1
|
Roessner R, Michelarakis N, Gräter F, Aponte-Santamaría C. Mechanical forces control the valency of the malaria adhesin VAR2CSA by exposing cryptic glycan binding sites. PLoS Comput Biol 2023; 19:e1011726. [PMID: 38117828 PMCID: PMC10786402 DOI: 10.1371/journal.pcbi.1011726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/12/2024] [Accepted: 12/02/2023] [Indexed: 12/22/2023] Open
Abstract
Plasmodium falciparum (Pf) is responsible for the most lethal form of malaria. VAR2CSA is an adhesin protein expressed by this parasite at the membrane of infected erythrocytes for attachment to the placenta, leading to pregnancy-associated malaria. VAR2CSA is a large 355 kDa multidomain protein composed of nine extracellular domains, a transmembrane helix, and an intracellular domain. VAR2CSA binds to Chondroitin Sulphate A (CSA) of the proteoglycan matrix of the placenta. Shear flow, as the one occurring in blood, has been shown to enhance the (VAR2CSA-mediated) adhesion of Pf-infected erythrocytes on the CSA-matrix. However, the underlying molecular mechanism governing this enhancement has remained elusive. Here, we address this question by using equilibrium, force-probe, and docking-based molecular dynamics simulations. We subjected the VAR2CSA protein-CSA sugar complex to a force mimicking the tensile force exerted on this system due to the shear of the flowing blood. We show that upon this force exertion, VAR2CSA undergoes a large opening conformational transition before the CSA sugar chain dissociates from its main binding site. This preferential order of events is caused by the orientation of the molecule during elongation, as well as the strong electrostatic attraction of the sugar to the main protein binding site. Upon opening, two additional cryptic CSA binding sites get exposed and a functional dodecameric CSA molecule can be stably accommodated at these force-exposed positions. Thus, our results suggest that mechanical forces increase the avidity of VAR2CSA by turning it from a monovalent to a multivalent state. We propose this to be the molecular cause of the observed shear-enhanced adherence. Mechanical control of the valency of VAR2CSA is an intriguing hypothesis that can be tested experimentally and which is of relevance for the understanding of the malaria infection and for the development of anti placental-malaria vaccines targeting VAR2CSA.
Collapse
Affiliation(s)
- Rita Roessner
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Nicholas Michelarakis
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Frauke Gräter
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
2
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Iyamu U, Vinals DF, Tornyigah B, Arango E, Bhat R, Adra TR, Grewal S, Martin K, Maestre A, Overduin M, Hazes B, Yanow SK. A conserved epitope in VAR2CSA is targeted by a cross-reactive antibody originating from Plasmodium vivax Duffy binding protein. Front Cell Infect Microbiol 2023; 13:1202276. [PMID: 37396303 PMCID: PMC10312377 DOI: 10.3389/fcimb.2023.1202276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
During Plasmodium falciparum infection in pregnancy, VAR2CSA is expressed on the surface of infected erythrocytes (IEs) and mediates their sequestration in the placenta. As a result, antibodies to VAR2CSA are largely restricted to women who were infected during pregnancy. However, we discovered that VAR2CSA antibodies can also be elicited by P. vivax Duffy binding protein (PvDBP). We proposed that infection with P. vivax in non-pregnant individuals can generate antibodies that cross-react with VAR2CSA. To better understand the specificity of these antibodies, we took advantage of a mouse monoclonal antibody (3D10) raised against PvDBP that cross-reacts with VAR2CSA and identified the epitopes targeted by this antibody. We screened two peptide arrays that span the ectodomain of VAR2CSA from the FCR3 and NF54 alleles. Based on the top epitope recognized by 3D10, we designed a 34-amino acid synthetic peptide, which we call CRP1, that maps to a highly conserved region in DBL3X. Specific lysine residues are critical for 3D10 recognition, and these same amino acids are within a previously defined chondroitin sulfate A (CSA) binding site in DBL3X. We showed by isothermal titration calorimetry that the CRP1 peptide can bind directly to CSA, and antibodies to CRP1 raised in rats significantly blocked the binding of IEs to CSA in vitro. In our Colombian cohorts of pregnant and non-pregnant individuals, at least 45% were seroreactive to CRP1. Antibody reactivities to CRP1 and the 3D10 natural epitope in PvDBP region II, subdomain 1 (SD1), were strongly correlated in both cohorts. These findings suggest that antibodies arising from PvDBP may cross-react with VAR2CSA through the epitope in CRP1 and that CRP1 could be a potential vaccine candidate to target a distinct CSA binding site in VAR2CSA.
Collapse
Affiliation(s)
- Uwa Iyamu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | | - Bernard Tornyigah
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Eliana Arango
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Grupo de Enfermedades Infecciosas y Crónicas (GEINCRO), Fundación Universitaria San Martín, Sabaneta, Colombia
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Trixie Rae Adra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Simranjit Grewal
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kimberly Martin
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Amanda Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bart Hazes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Establishment and validation of a plasma oncofetal chondroitin sulfated proteoglycan for pan-cancer detection. Nat Commun 2023; 14:645. [PMID: 36746966 PMCID: PMC9902466 DOI: 10.1038/s41467-023-36374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Various biomarkers targeting cell-free DNA (cfDNA) and circulating proteins have been tested for pan-cancer detection. Oncofetal chondroitin sulfate (ofCS), which distinctively modifies proteoglycans (PGs) of most cancer cells and binds specifically to the recombinant Plasmodium falciparum VAR2CSA proteins (rVAR2), is explored for its potential as a plasma biomarker in pan-cancer detection. To quantitate the plasma ofCS/ofCSPGs, we optimized an ELISA using different capture/detection pairs (rVAR2/anti-CD44, -SDC1, and -CSPG4) in a case-control study with six cancer types. We show that the plasma levels of ofCS/ofCSPGs are significantly higher in cancer patients (P values, 1.2 × 10-2 to 4.4 × 10-10). Validation studies are performed with two independent cohorts covering 11 malignant tumors. The individuals in the top decile of ofCS-CD44 have more than 27-fold cancer risk (OR = 27.8, 95%CI = 18.8-41.4, P = 2.72 × 10-62) compared with the lowest 20%. Moreover, the elevated plasma ofCS-CD44 could be detected at the early stage of pan-cancer with strong dose-dependent odds risk prediction.
Collapse
|
5
|
Disulfide bond and crosslinking analyses reveal inter-domain interactions that contribute to the rigidity of placental malaria VAR2CSA structure and formation of CSA binding channel. Int J Biol Macromol 2023; 226:143-158. [PMID: 36470436 DOI: 10.1016/j.ijbiomac.2022.11.258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022]
Abstract
VAR2CSA, a multidomain Plasmodium falciparum protein, mediates the adherence of parasite-infected red blood cells to chondroitin 4-sulfate (C4S) in the placenta, contributing to placental malaria. Therefore, detailed understanding of VAR2CSA structure likely help developing strategies to treat placental malaria. The VAR2CSA ectodomain consists of an N-terminal segment (NTS), six Duffy binding-like (DBL) domains, and three interdomains (IDs) present in sequence NTS-DBL1x-ID1-DBL2x-ID2-DBL3x-DBL4ε-ID3-DBL5ε-DBL6ε. Recent electron microscopy studies showed that VAR2CSA is compactly organized into a globular structure containing C4S-binding channel, and that DBL5ε-DBL6ε arm is attached to the NTS-ID3 core structure. However, the structural elements involved in inter-domain interactions that stabilize the VAR2CSA structure remain largely not understood. Here, limited proteolysis and peptide mapping by mass spectrometry showed that VAR2CSA contains several inter-domain disulfide bonds that stabilize its compact structure. Chemical crosslinking-mass spectrometry showed that all IDs interact with DBL4ε; additionally, IDs interact with other DBL domains, demonstrating that IDs are the key structural scaffolds that shape the functional NTS-ID3 core. Ligand binding analysis suggested that NTS considerably restricts the C4S binding. Overall, our study revealed that inter-domain disulfide bonds and interactions between IDs and DBL domains contribute to the stability of VAR2CSA structural architecture and formation of C4S-binding channel.
Collapse
|
6
|
Huang C, Li C, Cai J, Chen J, Wang B, Li M, Zhou W, Wang J, Zhang P, Zhang JV. Chondroitin Sulfate Targeting Nanodrug Achieves Near-Infrared Fluorescence-Guided Chemotherapy Against Triple-Negative Breast Primary and Lung Metastatic Cancer. Int J Nanomedicine 2022; 17:5547-5563. [DOI: 10.2147/ijn.s380358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
7
|
A mutated glycosaminoglycan-binding domain functions as a novel probe to selectively target heparin-like epitopes on tumor cells. J Biol Chem 2022; 298:102609. [PMID: 36265583 PMCID: PMC9672413 DOI: 10.1016/j.jbc.2022.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
The high heterogeneity and mutation rate of cancer cells often lead to the failure of targeted therapy, and therefore, new targets for multitarget therapy of tumors are urgently needed. Aberrantly expressed glycosaminoglycans (GAGs) have been shown to be involved in tumorigenesis and are promising new targets. Recently, the GAG-binding domain rVAR2 of the Plasmodium falciparum VAR2CSA protein was identified as a probe targeting cancer-associated chondroitin sulfate A-like epitopes. In this study, we found that rVAR2 could also bind to heparin (Hep) and chondroitin sulfate E. Therefore, we used rVAR2 as a model to establish a method based on random mutagenesis of the GAG-binding protein and phage display to identify and optimize probes targeting tumor GAGs. We identified a new probe, VAR2HP, which selectively recognized Hep by interacting with unique epitopes consisting of a decasaccharide structure that contains at least three HexA2S(1-4)GlcNS6S disaccharides. Moreover, we found that these Hep-like epitopes were overexpressed in various cancer cells. Most importantly, our in vivo experiments showed that VAR2HP had good biocompatibility and preferentially localizes to tumors, which indicates that VAR2HP has great application potential in tumor diagnosis and targeted therapy. In conclusion, this study provides a strategy for the discovery of novel tumor-associated GAG epitopes and their specific probes.
