1
|
Xia S, Li J, Yuan H, Yan W. PIN1‑silencing mitigates keratinocyte proliferation and the inflammatory response in psoriasis by activating mitochondrial autophagy. Exp Ther Med 2024; 28:402. [PMID: 39234585 PMCID: PMC11372252 DOI: 10.3892/etm.2024.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 09/06/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (PIN1) has been suggested to be a critical regulator in skin-related diseases. However, the role and molecular mechanism of PIN1 in psoriasis remain unclear. HaCaT cells were stimulated with five cytokines (M5) to induce psoriatic inflammation-like conditions. Reverse transcription-quantitative PCR and western blotting were performed to examine PIN1 expression in M5-induced HaCaT cells. A Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine staining were employed to examine cell proliferation. Inflammatory factors were evaluated using ELISA kits and western blot analysis. Mitochondrial autophagy was examined by immunofluorescence staining, western blotting and a JC-1 assay. Western blot analysis was adopted to assess the levels of psoriasis marker proteins. PIN1 expression was markedly elevated in M5-induced HaCaT cells. Silencing of PIN1 inhibited M5-induced hyperproliferation and the inflammatory response, while it promoted mitochondrial autophagy in HaCaT cells. The addition of the mitochondrial autophagy inhibitor mitochondrial division inhibitor-1 reversed the effects of PIN1 interference on proliferation, the inflammatory response and mitochondrial autophagy in M5-induced HaCaT cells. The present study revealed that PIN1 inhibition protected HaCaT cells against M5-induced hyperproliferation and inflammatory injury through the activation of mitochondrial autophagy.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Jin Li
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Hongshan Yuan
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Wenliang Yan
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
2
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
3
|
Ferreon JC, Ta HM, Yun H, Choi KJ, Quan MD, Tsoi PS, Kim C, Lee CW, Ferreon ACM. Stereospecific NANOG PEST Stabilization by Pin1. Biochemistry 2024; 63:1067-1074. [PMID: 38619104 DOI: 10.1021/acs.biochem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.
Collapse
Affiliation(s)
- Josephine C Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hai Minh Ta
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoung-Jae Choi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - My Diem Quan
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Phoebe S Tsoi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Allan Chris M Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
4
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G, Zhou XZ, Shilton B, Lu KP. The role of the master cancer regulator Pin1 in the development and treatment of cancer. Front Cell Dev Biol 2024; 12:1343938. [PMID: 38745861 PMCID: PMC11091292 DOI: 10.3389/fcell.2024.1343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.
Collapse
Affiliation(s)
- Robert Stewart
- Department of Biochemistry, Western University, London, ON, Canada
| | - Shaunik Sharma
- Department of Biochemistry, Western University, London, ON, Canada
| | - Timothy Wu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Sho Okuda
- Department of Biochemistry, Western University, London, ON, Canada
| | - George Xie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brian Shilton
- Department of Biochemistry, Western University, London, ON, Canada
| | - Kun Ping Lu
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
5
|
Jeong J, Usman M, Li Y, Zhou XZ, Lu KP. Pin1-Catalyzed Conformation Changes Regulate Protein Ubiquitination and Degradation. Cells 2024; 13:731. [PMID: 38727267 PMCID: PMC11083468 DOI: 10.3390/cells13090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.
Collapse
Affiliation(s)
- Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Muhammad Usman
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Department of Pathology and Laboratory Medicine, and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
6
|
Guillen-Quispe YN, Kim SJ, Saeidi S, Zhou T, Zheng J, Kim SH, Fang X, Chelakkot C, Rios-Castillo ME, Shin YK, Surh YJ. Oxygen-independent stabilization of HIF-2α in breast cancer through direct interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1. Free Radic Biol Med 2023; 207:296-307. [PMID: 37473874 DOI: 10.1016/j.freeradbiomed.2023.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.
Collapse
Affiliation(s)
- Yanymee N Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Tianchi Zhou
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jie Zheng
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Chaithanya Chelakkot
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Milton E Rios-Castillo
- School of Electronic Engineering, Faculty of Electronic and Electrical Engineering, National University of San Marcos, Lima, Peru
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 41566, South Korea.
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
8
|
Appel LM, Benedum J, Engl M, Platzer S, Schleiffer A, Strobl X, Slade D. SPOC domain proteins in health and disease. Genes Dev 2023; 37:140-170. [PMID: 36927757 PMCID: PMC10111866 DOI: 10.1101/gad.350314.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Since it was first described >20 yr ago, the SPOC domain (Spen paralog and ortholog C-terminal domain) has been identified in many proteins all across eukaryotic species. SPOC-containing proteins regulate gene expression on various levels ranging from transcription to RNA processing, modification, export, and stability, as well as X-chromosome inactivation. Their manifold roles in controlling transcriptional output implicate them in a plethora of developmental processes, and their misregulation is often associated with cancer. Here, we provide an overview of the biophysical properties of the SPOC domain and its interaction with phosphorylated binding partners, the phylogenetic origin of SPOC domain proteins, the diverse functions of mammalian SPOC proteins and their homologs, the mechanisms by which they regulate differentiation and development, and their roles in cancer.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Sebastian Platzer
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Xué Strobl
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
9
|
The Exciting Realities and Possibilities of iPS-Derived Cardiomyocytes. Bioengineering (Basel) 2023; 10:bioengineering10020237. [PMID: 36829731 PMCID: PMC9952364 DOI: 10.3390/bioengineering10020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become a prevalent topic after their discovery, advertised as an ethical alternative to embryonic stem cells (ESCs). Due to their ability to differentiate into several kinds of cells, including cardiomyocytes, researchers quickly realized the potential for differentiated cardiomyocytes to be used in the treatment of heart failure, a research area with few alternatives. This paper discusses the differentiation process for human iPSC-derived cardiomyocytes and the possible applications of said cells while answering some questions regarding ethical issues.
Collapse
|
10
|
Tsao AN, Chuang YS, Lin YC, Su Y, Chao TC. Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway. Oncol Rep 2022; 47:105. [PMID: 35417031 DOI: 10.3892/or.2022.8316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/01/2022] [Indexed: 11/06/2022] Open
Abstract
Cyclin‑dependent kinase (CDK)4/6 inhibitors in combination with endocrine therapy are the current standard of care used in the first‑line treatment of hormone receptor‑positive/HER2‑negative metastatic breast cancer (BC). Although CDK4/6 inhibitors mainly target the cell cycle, emerging evidence has indicated further potential roles of CDKs other than regulating cell cycle progression. The G1 and G2/M transition regulators, including cyclins D and E, as well as their catalytic partners, CDK2, CDK4 and CDK6, have been reported to play crucial roles in pluripotency maintenance and cell fate decisions of human pluripotent stem cells by controlling transcription factors, signaling pathways and epigenetic regulators. Dinaciclib, a CDK1/2/5/9 inhibitor, is currently being evaluated in clinical trials against various cancer types, including BC. However, the underlying molecular mechanisms of CDK1/2/5/9 inhibitors in regulating BC stemness remain poorly understood. The present study aimed to examine the stemness‑inhibitory effects of dinaciclib in MCF‑7 (luminal) and HCC‑1806 (triple‑negative) BC cells. We found that this drug not only effectively reduced the self‑renewal abilities and other malignant properties, but also dose‑dependently decreased the protein expression levels of three BC stem cell markers, CD44, aldehyde dehydrogenase 1 family member A1 (ALDH1A1) and BMI1 proto‑oncogene, polycomb ring finger (Bmi1), as well as three embryonic stem cell markers, Oct4, Nanog and Sox2. Moreover, the dinaciclib‑induced decrease of Oct4 and Nanog protein expression was able to be restored by co‑treatment with MG‑132, a proteasome inhibitor. Forkhead box M1 (FoxM1), both a stemness‑stimulating transcription factor and a cell cycle regulator, along with the Hedgehog signaling pathway, were identified as the therapeutic targets of dinaciclib. Collectively, the present results demonstrated a novel role of dinaciclib in suppressing BC stemness and indicated its potential use for future cancer treatments.
