1
|
Vorauer C, Boniche-Alfaro C, Murphree T, Matsui T, Weiss T, Fries BC, Guttman M. Direct Mapping of Polyclonal Epitopes in Serum by HDX-MS. Anal Chem 2024; 96:16758-16767. [PMID: 39434663 DOI: 10.1021/acs.analchem.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Elucidating the interactions that drive antigen recognition is central to understanding antibody-mediated protection and is vital for the rational design of immunogens. Often, structural knowledge of epitopes targeted by antibodies is derived from isolated studies of monoclonal antibodies, for which numerous structural techniques exist. In contrast, there are very few approaches capable of mapping the full scope of antigen surfaces targeted by polyclonal sera through the course of a natural antibody response. Here, we develop an approach using immobilized antigen coupled to hydrogen/deuterium exchange with mass spectrometry (HDX-MS) to probe epitope targeting in the context of the fully native serum environment. Using the well-characterized Staphylococcal enterotoxin B (SEB) as a model system, we show that complex combinations of epitopes can be detected and subtle differences across different antisera can be discerned. This work reveals new insight into how neutralizing antibodies and antisera target SEB and, more importantly, establishes a novel method for directly mapping the epitope landscape of polyclonal sera.
Collapse
Affiliation(s)
- Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Camila Boniche-Alfaro
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York 11794, United States
- Veteran's Administration Medical Center, Northport, New York 11768, United States
| | - Taylor Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, California 94025, United States
| | - Thomas Weiss
- Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, California 94025, United States
| | - Bettina C Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York 11794, United States
- Veteran's Administration Medical Center, Northport, New York 11768, United States
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Zong X, Liu P, Wang Z, Zhu H, Zhong C, Zhong P, Jiang H, Liu J, Ma Z, Liu X, Liu R, Ding Y. Structural insights into the binding of nanobodies to the Staphylococcal enterotoxin B. Int J Biol Macromol 2024; 276:133957. [PMID: 39029852 DOI: 10.1016/j.ijbiomac.2024.133957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Staphylococcal Enterotoxin Type B (SEB), produced by Staphylococcus aureus bacteria, is notorious for inducing severe food poisoning and toxic shock syndrome. While nanobody-based treatments hold promises for combating SEB-induced diseases, the lack of structural information between SEB and nanobodies has hindered the development of nanobody-based therapeutics. Here, we present crystal structures of SEB-Nb3, SEB-Nb6, SEB-Nb8, SEB-Nb11, and SEB-Nb20 at resolutions ranging from 1.59 Å to 2.33 Å. Crystallographic analysis revealed that Nb3, Nb8, Nb11, and Nb20 bind to SEB at the T-cell receptor (TCR) interface, while Nb6 binds at the major histocompatibility complex (MHC) interface, suggesting their potential to inhibit SEB function by disrupting interactions with TCR or MHC molecules. Molecular biological analyses confirmed the thermodynamic and kinetic parameters of Nb3, Nb5, Nb6, Nb8, Nb11, Nb15, Nb18, and Nb20 to SEB. The competitive inhibition was further confirmed by cell-based experiments demonstrating nanobody neutralization. These findings elucidate the structural basis for developing specific nanobodies to neutralize SEB threats, providing crucial insights into the underlying mechanisms and offering significant assistance for further optimization towards future therapeutic strategies.
Collapse
Affiliation(s)
- Xin Zong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Peng Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ziying Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Haoran Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chao Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Peiyu Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jiayuan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhiqiang Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xihuan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Quzhou Fudan Institute, Quzhou, Zhejiang 324002, China.
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Quzhou Fudan Institute, Quzhou, Zhejiang 324002, China.