Collapse
|
8
|
Talundzic E, Scott S, Owino SO, Campo DS, Lucchi NW, Udhayakumar V, Moore JM, Peterson DS. Polymorphic Molecular Signatures in Variable Regions of the Plasmodium falciparum var2csa DBL3x Domain Are Associated with Virulence in Placental Malaria. Pathogens 2022; 11:520. [PMID: 35631041 PMCID: PMC9147263 DOI: 10.3390/pathogens11050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
The Plasmodium falciparum protein VAR2CSA allows infected erythrocytes to accumulate within the placenta, inducing pathology and poor birth outcomes. Multiple exposures to placental malaria (PM) induce partial immunity against VAR2CSA, making it a promising vaccine candidate. However, the extent to which VAR2CSA genetic diversity contributes to immune evasion and virulence remains poorly understood. The deep sequencing of the var2csa DBL3X domain in placental blood from forty-nine primigravid and multigravid women living in malaria-endemic western Kenya revealed numerous unique sequences within individuals in association with chronic PM but not gravidity. Additional analysis unveiled four distinct sequence types that were variably present in mixed proportions amongst the study population. An analysis of the abundance of each of these sequence types revealed that one was inversely related to infant gestational age, another was inversely related to placental parasitemia, and a third was associated with chronic PM. The categorization of women according to the type to which their dominant sequence belonged resulted in the segregation of types as a function of gravidity: two types predominated in multigravidae whereas the other two predominated in primigravidae. The univariate logistic regression analysis of sequence type dominance further revealed that gravidity, maternal age, placental parasitemia, and hemozoin burden (within maternal leukocytes), reported a lack of antimalarial drug use, and infant gestational age and birth weight influenced the odds of membership in one or more of these sequence predominance groups. Cumulatively, these results show that unique var2csa sequences differentially appear in women with different PM exposure histories and segregate to types independently associated with maternal factors, infection parameters, and birth outcomes. The association of some var2csa sequence types with indicators of pathogenesis should motivate vaccine efforts to further identify and target VAR2CSA epitopes associated with maternal morbidity and poor birth outcomes.
Collapse
Affiliation(s)
- Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.T.); (N.W.L.); (V.U.)
| | - Stephen Scott
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA;
| | - Simon O. Owino
- Boehringer Ingelheim Animal Health, Athens, GA 30601, USA;
| | - David S. Campo
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.T.); (N.W.L.); (V.U.)
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.T.); (N.W.L.); (V.U.)
| | - Julie M. Moore
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA
| | - David S. Peterson
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA;
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Doritchamou JY, Renn JP, Jenkins B, Fried M, Duffy PE. A single full-length VAR2CSA ectodomain variant purifies broadly neutralizing antibodies against placental malaria isolates. eLife 2022; 11:76264. [PMID: 35103596 PMCID: PMC8959597 DOI: 10.7554/elife.76264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Placental malaria (PM) is a deadly syndrome most frequent and severe in first pregnancies. PM results from accumulation of Plasmodium falciparum-infected erythrocytes (IE) that express the surface antigen VAR2CSA and bind to chondroitin sulfate A (CSA) in the placenta. Women become PM-resistant over successive pregnancies as they develop anti-adhesion and anti-VAR2CSA antibodies, supporting VAR2CSA as the leading PM-vaccine candidate. However, the first VAR2CSA subunit vaccines failed to induce broadly neutralizing antibody and it is known that naturally acquired antibodies target both variant-specific and conserved epitopes. It is crucial to determine whether effective vaccines will require incorporation of many or only a single VAR2CSA variants. Here, IgG from multigravidae was sequentially purified on five full-length VAR2CSA ectodomain variants, thereby depleting IgG reactivity to each. The five VAR2CSA variants purified ~0.7% of total IgG and yielded both strain-transcending and strain-specific reactivity to VAR2CSA and IE-surface antigen. In two independent antibody purification/depletion experiments with permutated order of VAR2CSA variants, IgG purified on the first VAR2CSA antigen displayed broad cross-reactivity to both recombinant and native VAR2CSA variants, and inhibited binding of all isolates to CSA. IgG remaining after depletion on all variants showed significantly reduced binding-inhibition activity compared to initial total IgG. These findings demonstrate that a single VAR2CSA ectodomain variant displays conserved epitopes that are targeted by neutralizing (or binding-inhibitory) antibodies shared by multiple parasite strains, including maternal isolates. This suggests that a broadly effective PM-vaccine can be achieved with a limited number of VAR2CSA variants. Contracting malaria during pregnancy – especially a first pregnancy – can lead to a severe, placental form of the disease that is often fatal. Red blood cells infected with the malaria parasite Plasmodium falciparum display a protein, VAR2CSA, which can recognize and bind CSA molecules present on placental cells and in placental blood spaces. This leads to the infected blood cells accumulating in the placenta and inducing harmful inflammation. Having been exposed to the parasite in prior pregnancies generates antibodies that target VAR2CSA, stopping the infected blood cells from latching onto placental CSA or tagging them for immune destruction. Overall, this makes placental malaria less severe in following pregnancies, and suggests that vaccines could be developed based on VAR2CSA. However, this protein has regions that can vary in structure, meaning that P. falciparaum can generate many VAR2CSA variants. Individuals exposed to the parasite naturally generate antibodies that block a wide array of variants from attaching to CSA. In contrast, first-generation vaccines based on VAR2CSA fragments have only induced variant-specific antibodies, therefore offering limited protection against infection. As a response, Doritchamou et al. set out to find VAR2CSA structures that could be recognized by antibodies targeting an array of variants. Blood was obtained from women who had had multiple pregnancies and were immune to malaria. Their plasma was passed over five different large VAR2CSA variants in order to isolate and purify antibodies that attached to these structures. Doritchamou et al. found that antibodies binding to individual VAR2CSA structures could also recognise a wide array of VAR2CSA variants and blocked all tested parasites from sticking to CSA. While further research is needed, these findings highlight antibodies that cross-react to diverse VAR2CSA variants and could be used to design more effective vaccines targeting placental malaria.
Collapse
Affiliation(s)
- Justin Ya Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Jonathan P Renn
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Bethany Jenkins
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| |
Collapse
|
10
|
Nordmaj MA, Roberts ME, Sachse ES, Dagil R, Andersen AP, Skeltved N, Grunddal KV, Erdoğan SM, Choudhary S, Gustsavsson T, Ørum-Madsen MS, Moskalev I, Tian W, Yang Z, Clausen TM, Theander TG, Daugaard M, Nielsen MA, Salanti A. Development of a bispecific immune engager using a recombinant malaria protein. Cell Death Dis 2021; 12:353. [PMID: 33824272 PMCID: PMC8024270 DOI: 10.1038/s41419-021-03611-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 11/20/2022]
Abstract
As an immune evasion and survival strategy, the Plasmodium falciparum malaria parasite has evolved a protein named VAR2CSA. This protein mediates sequestration of infected red blood cells in the placenta through the interaction with a unique carbohydrate abundantly and exclusively present in the placenta. Cancer cells were found to share the same expression of this distinct carbohydrate, termed oncofetal chondroitin sulfate on their surface. In this study we have used a protein conjugation system to produce a bispecific immune engager, V-aCD3, based on recombinant VAR2CSA as the cancer targeting moiety and an anti-CD3 single-chain variable fragment linked to a single-chain Fc as the immune engager. Conjugation of these two proteins resulted in a single functional moiety that induced immune mediated killing of a broad range of cancer cells in vitro and facilitated tumor arrest in an orthotopic bladder cancer xenograft model.
Collapse
Affiliation(s)
- Mie A Nordmaj
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morgan E Roberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emilie S Sachse
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Poder Andersen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nanna Skeltved
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kaare V Grunddal
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sayit Mahmut Erdoğan
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias Gustsavsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maj Sofie Ørum-Madsen
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Weihua Tian
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas M Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Daugaard
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
11
|
Ma R, Lian T, Huang R, Renn JP, Petersen JD, Zimmerberg J, Duffy PE, Tolia NH. Structural basis for placental malaria mediated by Plasmodium falciparum VAR2CSA. Nat Microbiol 2021; 6:380-391. [PMID: 33452495 PMCID: PMC7914210 DOI: 10.1038/s41564-020-00858-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023]
Abstract
Plasmodium falciparum VAR2CSA binds to chondroitin sulfate A (CSA) on the surface of the syncytiotrophoblast during placental malaria. This interaction facilitates placental sequestration of malaria parasites resulting in severe health outcomes for both the mother and her offspring. Furthermore, CSA is presented by diverse cancer cells and specific targeting of cells by VAR2CSA may become a viable approach for cancer treatment. In the present study, we determined the cryo-electron microscopy structures of the full-length ectodomain of VAR2CSA from P. falciparum strain NF54 in complex with CSA, and VAR2CSA from a second P. falciparum strain FCR3. The architecture of VAR2CSA is composed of a stable core flanked by a flexible arm. CSA traverses the core domain by binding within two channels and CSA binding does not induce major conformational changes in VAR2CSA. The CSA-binding elements are conserved across VAR2CSA variants and are flanked by polymorphic segments, suggesting immune selection outside the CSA-binding sites. This work provides paths for developing interventions against placental malaria and cancer.
Collapse
Affiliation(s)
- Rui Ma
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rick Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan P. Renn
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer D. Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Patrick E. Duffy
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Correspondence: (N.H.T.)
| |
Collapse
|
12
|
Gamain B, Chêne A, Viebig NK, Tuikue Ndam N, Nielsen MA. Progress and Insights Toward an Effective Placental Malaria Vaccine. Front Immunol 2021; 12:634508. [PMID: 33717176 PMCID: PMC7947914 DOI: 10.3389/fimmu.2021.634508] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
In areas where Plasmodium falciparum transmission is endemic, clinical immunity against malaria is progressively acquired during childhood and adults are usually protected against the severe clinical consequences of the disease. Nevertheless, pregnant women, notably during their first pregnancies, are susceptible to placental malaria and the associated serious clinical outcomes. Placental malaria is characterized by the massive accumulation of P. falciparum infected erythrocytes and monocytes in the placental intervillous spaces leading to maternal anaemia, hypertension, stillbirth and low birth weight due to premature delivery, and foetal growth retardation. Remarkably, the prevalence of placental malaria sharply decreases with successive pregnancies. This protection is associated with the development of antibodies directed towards the surface of P. falciparum-infected erythrocytes from placental origin. Placental sequestration is mediated by the interaction between VAR2CSA, a member of the P. falciparum erythrocyte membrane protein 1 family expressed on the infected erythrocytes surface, and the placental receptor chondroitin sulfate A. VAR2CSA stands today as the leading candidate for a placental malaria vaccine. We recently reported the safety and immunogenicity of two VAR2CSA-derived placental malaria vaccines (PRIMVAC and PAMVAC), spanning the chondroitin sulfate A-binding region of VAR2CSA, in both malaria-naïve and P. falciparum-exposed non-pregnant women in two distinct Phase I clinical trials (ClinicalTrials.gov, NCT02658253 and NCT02647489). This review discusses recent advances in placental malaria vaccine development, with a focus on the recent clinical data, and discusses the next clinical steps to undertake in order to better comprehend vaccine-induced immunity and accelerate vaccine development.