Collapse
Affiliation(s)
- Ai-Ni Tsao
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11200, Taiwan, R.O.C
| | - Yu-Syuan Chuang
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11200, Taiwan, R.O.C
| | - Yen-Chun Lin
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11200, Taiwan, R.O.C
| | - Yeu Su
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11200, Taiwan, R.O.C
| | - Ta-Chung Chao
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11200, Taiwan, R.O.C
| |
Collapse
|
11
|
Ino Y, Nishi M, Yamaoka Y, Miyakawa K, Jeremiah SS, Osada M, Kimura Y, Ryo A. Phosphopeptide enrichment using Phos-tag technology reveals functional phosphorylation of the nucleocapsid protein of SARS-CoV-2. J Proteomics 2022; 255:104501. [PMID: 35093569 PMCID: PMC8800104 DOI: 10.1016/j.jprot.2022.104501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/28/2022]
Abstract
Phosphorylation of viral proteins serves as a regulatory mechanism during the intracellular life cycle of infected viruses. There is therefore a pressing need to develop a method to efficiently purify and enrich phosphopeptides derived from viral particles in biological samples. In this study, we utilized Phos-tag technology to analyze the functional phosphorylation of the nucleocapsid protein (N protein; NP) of severe respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral particles were collected from culture supernatants of SARS-CoV-2-infected VeroE6/TMPRSS2 cells by ultracentrifugation, and phosphopeptides were purified by Phos-tag magnetic beads for LC-MS/MS analysis. Analysis revealed that NP was reproducibly phosphorylated at serine 79 (Ser79). Multiple sequence alignment and phylogenetic analysis showed that the Ser79 was a distinct phospho-acceptor site in SARS-CoV-2 but not in other beta-coronaviruses. We also found that the prolyl-isomerase Pin1 bound to the phosphorylated Ser79 in NP and positively regulated the production of viral particles. These results suggest that SARS-CoV-2 may have acquired the potent virus-host interaction during its evolution mediated by viral protein phosphorylation. Moreover, Phos-tag technology can provide a useful means for analyzing the functional phosphorylation of viral proteins. Significance In this study, we aimed to investigate the functional phosphorylation of SARS-CoV-2 NP. For this purpose, we used Phos-tag technology to purify and enrich virus-derived phosphopeptides with high selectivity and reproducibility. This method can be particularly useful in analyzing viral phosphopeptides from cell culture supernatants that often contain high concentrations of fetal bovine serum and supplements. We newly identified an NP phosphorylation site at Ser79, which is important for Pin1 binding. Furthermore, we showed that the interaction between Pin1 and phosphorylated NP could enhance viral replication in a cell culture model.
Collapse
Affiliation(s)
- Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Graduate School of Health Sciences, Gunma Paz University, Tonyamachi 1-7-1, Takasaki-shi, Gunma 370-0006, Japan
| | - Mayuko Nishi
- Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Suzukawa 21, Isehara-shi, Kanagawa 259-1146, Japan
| | - Kei Miyakawa
- Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Sundararaj Stanleyraj Jeremiah
- Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Makoto Osada
- Graduate School of Health Sciences, Gunma Paz University, Tonyamachi 1-7-1, Takasaki-shi, Gunma 370-0006, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Akihide Ryo
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
12
|
Jiang X, He Y, Shen Q, Duan L, Yuan Y, Tang L, Shi Y, Liu B, Zhai H, Shi P, Yang C, Chen Y. RETSAT Mutation Selected for Hypoxia Adaptation Inhibits Tumor Growth. Front Cell Dev Biol 2021; 9:744992. [PMID: 34805153 PMCID: PMC8601408 DOI: 10.3389/fcell.2021.744992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia occurs not only in natural environments including high altitude, underground burrows and deep sea, but also in human pathological conditions, such as hypoxic solid tumors. It has been well documented that hypoxia related signaling pathway is associated with a poor clinical outcome. Our group has recently identified multiple novel genes critical for solid tumor growth comparing the genome-wide convergent/parallel sequence evolution of highland mammals. Among them, a single mutation on the retinol saturase gene (RETSAT) containing amino acid switch from glutamine (Q) to arginine (R) at the position 247 was identified. Here, we demonstrate that RETSAT is mostly downregulated in multiple types of human cancers, whose lower expression correlates with worse clinical outcome. We show that higher expression of RETSAT is positively associated with immune infiltration in different human cancers. Furthermore, we identify that the promoter region of RETSAT is highly methylated, which leads to its decreased expressions in tumor tissues comparing to normal tissues. Furthermore, we show that RETSAT knockdown promotes, while its overexpression inhibits, the cell proliferation ability of mouse embryonic fibroblasts (MEFs) and B16 in vitro. In addition, the mice carrying homozygous Q247R mutation (RETSATR/R) is more resistant to xenograft tumor formation, as well as DMBA/TPA induced cutaneous keratinocyte carcinoma formation, compared to littermate wild-type (RETSATQ/Q) mice. Mechanistic study uncovers that the oncogenic factor, the prolyl isomerase (PPIase) Pin1 and its related downstream signaling pathway, were both markedly repressed in the mutant mice compared to the wild-type mice. In summary, these results suggest that interdisciplinary study between evolution and tumor biology can facilitate identification of novel molecular events essential for hypoxic solid tumor growth in the future.