| |
Collapse
|
3
|
Banerjee K, Motley MP, Boniche-Alfaro C, Bhattacharya S, Shah R, Ardizzone A, Fries BC. Patient-Derived Antibody Data Yields Development of Broadly Cross-Protective Monoclonal Antibody against ST258 Carbapenem-Resistant Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0176022. [PMID: 35862974 PMCID: PMC9430753 DOI: 10.1128/spectrum.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The most pressing challenge for the development of anti-capsular antibodies is maximizing coverage against the heterogenous capsular polysaccharide (CPS) of carbapenem-resistant Klebsiella pneumoniae (CR-Kp). So far, only CR-Kp with wzi154 CPS has been successfully targeted by antibodies. Here, we present murine antibody 24D11, which was developed by vaccinating mice with purified wzi50-type CPS. Cross-reactivity and protective efficacy of MAb 24D11 were confirmed against CR-Kp that express the 3 most prevalent CPS types (wzi29, wzi154, wzi50) using both in vitro and in vivo infection models. 24D11 induced complement-mediated and independent opsonophagocytosis in macrophages as well as killing of all CR-Kp strains in whole blood cells derived from healthy donors. In a murine intratracheal infection model, 24D11 reduced lung burden and dissemination of CR-Kp strains when administered 4 h pre- or postinfection. The protective efficacy of 24D11 remained effective in neutropenic mice. This is the first antibody which exhibits cross-protective efficacy against clade 1 and 2 ST258 CR-Kp strains. It overcomes a major barrier to successfully target wzi29, a major CPS expressed by ST258 CR-Kp. The finding that 24D11 also exhibits potent protective efficacy against wzi154 CR-Kp strains highlights its high potential as a lead agent for the development of broadly active immunotherapy. IMPORTANCE Here, we present in vitro and in vivo data for the wzi50 CPS-specific monoclonal antibody MAb 24D11, demonstrating its cross-protective efficacy against three prominent win types (wzi29, wzi154, and wzi50) of the carbapenem-resistant clonal group CG258. In a murine pulmonary infection model, MAb 24D11 reduced bacterial lung burden and dissemination to other organs even if administered 4 h postinfection. Its protective efficacy was also observed in neutropenic mice, which highlights its potential value in clinical settings where oncology patients with CG258 infections may also be neutropenic.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Michael P. Motley
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Camila Boniche-Alfaro
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Somanon Bhattacharya
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Raj Shah
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Andrew Ardizzone
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Noval Rivas M, Porritt RA, Cheng MH, Bahar I, Arditi M. Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. Front Immunol 2022; 13:941009. [PMID: 35874696 PMCID: PMC9300823 DOI: 10.3389/fimmu.2022.941009] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a febrile pediatric inflammatory disease that may develop weeks after initial SARS-CoV-2 infection or exposure. MIS-C involves systemic hyperinflammation and multiorgan involvement, including severe cardiovascular, gastrointestinal (GI) and neurological symptoms. Some clinical attributes of MIS-C-such as persistent fever, rashes, conjunctivitis and oral mucosa changes (red fissured lips and strawberry tongue)-overlap with features of Kawasaki disease (KD). In addition, MIS-C shares striking clinical similarities with toxic shock syndrome (TSS), which is triggered by bacterial superantigens (SAgs). The remarkable similarities between MIS-C and TSS prompted a search for SAg-like structures in the SARS-CoV-2 virus and the discovery of a unique SAg-like motif highly similar to a Staphylococcal enterotoxin B (SEB) fragment in the SARS-CoV-2 spike 1 (S1) glycoprotein. Computational studies suggest that the SAg-like motif has a high affinity for binding T-cell receptors (TCRs) and MHC Class II proteins. Immunosequencing of peripheral blood samples from MIS-C patients revealed a profound expansion of TCR β variable gene 11-2 (TRBV11-2), which correlates with MIS-C severity and serum cytokine levels, consistent with a SAg-triggered immune response. Computational sequence analysis of SARS-CoV-2 spike further identified conserved neurotoxin-like motifs which may alter neuronal cell function and contribute to neurological symptoms in COVID-19 and MIS-C patients. Additionally, autoantibodies are detected during MIS-C, which may indicate development of post-SARS-CoV-2 autoreactive and autoimmune responses. Finally, prolonged persistence of SARS-CoV-2 RNA in the gut, increased gut permeability and elevated levels of circulating S1 have been observed in children with MIS-C. Accordingly, we hypothesize that continuous and prolonged exposure to the viral SAg-like and neurotoxin-like motifs in SARS-CoV-2 spike may promote autoimmunity leading to the development of post-acute COVID-19 syndromes, including MIS-C and long COVID, as well as the neurological complications resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rebecca A Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
5
|
Cheng MH, Porritt RA, Rivas MN, Krieger JM, Ozdemir AB, Garcia G, Arumugaswami V, Fries BC, Arditi M, Bahar I. A monoclonal antibody against staphylococcal enterotoxin B superantigen inhibits SARS-CoV-2 entry in vitro. Structure 2021; 29:951-962.e3. [PMID: 33930306 PMCID: PMC8082696 DOI: 10.1016/j.str.2021.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/28/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