Collapse
Affiliation(s)
- Benoît Gamain
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Arnaud Chêne
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | | | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
13
|
Tomlinson A, Semblat JP, Gamain B, Chêne A. VAR2CSA-Mediated Host Defense Evasion of Plasmodium falciparum Infected Erythrocytes in Placental Malaria. Front Immunol 2021; 11:624126. [PMID: 33633743 PMCID: PMC7900151 DOI: 10.3389/fimmu.2020.624126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/04/2022] Open
Abstract
Over 30 million women living in P. falciparum endemic areas are at risk of developing malaria during pregnancy every year. Placental malaria is characterized by massive accumulation of infected erythrocytes in the intervillous space of the placenta, accompanied by infiltration of immune cells, particularly monocytes. The consequent local inflammation and the obstruction of the maternofetal exchanges can lead to severe clinical outcomes for both mother and child. Even if protection against the disease can gradually be acquired following successive pregnancies, the malaria parasite has developed a large panel of evasion mechanisms to escape from host defense mechanisms and manipulate the immune system to its advantage. Infected erythrocytes isolated from placentas of women suffering from placental malaria present a unique phenotype and express the pregnancy-specific variant VAR2CSA of the Plasmodium falciparum Erythrocyte Membrane Protein (PfEMP1) family at their surface. The polymorphic VAR2CSA protein is able to mediate the interaction of infected erythrocytes with a variety of host cells including placental syncytiotrophoblasts and leukocytes but also with components of the immune system such as non-specific IgM. This review summarizes the described VAR2CSA-mediated host defense evasion mechanisms employed by the parasite during placental malaria to ensure its survival and persistence.
Collapse
Affiliation(s)
- Alice Tomlinson
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Arnaud Chêne
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
14
|
Doritchamou JYA, Suurbaar J, Tuikue Ndam N. Progress and new horizons toward a VAR2CSA-based placental malaria vaccine. Expert Rev Vaccines 2021; 20:215-226. [PMID: 33472449 DOI: 10.1080/14760584.2021.1878029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Several malaria vaccines are under various phases of development with some promising results. In placental malaria (PM) a deliberately anti-disease approach is considered as many studies have underlined the key role of VAR2CSA protein, which therefore represents the leading vaccine candidate. However, evidence indicates that VAR2CSA antigenic polymorphism remains an obstacle to overcome.Areas covered: This review analyzes the progress made thus far in developing a VAR2CSA-based vaccine, and addresses the current issues and challenges that must be overcome to develop an effective PM vaccine.Expert opinion: Phase I trials of PAMVAC and PRIMVAC VAR2CSA vaccines have shown more or less satisfactory results with regards to safety and immunogenicity. The second generation of VAR2CSA-based vaccines could benefit from optimization approaches to broaden the activity spectrum against various placenta-binding isolates through continued advances in the structural understanding of the interaction with CSA.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Suurbaar
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| | - Nicaise Tuikue Ndam
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
15
|
Bewley MC, Gautam L, Jagadeeshaprasad MG, Gowda DC, Flanagan JM. Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding. J Biol Chem 2020; 295:18589-18603. [PMID: 33122198 PMCID: PMC7939466 DOI: 10.1074/jbc.ra120.014676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
VAR2CSA is the placental-malaria-specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria.
Collapse
Affiliation(s)
- Maria C Bewley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Lovely Gautam
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mashanipalya G Jagadeeshaprasad
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| |
Collapse
|
16
|
Optimization of rVAR2-Based Isolation of Cancer Cells in Blood for Building a Robust Assay for Clinical Detection of Circulating Tumor Cells. Int J Mol Sci 2020; 21:ijms21072401. [PMID: 32244341 PMCID: PMC7178266 DOI: 10.3390/ijms21072401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Early detection and monitoring of cancer progression is key to successful treatment. Therefore, much research is invested in developing technologies, enabling effective and valuable use of non-invasive liquid biopsies. This includes the detection and analysis of circulating tumor cells (CTCs) from blood samples. Recombinant malaria protein VAR2CSA (rVAR2) binds a unique chondroitin sulfate modification present on the vast majority of cancers and thereby holds promise as a near-universal tumor cell-targeting reagent to isolate CTCs from complex blood samples. This study describes a technical approach for optimizing the coupling of rVAR2 to magnetic beads and the development of a CTC isolation platform targeting a range of different cancer cell lines. We investigate both direct and indirect approaches for rVAR2-mediated bead retrieval of cancer cells and conclude that an indirect capture approach is most effective for rVAR2-based cancer cell retrieval.
Collapse
|
17
|
Stringent Selection of Knobby Plasmodium falciparum-Infected Erythrocytes during Cytoadhesion at Febrile Temperature. Microorganisms 2020; 8:microorganisms8020174. [PMID: 31991814 PMCID: PMC7074740 DOI: 10.3390/microorganisms8020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/17/2022] Open
Abstract
Changes in the erythrocyte membrane induced by Plasmodium falciparum invasion allow cytoadhesion of infected erythrocytes (IEs) to the host endothelium, which can lead to severe complications. Binding to endothelial cell receptors (ECRs) is mainly mediated by members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, encoded by var genes. Malaria infection causes several common symptoms, with fever being the most apparent. In this study, the effects of febrile conditions on cytoadhesion of predominately knobless erythrocytes infected with the laboratory isolate IT4 to chondroitin-4-sulfate A (CSA), intercellular adhesion molecule 1 (ICAM-1), and CD36 were investigated. IEs enriched for binding to CSA at 40 °C exhibited significantly increased binding capacity relative to parasites enriched at 37 °C. This interaction was due to increased var2csa expression and trafficking of the corresponding PfEMP1 to the IE surface as well as to a selection of knobby IEs. Furthermore, the enrichment of IEs to ICAM-1 at 40 °C also led to selection of knobby IEs over knobless IEs, whereas enrichment on CD36 did not lead to a selection. In summary, these findings demonstrate that knobs are crucial for parasitic survival in the host, especially during fever episodes, and thus, that selection pressure on the formation of knobs could be controlled by the host.
Collapse
|
18
|
Gangnard S, Chêne A, Dechavanne S, Srivastava A, Avril M, Smith JD, Gamain B. VAR2CSA binding phenotype has ancient origin and arose before Plasmodium falciparum crossed to humans: implications in placental malaria vaccine design. Sci Rep 2019; 9:16978. [PMID: 31740695 PMCID: PMC6861233 DOI: 10.1038/s41598-019-53334-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
VAR2CSA is a leading candidate for developing a placental malaria (PM) vaccine that would protect pregnant women living in malaria endemic areas against placental infections and improve birth outcomes. Two VAR2CSA-based PM vaccines are currently under clinical trials, but it is still unclear if the use of a single VAR2CSA variant will be sufficient to induce a broad enough humoral response in humans to cross-react with genetically diverse parasite populations. Additional immuno-focusing vaccine strategies may therefore be required to identify functionally conserved antibody epitopes in VAR2CSA. We explored the possibility that conserved epitopes could exist between VAR2CSA from the chimpanzee parasite Plasmodium reichenowi and Plasmodium falciparum sequences. Making use of VAR2CSA recombinant proteins originating from both species, we showed that VAR2CSA from P. reichenowi (Pr-VAR2CSA) binds to the placental receptor CSA with high specificity and affinity. Antibodies raised against Pr-VAR2CSA were able to recognize native VAR2CSA from different P. falciparum genotypes and to inhibit the interaction between CSA and P. falciparum-infected erythrocytes expressing different VAR2CSA variants. Our work revealed the existence of cross-species inhibitory epitopes in VAR2CSA and calls for pre-clinical studies assessing the efficacy of novel VAR2CSA-based cross-species boosting regimens.
Collapse
Affiliation(s)
- Stéphane Gangnard
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, F-75015, Paris, France.,Laboratory of excellence GR-Ex, F-75015, Paris, France
| | - Arnaud Chêne
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, F-75015, Paris, France.,Laboratory of excellence GR-Ex, F-75015, Paris, France
| | - Sébastien Dechavanne
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, F-75015, Paris, France.,Laboratory of excellence GR-Ex, F-75015, Paris, France
| | - Anand Srivastava
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, F-75015, Paris, France.,Laboratory of excellence GR-Ex, F-75015, Paris, France
| | - Marion Avril
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, WA, 98109, USA.,Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Benoît Gamain
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France. .,Institut National de la Transfusion Sanguine, F-75015, Paris, France. .,Laboratory of excellence GR-Ex, F-75015, Paris, France.
| |
Collapse
|
19
|
Antibodies to Cryptic Epitopes in Distant Homologues Underpin a Mechanism of Heterologous Immunity between Plasmodium vivax PvDBP and Plasmodium falciparum VAR2CSA. mBio 2019; 10:mBio.02343-19. [PMID: 31594821 PMCID: PMC6786876 DOI: 10.1128/mbio.02343-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this work, we describe a molecular mechanism of heterologous immunity between two distant species of Plasmodium. Our results suggest a mechanism that subverts the classic parasite strategy of presenting highly polymorphic epitopes in surface antigens to evade immunity to that parasite. This alternative immune pathway can be exploited to protect pregnant women from falciparum placental malaria by designing vaccines to cryptic epitopes that elicit broadly inhibitory antibodies against variant parasite strains. Many pathogens evolve extensive genetic variation in virulence proteins as a strategy to evade host immunity. This poses a significant challenge for the host to develop broadly neutralizing antibodies. In Plasmodium falciparum, we show that a mechanism to circumvent this challenge is to elicit antibodies to cryptic epitopes that are not under immune pressure. We previously discovered that antibodies to the Plasmodium vivax invasion protein, PvDBP, cross-react with P. falciparum VAR2CSA, a distantly related virulence factor that mediates placental malaria. Here, we describe the molecular mechanism underlying this cross-species immunity. We identified an epitope in subdomain 1 (SD1) within the Duffy binding-like (DBL) domain of PvDBP that gives rise to cross-reactive antibodies to VAR2CSA and show that human antibodies affinity purified against a synthetic SD1 peptide block parasite adhesion to chondroitin sulfate A (CSA) in vitro. The epitope in SD1 is subdominant and highly conserved in PvDBP, and in turn, SD1 antibodies target cryptic epitopes in P. falciparum VAR2CSA. The epitopes in VAR2CSA recognized by vivax-derived SD1 antibodies (of human and mouse origin) are distinct from those recognized by VAR2CSA immune serum. We mapped two peptides in the DBL5ε domain of VAR2CSA that are recognized by SD1 antibodies. Both peptides map to regions outside the immunodominant sites, and antibodies to these peptides are not elicited following immunization with VAR2CSA or natural infection with P. falciparum in pregnancy, consistent with the cryptic nature of these target epitopes.