Collapse
Affiliation(s)
- Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yaomei He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiushuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Lincan Duan
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yulin Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Baiyang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haoqing Zhai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
13
|
Li J, Mo C, Guo Y, Zhang B, Feng X, Si Q, Wu X, Zhao Z, Gong L, He D, Shao J. Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics 2021; 11:3348-3358. [PMID: 33537091 PMCID: PMC7847688 DOI: 10.7150/thno.45889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans conversion of proline in target substrates to modulate diverse cellular functions including cell cycle progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of cells; therefore, it is closely related to the occurrence and development of various diseases. This review summarizes the current knowledge of Pin1 in disease pathogenesis.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yifan Guo
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Bowen Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Xiao Feng
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Qiuyue Si
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Zhe Zhao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Kim DK, Song B, Han S, Jang H, Bae SH, Kim HY, Lee SH, Lee S, Kim JK, Kim HS, Hong KM, Lee BI, Youn HD, Kim SY, Kang SW, Jang H. Phosphorylation of OCT4 Serine 236 Inhibits Germ Cell Tumor Growth by Inducing Differentiation. Cancers (Basel) 2020; 12:cancers12092601. [PMID: 32932964 PMCID: PMC7565739 DOI: 10.3390/cancers12092601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Octamer-binding transcription factor 4 (OCT4) plays an important role in early embryonic development, but is rarely expressed in adults. However, in many cancer cells, this gene is re-expressed, making the cancer malignant. This present study revealed that inhibiting OCT4 transcriptional activity induces cancer cell differentiation and growth retardation. Specifically, when the phosphorylation of OCT4 serine 236 increases by interfering with the binding of protein phosphatase 1 (PP1) to OCT4, OCT4 loses its transcriptional activity and cancer cells differentiate. Therefore, this study presents the basis for the development of protein-protein interaction inhibitors that inhibit the binding of OCT4 and PP1 for cancer treatment. Abstract Octamer-binding transcription factor 4 (Oct4) plays an important role in maintaining pluripotency in embryonic stem cells and is closely related to the malignancies of various cancers. Although posttranslational modifications of Oct4 have been widely studied, most of these have not yet been fully characterized, especially in cancer. In this study, we investigated the role of phosphorylation of serine 236 of OCT4 [OCT4 (S236)] in human germ cell tumors (GCTs). OCT4 was phosphorylated at S236 in a cell cycle-dependent manner in a patient sample and GCT cell lines. The substitution of endogenous OCT4 by a mimic of phosphorylated OCT4 with a serine-to-aspartate mutation at S236 (S236D) resulted in tumor cell differentiation, growth retardation, and inhibition of tumor sphere formation. GCT cells expressing OCT4 S236D instead of endogenous OCT4 were similar to cells with OCT4 depletion at the mRNA transcript level as well as in the phenotype. OCT4 S236D also induced tumor cell differentiation and growth retardation in mouse xenograft experiments. Inhibition of protein phosphatase 1 by chemicals or short hairpin RNAs increased phosphorylation at OCT4 (S236) and resulted in the differentiation of GCTs. These results reveal the role of OCT4 (S236) phosphorylation in GCTs and suggest a new strategy for suppressing OCT4 in cancer.
Collapse
Affiliation(s)
- Dong Keon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Suji Han
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Hansol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Hee Yeon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Seon-Hyeong Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Seungjin Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Han-Seong Kim
- Department of Pathology, Inje University Ilsan Paik Hospital, Goyang 10308, Korea;
| | - Kyeong-Man Hong
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080; Korea;
| | - Soo-Youl Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2239
| |
Collapse
|
15
|
Cheng MB, Wang X, Huang Y, Zhang Y. Hyperthermia depletes Oct4 in mouse blastocysts and stem cells. Stem Cell Res Ther 2020; 11:195. [PMID: 32448390 PMCID: PMC7245852 DOI: 10.1186/s13287-020-01715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Temperature is an important microenvironmental factor that functions epigenetically in normal embryonic development. However, the effect of hyperthermia in the stem cells is not fully understood. Oct4 is a tightly regulated master regulator of pluripotency maintenance in stem cells and during early embryonic development. We report here that Oct4 protein level was significantly reduced under hyperthermia in mouse blastocysts and embryonic stem cells. The reduction in Oct4 in the mouse embryonic stem cells under hyperthermia was mediated by a ubiquitin-proteasome pathway that was dependent on the activity of death-associated protein kinase 1 (Dapk1) to phosphorylate its substrate, Pin1. Our results imply that the depletion of Oct4 via brief hyperthermia, such as a high fever, during early pregnancy might severely impair the growth of the mammalian embryo or even cause its death.
Collapse
Affiliation(s)
- Mo-Bin Cheng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China
| | - Xue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China.
| |
Collapse
|
16
|
Hu X, Chen LF. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Front Cell Dev Biol 2020; 8:179. [PMID: 32266261 PMCID: PMC7100383 DOI: 10.3389/fcell.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase that specifically binds to a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif and catalyzes the cis-trans isomerization of proline imidic peptide bond, resulting in conformational change of its substrates. Pin1 regulates many biological processes and is also involved in the development of human diseases, like cancer and neurological diseases. Many Pin1 substrates are transcription factors and transcription regulators, including RNA polymerase II (RNAPII) and factors associated with transcription initiation, elongation, termination and post-transcription mRNA decay. By changing the stability, subcellular localization, protein-protein or protein-DNA/RNA interactions of these transcription related proteins, Pin1 modulates the transcription of many genes related to cell proliferation, differentiation, apoptosis and immune response. Here, we will discuss how Pin regulates the properties of these transcription relevant factors for effective gene expression and how Pin1-mediated transcription contributes to the diverse pathophysiological functions of Pin1.
Collapse
Affiliation(s)
- Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
17
|
Yu JH, Im CY, Min SH. Function of PIN1 in Cancer Development and Its Inhibitors as Cancer Therapeutics. Front Cell Dev Biol 2020; 8:120. [PMID: 32258027 PMCID: PMC7089927 DOI: 10.3389/fcell.2020.00120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Peptidyl-prolyl isomerase (PIN1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which results in the alteration of protein structure, function, and stability. The altered structure and function of these phosphorylated proteins regulated by PIN1 are closely related to cancer development. PIN1 is highly expressed in human cancers and promotes cancer as well as cancer stem cells by breaking the balance of oncogenes and tumor suppressors. In this review, we discuss the roles of PIN1 in cancer and PIN1-targeted small-molecule compounds.
Collapse
Affiliation(s)
- Ji Hoon Yu
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Chun Young Im
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| |
Collapse
|
18
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
19
|
Nishi M, Miyakawa K, Matsunaga S, Khatun H, Yamaoka Y, Watashi K, Sugiyama M, Kimura H, Wakita T, Ryo A. Prolyl Isomerase Pin1 Regulates the Stability of Hepatitis B Virus Core Protein. Front Cell Dev Biol 2020; 8:26. [PMID: 32083080 PMCID: PMC7005485 DOI: 10.3389/fcell.2020.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
The dynamic interplay between virus and host proteins is critical for establishing efficient viral replication and virus-induced pathogenesis. Phosphorylation-dependent prolyl isomerization by Pin1 provides a unique mechanism of molecular switching to control both protein function and stability. We demonstrate here that Pin1 binds and stabilizes hepatitis B virus core protein (HBc) in a phosphorylation-dependent manner, and promotes the efficient viral propagation. Phos-tag gel electrophoresis with various site-directed mutants of HBc revealed that Thr160 and Ser162 residues within the C terminal arginine-rich domain are phosphorylated concomitantly. GST pull-down assay and co-immunoprecipitation analysis demonstrated that Pin1 associated with phosphorylated HBc at the Thr160-Pro and Ser162-Pro motifs. Chemical or genetic inhibition of Pin1 significantly accelerated the rapid degradation of HBc via a lysosome-dependent pathway. Furthermore, we found that the pyruvate dehydrogenase phosphatase catalytic subunit 2 (PDP2) could dephosphorylate HBc at the Pin1-binding sites, thereby suppressing Pin1-mediated HBc stabilization. Our findings reveal an important regulatory mechanism of HBc stability catalyzed by Pin1 and may facilitate the development of new antiviral therapeutics targeting Pin1 function.