We recently discovered a superantigen-like motif sequentially and structurally similar to a staphylococcal enterotoxin B (SEB) segment, near the S1/S2 cleavage site of the SARS-CoV-2 spike protein, which might explain the multisystem inflammatory syndrome (MIS-C) observed in children and the cytokine storm in severe COVID-19 patients. We show here that an anti-SEB monoclonal antibody (mAb), 6D3, can bind this viral motif at its polybasic (PRRA) insert to inhibit infection in live virus assays. The overlap between the superantigenic site of the spike and its proteolytic cleavage site suggests that the mAb prevents viral entry by interfering with the proteolytic activity of cell proteases (furin and TMPRSS2). The high affinity of 6D3 for this site originates from a polyacidic segment at its heavy chain CDR2. The study points to the potential utility of 6D3 for possibly treating COVID-19, MIS-C, or common colds caused by human coronaviruses that also possess a furin-like cleavage site.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rebecca A Porritt
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - James M Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Asli Beyza Ozdemir
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bettina C Fries
- Department of Medicine, Stony Brook University Hospital, Stony Brook, New York, NY 11794, USA; Northport VA Medical Center, Northport, NY 11768, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
6
|
Bae JS, Da F, Liu R, He L, Lv H, Fisher EL, Rajagopalan G, Li M, Cheung GYC, Otto M. Contribution of Staphylococcal Enterotoxin B to Staphylococcus aureus Systemic Infection. J Infect Dis 2020; 223:1766-1775. [PMID: 32937658 DOI: 10.1093/infdis/jiaa584] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB), which is produced by the major human pathogen, Staphylococcus aureus, represents a powerful superantigenic toxin and is considered a bioweapon. However, the contribution of SEB to S. aureus pathogenesis has never been directly demonstrated with genetically defined mutants in clinically relevant strains. Many isolates of the predominant Asian community-associated methicillin-resistant S. aureus lineage sequence type (ST) 59 harbor seb, implying a significant role of SEB in the observed hypervirulence of this lineage. We created an isogenic seb mutant in a representative ST59 isolate and assessed its virulence potential in mouse infection models. We detected a significant contribution of seb to systemic ST59 infection that was associated with a cytokine storm. Our results directly demonstrate that seb contributes to S. aureus pathogenesis, suggesting the value of including SEB as a target in multipronged antistaphylococcal drug development strategies. Furthermore, they indicate that seb contributes to fatal exacerbation of community-associated methicillin-resistant S. aureus infection.
Collapse
Affiliation(s)
- Justin S Bae
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fei Da
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ryan Liu
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huiying Lv
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Emilie L Fisher
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Gordon Y C Cheung
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
The Role of IgG Subclass in Antibody-Mediated Protection against Carbapenem-Resistant Klebsiella pneumoniae. mBio 2020; 11:mBio.02059-20. [PMID: 32900809 PMCID: PMC7482069 DOI: 10.1128/mbio.02059-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae is an urgent public health threat that causes life-threatening infections in immunocompromised hosts. Its resistance to nearly all antibiotics necessitates novel strategies to treat it, including the use of monoclonal antibodies. Monoclonal antibodies are emerging as important adjuncts to traditional pharmaceuticals, and studying how they protect against specific bacteria such as Klebsiella pneumoniae is crucial to their development as effective therapies. Antibody subclass is often overlooked but is a major factor in how an antibody interacts with other mediators of immunity. This paper is the first to examine how the subclass of anticapsular monoclonal antibodies can affect efficacy against CR-Kp. Additionally, this work sheds light on the viability of monoclonal antibody therapy in neutropenic patients, who are most vulnerable to CR-Kp infection. Monoclonal antibodies (MAbs) have the potential to assist in the battle against multidrug-resistant bacteria such as carbapenem-resistant Klebsiella pneumoniae (CR-Kp). However, the characteristics by which these antibodies (Abs) function, such as the role of antibody subclass, must be determined before such modalities can be carried from the bench to the bedside. We performed a subclass switch on anticapsular monoclonal murine IgG3 (mIgG3) hybridomas and identified and purified a murine IgG1 (mIgG1) hybridoma line through sib selection. We then compared the ability of the mIgG1 and mIgG3 antibodies to control CR-Kp sequence type 258 (ST258) infection both in vitro and in vivo. We found by enzyme-limited immunosorbent assay (ELISA) and flow cytometry that mIgG3 has superior binding to the CR-Kp capsular polysaccharide (CPS) and superior agglutinating ability compared to mIgG1. The mIgG3 also, predictably, had better complement-mediated serum bactericidal activity than the mIgG1 and also promoted neutrophil-mediated killing at concentrations lower than that of the mIgG1. In contrast, the mIgG1 had marginally better activity in improving macrophage-mediated phagocytosis. Comparing their activities in a pulmonary infection model with wild-type as well as neutropenic mice, both antibodies reduced organ burden in a nonlethal challenge, regardless of neutrophil status, with mIgG1 having the highest overall burden reduction in both scenarios. However, at a lethal inoculum, both antibodies showed reduced efficacy in neutropenic mice, with mIgG3 retaining the most activity. These findings suggest the viability of monoclonal Ab adjunctive therapy in neutropenic patients that cannot mount their own immune response, while also providing some insight into the relative contributions of immune mediators in CR-Kp protection.
