeting vaccines which generated restricted
and limited antibody diversity. Taken together, our findings demonstrate that
optimized ACI-24 vaccination represents a breakthrough to provide a safe immune
response with a broader Abeta sequence recognition compared to previously tested
vaccines, creating binders to pathogenic forms of Abeta important in
pathogenesis including pGlu-Abeta3–42.
Collapse
Affiliation(s)
| | | | | | | | | | | | - N. Piot
- AC Immune SA, Lausanne, Switzerland
| | - M. Ayer
- AC Immune SA, Lausanne, Switzerland
| | | | | | | | | | | | | | | | - S. Rivot
- AC Immune SA, Lausanne, Switzerland
| | | | | | - J. Streffer
- AC Immune SA, Lausanne, Switzerland
- Biomedical Sciences, University of
Antwerp, Antwerp, Belgium
| | | | - M. H. Kosco-Vilbois
- AC Immune SA, Lausanne, Switzerland
- Correspondence to: M. Kosco-Vilbois AC Immune, AC Immune
SA EPFL Innovation Park, Building B CH-1015 Lausanne, Switzerland E-mail:
| |
Collapse
|
19
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
20
|
Abstract
Tau immunotherapies have advanced from proof-of-concept studies to over a dozen clinical trials for Alzheimer's disease (AD) and other tauopathies. Mechanistic studies in animal and culture models have provided valuable insight into how these therapies may work but multiple pathways are likely involved. Different groups have emphasized the importance of intracellular vs extracellular antibody-mediated clearance of the tau protein and there is no consensus on which pool of tau should ideally be targeted. Likewise, various normal and disease-selective epitopes are being targeted, and the antibody isotypes either favor phagocytosis of the tau-antibody complex or are neutral in that aspect. Most of the clinical trials are in early stages, thus their efficacy is not yet known, but all have been without any major adverse effects and some have reported target engagement. A few have been discontinued. One in phase I, presumably because of a poor pharmacokinetic profile, and three in phase II for a lack of efficacy although this trial stage is not well powered for efficacy measures. In these phase II studies, trials with two antibodies in patients with progressive supranuclear palsy or other primary tauopathies were halted but are continuing in patients with AD, and one antibody trial was stopped in early-stage AD but is continuing in moderate AD. These three antibodies have been reported to only work extracellularly and tau is not increased in the cerebrospinal fluid of primary tauopathies, which may explain the failures of two of them. In the discontinued AD trial, there are some concerns about how much of extracellular tau contains the N-terminal epitope that is being targeted. In addition, extracellular tau is only a small part of total tau, compared to intracellular tau. Targeting only the former may not be sufficient for functional benefits. Given these outcomes, decision makers within the pharmaceutical companies who green light these trials should attempt to target tau not only extracellularly but also intracellularly to increase their chances of success. Hopefully, some of the ongoing trials will provide some functional benefits to the large number of patients with tauopathies.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, Science Building, 11th floor, 435 East 30th Street, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, Science Building, 11th floor, 435 East 30th Street, New York, NY, 10016, USA.
- Department of Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Sayas CL, Ávila J. GSK-3 and Tau: A Key Duet in Alzheimer's Disease. Cells 2021; 10:721. [PMID: 33804962 PMCID: PMC8063930 DOI: 10.3390/cells10040721] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed serine/threonine kinase with a plethora of substrates. As a modulator of several cellular processes, GSK-3 has a central position in cell metabolism and signaling, with important roles both in physiological and pathological conditions. GSK-3 has been associated with a number of human disorders, such as neurodegenerative diseases including Alzheimer's disease (AD). GSK-3 contributes to the hyperphosphorylation of tau protein, the main component of neurofibrillary tangles (NFTs), one of the hallmarks of AD. GSK-3 is further involved in the regulation of different neuronal processes that are dysregulated during AD pathogenesis, such as the generation of amyloid-β (Aβ) peptide or Aβ-induced cell death, axonal transport, cholinergic function, and adult neurogenesis or synaptic function. In this review, we will summarize recent data about GSK-3 involvement in these processes contributing to AD pathology, mostly focusing on the crucial interplay between GSK-3 and tau protein. We further discuss the current development of potential AD therapies targeting GSK-3 or GSK-3-phosphorylated tau.