Collapse
Affiliation(s)
- Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hajera Khatun
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan.,Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Hirokazu Kimura
- Faculty of Health Sciences, School of Medical Technology, Gunma Paz University, Takasaki, Japan
| | - Takaji Wakita
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
20
|
Schmidhauser M, Renz PF, Tsikrika P, Freimann R, Wutz A, Wrana JL, Beyer TA. Gaining Insights into the Function of Post-Translational Protein Modification Using Genome Engineering and Molecular Cell Biology. J Mol Biol 2019; 431:3920-3932. [PMID: 31306665 DOI: 10.1016/j.jmb.2019.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022]
Abstract
Modifications by kinases are a fast and reversible mechanism to diversify the function of the targeted proteins. The OCT4 transcription factor is essential for preimplantation development and pluripotency of embryonic stem cells (ESC), and its activity is tightly regulated by post-transcriptional modifications. Several phosphorylation sites have been identified by systemic approaches and their functions proposed. Here, we combined molecular and cellular biology with CRISPR/Cas9-mediated genome engineering to pinpoint the function of serine 12 of OCT4 in ESCs. Using chemical inhibitors and an antibody specific to OCT4 phosphorylated on S12, we identified cyclin-dependent kinase (CDK) 7 as upstream kinase. Surprisingly, generation of isogenic mESCs that endogenously ablate S12 revealed no effects on pluripotency and self-renewal, potentially due to compensation by other phosphorylation events. Our approach reveals that modification of distinct amino acids by precise genome engineering can help to clarify the functions of post-translational modifications on proteins encoded by essential gene in an endogenous context.
Collapse
Affiliation(s)
| | - Peter F Renz
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Science program, University of Zürich, Switzerland
| | - Panagiota Tsikrika
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Science program, University of Zürich, Switzerland
| | - Remo Freimann
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland
| | - Anton Wutz
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Tobias A Beyer
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland.
| |
Collapse
|
21
|
Zannini A, Rustighi A, Campaner E, Del Sal G. Oncogenic Hijacking of the PIN1 Signaling Network. Front Oncol 2019; 9:94. [PMID: 30873382 PMCID: PMC6401644 DOI: 10.3389/fonc.2019.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular choices are determined by developmental and environmental stimuli through integrated signal transduction pathways. These critically depend on attainment of proper activation levels that in turn rely on post-translational modifications (PTMs) of single pathway members. Among these PTMs, post-phosphorylation prolyl-isomerization mediated by PIN1 represents a unique mechanism of spatial, temporal and quantitative control of signal transduction. Indeed PIN1 was shown to be crucial for determining activation levels of several pathways and biological outcomes downstream to a plethora of stimuli. Of note, studies performed in different model organisms and humans have shown that hormonal, nutrient, and oncogenic stimuli simultaneously affect both PIN1 activity and the pathways that depend on PIN1-mediated prolyl-isomerization, suggesting the existence of evolutionarily conserved molecular circuitries centered on this isomerase. This review focuses on molecular mechanisms and cellular processes like proliferation, metabolism, and stem cell fate, that are regulated by PIN1 in physiological conditions, discussing how these are subverted in and hijacked by cancer cells. Current status and open questions regarding the use of PIN1 as biomarker and target for cancer therapy as well as clinical development of PIN1 inhibitors are also addressed.
Collapse
Affiliation(s)
- Alessandro Zannini
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandra Rustighi
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Giannino Del Sal
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy.,IFOM - Istituto FIRC Oncologia Molecolare, Milan, Italy
| |
Collapse
|
22
|
Lian X, Lin YM, Kozono S, Herbert MK, Li X, Yuan X, Guo J, Guo Y, Tang M, Lin J, Huang Y, Wang B, Qiu C, Tsai CY, Xie J, Gao ZJ, Wu Y, Liu H, Zhou XZ, Lu KP, Chen Y. Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways. J Hematol Oncol 2018; 11:73. [PMID: 29848341 PMCID: PMC5977460 DOI: 10.1186/s13045-018-0611-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
Background The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. Methods The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1 in AML cells. The expression of cancer-related Pin1 downstream oncoproteins in shPin1 (Pin1 knockdown) and Pin1 inhibitor all-trans retinoic acid (ATRA) treated leukemia cells were examined by western blot, followed by evaluating the effects of genetic and chemical inhibition of Pin1 in leukemia cells on transformed phenotype, including cell proliferation and colony formation ability, using trypan blue, cell counting assay, and colony formation assay in vitro, as well as the tumorigenesis ability using in vivo xenograft mouse models. Results First, we found that the expression of Pin1 mRNA and protein was significantly increased in both de novo leukemia clinical samples and multiple leukemia cell lines, compared with healthy controls. Furthermore, genetic or chemical inhibition of Pin1 in human multiple leukemia cell lines potently inhibited multiple Pin1 substrate oncoproteins and effectively suppressed leukemia cell proliferation and colony formation ability in cell culture models in vitro. Moreover, tetracycline-inducible Pin1 knockdown and slow-releasing ATRA potently inhibited tumorigenicity of U937 and HL-60 leukemia cells in xenograft mouse models. Conclusions We demonstrate that Pin1 is highly overexpressed in human AML and is a promising therapeutic target to block multiple cancer-driving pathways in AML. Electronic supplementary material The online version of this article (10.1186/s13045-018-0611-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolan Lian
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Yu-Min Lin
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shingo Kozono
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Megan K Herbert
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Xin Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaohong Yuan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jiangrui Guo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yafei Guo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Min Tang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jia Lin
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yiping Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Bixin Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chenxi Qiu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cheng-Yu Tsai
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jane Xie
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ziang Jeff Gao
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Yuanzhong Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
23
|
Csizmok V, Forman-Kay JD. Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Curr Opin Struct Biol 2018; 48:58-67. [DOI: 10.1016/j.sbi.2017.10.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022]
|
24
|
Abulaiti X, Zhang H, Wang A, Li N, Li Y, Wang C, Du X, Li L. Phosphorylation of Threonine 343 Is Crucial for OCT4 Interaction with SOX2 in the Maintenance of Mouse Embryonic Stem Cell Pluripotency. Stem Cell Reports 2017; 9:1630-1641. [PMID: 28988986 PMCID: PMC5829306 DOI: 10.1016/j.stemcr.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
OCT4 is required to maintain the pluripotency of embryonic stem cells (ESCs); yet, overdose-expression of OCT4 induces ESC differentiation toward primitive endoderm. The molecular mechanism underlying this differentiation switch is not fully understood. Here, we found that substitution of threonine343 by alanine (T343A), but not aspartic acid (T343D), caused a significant loss of OCT4-phosphorylation signal in ESCs. Loss of such OCT4-phosphorylation compromises its interaction with SOX2 but promotes interaction with SOX17. We therefore propose that threonine343-based OCT4-phosphorylation is crucial for the maintenance of ESC pluripotency. This OCT4-phosphorylation-based mechanism may provide insight into the regulation of lineage specification during early embryonic development. Phosphorylation of threonine343 mediates global OCT4-phosphorylation (phos-OCT4T343) Phos-OCT4T343 is crucial for OCT4 to protect embryonic stem cell pluripotency Phos-OCT4T343 binds to SOX2 but non-phos-OCT4T343 binds to SOX17 in cell fate decision Phos-OCT4T343 may regulate lineage commitment in early embryonic development
Collapse
Affiliation(s)
- Xianmixinuer Abulaiti
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Han Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aifang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chenchen Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lingsong Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
25
|
Abstract
G1 cyclins are considered essential for DNA replication and cell division. A recent report now shows that some cells can cycle in the absence of G1 cyclins. In embryonic stem cells and cancer cells, G1 cyclins are required to activate cyclin-dependent kinases to phosphorylate core pluripotency factors and maintain pluripotency.