Collapse
|
8
|
Liu Y, Song Z, Ge S, Zhang J, Xu L, Yang F, Lu D, Luo P, Gu J, Zou Q, Zeng H. Determining the immunological characteristics of a novel human monoclonal antibody developed against staphylococcal enterotoxin B. Hum Vaccin Immunother 2020; 16:1708-1718. [PMID: 32275466 DOI: 10.1080/21645515.2020.1744362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Staphylococci are the main cause of nosocomial infections globally. The exotoxin staphylococcal enterotoxin B (SEB) produced by methicillin-resistant Staphylococcus aureus is a major cause of pathology after a staphylococcal infection. We previously isolated an anti-SEB human monoclonal antibody designated as M0313. Here we further characterize this antibody in vitro and in vivo. Immunoblotting analysis and ELISA results indicated that M0313 accurately recognized and bound to SEB. Its binding affinity to native SEB was measured at the low nM level. M0313 effectively inhibited SEB from inducing mouse splenic lymphocyte and human peripheral blood mononuclear cell proliferation and cytokine release in cell culture. M0313 also neutralized SEB toxicity in BALB/c female mice. Most importantly, M0313 promoted the survival of mice treated with SEB-expressing bacteria. In-vivo imaging revealed that M0313 treatment significantly reduced the replication of SEB-expressing bacteria in mice. The neutralization capacity of M0313 correlated with its ability to block SEB from binding to major histocompatibility complex II and T-cell receptor by binding to the SEB residues 85-102 and 90-92. Thus, the monoclonal antibody M0313 may be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China.,Clinical Laboratory Department, Army 954th Hospital, General Hospital of Tibet Military Region , Tibet, PR China
| | - Shuang Ge
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Limin Xu
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Feng Yang
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| |
Collapse
|
9
|
Chen G, Karauzum H, Long H, Carranza D, Holtsberg FW, Howell KA, Abaandou L, Zhang B, Jarvik N, Ye W, Liao GC, Gross ML, Leung DW, Amarasinghe GK, Aman MJ, Sidhu SS. Potent Neutralization of Staphylococcal Enterotoxin B In Vivo by Antibodies that Block Binding to the T-Cell Receptor. J Mol Biol 2019; 431:4354-4367. [PMID: 30928493 DOI: 10.1016/j.jmb.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 11/15/2022]
Abstract
To develop an antibody (Ab) therapeutic against staphylococcal enterotoxin B (SEB), a potential incapacitating bioterrorism agent and a major cause of food poisoning, we developed a "class T" anti-SEB neutralizing Ab (GC132) targeting an epitope on SEB distinct from that of previously developed "class M" Abs. A systematic engineering approach was applied to affinity-mature Ab GC132 to yield an optimized therapeutic candidate (GC132a) with sub-nanomolar binding affinity. Mapping of the binding interface by hydrogen-deuterium exchange coupled to mass spectrometry revealed that the class T epitope on SEB overlapped with the T-cell receptor binding site, whereas other evidence suggested that the class M epitope overlapped with the binding site for the major histocompatibility complex. In the IgG format, GC132a showed ∼50-fold more potent toxin-neutralizing efficacy than the best class M Ab in vitro, and fully protected mice from lethal challenge in a toxic shock post-exposure model. We also engineered bispecific Abs (bsAbs) that bound tetravalently by utilizing two class M binding sites and two class T binding sites. The bsAbs displayed enhanced toxin neutralization efficacy compared with the respective monospecific Ab subunits as well as a mixture of the two, indicating that enhanced efficacy was due to heterotypic tetravalent binding to two non-overlapping epitopes on SEB. Together, these results suggest that class T anti-SEB Ab GC132a is an excellent candidate for clinical development and for bsAb engineering.