Collapse
Affiliation(s)
- Carmen Laura Sayas
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
22
|
Reiss AB, Montufar N, DeLeon J, Pinkhasov A, Gomolin IH, Glass AD, Arain HA, Stecker MM. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist 2021; 26:52-61. [PMID: 33646990 DOI: 10.1097/nrl.0000000000000320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of slowing or halting the development of Alzheimer disease (AD) has resulted in the huge allocation of resources by academic institutions and pharmaceutical companies to the development of new treatments. The etiology of AD is elusive, but the aggregation of amyloid-β and tau peptide and oxidative processes are considered critical pathologic mechanisms. The failure of drugs with multiple mechanisms to meet efficacy outcomes has caused several companies to decide not to pursue further AD studies and has left the field essentially where it has been for the past 15 years. Efforts are underway to develop biomarkers for detection and monitoring of AD using genetic, imaging, and biochemical technology, but this is of minimal use if no intervention can be offered. REVIEW SUMMARY In this review, we consider the natural progression of AD and how it continues despite present attempts to modify the amyloid-related machinery to alter the disease trajectory. We describe the mechanisms and approaches to AD treatment targeting amyloid, including both passive and active immunotherapy as well as inhibitors of enzymes in the amyloidogenic pathway. CONCLUSION Lessons learned from clinical trials of amyloid reduction strategies may prove crucial for the leap forward toward novel therapeutic targets to treat AD.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Natalie Montufar
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Joshua DeLeon
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Aaron Pinkhasov
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Irving H Gomolin
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Amy D Glass
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Hirra A Arain
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Mark M Stecker
- Fresno Center for Medical Education and Research, Department of Medicine, University of California-San Francisco, Fresno, CA
| |
Collapse
|
23
|
Abstract
Lipidation of polypeptides with a fatty acid to form N-linked lipopeptides can be a time consuming process due to the need to mask other reactive function groups present on the side chains of amino acids. Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology enables the direct lipidation of unprotected peptides containing a free thiol group to afford S-lipidated lipopeptides. A generalized procedure for the synthesis of S-lipopeptides is described which facilities rapid preparation of tens of analogs of lipopeptides from a single thiolated polypeptide precursor.
Collapse
Affiliation(s)
- Victor Yim
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
24
|
Silva MC, Haggarty SJ. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int J Mol Sci 2020; 21:ijms21238948. [PMID: 33255694 PMCID: PMC7728099 DOI: 10.3390/ijms21238948] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.
Collapse
|
25
|
Ettcheto M, Busquets O, Espinosa-Jiménez T, Verdaguer E, Auladell C, Camins A. A Chronological Review of Potential Disease-Modifying Therapeutic Strategies for Alzheimer's Disease. Curr Pharm Des 2020; 26:1286-1299. [PMID: 32066356 DOI: 10.2174/1381612826666200211121416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/18/2019] [Indexed: 01/28/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a neurodegenerative disorder that has become a worldwide health problem. This pathology has been classically characterized for its affectation on cognitive function and the presence of depositions of extracellular amyloid β-protein (Aβ) and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein. To this day, no effective treatment has been developed. Multiple strategies have been proposed over the years with the aim of finding new therapeutic approaches, such as the sequestration of Aβ in plasma or the administration of anti-inflammatory drugs. Also, given the significant role of the insulin receptor in the brain in the proper maintenance of cognitive function, drugs focused on the amelioration of insulin resistance have been proposed as potentially useful and effective in the treatment of AD. In the present review, taking into account the molecular complexity of the disease, it has been proposed that the most appropriate therapeutic strategy is a combinatory treatment of several drugs that will regulate a wide spectrum of the described altered pathological pathways.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Sciences, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Sciences, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: Lessons learned, current status and future considerations. Neuropharmacology 2020; 175:108104. [PMID: 32360477 PMCID: PMC7492435 DOI: 10.1016/j.neuropharm.2020.108104] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
The majority of clinical trials targeting the tau protein in Alzheimer's disease and other tauopathies are tau immunotherapies. Because tau pathology correlates better with the degree of dementia than amyloid-β lesions, targeting tau is likely to be more effective in improving cognition than clearing amyloid-β in Alzheimer's disease. However, the development of tau therapies is in many ways more complex than for amyloid-β therapies as briefly outlined in this review. Most of the trials are on humanized antibodies, which may have very different properties than the original mouse antibodies. The impact of these differences are to a large extent unknown, can be difficult to decipher, and may not always be properly considered. Furthermore, the ideal antibody properties for efficacy are not well established and can depend on several factors. However, considering the varied approaches in clinical trials, there is a general optimism that at least some of these trials may provide functional benefits to patients suffering of various tauopathies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- L A Sandusky-Beltran