Collapse
|
20
|
Chêne A, Gangnard S, Guadall A, Ginisty H, Leroy O, Havelange N, Viebig NK, Gamain B. Preclinical immunogenicity and safety of the cGMP-grade placental malaria vaccine PRIMVAC. EBioMedicine 2019; 42:145-156. [PMID: 30885725 PMCID: PMC6491931 DOI: 10.1016/j.ebiom.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 11/28/2022] Open
Abstract
Background VAR2CSA is the lead antigen for developing a vaccine that would protect pregnant women against placental malaria. A multi-system feasibility study has identified E. coli as a suitable bacterial expression platform allowing the production of recombinant VAR2CSA-DBL1x-2x (PRIMVAC) to envisage a prompt transition to current Good Manufacturing Practice (cGMP) vaccine production. Methods Extensive process developments were undertaken to produce cGMP grade PRIMVAC to permit early phase clinical trials. PRIMVAC stability upon storage was assessed over up to 3 years. A broad toxicology investigation was carried out in rats allowing meanwhile the analysis of PRIMVAC immunogenicity. Findings We describe the successful cGMP production of 4. 65 g of PRIMVAC. PRIMVAC drug product was stable and potent for up to 3 years upon storage at −20 °C and showed an absence of toxicity in rats. PRIMVAC adjuvanted with Alhydrogel® or GLA-SE was able to generate antibodies able to recognize VAR2CSA expressed at the surface of erythrocytes infected with different strains. These antibodies also inhibit the interaction of the homologous NF54-CSA strain and to a lower extend of heterologous strains to CSA. Interpretation This work paved the way for the clinical development of an easily scalable low cost effective vaccine that could protect against placental malaria and prevent an estimated 10,000 maternal and 200,000 infant deaths annually. Fund This work was supported by a grant from the Bundesministerium für Bildung und Forschung (BMBF), Germany through Kreditanstalt für Wiederaufbau (KfW) (Reference No: 202060457) and through funding from Irish Aid, Department of Foreign Affairs and Trade, Ireland.
Collapse
Affiliation(s)
- Arnaud Chêne
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Severe Malaria Pathogenesis group, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Stéphane Gangnard
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Severe Malaria Pathogenesis group, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Anna Guadall
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Severe Malaria Pathogenesis group, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Hervé Ginisty
- GTP Technology, l'Occitane, 31670 Labège, Cedex, France
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany
| | - Nicolas Havelange
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany
| | - Benoît Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Severe Malaria Pathogenesis group, Laboratoire d'Excellence GR-Ex, Paris, France.
| |
Collapse
|
21
|
Seitz J, Morales-Prieto DM, Favaro RR, Schneider H, Markert UR. Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne) 2019; 10:98. [PMID: 30930847 PMCID: PMC6405475 DOI: 10.3389/fendo.2019.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Malaria in pregnancy still constitutes a particular medical challenge in tropical and subtropical regions. Of the five Plasmodium species that are pathogenic to humans, infection with Plasmodium falciparum leads to fulminant progression of the disease with massive impact on pregnancy. Severe anemia of the mother, miscarriage, stillbirth, preterm delivery and intrauterine growth restriction (IUGR) with reduced birth weight are frequent complications that lead to more than 10,000 maternal and 200,000 perinatal deaths annually in sub-Saharan Africa alone. P. falciparum can adhere to the placenta via the expression of the surface antigen VAR2CSA, which leads to sequestration of infected erythrocytes in the intervillous space. This process induces a placental inflammation with involvement of immune cells and humoral factors. Especially, monocytes get activated and change the release of soluble mediators, including a variety of cytokines. This proinflammatory environment contributes to disorders of angiogenesis, blood flow, autophagy, and nutrient transport in the placenta and erythropoiesis. Collectively, they impair placental functions and, consequently, fetal growth. The discovery that women in endemic regions develop a certain immunity against VAR2CSA-expressing parasites with increasing number of pregnancies has redefined the understanding of malaria in pregnancy and offers strategies for the development of vaccines. The following review gives an overview of molecular processes in P. falciparum infection in pregnancy which may be involved in the development of IUGR.
Collapse
Affiliation(s)
- Johanna Seitz
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | - Rodolfo R. Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Henning Schneider
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Udo Rudolf Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
22
|
Kim Y, Kang H, Powathil G, Kim H, Trucu D, Lee W, Lawler S, Chaplain M. Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma. PLoS One 2018; 13:e0204865. [PMID: 30286133 PMCID: PMC6171904 DOI: 10.1371/journal.pone.0204865] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
The cellular dispersion and therapeutic control of glioblastoma, the most aggressive type of primary brain cancer, depends critically on the migration patterns after surgery and intracellular responses of the individual cancer cells in response to external biochemical cues in the microenvironment. Recent studies have shown that miR-451 regulates downstream molecules including AMPK/CAB39/MARK and mTOR to determine the balance between rapid proliferation and invasion in response to metabolic stress in the harsh tumor microenvironment. Surgical removal of the main tumor is inevitably followed by recurrence of the tumor due to inaccessibility of dispersed tumor cells in normal brain tissue. In order to address this complex process of cell proliferation and invasion and its response to conventional treatment, we propose a mathematical model that analyzes the intracellular dynamics of the miR-451-AMPK- mTOR-cell cycle signaling pathway within a cell. The model identifies a key mechanism underlying the molecular switches between proliferative phase and migratory phase in response to metabolic stress in response to fluctuating glucose levels. We show how up- or down-regulation of components in these pathways affects the key cellular decision to infiltrate or proliferate in a complex microenvironment in the absence and presence of time delays and stochastic noise. Glycosylated chondroitin sulfate proteoglycans (CSPGs), a major component of the extracellular matrix (ECM) in the brain, contribute to the physical structure of the local brain microenvironment but also induce or inhibit glioma invasion by regulating the dynamics of the CSPG receptor LAR as well as the spatiotemporal activation status of resident astrocytes and tumor-associated microglia. Using a multi-scale mathematical model, we investigate a CSPG-induced switch between invasive and non-invasive tumors through the coordination of ECM-cell adhesion and dynamic changes in stromal cells. We show that the CSPG-rich microenvironment is associated with non-invasive tumor lesions through LAR-CSGAG binding while the absence of glycosylated CSPGs induce the critical glioma invasion. We illustrate how high molecular weight CSPGs can regulate the exodus of local reactive astrocytes from the main tumor lesion, leading to encapsulation of non-invasive tumor and inhibition of tumor invasion. These different CSPG conditions also change the spatial profiles of ramified and activated microglia. The complex distribution of CSPGs in the tumor microenvironment can determine the nonlinear invasion behaviors of glioma cells, which suggests the need for careful therapeutic strategies.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Hyunji Kang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Gibin Powathil
- Department of Mathematics, Swansea University, Swansea, United Kingdom
| | - Hyeongi Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Dumitru Trucu
- Division of Mathematics, University of Dundee, Dundee, United Kingdom
| | - Wanho Lee
- National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Sean Lawler
- Department of neurosurgery, Brigham and Women’s Hospital & Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark Chaplain
- School of Mathematics and Statistics, Mathematical Institute, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
23
|
Zhang B, Cheng G, Zheng M, Han J, Wang B, Li M, Chen J, Xiao T, Zhang J, Cai L, Li S, Fan X. Targeted delivery of doxorubicin by CSA-binding nanoparticles for choriocarcinoma treatment. Drug Deliv 2018; 25:461-471. [PMID: 29426237 PMCID: PMC6058719 DOI: 10.1080/10717544.2018.1435750] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gestational trophoblastic neoplasia (GTN) can result from the over-proliferation of trophoblasts. Treatment of choriocarcinoma, the most aggressive GTN, currently requires high doses of systemic chemotherapeutic agents, which result in indiscriminate drug distribution and severe toxicity. To overcome these disadvantages and enhance the chemotherapeutic efficacy, chondroitin sulfate A (CSA)-binding nanoparticles were developed for the targeted delivery of doxorubicin (DOX) to choriocarcinoma cells using a synthetic CSA-binding peptide (CSA-BP), derived from malarial protein, which specifically binds to the CSA exclusively expressed in the placental trophoblast. CSA-BP-conjugated nanoparticles rapidly bonded to choriocarcinoma (JEG3) cells and were efficiently internalized into the lysosomes. Moreover, CSA-BP modification significantly increased the anti-cancer activity of the DOX-loaded nanoparticles in vitro. Intravenous injections of CSA-BP-conjugated nanoparticles loaded with indocyanine green (CSA-INPs) were rapidly localized to the tumor. The CSA-targeted nanoparticles loaded with DOX (CSA-DNPs) strongly inhibited primary tumor growth and, more importantly, significantly suppressed metastasis in vivo. Collectively, our results highlight the potential of the CSA-BP-decorated nanoparticles as an alternative targeted delivery system of chemotherapeutic agents for treating choriocarcinoma and for developing new GTN therapies based on drug targeting.