Collapse
Affiliation(s)
- Julia Arand
- Stanford University Medical Center, Departments of Pediatrics and Genetics, Stanford Medical School, SIM1 Building, 265 Campus Drive, Stanford, California 94305, USA
| | - Julien Sage
- Stanford University Medical Center, Departments of Pediatrics and Genetics, Stanford Medical School, SIM1 Building, 265 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
26
|
Lu CS, Shieh GS, Wang CT, Su BH, Su YC, Chen YC, Su WC, Wu P, Yang WH, Shiau AL, Wu CL. Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer. Oncotarget 2017; 8:30844-30858. [PMID: 27244887 PMCID: PMC5458172 DOI: 10.18632/oncotarget.9602] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer cells initially characterized as sensitive to chemotherapy may acquire resistance to chemotherapy and lead to tumor recurrence through the expansion of drug-resistant population. Acquisition of drug resistance to conventional chemotherapy is a major obstacle in the treatment of recurrent cancer. Here we investigated whether anticancer drugs induced Oct4 expression, thereby contributing to acquired drug resistance and tumor recurrence in bladder cancer. We identified a positive correlation of Oct4 expression with tumor recurrence in 122 clinical specimens of superficial high-grade (stages T1-2) bladder transitional cell carcinoma (TCC). Increased Oct4 levels in bladder tumors were associated with short recurrence-free intervals in the patients. Chemotherapy induced Oct4 expression in bladder cancer cells. Notably, treatment with cisplatin increased CD44-positive bladder cancer cells expressing Oct4, representing cancer stem-like cell subpopulation. Forced expression of Oct4 reduced, whereas knockdown of Oct4 enhanced, drug sensitivity in bladder cancer cells. Furthermore, tumor cells overexpressing Oct4 responded poorly to cisplatin in vivo. In regard to clinical relevance, inhibition of Oct4 by all-trans retinoic acid (ATRA) synergistically increased sensitivity to cisplatin in bladder cancer cells. Furthermore, the combination of cisplatin and ATRA was superior to cisplatin alone in suppressing tumor growth. Therefore, our results provide evidence that Oct4 increases drug resistance and implicate that inhibition of Oct4 may be a therapeutic strategy to circumvent drug resistance.
Collapse
Affiliation(s)
- Chia-Sing Lu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Chung-Teng Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hua Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chu Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Cheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pensee Wu
- Institute for Science & Technology in Medicine, Keele University, Keele, United Kingdom
| | - Wen-Horng Yang
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
27
|
Liu L, Michowski W, Inuzuka H, Shimizu K, Nihira NT, Chick JM, Li N, Geng Y, Meng AY, Ordureau A, Kołodziejczyk A, Ligon KL, Bronson RT, Polyak K, Harper JW, Gygi SP, Wei W, Sicinski P. G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nat Cell Biol 2017; 19:177-188. [PMID: 28192421 DOI: 10.1038/ncb3474] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022]
Abstract
Progression of mammalian cells through the G1 and S phases of the cell cycle is driven by the D-type and E-type cyclins. According to the current models, at least one of these cyclin families must be present to allow cell proliferation. Here, we show that several cell types can proliferate in the absence of all G1 cyclins. However, following ablation of G1 cyclins, embryonic stem (ES) cells attenuated their pluripotent characteristics, with the majority of cells acquiring the trophectodermal cell fate. We established that G1 cyclins, together with their associated cyclin-dependent kinases (CDKs), phosphorylate and stabilize the core pluripotency factors Nanog, Sox2 and Oct4. Treatment of murine ES cells, patient-derived glioblastoma tumour-initiating cells, or triple-negative breast cancer cells with a CDK inhibitor strongly decreased Sox2 and Oct4 levels. Our findings suggest that CDK inhibition might represent an attractive therapeutic strategy by targeting glioblastoma tumour-initiating cells, which depend on Sox2 to maintain their tumorigenic potential.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wojciech Michowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Naoe Taira Nihira
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Na Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alice Y Meng
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Aleksandra Kołodziejczyk
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
| | - Roderick T Bronson
- Department of Biomedical Sciences, Tufts University Veterinary School, North Grafton, Massachusetts 01536, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Suzuki A, Saeki T, Ikuji H, Uchida C, Uchida T. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes. PLoS One 2016; 11:e0168830. [PMID: 28036348 PMCID: PMC5201290 DOI: 10.1371/journal.pone.0168830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied. METHODOLOGY/PRINCIPAL FINDINGS Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT) and Pin1-/- (Pin1-KO) adipose-derived mesenchymal stem cell (ASC) lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not. CONCLUSION AND SIGNIFICANCE Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity.
Collapse
Grants
- Grant-in-Aid for Scientific Research Kiban (A), the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- Grant-in-aid for Challenging Exploratory Research, Ministry of Education, Culture, Sports, Science, and Technology of Japan
- Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry Grant
Collapse
Affiliation(s)
- Atsuko Suzuki
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya, Tsutsumidori, Aoba, Sendai, Miyagi, Japan
| | - Toshiyuki Saeki
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya, Tsutsumidori, Aoba, Sendai, Miyagi, Japan
| | - Hiroko Ikuji
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya, Tsutsumidori, Aoba, Sendai, Miyagi, Japan
| | - Chiyoko Uchida
- Department of Human Development and Culture, Fukushima University, Kanayagawa 1, Fukushima, Fukushima, Japan
| | - Takafumi Uchida
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya, Tsutsumidori, Aoba, Sendai, Miyagi, Japan
| |
Collapse
|
29
|
The role of Pin1 in the development and treatment of cancer. Arch Pharm Res 2016; 39:1609-1620. [PMID: 27572155 DOI: 10.1007/s12272-016-0821-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation and post-phosphorylation events regulate many cellular signaling pathways. Peptidyl-prolyl isomerase (Pin1) is the only peptidyl-prolyl cis/trans isomerase that interacts with numerous oncogenic or tumor suppressive phosphorylated proteins, causes conformational changes in target proteins, and eventually regulates the activities of such proteins. These alterations in activity play a pivotal role in tumorigenesis. Since Pin1 is overexpressed and/or activated in various types of cancers, and the dysregulation of proline-directed phosphorylation contributes to tumorigenesis, Pin1 represents an attractive target for cancer therapy. This review will describe the role of Pin1 in cancer and the current status of Pin1 inhibitor development.