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Department of Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - E M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA; Department of Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
27
|
Kwon S, Iba M, Kim C, Masliah E. Immunotherapies for Aging-Related Neurodegenerative Diseases-Emerging Perspectives and New Targets. Neurotherapeutics 2020; 17:935-954. [PMID: 32347461 PMCID: PMC7222955 DOI: 10.1007/s13311-020-00853-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurological disorders such as Alzheimer's disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD), and vascular dementia (VCID) have no disease-modifying treatments to date and now constitute a dementia crisis that affects 5 million in the USA and over 50 million worldwide. The most common pathological hallmark of these age-related neurodegenerative diseases is the accumulation of specific proteins, including amyloid beta (Aβ), tau, α-synuclein (α-syn), TAR DNA-binding protein 43 (TDP43), and repeat-associated non-ATG (RAN) peptides, in the intra- and extracellular spaces of selected brain regions. Whereas it remains controversial whether these accumulations are pathogenic or merely a byproduct of disease, the majority of therapeutic research has focused on clearing protein aggregates. Immunotherapies have garnered particular attention for their ability to target specific protein strains and conformations as well as promote clearance. Immunotherapies can also be neuroprotective: by neutralizing extracellular protein aggregates, they reduce spread, synaptic damage, and neuroinflammation. This review will briefly examine the current state of research in immunotherapies against the 3 most commonly targeted proteins for age-related neurodegenerative disease: Aβ, tau, and α-syn. The discussion will then turn to combinatorial strategies that enhance the effects of immunotherapy against aggregating protein, followed by new potential targets of immunotherapy such as aging-related processes.
Collapse
Affiliation(s)
- Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Neuroscience, National Institute on Aging/National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Abstract
Vaccines have had a profound impact on the management and prevention of infectious disease. In addition, the development of vaccines against chronic diseases has attracted considerable interest as an approach to prevent, rather than treat, conditions such as cancer, Alzheimer's disease, and others. Subunit vaccines consist of nongenetic components of the infectious agent or disease-related epitope. In this Review, we discuss peptide-based vaccines and their potential in three therapeutic areas: infectious disease, Alzheimer's disease, and cancer. We discuss factors that contribute to vaccine efficacy and how these parameters may potentially be modulated by design. We examine both clinically tested vaccines as well as nascent approaches and explore current challenges and potential remedies. While peptide vaccines hold substantial promise in the prevention of human disease, many obstacles remain that have hampered their clinical use; thus, continued research efforts to address these challenges are warranted.
Collapse
Affiliation(s)
- Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
29
|
Sanderson JM. Far from Inert: Membrane Lipids Possess Intrinsic Reactivity That Has Consequences for Cell Biology. Bioessays 2020; 42:e1900147. [PMID: 31995246 DOI: 10.1002/bies.201900147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Indexed: 12/19/2022]
Abstract
In this article, it is hypothesized that a fundamental chemical reactivity exists between some non-lipid constituents of cellular membranes and ester-based lipids, the significance of which is not generally recognized. Many peptides and smaller organic molecules have now been shown to undergo lipidation reactions in model membranes in circumstances where direct reaction with the lipid is the only viable route for acyl transfer. Crucially, drugs like propranolol are lipidated in vivo with product profiles that are comparable to those produced in vitro. Some compounds have also been found to promote lipid hydrolysis. Drugs with high lytic activity in vivo tend to have higher toxicity in vitro. Deacylases and lipases are proposed as key enzymes that protect cells against the effects of intrinsic lipidation. The toxic effects of intrinsic lipidation are hypothesized to include a route by which nucleation can occur during the formation of amyloid fibrils.
Collapse
|
30
|
Hermant YO, Cameron AJ, Harris PWR, Brimble MA. Synthesis of Antimicrobial Lipopeptides Using the "CLipPA" Thiol-Ene Reaction. Methods Mol Biol 2020; 2103:263-274. [PMID: 31879932 DOI: 10.1007/978-1-0716-0227-0_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology provides a facile method for the lipidation of unprotected peptides containing a free thiol group by using a "click" radical-initiated thiol-ene reaction to effect addition to a vinyl ester. The methodology is highly versatile, leading to high conversion rates while maintaining excellent chemoselectivity and tolerance for a large variety of peptide substrates and functional groups. Herein we describe the simple general procedure for the synthesis of a focused library of bioactive S-lipidated antimicrobial peptides via late-stage derivatization using solution-phase CLipPA lipidation.