Collapse
Affiliation(s)
- Gang Chen
- Banting and Best Department of Medical Research, Department of Molecular Genetics, and the Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | - Hua Long
- Banting and Best Department of Medical Research, Department of Molecular Genetics, and the Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Danielle Carranza
- Banting and Best Department of Medical Research, Department of Molecular Genetics, and the Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | - Katie A Howell
- Integrated Biotherapeutics, Inc., Rockville, MD 20850, USA
| | - Laura Abaandou
- Integrated Biotherapeutics, Inc., Rockville, MD 20850, USA
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Nick Jarvik
- Banting and Best Department of Medical Research, Department of Molecular Genetics, and the Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Wei Ye
- Banting and Best Department of Medical Research, Department of Molecular Genetics, and the Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Grant C Liao
- Integrated Biotherapeutics, Inc., Rockville, MD 20850, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - M Javad Aman
- Integrated Biotherapeutics, Inc., Rockville, MD 20850, USA.
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, Department of Molecular Genetics, and the Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
10
|
Staphylococcal Superantigens: Pyrogenic Toxins Induce Toxic Shock. Toxins (Basel) 2019; 11:toxins11030178. [PMID: 30909619 PMCID: PMC6468478 DOI: 10.3390/toxins11030178] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
Staphylococcal enterotoxin B (SEB) and related superantigenic toxins produced by Staphylococcus aureus are potent activators of the immune system. These protein toxins bind to major histocompatibility complex (MHC) class II molecules and specific Vβ regions of T-cell receptors (TCRs), resulting in the activation of both monocytes/macrophages and T lymphocytes. The bridging of TCRs with MHC class II molecules by superantigens triggers an early “cytokine storm” and massive polyclonal T-cell proliferation. Proinflammatory cytokines, tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 elicit fever, inflammation, multiple organ injury, hypotension, and lethal shock. Upon MHC/TCR ligation, superantigens induce signaling pathways, including mitogen-activated protein kinase cascades and cytokine receptor signaling, which results in NFκB activation and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. In addition, gene profiling studies have revealed the essential roles of innate antimicrobial defense genes in the pathogenesis of SEB. The genes expressed in a murine model of SEB-induced shock include intracellular DNA/RNA sensors, apoptosis/DNA damage-related molecules, endoplasmic reticulum/mitochondrial stress responses, immunoproteasome components, and IFN-stimulated genes. This review focuses on the signaling pathways induced by superantigens that lead to the activation of inflammation and damage response genes. The induction of these damage response genes provides evidence that SEB induces danger signals in host cells, resulting in multiorgan injury and toxic shock. Therapeutics targeting both host inflammatory and cell death pathways can potentially mitigate the toxic effects of staphylococcal superantigens.
Collapse
|
11
|
Wieland A, Ahmed R. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 2019; 423:119-150. [DOI: 10.1007/82_2019_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Kroetsch A, Qiao C, Heavey M, Guo L, Shah DK, Park S. Engineered pH-dependent recycling antibodies enhance elimination of Staphylococcal enterotoxin B superantigen in mice. MAbs 2018; 11:411-421. [PMID: 30526311 DOI: 10.1080/19420862.2018.1545510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A new modality in antibody engineering has emerged in which the antigen affinity is designed to be pH dependent (PHD). In particular, combining high affinity binding at neutral pH with low affinity binding at acidic pH leads to a novel antibody that can more effectively neutralize the target antigen while avoiding antibody-mediated antigen accumulation. Here, we studied how the in vivo pharmacokinetics of the superantigen, Staphylococcal enterotoxin B (SEB), is affected by an engineered antibody with pH-dependent binding. PHD anti-SEB antibodies were engineered by introducing mutations into a high affinity anti-SEB antibody, 3E2, by rational design and directed evolution. Three antibody mutants engineered in the study have an affinity at pH 6.0 that is up to 68-fold weaker than the control antibody. The pH dependency of each mutant, measured as the pH-dependent affinity ratio (PAR - ratio of affinity at pH 7.4 and pH 6.0), ranged from 6.7-11.5 compared to 1.5 for the control antibody. The antibodies were characterized in mice by measuring their effects on the pharmacodynamics and pharmacokinetics (PK) of SEB after co-administration. All antibodies were effective in neutralizing the toxin and reducing the toxin-induced cytokine production. However, engineered PHD antibodies led to significantly faster elimination of the toxin from the circulation than wild type 3E2. The area under the curve computed from the SEB PK profile correlated well with the PAR value of antibody, indicating the importance of fine tuning the pH dependency of binding. These results suggest that a PHD recycling antibody may be useful to treat intoxication from a bacterial toxin by accelerating its clearance.