Collapse
|
30
|
Abstract
Targeted drugs have changed cancer treatment but are often ineffective in the long term against solid tumours, largely because of the activation of heterogeneous oncogenic pathways. A central common signalling mechanism in many of these pathways is proline-directed phosphorylation, which is regulated by many kinases and phosphatases. The structure and function of these phosphorylated proteins are further controlled by a single proline isomerase: PIN1. PIN1 is overactivated in cancers and it promotes cancer and cancer stem cells by disrupting the balance of oncogenes and tumour suppressors. This Review discusses the roles of PIN1 in cancer and the potential of PIN1 inhibitors to restore this balance.
Collapse
Affiliation(s)
- Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
31
|
Sakuma Y, Nishikiori H, Hirai S, Yamaguchi M, Yamada G, Watanabe A, Hasegawa T, Kojima T, Niki T, Takahashi H. Prolyl isomerase Pin1 promotes survival in EGFR-mutant lung adenocarcinoma cells with an epithelial-mesenchymal transition phenotype. J Transl Med 2016; 96:391-8. [PMID: 26752745 DOI: 10.1038/labinvest.2015.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
The secondary epidermal growth factor receptor (EGFR) T790M mutation is the most prominent mechanism that confers resistance to first- or second-generation EGFR tyrosine kinase inhibitors (TKIs) in lung cancer treatment. Although third-generation EGFR TKIs can suppress the kinase activity of T790M-positive EGFR, they still cannot eradicate EGFR-mutated cancer cells. We previously reported that a subpopulation of EGFR-mutant lung adenocarcinomas depends on enhanced autophagy, instead of EGFR, for survival, and in this study we explore another mechanism that contributes to TKI resistance. We demonstrate here that an EGFR-mutant lung adenocarcinoma cell line, H1975 (L858R+T790M), has a subset of cells that exhibits an epithelial-mesenchymal transition (EMT) phenotype and can thrive in the presence of third-generation EGFR TKIs. These cells depend on not only autophagy but also on the isomerase Pin1 for survival in vitro, unlike their parental cells. The Pin1 protein was expressed in an EGFR-mutant lung cancer tissue that has undergone partial EMT and acquired resistance to EGFR TKIs, but not its primary tumor. These findings suggest that inhibition of Pin1 activity can be a novel strategy in lung cancer treatment.
Collapse
Affiliation(s)
- Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sachie Hirai
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Miki Yamaguchi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gen Yamada
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiro Niki
- Department of Pathology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
32
|
Nishi M, Akutsu H, Kudoh A, Kimura H, Yamamoto N, Umezawa A, Lee SW, Ryo A. Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell. Oncotarget 2015; 5:8665-80. [PMID: 25228591 PMCID: PMC4226712 DOI: 10.18632/oncotarget.2356] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) retain the capacity to propagate themselves through self-renewal and to produce heterogeneous lineages of cancer cells constituting the tumor. Novel drugs that target CSCs can potentially eliminate the tumor initiating cell population therefore resulting in complete cure of the cancer. We recently established a CSC-like model using induced pluripotent stem cell (iPSC) technology to reprogram and partially differentiate human mammary epithelial MCF-10A cells. Using the induced CSC-like (iCSCL) model, we developed a phenotypic drug assay system to identify agents that inhibit the stemness and self-renewal properties of CSCs. The selectivity of the agents was assessed using three distinct assays characterized by cell viability, cellular stemness and tumor sphere formation. Using this approach, we found that withaferin A (WA), an Ayurvedic medicine constituent, was a potent inhibitor of CSC stemness leading to cellular senescence primarily via the induction of p21Cip1 expression. Moreover, WA exhibited strong anti-tumorigenic activity against the iCSCL. These results indicate that our iCSCL model provides an innovative high throughput platform for a simple, easy, and cost-effective method to search for novel CSC-targeting drugs. Furthermore, our current study identified WA as a putative drug candidate for abrogating the stemness and tumor initiating ability of CSCs.
Collapse
Affiliation(s)
- Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hidenori Akutsu
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ayumi Kudoh
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Microbiology, National University of Singapore, Singapore
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
33
|
Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int 2014; 2014:457059. [PMID: 25379041 PMCID: PMC4212660 DOI: 10.1155/2014/457059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 12/14/2022] Open
Abstract
The level of heterogeneity among the isolated stem cells makes them less valuable for clinical use. The purpose of this study was to understand the level of heterogeneity among human dental pulp derived mesenchymal stem cells by using basic cell biology and proteomic approaches. The cells were isolated from a natal (NDPSCs), an exfoliated deciduous (stem cells from human exfoliated deciduous (SHED)), and an impacted third molar (DPSCs) tooth of three different donors. All three stem cells displayed similar features related to morphology, proliferation rates, expression of various cell surface markers, and differentiation potentials into adipocytes, osteocytes, and chondrocytes. Furthermore, using 2DE approach coupled with MALDI-TOF/TOF, we have generated a common 2DE profile for all three stem cells. We found that 62.3 ± 7% of the protein spots were conserved among the three mesenchymal stem cell lines. Sixty-one of these conserved spots were identified by MALDI-TOF/TOF analysis. Classification of the identified proteins based on biological function revealed that structurally important proteins and proteins that are involved in protein folding machinery are predominantly expressed by all three stem cell lines. Some of these proteins may hold importance in understanding specific properties of human dental pulp derived mesenchymal stem cells.
Collapse
|
34
|
Abstract
Proline-directed phosphorylation is a posttranslational modification that is instrumental in regulating signaling from the plasma membrane to the nucleus, and its dysregulation contributes to cancer development. Protein interacting with never in mitosis A1 (Pin1), which is overexpressed in many types of cancer, isomerizes specific phosphorylated Ser/Thr-Pro bonds in many substrate proteins, including glycolytic enzyme, protein kinases, protein phosphatases, methyltransferase, lipid kinase, ubiquitin E3 ligase, DNA endonuclease, RNA polymerase, and transcription activators and regulators. This Pin1-mediated isomerization alters the structures and activities of these proteins, thereby regulating cell metabolism, cell mobility, cell cycle progression, cell proliferation, cell survival, apoptosis and tumor development.