Collapse
Affiliation(s)
- Yann O Hermant
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
31
|
Ghosh S, Durgvanshi S, Agarwal S, Raghunath M, Sinha JK. Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:883-903. [PMID: 32348223 PMCID: PMC7569315 DOI: 10.2174/1570159x18666200429011823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3-9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed. Further, the use of anti-inflammatory drugs, nutraceuticals, and dietary interventions has also been explained in the management of AD. It further describes different pharmacological and dietary interventions being used in treating and/or managing AD. Additionally, this article provides a thorough review of the literature for improving the therapeutic paradigm of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jitendra Kumar Sinha
- Address correspondence to this author at the Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Sector-125, Noida 201303, India; Tel: +91-120-4392971, +91-8919679822; Emails: ,
| |
Collapse
|
32
|
Anfray C, Mainini F, Andón FT. Nanoparticles for immunotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-08-102828-5.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
33
|
Overk C, Masliah E. Dale Schenk One Year Anniversary: Fighting to Preserve the Memories. J Alzheimers Dis 2019; 62:1-13. [PMID: 29439357 DOI: 10.3233/jad-171071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been a year since we lost Dale Schenk on September 30, 2016. Dale's visionary work resulted in the remarkable discovery in 1999 that an experimental amyloid-β (Aβ) vaccine reduced the neurodegeneration in a transgenic model of Alzheimer's disease (AD). Following Dale's seminal work, several active and passive immunotherapies have since been developed and tested in the clinic for AD, Parkinson's disease (PD), and other neurodegenerative disorders. Here we provide a brief overview of the current state of development of immunotherapy for AD, PD, and other neurodegenerative disorders in the context of this anniversary. The next steps in the development of immunotherapies will require combinatorial approaches mixing antibodies against various targets (e.g., Aβ, α-syn, Tau, and TDP43) with small molecules that block toxicity, aggregation, inflammation, and promote cell survival.
Collapse
Affiliation(s)
- Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,Division of Neurosciences and Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Abstract
The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, frontotemporal lobar degeneration, and the motor neuron diseases, with AD affecting approximately 6% of people aged 65 years and older, and PD affecting approximately 1% of people aged over 60 years. Specific proteins are associated with these neurodegenerative diseases, as determined by both immunohistochemical studies on post-mortem tissue and genetic screening, where protein misfolding and aggregation are key hallmarks. Many of these proteins are shown to misfold and aggregate into soluble non-native oligomers and large insoluble protein deposits (fibrils and plaques), both of which may exert a toxic gain of function. Proteotoxicity has been examined intensively in cell culture and in in vivo models, and clinical trials of methods to attenuate proteotoxicity are relatively new. Therapies to enhance cellular protein quality control mechanisms such as upregulation of chaperones and clearance/degradation pathways, as well as immunotherapies against toxic protein conformations, are being actively pursued. In this article, we summarize the common pathophysiology of neurodegenerative disease, and review therapies in early-phase clinical trials that target the proteotoxic component of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke McAlary
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
35
|
Herline K, Drummond E, Wisniewski T. Recent advancements toward therapeutic vaccines against Alzheimer's disease. Expert Rev Vaccines 2018; 17:707-721. [PMID: 30005578 DOI: 10.1080/14760584.2018.1500905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by protein aggregates of amyloid β (Aβ) and tau. These proteins have normal physiological functions, but in AD, they undergo a conformational change and aggregate as toxic oligomeric and fibrillar species with a high β-sheet content. AREAS COVERED Active and passive immunotherapeutic approaches are among the most attractive methods for targeting misfolded Aβ and tau. Promising preclinical testing of various immunotherapeutic approaches has yet to translate to cognitive benefits in human clinical trials. Knowledge gained from these past failures has led to the development of second-generation Aβ-active immunotherapies, anti-Aβ monoclonal antibodies targeting a wide array of Aβ conformations, and to a number of immunotherapies targeting pathological tau. This review covers the more recent advances in vaccine development for AD from 2016 to present. EXPERT COMMENTARY Due to the complex pathophysiology of AD, greatest clinical efficacy will most likely be achieved by concurrently targeting the most toxic forms of both Aβ and tau.