Collapse
Affiliation(s)
- Andrew Kroetsch
- a Department of Chemical and Biological Engineering , University at Buffalo , Buffalo , New York , USA
| | - Chunxia Qiao
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Mairead Heavey
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Leiming Guo
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Dhaval K Shah
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Sheldon Park
- a Department of Chemical and Biological Engineering , University at Buffalo , Buffalo , New York , USA
| |
Collapse
|
13
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
14
|
Kane TL, Carothers KE, Lee SW. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Curr Drug Targets 2018; 19:111-127. [PMID: 27894236 PMCID: PMC5957279 DOI: 10.2174/1389450117666161128123536] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. OBJECTIVE In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. CONCLUSION The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era.
Collapse
Affiliation(s)
- Trevor L. Kane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn E. Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
15
|
Karau MJ, Tilahun ME, Krogman A, Osborne BA, Goldsby RA, David CS, Mandrekar JN, Patel R, Rajagopalan G. Passive therapy with humanized anti-staphylococcal enterotoxin B antibodies attenuates systemic inflammatory response and protects from lethal pneumonia caused by staphylococcal enterotoxin B-producing Staphylococcus aureus. Virulence 2017; 8:1148-1159. [PMID: 27925510 PMCID: PMC5711449 DOI: 10.1080/21505594.2016.1267894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Drugs such as linezolid that inhibit bacterial protein synthesis may be beneficial in treating infections caused by toxigenic Staphylococcus aureus. As protein synthesis inhibitors have no effect on preformed toxins, neutralization of pathogenic exotoxins with anti-toxin antibodies may be beneficial in conjunction with antibacterial therapy. Herein, we evaluated the efficacy of human-mouse chimeric high-affinity neutralizing anti-staphylococcal enterotoxin B (SEB) antibodies in the treatment of experimental pneumonia caused by SEB-producing S. aureus. Since HLA class II transgenic mice mount a stronger systemic immune response following challenge with SEB and are more susceptible to SEB-induced lethal toxic shock than conventional mice strains, HLA-DR3 transgenic mice were used. Lethal pneumonia caused by SEB-producing S. aureus in HLA-DR3 transgenic mice was characterized by robust T cell activation and elevated systemic levels of several pro-inflammatory cytokines and chemokines. Prophylactic administration of a single dose of linezolid 30 min prior to the onset of infection attenuated the systemic inflammatory response and protected from mortality whereas linezolid administered 60 min after the onset of infection failed to confer significant protection. Human-mouse chimeric high-affinity neutralizing anti-SEB antibodies alone, but not polyclonal human IgG, mitigated this response and protected from death when administered immediately after initiation of infection. Further, anti-SEB antibodies as well as intact polyclonal human IgG, but not its Fab or Fc fragments, protected from lethal pneumonia when followed with linezolid therapy 60 min later. In conclusion, neutralization of superantigens with high-affinity antibodies may have beneficial effects in pneumonia.
Collapse
Affiliation(s)
- Melissa J. Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mulualem E. Tilahun
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Department of Biology, Amherst College, Amherst, MA, USA
| | - Ashton Krogman
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Chella S. David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jayawant N. Mandrekar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
16
|
Ripoll DR, Mitchell DAJ, Dupuy LC, Wallqvist A, Schmaljohn C, Chaudhury S. Combinatorial peptide-based epitope mapping from Ebola virus DNA vaccines and infections reveals residue-level determinants of antibody binding. Hum Vaccin Immunother 2017; 13:2953-2966. [PMID: 28922082 PMCID: PMC5718834 DOI: 10.1080/21645515.2017.1360454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ebola virus (EBOV) infection is highly lethal and results in severe febrile bleeding disorders that affect humans and non-human primates. One of the therapeutic approaches for treating EBOV infection focus largely on cocktails of monoclonal antibodies (mAbs) that bind to specific regions of the EBOV glycoprotein (GP) and neutralize the virus. Recent structural studies using cryo-electron microscopy have identified key epitopes for several EBOV mAbs. While such information has yielded deep insights into antibody binding, limitations on resolution of these structures often preclude a residue-level analysis of EBOV epitopes. In this study, we performed combinatorial peptide-based epitope mapping of EBOV GP against a broad panel of mAbs and polyclonal sera derived from several animal species vaccinated with EBOV DNA and replicon vaccines and/or exposed to EBOV infection to identify residue-level determinants of antibody binding. The peptide-based epitope mapping obtained from a wide range of serum and mAb samples, combined with available cryo-EM structure reconstructions revealed fine details of antibody-virus interactions, allowing for a more precise and comprehensive mapping of antibody epitopes on EBOV GP. We show how these residue-level epitope definitions can be used to characterize antigenic variation across different filoviruses, and provide a theoretical basis for predicting immunity and cross-neutralization in potential future outbreaks.