Collapse
Affiliation(s)
- Zhimin Lu
- 1] Brain Tumor Center and Department of Neuro-Oncology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA [3] Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Tzou WS, Lo YT, Pai TW, Hu CH, Li CH. Stochastic simulation of notch signaling reveals novel factors that mediate the differentiation of neural stem cells. J Comput Biol 2014; 21:548-67. [PMID: 24798230 PMCID: PMC4082354 DOI: 10.1089/cmb.2014.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Notch signaling controls cell fate decisions and regulates multiple biological processes, such as cell proliferation, differentiation, and apoptosis. Computational modeling of the deterministic simulation of Notch signaling has provided important insight into the possible molecular mechanisms that underlie the switch from the undifferentiated stem cell to the differentiated cell. Here, we constructed a stochastic model of a Notch signaling model containing Hes1, Notch1, RBP-Jk, Mash1, Hes6, and Delta. mRNA and protein were represented as a discrete state, and 334 reactions were employed for each biochemical reaction using a graphics processing unit-accelerated Gillespie scheme. We employed the tuning of 40 molecular mechanisms and revealed several potential mediators capable of enabling the switch from cell stemness to differentiation. These effective mediators encompass different aspects of cellular regulations, including the nuclear transport of Hes1, the degradation of mRNA (Hes1 and Notch1) and protein (Notch1), the association between RBP-Jk and Notch intracellular domain (NICD), and the cleavage efficiency of the NICD. These mechanisms overlap with many modifiers that have only recently been discovered to modulate the Notch signaling output, including microRNA action, ubiquitin-mediated proteolysis, and the competitive binding of the RBP-Jk-DNA complex. Moreover, we identified the degradation of Hes1 mRNA and nuclear transport of Hes1 as the dominant mechanisms that were capable of abolishing the cell state transition induced by other molecular mechanisms.
Collapse
Affiliation(s)
- Wen-Shyong Tzou
- Department of Life Sciences, National Taiwan Ocean University, Taiwan, R.O.C.
| | - Ying-Tsang Lo
- Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan, R.O.C.
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan, R.O.C.
| | - Chin-Hwa Hu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, R.O.C.
| | - Chung-Hao Li
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, R.O.C.
| |
Collapse
|
36
|
Pin1: a molecular orchestrator in the heart. Trends Cardiovasc Med 2014; 24:256-62. [PMID: 25070718 DOI: 10.1016/j.tcm.2014.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 11/23/2022]
Abstract
Pin1 is an evolutionarily conserved peptidyl-prolyl isomerase that binds and changes the three-dimensional conformation of specific phospho-proteins. By regulating protein structure and folding, Pin1 affects the stability, interaction, and activity of a broad spectrum of target proteins, thus impacting upon diverse cellular processes. This review discusses the pivotal role Pin1 plays in regulating cardiac pathophysiology by functioning as a "molecular orchestrator" of a myriad of signal transduction pathways in the heart.
Collapse
|
37
|
Tan SM, Altschuler G, Zhao TY, Ang HS, Yang H, Lim B, Vardy L, Hide W, Thomson AM, Lareu RR. Divergent LIN28-mRNA associations result in translational suppression upon the initiation of differentiation. Nucleic Acids Res 2014; 42:7997-8007. [PMID: 24860167 PMCID: PMC4081066 DOI: 10.1093/nar/gku430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
LIN28 function is fundamental to the activity and behavior of human embryonic stem cells (hESCs) and induced pluripotent stem cells. Its main roles in these cell types are the regulation of translational efficiency and let-7 miRNA maturation. However, LIN28-associated mRNA cargo shifting and resultant regulation of translational efficiency upon the initiation of differentiation remain unknown. An RNA-immunoprecipitation and microarray analysis protocol, eRIP, that has high specificity and sensitivity was developed to test endogenous LIN28-associated mRNA cargo shifting. A combined eRIP and polysome analysis of early stage differentiation of hESCs with two distinct differentiation cues revealed close similarities between the dynamics of LIN28 association and translational modulation of genes involved in the Wnt signaling, cell cycle, RNA metabolism and proteasomal pathways. Our data demonstrate that change in translational efficiency is a major contributor to early stages of differentiation of hESCs, in which LIN28 plays a central role. This implies that eRIP analysis of LIN28-associated RNA cargoes may be used for rapid functional quality control of pluripotent stem cells under manufacture for therapeutic applications.
Collapse
Affiliation(s)
- Shen Mynn Tan
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Gabriel Altschuler
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Tian Yun Zhao
- Institute of Medical Biology, A*STAR, 138648, Singapore
| | - Haw Siang Ang
- Cancer Science Institute, National University of Singapore (NUS), 117599, Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore (NUS), 117599, Singapore
| | - Bing Lim
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Leah Vardy
- Institute of Medical Biology, A*STAR, 138648, Singapore
| | - Winston Hide
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew M Thomson
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Ricky R Lareu
- Department of Orthopedic Surgery, NUS Tissue Engineering Program, Yong Loo Lin School of Medicine, NUS, 119228, Singapore and School of Pharmacy, CHIRI Biosciences, Curtin University, Western Australia 6102, Australia
| |
Collapse
|
38
|
Luo ML, Gong C, Chen CH, Lee DY, Hu H, Huang P, Yao Y, Guo W, Reinhardt F, Wulf G, Lieberman J, Zhou XZ, Song E, Lu KP. Prolyl isomerase Pin1 acts downstream of miR200c to promote cancer stem-like cell traits in breast cancer. Cancer Res 2014; 74:3603-16. [PMID: 24786790 DOI: 10.1158/0008-5472.can-13-2785] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Breast cancer stem-like cells (BCSC) have been implicated in tumor growth, metastasis, drug resistance, and relapse but druggable targets in appropriate subsets of this cell population have yet to be identified. Here we identify a fundamental role for the prolyl isomerase Pin1 in driving BCSC expansion, invasiveness, and tumorigenicity, defining it as a key target of miR200c, which is known to be a critical regulator in BCSC. Pin1 overexpression expanded the growth and tumorigenicity of BCSC and triggered epithelial-mesenchymal transition. Conversely, genetic or pharmacological inhibition of Pin1 reduced the abundance and self-renewal activity of BCSC. Moreover, moderate overexpression of miR200c-resistant Pin1 rescued the BCSC defect in miR200c-expressing cells. Genetic deletion of Pin1 also decreased the abundance and repopulating capability of normal mouse mammary stem cells. In human cells, freshly isolated from reduction mammoplasty tissues, Pin1 overexpression endowed BCSC traits to normal breast epithelial cells, expanding both luminal and basal/myoepithelial lineages in these cells. In contrast, Pin1 silencing in primary breast cancer cells freshly isolated from clinical samples inhibited the expansion, self-renewal activity, and tumorigenesis of BCSC in vitro and in vivo. Overall, our work demonstrated that Pin1 is a pivotal regulator acting downstream of miR200c to drive BCSC and breast tumorigenicity, highlighting a new therapeutic target to eradicate BCSC.