Collapse
Affiliation(s)
- Krystal Herline
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA
| | - Eleanor Drummond
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA
| | - Thomas Wisniewski
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA.,c Pathology , New York University School of Medicine , New York , NY , USA.,d Psychiatry , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
36
|
Theunis C, Adolfsson O, Crespo-Biel N, Piorkowska K, Pihlgren M, Hickman DT, Gafner V, Borghgraef P, Devijver H, Pfeifer A, Van Leuven F, Muhs A. Novel Phospho-Tau Monoclonal Antibody Generated Using a Liposomal Vaccine, with Enhanced Recognition of a Conformational Tauopathy Epitope. J Alzheimers Dis 2018; 56:585-599. [PMID: 28035925 PMCID: PMC5271481 DOI: 10.3233/jad-160695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The microtubule-associated protein Tau is an intrinsically unfolded, very soluble neuronal protein. Under still unknown circumstances, Tau protein forms soluble oligomers and insoluble aggregates that are closely linked to the cause and progression of various brain pathologies, including Alzheimer's disease. Previously we reported the development of liposome-based vaccines and their efficacy and safety in preclinical mouse models for tauopathy. Here we report the use of a liposomal vaccine for the generation of a monoclonal antibody with particular characteristics that makes it a valuable tool for fundamental studies as well as a candidate antibody for diagnostic and therapeutic applications. The specificity and affinity of antibody ACI-5400 were characterized by a panel of methods: (i) measuring the selectivity for a specific phospho-Tau epitope known to be associated with tauopathy, (ii) performing a combination of peptide and protein binding assays, (iii) staining of brain sections from mouse preclinical tauopathy models and from human subjects representing six different tauopathies, and (iv) evaluating the selective binding to pathological epitopes on extracts from tauopathy brains in non-denaturing sandwich assays. We conclude that the ACI-5400 antibody binds to protein Tau phosphorylated at S396 and favors a conformation that is typically present in the brain of tauopathy patients, including Alzheimer's disease.
Collapse
Affiliation(s)
- Clara Theunis
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Oskar Adolfsson
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Natalia Crespo-Biel
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Kasia Piorkowska
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Maria Pihlgren
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - David T Hickman
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Valérie Gafner
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Andreas Muhs
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| |
Collapse
|
37
|
Beck Z, Torres OB, Matyas GR, Lanar DE, Alving CR. Immune response to antigen adsorbed to aluminum hydroxide particles: Effects of co-adsorption of ALF or ALFQ adjuvant to the aluminum-antigen complex. J Control Release 2018; 275:12-19. [PMID: 29432824 DOI: 10.1016/j.jconrel.2018.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/04/2018] [Indexed: 12/12/2022]
Abstract
Aluminum salts have been used as vaccine adjuvants for >50 years, and they are currently present in at least 146 licensed vaccines worldwide. In this study we examined whether adsorption of Army Liposome Formulation (ALF) to an aluminum salt that already has an antigen adsorbed to it might result in improved immune potency of the aluminum-adsorbed antigen. ALF is composed of a family of anionic liposome-based adjuvants, in which the liposomes contain synthetic phospholipids having dimyristoyl fatty acyl groups, cholesterol and monophosphoryl lipid A (MPLA). For certain candidate vaccines, ALF has been added to aluminum hydroxide (AH) gel as a second adjuvant to form ALFA. Here we show that different methods of preparation of ALF changed the physical structures of both ALF and ALFA. Liposomes containing the saponin QS21 (ALFQ) have also been mixed with AH to form ALFQA as an effective combination. In this study, we first adsorbed one of two different antigens to AH, either tetanus toxoid conjugated to 34 copies of a hapten (MorHap), which has been used in a candidate heroin vaccine, or gp140 protein derived from the envelope protein of HIV-1. We then co-adsorbed ALF or ALFQ to the AH to form ALFA or ALFQA. In each case, the immune potency of the antigen adsorbed to AH was greatly increased by co-adsorbing either ALF or ALFQ to the AH. Based on IgG subtype and cytokine analysis by ELISPOT, ALFA induced predominately a Th2-type response and ALFQ and ALFQA each induced more balanced Th1/Th2 responses.
Collapse
Affiliation(s)
- Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Oscar B Torres
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - David E Lanar
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Carl R Alving
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
38
|
Hu Y, Kienlen-Campard P, Tang TC, Perrin F, Opsomer R, Decock M, Pan X, Octave JN, Constantinescu SN, Smith SO. β-Sheet Structure within the Extracellular Domain of C99 Regulates Amyloidogenic Processing. Sci Rep 2017; 7:17159. [PMID: 29215043 PMCID: PMC5719365 DOI: 10.1038/s41598-017-17144-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 11/15/2022] Open
Abstract
Familial mutations in C99 can increase the total level of the soluble Aβ peptides produced by proteolysis, as well as the Aβ42/Aβ40 ratio, both of which are linked to the progression of Alzheimer’s disease. We show that the extracellular sequence of C99 forms β-sheet structure upon interaction with membrane bilayers. Mutations that disrupt this structure result in a significant increase in Aβ production and, in specific cases, result in an increase in the amount of Aβ42 relative to Aβ40. Fourier transform infrared and solid-state NMR spectroscopic studies reveal a central β-hairpin within the extracellular sequence comprising Y10-E11-V12 and L17-V18-F19 connected by a loop involving H13-H14-Q15. These results suggest how familial mutations in the extracellular sequence influence C99 processing and provide a structural basis for the development of small molecule modulators that would reduce Aβ production.