Collapse
Affiliation(s)
- Daniel R Ripoll
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| | - Daniel A J Mitchell
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Lesley C Dupuy
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Anders Wallqvist
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| | - Connie Schmaljohn
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Sidhartha Chaudhury
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| |
Collapse
|
17
|
In Silico Analyses of Staphylococcal Enterotoxin B as a DNA Vaccine for Cancer Therapy. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9595-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Krakauer T. FDA-approved immunosuppressants targeting staphylococcal superantigens: mechanisms and insights. Immunotargets Ther 2017; 6:17-29. [PMID: 28497030 PMCID: PMC5423536 DOI: 10.2147/itt.s125429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Immunostimulating staphylococcal enterotoxin B (SEB) and related superantigenic toxins cause diseases in human beings and laboratory animals by hyperactivating cells of the immune system. These protein toxins bind to the major histocompatibility complex class II (MHC II) molecules and specific Vβ regions of T-cell receptors (TCRs), resulting in the stimulation of both monocytes/macrophages and T lymphocytes. The bridging of TCR with MHC II molecules by superantigens triggers intracellular signaling cascades, resulting in excessive release of proinflammatory mediators and massive polyclonal T-cell proliferation. The early induction of tumor necrosis factor α, interleukin 1 (IL-1), interleukin 2 (IL-2), interferon gamma (IFNγ), and macrophage chemoattractant protein 1 promotes fever, inflammation, and multiple organ injury. The signal transduction pathways for staphylococcal superantigen-induced toxicity downstream from TCR/major histocompatibility complex (MHC) ligation and interaction of cell surface co-stimulatory molecules include the mitogen-activated protein kinase cascades and cytokine receptor signaling, activating nuclear factor κB (NFκB) and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Knowledge of host regulation within these activated pathways and molecules initiated by SEB and other superantigens enables the selection of US Food and Drug Administration (FDA)-approved drugs to interrupt and prevent superantigen-induced shock in animal models. This review focuses on the use of FDA-approved immunosuppressants in targeting the signaling pathways induced by staphylococcal superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
19
|
Antibody-Based Immunotherapy To Treat and Prevent Infection with Hypervirulent Klebsiella pneumoniae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00456-16. [PMID: 27795303 DOI: 10.1128/cvi.00456-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) strains are predicted to become a major threat in Asia if antibiotic resistance continues to spread. Anticapsular antibodies (Abs) were developed because disseminated infections caused by hvKp are associated with significant morbidity and mortality, even with antibiotic-sensitive strains. K1-serotype polysaccharide capsules (K1-CPS) are expressed by the majority of hvKp strains. In this study, K1-CPS-specific IgG Abs were generated by conjugation of K1-CPS to immunogenic anthrax protective antigen (PA) protein. Opsonophagocytic efficacy was measured in vitro and in vivo by intravital microscopy in murine livers. In vivo protection was tested in murine models, including a novel model for dissemination in hvKp-colonized mice. Protective efficacy of monoclonal antibodies (MAbs) 4C5 (IgG1) and 19A10 (IgG3) was demonstrated both in murine sepsis and pulmonary infection. In hvKp-colonized mice, MAb treatment significantly decreased dissemination of hvKp from the gut to mesenteric lymph nodes and organs. Intravital microscopy confirmed efficient opsonophagocytosis and clearance of bacteria from the liver. In vitro studies demonstrate that MAbs work predominantly by promoting FcR-mediated phagocytosis but also indicate that MAbs enhance the release of neutrophil extracellular traps (NETs). In anticipation of increasing antibiotic resistance, we propose further development of these and other Klebsiella-specific MAbs for therapeutic use.