Collapse
Affiliation(s)
- Baozhen Zhang
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Guogang Cheng
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Mingbin Zheng
- b Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics , Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Jinyu Han
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Baobei Wang
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Mengxia Li
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Jie Chen
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Tianxia Xiao
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Jian Zhang
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Lintao Cai
- b Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics , Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Shoujun Li
- c Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases , Guangzhou , China.,d College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Xiujun Fan
- a Laboratory for Reproductive Health , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| |
Collapse
|
24
|
Zhang B, Tan L, Yu Y, Wang B, Chen Z, Han J, Li M, Chen J, Xiao T, Ambati BK, Cai L, Yang Q, Nayak NR, Zhang J, Fan X. Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice. Am J Cancer Res 2018; 8:2765-2781. [PMID: 29774074 PMCID: PMC5957008 DOI: 10.7150/thno.22904] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/09/2018] [Indexed: 11/26/2022] Open
Abstract
Rationale: The availability of therapeutics to treat pregnancy complications is severely lacking, mainly due to the risk of harm to the fetus. In placental malaria, Plasmodium falciparum-infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) on the surfaces of trophoblasts. Based on this principle, we have developed a method for targeted delivery of payloads to the placenta using a synthetic placental CSA-binding peptide (plCSA-BP) derived from VAR2CSA, a CSA-binding protein expressed on IEs. Methods: A biotinylated plCSA-BP was used to examine the specificity of plCSA-BP binding to mouse and human placental tissue in tissue sections in vitro. Different nanoparticles, including plCSA-BP-conjugated nanoparticles loaded with indocyanine green (plCSA-INPs) or methotrexate (plCSA-MNPs), were administered intravenously to pregnant mice to test their efficiency at drug delivery to the placenta in vivo. The tissue distribution and localization of the plCSA-INPs were monitored in live animals using an IVIS imaging system. The effect of plCSA-MNPs on fetal and placental development and pregnancy outcome were examined using a small-animal high-frequency ultrasound (HFUS) imaging system, and the concentrations of methotrexate in fetal and placental tissues were measured using high-performance liquid chromatography (HPLC). Results: plCSA-BP binds specifically to trophoblasts and not to other cell types in the placenta or to CSA-expressing cells in other tissues. Moreover, we found that intravenously administered plCSA-INPs accumulate in the mouse placenta, and ex vivo analysis of the fetuses and placentas confirmed placenta-specific delivery of these nanoparticles. We also demonstrate successful delivery of methotrexate specifically to placental cells by plCSA-BP-conjugated nanoparticles, resulting in dramatic impairment of placental and fetal development. Importantly, plCSA-MNPs treatment had no apparent adverse effects on maternal tissues. Conclusion: These results demonstrate that plCSA-BP-guided nanoparticles could be used for the targeted delivery of payloads to the placenta and serve as a novel placenta-specific drug delivery option.
Collapse
|
25
|
Patel JC, Hathaway NJ, Parobek CM, Thwai KL, Madanitsa M, Khairallah C, Kalilani-Phiri L, Mwapasa V, Massougbodji A, Fievet N, Bailey JA, Ter Kuile FO, Deloron P, Engel SM, Taylor SM, Juliano JJ, Tuikue Ndam N, Meshnick SR. Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade. Sci Rep 2017; 7:7768. [PMID: 28801627 PMCID: PMC5554196 DOI: 10.1038/s41598-017-04737-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/30/2017] [Indexed: 11/17/2022] Open
Abstract
Pregnancy associated malaria (PAM) causes adverse pregnancy and birth outcomes owing to Plasmodium falciparum accumulation in the placenta. Placental accumulation is mediated by P. falciparum protein VAR2CSA, a leading PAM-specific vaccine target. The extent of its antigen diversity and impact on clinical outcomes remain poorly understood. Through amplicon deep-sequencing placental malaria samples from women in Malawi and Benin, we assessed sequence diversity of VAR2CSA’s ID1-DBL2x region, containing putative vaccine targets and estimated associations of specific clades with adverse birth outcomes. Overall, var2csa diversity was high and haplotypes subdivided into five clades, the largest two defined by homology to parasites strains, 3D7 or FCR3. Across both cohorts, compared to women infected with only FCR3-like variants, women infected with only 3D7-like variants delivered infants with lower birthweight (difference: −267.99 g; 95% Confidence Interval [CI]: −466.43 g,−69.55 g) and higher odds of low birthweight (<2500 g) (Odds Ratio [OR] 5.41; 95% CI:0.99,29.52) and small-for-gestational-age (OR: 3.65; 95% CI: 1.01,13.38). In two distinct malaria-endemic African settings, parasites harboring 3D7-like variants of VAR2CSA were associated with worse birth outcomes, supporting differential effects of infection with specific parasite strains. The immense diversity coupled with differential clinical effects of this diversity suggest that an effective VAR2CSA-based vaccine may require multivalent activity.
Collapse
Affiliation(s)
- Jaymin C Patel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Christian M Parobek
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, USA
| | - Kyaw L Thwai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Mwayiwawo Madanitsa
- College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carole Khairallah
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Victor Mwapasa
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le paludisme associé à la Grossesse et à l'Enfance, Université d'Abomey-Calavi, Cotonou, Benin
| | - Nadine Fievet
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Jeffery A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - Feiko O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philippe Deloron
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Steve M Taylor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.,Division of Infectious Diseases, Duke University Medical Center and Duke Global Health Institute, Durham, NC, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, USA.,Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Nicaise Tuikue Ndam
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
26
|
Sungwa M, Susan T, Mikkel JC, Adolph KR, Boniface MS, Grundtvig TT, Ali S, Agertoug NM, Frederik SA. A VAR2CSA:CSP conjugate capable of inducing dual specificity antibody responses. Afr Health Sci 2017; 17:373-381. [PMID: 29062332 DOI: 10.4314/ahs.v17i2.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vaccine antigens targeting specific P. falciparum parasite stages are under pre-clinical and clinical development. It seems plausible that vaccine with multiple specificities will offer higher protection. With this hypothesis, we exploited the Spy-Tag/SpyCatcher conjugation system to make a, post expression, dual antigen conjugate vaccine, comprising two clinically tested antigen candidates (CSP and VAR2CSA). METHODS The DBL1x-DBL2x-ID2a region of VAR2CSA was genetically fused with SpyTag at N-terminus. The full-length CSP antigen was genetically fused to C-terminal SpyCatcher peptide. The covalent interaction between SpyTag/SpyCatcher enables the formation of DBL1x-DBL2x-ID2a:CSP conjugate vaccine. Immunogenicity and quality of antibody responses induced by the conjugate vaccine, as well as a control CSP-SpyCatcher vaccine, was tested in BALB/c mice. RESULTS Serum samples obtained from mice immunized with the conjugate vaccine were able to recognize both untagged DBL1x-DBL2x-ID2a as well as CSP antigen. Moreover, the geometric mean anti-CSP antibody titer was 1.9-fold higher in serum (at day 35 and 55 post-first immunization) from mice immunized with the conjugate vaccine, as compared to mice receiving the control vaccine. CONCLUSION The data obtained in this study serves as proof-of-concept for the simultaneous induction of antibodies directed against individual antigen components in a dual stage anti-malaria vaccine.
Collapse
Affiliation(s)
- Matondo Sungwa
- Kilimanjaro Christian Medical University-College, and Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Thrane Susan
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Janitzek Christoph Mikkel
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Kavishe Reginald Adolph
- Kilimanjaro Christian Medical University-College, and Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Mwakalinga Steven Boniface
- Kilimanjaro Christian Medical University-College, and Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Theander Thor Grundtvig
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Salanti Ali
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Nielsen Morten Agertoug
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Sander Adam Frederik
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| |
Collapse
|
27
|
Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 2017; 16:613-624. [PMID: 28434376 DOI: 10.1080/14760584.2017.1322512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.
Collapse
Affiliation(s)
- Caroline Pehrson
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Ali Salanti
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Thor G Theander
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Morten A Nielsen
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| |
Collapse
|
28
|
|
29
|
Pehrson C, Heno KK, Adams Y, Resende M, Mathiesen L, Soegaard M, de Jongh WA, Theander TG, Salanti A, Nielsen MA. Comparison of functional assays used in the clinical development of a placental malaria vaccine. Vaccine 2016; 35:610-618. [PMID: 28012775 DOI: 10.1016/j.vaccine.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria are in clinical development. The purpose of this study was to evaluate the robustness and comparability of binding inhibition assays used in the clinical development of placental malaria vaccines. METHODS The ability of sera from animals immunised with different VAR2CSA constructs to inhibit IE binding to CSA was investigated in three in vitro assays using 96-well plates, petri dishes, capillary flow and an ex vivo placental perfusion assay. RESULTS The inter-assay variation was not uniform between assays and ranged from above ten-fold in the flow assay to two-fold in the perfusion assay. The intra-assay variation was highest in the petri dish assay. A positive correlation between IE binding avidity and the level of binding after antibody inhibition in the petri dish assay indicate that high avidity IE binding is more difficult to inhibit. The highest binding inhibition sensitivity was found in the 96-well and petri dish assays compared to the flow and perfusion assays where binding inhibition required higher antibody titers. CONCLUSIONS The inhibitory capacity of antibodies is not easily translated between assays and the high sensitivity of the 96-well and petri dish assays stresses the need for comparing serial dilutions of serum. Furthermore, IE binding avidity must be in the same range when comparing data from different days. There was an overall concordance in the capacity of antibody-mediated inhibition, when comparing the in vitro assays with the perfusion assay, which more closely represents in vivo conditions. Importantly the ID1-ID2a protein in a liposomal formulation, currently in a phase I trial, effectively induced antibodies that inhibited IE adhesion in placental tissue.
Collapse
Affiliation(s)
- Caroline Pehrson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Kristine K Heno
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark.
| | - Max Soegaard
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Willem A de Jongh
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| |
Collapse
|
30
|
Clausen TM, Pereira MA, Al Nakouzi N, Oo HZ, Agerbæk MØ, Lee S, Ørum-Madsen MS, Christensen AR, El-Naggar A, Grandgenett PM, Grem JL, Hollingsworth MA, Holst PJ, Theander T, Sorensen PH, Daugaard M, Salanti A. Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility. Mol Cancer Res 2016; 14:1288-1299. [PMID: 27655130 PMCID: PMC5136311 DOI: 10.1158/1541-7786.mcr-16-0103] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 01/21/2023]
Abstract
Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. IMPLICATIONS The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR.