Collapse
Affiliation(s)
- Yi Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Tzu-Chun Tang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Florian Perrin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, 1200, Belgium.,Ludwig Institute for Cancer Research and de Duve Institute, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Rémi Opsomer
- Institute of Neuroscience, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Marie Decock
- Institute of Neuroscience, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Xiaoshu Pan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jean-Noel Octave
- Institute of Neuroscience, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research and de Duve Institute, Université catholique de Louvain, Brussels, 1200, Belgium.
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
39
|
Shahpasand K, Sepehri Shamloo A, Nabavi SM, Ping Lu K, Zhen Zhou X. "Tau immunotherapy: Hopes and hindrances". Hum Vaccin Immunother 2017; 14:277-284. [PMID: 29049003 DOI: 10.1080/21645515.2017.1393594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder having two major pathological hallmarks: the extracellular senile plaques and intracellular neurofibrillary tangles composed of amyloid beta protein and hyperphosphorylated tau respectively. Removal of protein deposits from AD brains are the newer attempts for treating AD. The major developments in this direction have been the amyloid and tau based therapeutics. While senile plaque removal employing monoclonal antibodies (mAbs) restore brain function in mouse models of AD, tau has been recently introduced as the major neurodegenerative factor mediating neural cell death. So, several research groups have focused on tau therapy. So far, the outcome of tau immunotherapy has been promising and clearance of hyperphosphorylated tau has been shown to restore the brain function in animal models. But the point is which phosphorylated tau is the most critical form to be removed from the brain, especially because removal of physiologic tau can cause neurodegenerative consequence. Recently, we have shown that phosphorylated tau at Thr231 in the cis conformation is a very early driver of neurodegeneration and cis mAb treatment efficiently restores brain structure and function in TBI models. Because of efficient therapeutic effects in mice model of TBI and considering cis pT231-tau accumulation in AD brains, it could be a very good candidate for tau immunotherapy upon several tauopathy disorders including AD.
Collapse
Affiliation(s)
- Koorosh Shahpasand
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Alireza Sepehri Shamloo
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Seyed Massood Nabavi
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Kun Ping Lu
- b Division of Translational Therapeutics, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA.,c Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Xiao Zhen Zhou
- b Division of Translational Therapeutics, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA.,c Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
40
|
Rego Â, Viana SD, Ribeiro CAF, Rodrigues-Santos P, Pereira FC. Monophosphoryl Lipid-A: A Promising Tool for Alzheimer's Disease Toll. J Alzheimers Dis 2017; 52:1189-202. [PMID: 27079716 DOI: 10.3233/jad-151183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is a two-edged sword in Alzheimer's disease (AD). A certain degree of neuroinflammation is instrumental in the clearance of amyloid-β (Aβ) peptides by activated microglia, although a sustained neuroinflammation might accelerate Aβ deposition, thus fostering the neurodegenerative process and functional decline in AD. There is an increasing body of evidence suggesting that the innate immune system via Toll-like receptor 4 (TLR4) finely orchestrates the highly regulated inflammatory cascade that takes place in AD pathology. Herein we critically review pre-clinical (in vitro and in vivo approaches) and clinical studies showing that monophosphoryl lipid A (MPL), a partial TLR4 agonist, may have beneficial effect on AD physiopathology. The in vivo data elegantly showed that MPL enhanced Aβ plaque phagocytosis thus decreasing the number and the size of Aβ deposits and soluble Aβ in brain from APPswe/PS1 mice. Furthermore, MPL also improved their cognition. The mechanism underlying this MPL effect was proposed to be microglial activation by recruiting TLR4. Additionally, it was demonstrated that MPL increased the Aβ antibody titer and showed a safe profile in mice and primates, when used as a vaccine adjuvant. Clinical studies using MPL as an adjuvant in Aβ immunotherapy are currently ongoing. Overall, we argue that the TLR4 partial agonist MPL is a potentially safe and effective new pharmacological tool in AD.