Collapse
Affiliation(s)
- Man-Li Luo
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center
| | - Chang Gong
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou; and
| | - Chun-Hau Chen
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center
| | - Daniel Y Lee
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center
| | - Hai Hu
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center
| | - Pengyu Huang
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center
| | - Yandan Yao
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center
| | - Wenjun Guo
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gerburg Wulf
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston
| | - Xiao Zhen Zhou
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center
| | - Erwei Song
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou; and
| | - Kun Ping Lu
- Authors' Affiliations: Department of Medicine, Beth Israel Deaconess Medical Center; Institute for Translational Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
39
|
Toko H, Hariharan N, Konstandin MH, Ormachea L, McGregor M, Gude NA, Sundararaman B, Joyo E, Joyo AY, Collins B, Din S, Mohsin S, Uchida T, Sussman MA. Differential regulation of cellular senescence and differentiation by prolyl isomerase Pin1 in cardiac progenitor cells. J Biol Chem 2013; 289:5348-56. [PMID: 24375406 DOI: 10.1074/jbc.m113.526442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autologous c-kit(+) cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.
Collapse
Affiliation(s)
- Haruhiro Toko
- From the San Diego State University Heart Institute and Biology Department, San Diego State University, San Diego, California 92182 and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiol Aging 2013; 34:757-69. [DOI: 10.1016/j.neurobiolaging.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 07/18/2012] [Accepted: 08/02/2012] [Indexed: 11/18/2022]
|
41
|
Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene 2013; 33:643-52. [PMID: 23318426 DOI: 10.1038/onc.2012.614] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs), a small and elusive population of undifferentiated cancer cells within tumors that drive tumor growth and recurrence, are believed to resemble normal stem cells. Although surrogate markers have been identified and compelling CSC theoretical models abound, actual proof for the existence of CSCs can only be had retrospectively. Hence, great store has come to be placed in isolating CSCs from cancers for in-depth analysis. On the other hand, although induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, concern exists over the inadvertent co-transplantation of partially or undifferentiated stem cells with tumorigenic capacity. Here we demonstrate that the introduction of defined reprogramming factors (OCT4, SOX2, Klf4 and c-Myc) into MCF-10A nontumorigenic mammary epithelial cells, followed by partial differentiation, transforms the bulk of cells into tumorigenic CD44(+)/CD24(low) cells with CSC properties, termed here as induced CSC-like-10A or iCSCL-10A cells. These reprogrammed cells display a malignant phenotype in culture and form tumors of multiple lineages when injected into immunocompromised mice. Compared with other transformed cell lines, cultured iCSCL-10A cells exhibit increased resistance to the chemotherapeutic compounds, Taxol and Actinomycin D, but higher susceptibility to the CSC-selective agent Salinomycin and the Pin1 inhibitor Juglone. Restored expression of the cyclin-dependent kinase inhibitor p16INK4a abrogated the CSC properties of iCSCL-10A cells, by inducing cellular senescence. This study provides some insight into the potential oncogenicity that may arise via cellular reprogramming, and could represent a valuable in vitro model for studying the phenotypic traits of CSCs per se.
Collapse
|
42
|
NANOG modulates stemness in human colorectal cancer. Oncogene 2012; 32:4397-405. [PMID: 23085761 DOI: 10.1038/onc.2012.461] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/23/2012] [Accepted: 08/16/2012] [Indexed: 11/08/2022]
Abstract
NANOG is a stem cell transcription factor that is essential for embryonic development, reprogramming normal adult cells and malignant transformation and progression. The nearly identical retrogene NANOGP8 is expressed in multiple cancers, but generally not in normal tissues and its function is not well defined. Our postulate is that NANOGP8 directly modulates the stemness of individual human colorectal carcinoma (CRC) cells. Stemness was measured in vitro as the spherogenicity of single CRC cells in serum-free medium and the size of the side population (SP) and in vivo as tumorigenicity and experimental metastatic potential in NOD/SCID mice. We found that 80% of clinical liver metastases express a NANOG with 75% of the positive metastases containing NANOGP8 transcripts. In all, 3-62% of single cells within six CRC lines form spheroids in serum-free medium in suspension. NANOGP8 is translated into protein. The relative expression of a NANOG gene increased 8- to 122-fold during spheroid formation, more than the increase in OCT4 or SOX2 transcripts with NANOGP8 the more prevalent family member. Short hairpin RNA (shRNA) to NANOG not only inhibits spherogenicity but also reduces expression of OCT4 and SOX2, the size of the SP and tumor growth in vivo. Inhibition of NANOG gene expression is associated with inhibition of proliferation and decreased phosphorylation of G2-related cell-cycle proteins. Overexpression of NANOGP8 rescues single-cell spherogenicity when NANOG gene expression is inhibited and increases the SP in CRC. Thus, NANOGP8 can substitute for NANOG in directly promoting stemness in CRC.
Collapse
|
43
|
Mueller JW, Link NM, Matena A, Hoppstock L, Rüppel A, Bayer P, Blankenfeldt W. Crystallographic Proof for an Extended Hydrogen-Bonding Network in Small Prolyl Isomerases. J Am Chem Soc 2011; 133:20096-9. [DOI: 10.1021/ja2086195] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan W. Mueller
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Nina M. Link
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Anja Matena
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Lukas Hoppstock
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Alma Rüppel
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Peter Bayer
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Wulf Blankenfeldt
- University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
44
|
Dilworth D, Gudavicius G, Leung A, Nelson CJ. The roles of peptidyl-proline isomerases in gene regulation. Biochem Cell Biol 2011; 90:55-69. [PMID: 21999350 DOI: 10.1139/o11-045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The post-translational modification of proteins and enzymes provides a dynamic and reversible means to control protein function and transmit biological signals. While covalent modifications such as phosphorylation and acetylation have drawn much attention, in the past decade the involvement of peptidyl-proline isomerases (PPIs) in signaling and post-translational modification of protein function has become increasingly apparent. Three distinct families of PPI enzymes (parvulins, cyclophilins, and FK506-binding proteins (FKBPs)) each have the capacity to catalyze cis-trans proline isomerization in substrate proteins, and this modification can regulate both structure and function. In eukaryotic cells, a subset of these enzymes is localized to the nucleus, where they regulate gene expression at multiple control points. Here we summarize this body of work that together establishes a clear role of these enzymes as evolutionarily conserved players in the control of both transcription of mRNAs and the assembly of chromatin.
Collapse
Affiliation(s)
- David Dilworth
- The Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | | | | | | |
Collapse
|
45
|
Liou YC, Zhou XZ, Lu KP. Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 2011; 36:501-14. [PMID: 21852138 DOI: 10.1016/j.tibs.2011.07.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 12/13/2022]
Abstract
Pin1 is a highly conserved enzyme that only isomerizes specific phosphorylated Ser/Thr-Pro bonds in certain proteins, thereby inducing conformational changes. Such conformational changes represent a novel and tightly controlled signaling mechanism regulating a spectrum of protein activities in physiology and disease; often through phosphorylation-dependent, ubiquitin-mediated proteasomal degradation. In this review, we summarize recent advances in elucidating the role and regulation of Pin1 in controlling protein stability. We also propose a mechanism by which Pin1 functions as a molecular switch to control the fates of phosphoproteins. We finally stress the need to develop tools to visualize directly Pin1-catalyzed protein conformational changes as a way to determine their roles in the development and treatment of human diseases.
Collapse
Affiliation(s)
- Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543.
| | | | | |
Collapse
|