Collapse
Affiliation(s)
- Thomas Mandel Clausen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Marina Ayres Pereira
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Nader Al Nakouzi
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Mette Ø Agerbæk
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sherry Lee
- Vancouver Prostate Centre, Vancouver, Canada
| | - Maj Sofie Ørum-Madsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
| | - Anders Riis Christensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Amal El-Naggar
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Paul M. Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean L. Grem
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter J. Holst
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thor Theander
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ali Salanti
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
31
|
Ayres Pereira M, Mandel Clausen T, Pehrson C, Mao Y, Resende M, Daugaard M, Riis Kristensen A, Spliid C, Mathiesen L, E. Knudsen L, Damm P, G. Theander T, R. Hansson S, A. Nielsen M, Salanti A. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog 2016; 12:e1005831. [PMID: 27556547 PMCID: PMC4996535 DOI: 10.1371/journal.ppat.1005831] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. Plasmodium falciparum is the most deadly malaria parasite, causing more than 500,000 deaths each year. The parasite infects the host’s red blood cells. In placental malaria infected red blood cells accumulate in placenta. The parasite protein VAR2CSA mediates this adherence, which causes complications for both mother and child. VAR2CSA binds a carbohydrate chain termed chondroitin sulfate (CS). CS is not a well-defined biochemical entity but constitute a family of oligosaccharides which each have unique sulfation patterns. The CS binding VAR2CSA is attached to proteoglycans expressed on the surface of placental cells. While much work has gone into understanding the nature of VAR2CSA and its interaction with placental CS, the protein to which the placental CS is attached is not known. To further the understanding of the molecular pathology of PM we characterized the CSPG receptor that the parasites adhere to by defining the exact proteoglycan that carries the placental CS. We further investigated the molecular and cellular consequences of VAR2CSA binding to the receptor. This work provides novel insights into the pathology of placental malaria and the nature of the parasite receptor. This may aid development of strategies to treat or prevent placental malaria.
Collapse
Affiliation(s)
- Marina Ayres Pereira
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Thomas Mandel Clausen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
- Vancouver Prostate Centre, Vancouver, BC, Canada
- * E-mail: (TMC); (AS)
| | - Caroline Pehrson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Yang Mao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Mafalda Resende
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | | | | | - Charlotte Spliid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth E. Knudsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Department of Obstetrics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Stefan R. Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University Hospital, Lund University, Lund, Sweden
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
- * E-mail: (TMC); (AS)
| |
Collapse
|
32
|
Sylvester B, Gasarasi DB, Aboud S, Tarimo D, Massawe S, Mpembeni R, Swedberg G. Prenatal exposure to Plasmodium falciparum increases frequency and shortens time from birth to first clinical malaria episodes during the first two years of life: prospective birth cohort study. Malar J 2016; 15:379. [PMID: 27448394 PMCID: PMC4957302 DOI: 10.1186/s12936-016-1417-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/04/2016] [Indexed: 11/23/2022] Open
Abstract
Background Prenatal exposure to Plasmodium falciparum affects development of protective immunity and susceptibility to subsequent natural challenges with similar parasite antigens. However, the nature of these effects has not been fully elucidated. The aim of this study was to determine the effect of prenatal exposure to P. falciparum on susceptibility to natural malaria infection, with a focus on median time from birth to first clinical malaria episode and frequency of clinical malaria episodes in the first 2 years of life. Methods A prospective birth cohort study was conducted in Rufiji district in Tanzania, between January 2013 and December 2015. Infants born to mothers with P. falciparum in the placenta at time of delivery were defined as exposed, and infants born to mothers without P. falciparum parasites in placenta were defined as unexposed. Placental infection was established by histological techniques. Out of 206 infants recruited, 41 were in utero exposed to P. falciparum and 165 infants were unexposed. All infants were monitored for onset of clinical malaria episodes in the first 2 years of life. The outcome measure was time from birth to first clinical malaria episode, defined by fever (≥37 °C) and microscopically determined parasitaemia. Median time to first clinical malaria episode between exposed and unexposed infants was assessed using Kaplan–Meier survival analysis and comparison was done by log rank. Association of clinical malaria episodes with prenatal exposure to P. falciparum was assessed by multivariate binary logistic regression. Comparative analysis of mean number of clinical malaria episodes between exposed and unexposed infants was done using independent sample t test. Results The effect of prenatal exposure to P. falciparum infection on clinical malaria episodes was statistically significant (Odds Ratio of 4.79, 95 % CI 2.21–10.38, p < 0.01) when compared to other confounding factors. Median time from birth to first clinical malaria episode for exposed and unexposed infants was 32 weeks (95 % CI 30.88–33.12) and 37 weeks (95 % CI 35.25–38.75), respectively, and the difference was statistically significant (p = 0.003). The mean number of clinical malaria episodes in exposed and unexposed infants was 0.51 and 0.30 episodes/infant, respectively, and the difference was statistically significant (p = 0.038). Conclusions Prenatal exposure to P. falciparum shortens time from birth to first clinical malaria episode and increases frequency of clinical malaria episodes in the first 2 years of life.
Collapse
Affiliation(s)
- Boniphace Sylvester
- Department of Parasitology and Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania.
| | - Dinah B Gasarasi
- Department of Parasitology and Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Said Aboud
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Donath Tarimo
- Department of Parasitology and Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Siriel Massawe
- Department of Obstetrics and Gynaecology, School of Medicine, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Rose Mpembeni
- Department of Community Medicine, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Gote Swedberg
- Department of Medical Biochemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Clausen TM, Pereira MA, Oo HZ, Resende M, Gustavson T, Mao Y, Sugiura N, Liew J, Fazli L, Theander TG, Daugaard M, Salanti A. Real-time and label free determination of ligand binding-kinetics to primary cancer tissue specimens; a novel tool for the assessment of biomarker targeting. SENSING AND BIO-SENSING RESEARCH 2016; 9:23-30. [PMID: 27441183 PMCID: PMC4942562 DOI: 10.1016/j.sbsr.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/30/2022] Open
Abstract
In clinical oncology, diagnosis and evaluation of optimal treatment strategies are mostly based on histopathological examination combined with immunohistochemical (IHC) expression analysis of cancer-associated antigens in formalin fixed paraffin-embedded (FFPE) tissue biopsies. However, informative IHC analysis depends on both the specificity and affinity of the binding reagent, which are inherently difficult to quantify in situ. Here we describe a label-free method that allows for the direct and real-time assessment of molecular binding kinetics in situ on FFPE tissue specimens using quartz crystal microbalance (QCM) enabled biosensor technology. We analysed the interaction between the rVAR2 protein and its placental-like chondroitin sulfate (pl-CS) receptor in primary human placenta tissue and in breast and prostate tumour specimens in situ. rVAR2 interacted with FFPE human placenta and cancer tissue with an affinity in the nanomolar range, and showed no detectable interaction with pl-CS negative normal tissue. We further validated the method by including analysis with the androgen receptor N-20 antibody (anti-AR). As the KD value produced by this method is independent of the number of epitopes available, this readout offers a quantitative and unbiased readout for in situ binding-avidity and amount of binding epitopes. In summary, this method adds a new and important dimension to classical IHC-based molecular pathology by adding information about the binding characteristics in biologically relevant conditions. This can potentially be used to select optimal biologics for diagnostic and for therapeutic applications as well as guide the development of novel high affinity binding drugs.
Collapse
Affiliation(s)
- Thomas Mandel Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Correspondence to: T.M. Clausen, Centre for Medical Parasitology, Bartholinsgade 2, 1356 Copenhagen, Denmark.Centre for Medical ParasitologyBartholinsgade 2Copenhagen1356Denmark
| | - Marina Ayres Pereira
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias Gustavson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Yang Mao
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Japan
| | - Janet Liew
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Correspondence to: M. Daugaard, Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.Vancouver Prostate CentreVancouverBCV6H 3Z6Canada
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
34
|
Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library. Glycoconj J 2016; 33:985-994. [DOI: 10.1007/s10719-016-9685-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
|
35
|
Pehrson C, Mathiesen L, Heno KK, Salanti A, Resende M, Dzikowski R, Damm P, Hansson SR, King CL, Schneider H, Wang CW, Lavstsen T, Theander TG, Knudsen LE, Nielsen MA. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue: a novel model of placental malaria. Malar J 2016; 15:292. [PMID: 27230523 PMCID: PMC4881162 DOI: 10.1186/s12936-016-1342-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Placental malaria occurs when Plasmodium falciparum infected erythrocytes sequester in the placenta. Placental parasite isolates bind to chondroitin sulphate A (CSA) by expression of VAR2CSA on the surface of infected erythrocytes, but may sequester by other VAR2CSA mediated mechanisms, such as binding to immunoglobulins. Furthermore, other parasite antigens have been associated with placental malaria. These findings have important implications for placental malaria vaccine design. The objective of this study was to adapt and describe a biologically relevant model of parasite adhesion in intact placental tissue. Results The ex vivo placental perfusion model was modified to study adhesion of infected erythrocytes binding to CSA, endothelial protein C receptor (EPCR) or a transgenic parasite where P. falciparum erythrocyte membrane protein 1 expression had been shut down. Infected erythrocytes expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. Conclusion The ex vivo model provides a novel way of studying receptor-ligand interactions and antibody mediated inhibition of binding in placental malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1342-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Pehrson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353, Copenhagen, Denmark
| | - Kristine K Heno
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Peter Damm
- Department of Obstetrics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University and Veterans Affairs Medical Center, Cleveland, USA
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian W Wang
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lisbeth E Knudsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353, Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
36
|
Thrane S, Janitzek CM, Matondo S, Resende M, Gustavsson T, de Jongh WA, Clemmensen S, Roeffen W, van de Vegte-Bolmer M, van Gemert GJ, Sauerwein R, Schiller JT, Nielsen MA, Theander TG, Salanti A, Sander AF. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J Nanobiotechnology 2016; 14:30. [PMID: 27117585 PMCID: PMC4847360 DOI: 10.1186/s12951-016-0181-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP components. RESULTS Genetic fusion of SpyTag or SpyCatcher to the N-terminus and/or C-terminus of the Acinetobacter phage AP205 capsid protein resulted in formation of stable, nonaggregated VLPs expressing one SpyCatcher, one SpyTag or two SpyTags per capsid protein. Mixing of spy-VLPs with eleven different vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22-88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5). CONCLUSIONS The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology's ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well as to efficiently break B cell self-tolerance. The spy-VLP-system may serve as a generic tool for the cost-effective development of effective VLP-vaccines against both infectious- and non-communicable diseases and could facilitate rapid and unbiased screening of vaccine candidate antigens.