Collapse
Affiliation(s)
- Ângela Rego
- Laboratório de Farmacologia e Terapêutica Experimental/IBILI, Faculdade de Medicina da Universidade de Coimbra, Portugal.,CNC.IBILI - Universidade de Coimbra, Coimbra, Portugal.,Centro Hospitalar do Porto, Largo Prof. Abel Salazar, Porto, Portugal
| | - Sofia D Viana
- Laboratório de Farmacologia e Terapêutica Experimental/IBILI, Faculdade de Medicina da Universidade de Coimbra, Portugal.,CNC.IBILI - Universidade de Coimbra, Coimbra, Portugal.,Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Farmácia, Portugal
| | - Carlos A Fontes Ribeiro
- Laboratório de Farmacologia e Terapêutica Experimental/IBILI, Faculdade de Medicina da Universidade de Coimbra, Portugal.,CNC.IBILI - Universidade de Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Instituto de Imunologia, Faculdade de Medicina da Universidade de Coimbra, Portugal.,Laboratório de Imunologia e Oncologia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal
| | - Frederico C Pereira
- Laboratório de Farmacologia e Terapêutica Experimental/IBILI, Faculdade de Medicina da Universidade de Coimbra, Portugal.,CNC.IBILI - Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
41
|
Khan A, Corbett A, Ballard C. Emerging amyloid and tau targeting treatments for Alzheimer’s disease. Expert Rev Neurother 2017; 17:697-711. [DOI: 10.1080/14737175.2017.1326819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ayesha Khan
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anne Corbett
- King’s College London, Wolfson Centre for Age-Related Diseases, London, UK
| | - Clive Ballard
- King’s College London, Wolfson Centre for Age-Related Diseases, London, UK
| |
Collapse
|
42
|
Charlton Hume HK, Lua LHL. Platform technologies for modern vaccine manufacturing. Vaccine 2017; 35:4480-4485. [PMID: 28347504 PMCID: PMC7115529 DOI: 10.1016/j.vaccine.2017.02.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 10/29/2022]
Abstract
Improved understanding of antigenic components and their interaction with the immune system, as supported by computational tools, permits a sophisticated approach to modern vaccine design. Vaccine platforms provide an effective tool by which strategically designed peptide and protein antigens are modularized to enhance their immunogenicity. These modular vaccine platforms can overcome issues faced by traditional vaccine manufacturing and have the potential to generate safe vaccines, rapidly and at a low cost. This review introduces two promising platforms based on virus-like particle and liposome, and discusses the methodologies and challenges.
Collapse
Affiliation(s)
- Hayley K Charlton Hume
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia.
| |
Collapse
|
43
|
Bachurin SO, Bovina EV, Ustyugov AA. Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. Med Res Rev 2017; 37:1186-1225. [PMID: 28084618 DOI: 10.1002/med.21434] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/18/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by a chronic and progressive neurodegenerative process resulting from the intracellular and extracellular accumulation of fibrillary proteins: beta-amyloid and hyperphosphorylated Tau. Overaccumulation of these aggregates leads to synaptic dysfunction and subsequent neuronal loss. The precise molecular mechanisms of AD are still not fully understood but it is clear that AD is a multifactorial disorder and that advanced age is the main risk factor. Over the last decade, more than 50 drug candidates have successfully passed phase II clinical trials, but none has passed phase III. Here, we summarize data on current "anti-Alzheimer's" agents currently in clinical trials based on findings available in the Thomson Reuters «Integrity» database, on the public website www.clinicaltrials.gov, and on database of the website Alzforum.org. As a result, it was possible to outline some major trends in AD drug discovery: (i) the development of compounds acting on the main stages of the pathogenesis of the disease (the so-called "disease-modifying agents") - these drugs could potentially slow the development of structural and functional abnormalities in the central nervous system providing sustainable improvements of cognitive functions, which persist even after drug withdrawal; (ii) focused design of multitargeted drugs acting on multiple molecular targets involved in the pathogenesis of the disease; (3) finally, the repositioning of old drugs for new (anti-Alzheimer's) application offers a very attractive approach to facilitate the completion of clinical trials.
Collapse
Affiliation(s)
- Sergey O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| | - Elena V Bovina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| |
Collapse
|
44
|
Abstract
Down syndrome (DS), often due to trisomy 21, is the most common genetic cause of intellectual disability (ID). In addition, virtually all individuals with DS develop the neuropathology of Alzheimer's disease (AD) by the age of 40 years and almost 60 % will manifest symptoms of AD dementia by the age of 65 years. Currently, there are no pharmacological treatments available for ID in individuals with DS and only limited symptomatic treatments for AD dementia. Advances in our understanding in both the molecular basis of ID and the pathogenesis of AD have created opportunities to study potential therapeutic targets. Recent studies in animal models of DS continue to provide a rational basis for translating specific compounds into human clinical trials. However, target and compound selection are only initial steps in the drug development pathway. Other necessary considerations include appropriate study designs to assess efficacy in the DS population, as well as operational aspects specifically tailored to assess cognition in this population. We discuss recent progress in the development of compounds for both ID and AD in individuals with DS, as well as concepts for the design and conduct of clinical trials with such compounds.