Collapse
Affiliation(s)
- Susan Thrane
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christoph M Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sungwa Matondo
- Kilimanjaro Clinical Research Institute, KCMC, Moshi, Tanzania
| | - Mafalda Resende
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Stine Clemmensen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.,ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Will Roeffen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Geert Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
37
|
The Cryptosporidium parvum C-Type Lectin CpClec Mediates Infection of Intestinal Epithelial Cells via Interactions with Sulfated Proteoglycans. Infect Immun 2016; 84:1593-1602. [PMID: 26975991 DOI: 10.1128/iai.01410-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
The apicomplexan parasite Cryptosporidium causes significant diarrheal disease worldwide. Effective anticryptosporidial agents are lacking, in part because the molecular mechanisms underlying Cryptosporidium-host cell interactions are poorly understood. Previously, we identified and characterized a novel Cryptosporidium parvum C-type lectin domain-containing mucin-like glycoprotein, CpClec. In this study, we evaluated the mechanisms underlying interactions of CpClec with intestinal epithelial cells by using an Fc-tagged recombinant protein. CpClec-Fc displayed Ca(2+)-dependent, saturable binding to HCT-8 and Caco-2 cells and competitively inhibited C. parvum attachment to and infection of HCT-8 cells. Binding of CpClec-Fc was specifically inhibited by sulfated glycosaminoglycans, particularly heparin and heparan sulfate. Binding was reduced after the removal of heparan sulfate and following the inhibition of glycosaminoglycan synthesis or sulfation in HCT-8 cells. Like CpClec-Fc binding, C. parvum attachment to and infection of HCT-8 cells were inhibited by glycosaminoglycans and were reduced after heparan sulfate removal or inhibition of glycosaminoglycan synthesis or sulfation. Lastly, CpClec-Fc binding and C. parvum sporozoite attachment were significantly decreased in CHO cell mutants defective in glycosaminoglycan synthesis. Together, these results indicate that CpClec is a novel C-type lectin that mediates C. parvum attachment and infection via Ca(2+)-dependent binding to sulfated proteoglycans on intestinal epithelial cells.
Collapse
|
38
|
Ndam NT, Denoeud-Ndam L, Doritchamou J, Viwami F, Salanti A, Nielsen MA, Fievet N, Massougbodji A, Luty AJF, Deloron P. Protective Antibodies against Placental Malaria and Poor Outcomes during Pregnancy, Benin. Emerg Infect Dis 2016; 21:813-23. [PMID: 25898123 PMCID: PMC4412227 DOI: 10.3201/eid2105.141626] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immunity requires a vaccine that inhibits binding of infected erythrocytes to chondroitin sulfate. Placental malaria is caused by Plasmodium falciparum–infected erythrocytes that bind to placental tissue. Binding is mediated by VAR2CSA, a parasite antigen coded by the var gene, which interacts with chondroitin sulfate A (CSA). Consequences include maternal anemia and fetal growth retardation. Antibody-mediated immunity to placental malaria is acquired during successive pregnancies, but the target of VAR2CSA-specific protective antibodies is unclear. We assessed VAR2CSA-specific antibodies in pregnant women and analyzed their relationships with protection against placental infection, preterm birth, and low birthweight. Antibody responses to the N-terminal region of VAR2CSA during early pregnancy were associated with reduced risks for infections and low birthweight. Among women infected during pregnancy, an increase in CSA binding inhibition was associated with reduced risks for placental infection, preterm birth, and low birthweight. These data suggest that antibodies against VAR2CSA N-terminal region mediate immunity to placental malaria and associated outcomes. Our results validate current vaccine development efforts with VAR2CSA N-terminal constructs.
Collapse
MESH Headings
- Adult
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antibody Specificity/immunology
- Antigens, Protozoan/immunology
- Benin/epidemiology
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Female
- Follow-Up Studies
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Infant
- Infant, Newborn
- Malaria/epidemiology
- Malaria/immunology
- Malaria/parasitology
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Patient Outcome Assessment
- Placenta/parasitology
- Plasmodium falciparum/immunology
- Pregnancy
- Pregnancy Complications, Parasitic/epidemiology
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Outcome
- Protein Binding
- Risk Factors
- Young Adult
Collapse
|
39
|
Thrane S, Janitzek CM, Agerbæk MØ, Ditlev SB, Resende M, Nielsen MA, Theander TG, Salanti A, Sander AF. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA. PLoS One 2015; 10:e0143071. [PMID: 26599509 PMCID: PMC4657905 DOI: 10.1371/journal.pone.0143071] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA. This study demonstrates that the described Avi-L1 VLP-platform may serve as a versatile system for facilitating optimal VLP-display of large and complex vaccine antigens.
Collapse
Affiliation(s)
- Susan Thrane
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christoph M. Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse B. Ditlev
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mafalda Resende
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten A. Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adam F. Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
40
|
Salanti A, Clausen TM, Agerbæk MØ, Al Nakouzi N, Dahlbäck M, Oo HZ, Lee S, Gustavsson T, Rich JR, Hedberg BJ, Mao Y, Barington L, Pereira MA, LoBello J, Endo M, Fazli L, Soden J, Wang CK, Sander AF, Dagil R, Thrane S, Holst PJ, Meng L, Favero F, Weiss GJ, Nielsen MA, Freeth J, Nielsen TO, Zaia J, Tran NL, Trent J, Babcook JS, Theander TG, Sorensen PH, Daugaard M. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein. Cancer Cell 2015; 28:500-514. [PMID: 26461094 PMCID: PMC4790448 DOI: 10.1016/j.ccell.2015.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.
Collapse
Affiliation(s)
- Ali Salanti
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark.
| | - Thomas M Clausen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Mette Ø Agerbæk
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Nader Al Nakouzi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Madeleine Dahlbäck
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Sherry Lee
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Tobias Gustavsson
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Jamie R Rich
- Kairos Therapeutics, Inc., Vancouver, BC V6T 1Z3, Canada; Centre for Drug Research and Development, Vancouver, BC V6T 1Z3, Canada
| | - Bradley J Hedberg
- Kairos Therapeutics, Inc., Vancouver, BC V6T 1Z3, Canada; Centre for Drug Research and Development, Vancouver, BC V6T 1Z3, Canada
| | - Yang Mao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Line Barington
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Marina A Pereira
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Janine LoBello
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Makoto Endo
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Department of Anatomic Pathology, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Kyushu University, Fukuoka 819-0395, Japan
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Jo Soden
- Retrogenix Ltd., Crown House, Bingswood Estate, Whaley Bridge, High Peak SK23 7LY, UK
| | - Chris K Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Adam F Sander
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Robert Dagil
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Susan Thrane
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Peter J Holst
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Le Meng
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Francesco Favero
- Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby 2800, Denmark
| | - Glen J Weiss
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; Cancer Treatment Centers of America, Goodyear, AZ 85338, USA
| | - Morten A Nielsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Jim Freeth
- Retrogenix Ltd., Crown House, Bingswood Estate, Whaley Bridge, High Peak SK23 7LY, UK
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nhan L Tran
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Jeff Trent
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - John S Babcook
- Kairos Therapeutics, Inc., Vancouver, BC V6T 1Z3, Canada; Centre for Drug Research and Development, Vancouver, BC V6T 1Z3, Canada
| | - Thor G Theander
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, 1014 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
41
|
Keelan JA, Leong JW, Ho D, Iyer KS. Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy. Nanomedicine (Lond) 2015. [DOI: 10.2217/nnm.15.48] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Advances in nanotechnology have resulted in the design of effective, safe and tissue-selective nanocarriers for delivering therapeutics to treat malignancies, infections and other diseases. In pregnancy, nanoparticle-based drug formulations could have the potential to selectively target either the placenta and/or fetus, enabling ‘fetal-friendly’ drugs to be administered in pregnancy with minimal risk of off-target effects. A considerable amount of research has been carried out on maternal-placental-fetal nanoparticle uptake, transfer and toxicity using rodent and ex vivo models. However, the development of placental targeting strategies and the therapeutic evaluation of nanoformulations in pregnancy remains in its infancy. While some promising avenues are currently under investigation, much work is needed to bring the advantages of nanoparticle-based drug therapy in pregnancy to clinical reality.
Collapse
Affiliation(s)
- Jeffrey A Keelan
- School of Women's and Infants’ Health, University of Western Australia, King Edward Memorial Hospital, Perth WA 6008, Australia
| | - Joan W Leong
- School of Women's and Infants’ Health, University of Western Australia, King Edward Memorial Hospital, Perth WA 6008, Australia
- School of Chemistry & Biochemistry, Faculty of Science, The University of Western Australia, Perth, WA 6008, Australia
| | - Diwei Ho
- School of Women's and Infants’ Health, University of Western Australia, King Edward Memorial Hospital, Perth WA 6008, Australia
- School of Chemistry & Biochemistry, Faculty of Science, The University of Western Australia, Perth, WA 6008, Australia
| | - K Swaminatha Iyer
- School of Chemistry & Biochemistry, Faculty of Science, The University of Western Australia, Perth, WA 6008, Australia
| |
Collapse
|
42
|
Abstract
INTRODUCTION Placental malaria (PM) is a major public health problem that constitutes a significant health concern for the mother, and especially for the developing fetus and offspring. Current means of prevention have limitations, including a restricted window of intervention that excludes the first trimester of pregnancy, and the fact that very few drugs can be used for this purpose. The identification of the VAR2CSA antigen, specific to PM parasites, offers an excellent opportunity to develop a vaccine against this disease. Proof of concept of a first-generation vaccine is nearing completion, and two clinical trials are underway. AREAS COVERED This review focuses on PM, which is mainly caused by Plasmodium falciparum. The review highlights recent advances and the key milestones that led to the identification of the optimal vaccine target within the large VAR2CSA protein. The paper also points out how future improvements can strengthen this process to achieve an effective vaccine in the field. EXPERT OPINION The approach taken to develop a P. falciparum erythrocyte membrane protein 1-based vaccine to protect pregnant women is very promising in view of the current difficulties of achieving a sterilizing vaccine against malaria parasite. This approach could help us to control the deleterious effect of malaria infections that characterize severe clinical forms.
Collapse
|
43
|
Tiendrebeogo RW, Adu B, Singh SK, Dziegiel MH, Nébié I, Sirima SB, Christiansen M, Dodoo D, Theisen M. Antibody-Dependent Cellular Inhibition Is Associated With Reduced Risk Against Febrile Malaria in a Longitudinal Cohort Study Involving Ghanaian Children. Open Forum Infect Dis 2015; 2:ofv044. [PMID: 26380342 PMCID: PMC4567085 DOI: 10.1093/ofid/ofv044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/30/2015] [Indexed: 11/13/2022] Open
Abstract
The antibody-dependent respiratory burst and opsonic phagocytosis assays have been associated with protection against malaria; however, other mechanisms may also be involved. The antibody-dependent cellular inhibition (ADCI) assay is yet to be correlated with protection in longitudinal cohort studies (LCS). We investigated the relationship between ADCI activity of immunoglobulin G before malaria season and risk of malaria in a LCS involving Ghanaian children. High ADCI activity was significantly associated with reduced risk against malaria. Findings here suggest a potential usefulness of the ADCI assay as a correlate of protection to guide malaria vaccine studies.
Collapse
Affiliation(s)
- Regis W Tiendrebeogo
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen ; Centre for Medical Parasitology at Department of International Health, Immunology, Microbiology, and Department of Infectious Diseases , Rigshospitalet, University of Copenhagen
| | - Bright Adu
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen ; Centre for Medical Parasitology at Department of International Health, Immunology, Microbiology, and Department of Infectious Diseases , Rigshospitalet, University of Copenhagen
| | - Susheel K Singh
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen ; Centre for Medical Parasitology at Department of International Health, Immunology, Microbiology, and Department of Infectious Diseases , Rigshospitalet, University of Copenhagen
| | | | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Michael Christiansen
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research , University of Ghana , Legon
| | - Michael Theisen
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen ; Centre for Medical Parasitology at Department of International Health, Immunology, Microbiology, and Department of Infectious Diseases , Rigshospitalet, University of Copenhagen
| |
Collapse
|
44
|
Hviid L, Jensen ATR. PfEMP1 - A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. ADVANCES IN PARASITOLOGY 2015; 88:51-84. [PMID: 25911365 DOI: 10.1016/bs.apar.2015.02.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for essentially all malaria-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum parasites can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of parasite ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of malaria, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against malaria are also covered briefly.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
45
|
Parity-dependent recognition of DBL1X-3X suggests an important role of the VAR2CSA high-affinity CSA-binding region in the development of the humoral response against placental malaria. Infect Immun 2015; 83:2466-74. [PMID: 25824842 DOI: 10.1128/iai.03116-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2015] [Indexed: 01/18/2023] Open
Abstract
Plasmodium falciparum multidomain protein VAR2CSA stands today as the leading vaccine candidate against pregnancy-associated malaria (PAM). Most of the studies aiming to decrypt how naturally acquired immunity develops have assessed the immune recognition of individual VAR2CSA Duffy-binding-like (DBL) domains, thus overlooking the presence of conformational epitopes resulting from the overall folding of the full-length protein. In order to characterize the development of humoral immunity toward VAR2CSA, we made use of a large cohort of 293 Senegalese pregnant women to assess the level of recognition by plasma IgG of the full-length VAR2CSA protein of the 3D7 parasite strain (3D7-VAR2CSA), the CSA-binding multidomains 3D7-DBL1X to -DBL3X (3D7-DBL1X-3X), and the CSA nonbinding multidomains 3D7-DBL4ε to -DBL6ε (3D7-DBL4ε-6ε), as well as individual 3D7-DBL domains. Our results revealed a parity-dependent recognition of the full-length 3D7-VAR2CSA and of the CSA-binding region, 3D7-DBL1X-3X. Indeed, multigravid women possess significantly higher levels of antibodies directed against these constructs than primigravidae. Our results suggest an important role of antibodies targeting the CSA-binding region in the development of immunity against PAM, therefore providing new insights on how natural protection might be acquired and further information for the design of VAR2CSA-based vaccines.
Collapse
|
46
|
Conway DJ. Paths to a malaria vaccine illuminated by parasite genomics. Trends Genet 2015; 31:97-107. [PMID: 25620796 PMCID: PMC4359294 DOI: 10.1016/j.tig.2014.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
Discovery of vaccine candidate antigens by parasite genome sequence analyses. Genetic crosses, linkage group selection, and functional studies on parasites. Characterizing developmental and epigenetic variation alongside allelic polymorphism. Selection by naturally acquired immune responses helps to focus vaccine design.
More human death and disease is caused by malaria parasites than by all other eukaryotic pathogens combined. As early as the sequencing of the first human genome, malaria parasite genomics was prioritized to fuel the discovery of vaccine candidate antigens. This stimulated increased research on malaria, generating new understanding of the cellular and molecular mechanisms of infection and immunity. This review of recent developments illustrates how new approaches in parasite genomics, and increasingly large amounts of data from population studies, are helping to identify antigens that are promising lead targets. Although these results have been encouraging, effective discovery and characterization need to be coupled with more innovation and funding to translate findings into newly designed vaccine products for clinical trials.
Collapse
Affiliation(s)
- David J Conway
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
47
|
Affiliation(s)
- David E. Arnot
- University of Edinburgh, School of Biological Sciences, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Llama immunization with full-length VAR2CSA generates cross-reactive and inhibitory single-domain antibodies against the DBL1X domain. Sci Rep 2014; 4:7373. [PMID: 25487735 PMCID: PMC5376981 DOI: 10.1038/srep07373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
VAR2CSA stands today as the leading vaccine candidate aiming to protect future pregnant women living in malaria endemic areas against the severe clinical outcomes of pregnancy associated malaria (PAM). The rational design of an efficient VAR2CSA-based vaccine relies on a profound understanding of the molecular interactions associated with P. falciparum infected erythrocyte sequestration in the placenta. Following immunization of a llama with the full-length VAR2CSA recombinant protein, we have expressed and characterized a panel of 19 nanobodies able to recognize the recombinant VAR2CSA as well as the surface of erythrocytes infected with parasites originating from different parts of the world. Domain mapping revealed that a large majority of nanobodies targeted DBL1X whereas a few of them were directed towards DBL4ε, DBL5ε and DBL6ε. One nanobody targeting the DBL1X was able to recognize the native VAR2CSA protein of the three parasite lines tested. Furthermore, four nanobodies targeting DBL1X reproducibly inhibited CSA adhesion of erythrocytes infected with the homologous NF54-CSA parasite strain, providing evidences that DBL1X domain is part or close to the CSA binding site. These nanobodies could serve as useful tools to identify conserved epitopes shared between different variants and to characterize the interactions between VAR2CSA and CSA.
Collapse
|
49
|
Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced. Blood 2014; 125:383-91. [PMID: 25352129 DOI: 10.1182/blood-2014-03-561019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infections with the human malaria parasite Plasmodium falciparum during pregnancy can lead to severe complications for both mother and child, resulting from the cytoadhesion of parasitized erythrocytes in the intervillous space of the placenta. Cytoadherence is conferred by the specific interaction of the parasite-encoded adhesin VAR2CSA with chondroitin-4-sulfate (CSA) present on placental proteoglycans. CSA presented elsewhere in the microvasculature does not afford VAR2CSA-mediated cytoadhesion of parasitized erythrocytes. To address the placenta-specific binding tropism, we investigated the effect of the receptor/ligand arrangement on cytoadhesion, using artificial membranes with different CSA spacing intervals. We found that cytoadhesion is strongly dependent on the CSA distance, with half-maximal adhesion occurring at a CSA distance of 9 ± 1 nm at all hydrodynamic conditions. Moreover, binding to CSA was cooperative and shear stress induced. These findings suggest that the CSA density, together with allosteric effects in VAR2CSA, aid in discriminating between different CSA milieus.
Collapse
|
50
|
Antigen reversal identifies targets of opsonizing IgGs against pregnancy-associated malaria. Infect Immun 2014; 82:4842-53. [PMID: 25156731 DOI: 10.1128/iai.02097-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Clinical immunity to pregnancy associated-malaria (PAM) in multigravida women has been attributed to antibodies that recognize VAR2CSA on the infected erythrocyte (IE) surface. The size and complexity of VAR2CSA have focused efforts on selecting one or more of its six Duffy binding-like (DBL) domains for vaccine development. Presently, however, there is no consensus as to which DBL domain(s) would be most effective in eliciting immunity. This is because antibodies to a number of the DBL domains have been found to block the adhesion of VAR2CSA-expressing erythrocytes to chondroitin sulfate A (CSA)-a major criterion for evaluating vaccine candidacy. Opsonization of IEs by cytophilic antibodies that recognize VAR2CSA represents an important yet understudied effector mechanism in acquired immunity to PAM. To date, no studies have sought to determine the targets of those antibodies. In this study, we found that IgGs from multigravida Malian women showed (i) higher reactivity to recombinant DBL domains by enzyme-linked immunosorbent assay (ELISA), (ii) more binding to VAR2CSA-expressing IEs, and (iii) greater opsonization of these IEs by human monocytic cells than IgGs from malaria-exposed Malian men and malaria-naive American adults. Preincubation of IgGs from multigravida women with recombinant DBL2χ, DBL3χ, or DBL5ε domains significantly diminished opsonization of VAR2CSA-expressing IEs by human monocytes. These data identify the DBL2χ, DBL3χ, and DBL5ε domains as the primary targets of opsonizing IgGs for the first time. Our study introduces a new approach to determining the antigenic targets of opsonizing IgGs in phagocytosis assays.
Collapse
|