Collapse
Affiliation(s)
- Michael S Rafii
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive #0949, La Jolla, CA, 92093-0949, USA. .,Department of Neurology, Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA.
| |
Collapse
|
45
|
Bachurin SO. A review of drugs for treatment of Alzheimer’s disease in clinical trials: main trends. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [DOI: 10.17116/jnevro20161168177-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Valera E, Spencer B, Masliah E. Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics 2016; 13:179-89. [PMID: 26494242 PMCID: PMC4720672 DOI: 10.1007/s13311-015-0397-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-modifying alternatives are sorely needed for the treatment of neurodegenerative disorders, a group of diseases that afflict approximately 50 million Americans annually. Immunotherapy is one of the most developed approaches in this direction. Vaccination against amyloid-β, α-synuclein, or tau has been extensively explored, specially as the discovery that these proteins may propagate cell-to-cell and be accessible to antibodies when embedded into the plasma membrane or in the extracellular space. Likewise, the use of passive immunization approaches with specific antibodies against abnormal conformations of these proteins has also yielded promising results. The clinical development of immunotherapies for Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, dementia with Lewy bodies, and other neurodegenerative disorders is a field in constant evolution. Results to date suggest that immunotherapy is a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and prion-like propagation of toxic protein aggregates. Here we provide an overview of the most novel and relevant immunotherapeutic advances targeting amyloid-β in Alzheimer’s disease, α-synuclein in Alzheimer’s disease and Parkinson’s disease, and tau in Alzheimer’s disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Elvira Valera
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Brian Spencer
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Eliezer Masliah
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
- grid.266100.30000000121074242Department of Pathology, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
47
|
Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer's disease. Expert Rev Vaccines 2015; 15:401-15. [PMID: 26577574 PMCID: PMC4940858 DOI: 10.1586/14760584.2016.1121815] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. It is characterized by an imbalance between the production and clearance of amyloid β (Aβ) and tau proteins. In AD these normal proteins accumulate, leading to aggregation and a conformational change forming oligomeric and fibrillary species with a high β-sheet content. Active and passive immunotherapeutic approaches result in dramatic reduction of Aβ pathology in AD animal models. However, there is much more limited evidence in human studies of significant clinical benefits from these strategies and it is becoming apparent that they may only be effective very early in AD. Vaccination targeting only tau pathology has shown benefits in some mouse studies but human studies are limited. Greater therapeutic efficacy for the next generation of vaccine approaches will likely benefit from specifically targeting the most toxic species of Aβ and tau, ideally simultaneously.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| | - Eleanor Drummond
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| |
Collapse
|
48
|
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is an emerging global epidemic. It is characterized by an imbalance between production and clearance of amyloid β (Aβ) and tau proteins. Oligomeric forms of Aβ and tau are believed to be the most toxic. Dramatic results from AD animal models showed great promise for active and passive immune therapies targeting Aβ. However, there is very limited evidence in human studies of the clinical benefits from these approaches. Immunotherapies targeting only tau pathology have had some success but are limited so far to mouse models. The majority of current methods is based on immunological targeting of a self-protein; hence, benefits need to be balanced against risks of stimulating excessive autoimmune toxic inflammation. For greater efficacy the next generation of vaccines needs to focus more on concurrently targeting all the intermediate toxic conformers of oligomeric Aβ and tau species.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA.
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA
| |
Collapse
|
49
|
Smith JA, Leonardi T, Huang B, Iraci N, Vega B, Pluchino S. Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology 2015; 16:147-85. [PMID: 24973266 PMCID: PMC4578234 DOI: 10.1007/s10522-014-9510-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023]
Abstract
Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs-or specific EV cargoes-are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases.
Collapse
Affiliation(s)
- J A Smith
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | | | | | | | | | | |
Collapse
|
50
|
Barbosa T, Barral-Netto M. Challenges in the research and development of new human vaccines. Braz J Med Biol Res 2015; 46:103-8. [PMID: 23558931 PMCID: PMC3854358 DOI: 10.1590/1414-431x20131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, "isolate, inactivate, and inject" the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.
Collapse
Affiliation(s)
- T Barbosa
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Salvador, BA, Brasil.
| | | |
Collapse
|