Collapse
|
20
|
Aguilar JL, Varshney AK, Pechuan X, Dutta K, Nosanchuk JD, Fries BC. Monoclonal antibodies protect from Staphylococcal Enterotoxin K (SEK) induced toxic shock and sepsis by USA300 Staphylococcus aureus. Virulence 2016; 8:741-750. [PMID: 27715466 DOI: 10.1080/21505594.2016.1231295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a leading infectious cause of life-threatening disease in humans, yet there is currently no vaccine to combat this bacterium. The pathogenesis of S. aureus is mediated by a diverse array of protein toxins including a large family of secreted pyrogenic superantigens. Neutralization of superantigens, including SEB and TSST-1, has proven to be protective in several animal models of toxic shock and sepsis. We demonstrate, for the first time, that a far more prevalent staphylococcal superantigen, SEK, can also induce lethal shock in mice. Additionally, we describe monoclonal antibodies (mAbs) that inhibit SEK-induced mitogenicity as well as protect against SEK-induced lethality, and enhance survival from S. aureus septicemia in murine models. MAb-4G3 (IgG2b), mAb-5G2 (IgG1), and mAb-9H2 (IgG1), all inhibit SEK-induced proliferation and cytokine production of human immune cells. We then demonstrate that passive immunization with a combination of mAb-4G3 and mAb-5G4, 2 mAbs that do not compete for epitope(s) on SEK, significantly enhance survival in a murine model of SEK-induced toxic shock (p = 0.006). In the setting of sepsis, passive immunization with this combination of mAbs also significantly enhances survival in mice after challenge with CA-MRSA strain USA300 (p = 0.03). Furthermore, septic mice that received mAb treatment in conjunction with vancomycin exhibit less morbidity than mice treated with vancomycin alone. Taken together, these findings suggest that the contribution of SEK to S. aureus pathogenesis may be greater than previously appreciated, and that adjunctive therapy with passive immunotherapy against SEs may be beneficial.
Collapse
Affiliation(s)
- Jorge L Aguilar
- a Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Avanish K Varshney
- a Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Ximo Pechuan
- b Department of Systems and Computational Biology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Kaushik Dutta
- c New York Structural Biology Center , New York , NY , USA
| | - Joshua D Nosanchuk
- a Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Bettina C Fries
- d Department of Molecular Genetics and Microbiology , Stony Brook University , Stony Brook , NY , USA
| |
Collapse
|
21
|
Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins (Basel) 2016; 8:toxins8030072. [PMID: 26999200 PMCID: PMC4810217 DOI: 10.3390/toxins8030072] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.
Collapse
Affiliation(s)
- Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Hui-min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
22
|
Yang HJ, Zhang JY, Wei C, Yang LY, Zuo QF, Zhuang Y, Feng YJ, Srinivas S, Zeng H, Zou QM. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection. PLoS One 2016; 11:e0149638. [PMID: 26895191 PMCID: PMC4764517 DOI: 10.1371/journal.pone.0149638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/03/2016] [Indexed: 12/15/2022] Open
Abstract
Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d) crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine.
Collapse
Affiliation(s)
- Hui-Jie Yang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Jin-Yong Zhang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Chao Wei
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Liu-Yang Yang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Qian-Fei Zuo
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Yuan Zhuang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - You-Jun Feng
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, United States of America
| | - Hao Zeng
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
- * E-mail: (HZ); (QMZ)
| | - Quan-Ming Zou
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
- * E-mail: (HZ); (QMZ)
| |
Collapse
|
23
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Vuong C, Yeh AJ, Cheung GYC, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs 2015; 25:73-93. [PMID: 26536498 DOI: 10.1517/13543784.2016.1109077] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries, a situation that calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. AREAS COVERED This review provides an overview of current investigational drugs and therapeutic antibodies against S. aureus in early clinical development (up to phase II clinical development). It includes a short description of the mechanism of action and a presentation of microbiological and clinical data. EXPERT OPINION Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and therapies, such as anti-virulence drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise.
Collapse
Affiliation(s)
- Cuong Vuong
- a Principal Scientist/Laboratory Head, Bacteriology , AiCuris GmbH & Co. KG, Friedrich-Ebert-Str. 475/Geb. 302, 42117 Wuppertal , Germany
| | - Anthony J Yeh
- b Post-baccalaureate IRTA, Laboratory of Bacteriology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Gordon Y C Cheung
- c Staff Scientist, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Michael Otto
- d Senior Investigator, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| |
Collapse
|
25
|
Abstract
Staphylococcal enterotoxin B is one of the most potent bacterial superantigens that exerts profound toxic effects upon the immune system, leading to stimulation of cytokine release and inflammation. It is associated with food poisoning, nonmenstrual toxic shock, atopic dermatitis, asthma, and nasal polyps in humans. Currently, there is no treatment or vaccine available. Passive immunotherapy using monoclonal antibodies made in several different species has shown significant inhibition in in vitro studies and reduction in staphylococcal enterotoxin B-induced lethal shock in in vivo studies. This should encourage future endeavors to develop these antibodies as therapeutic reagents.
Collapse
|
26
|
Zhao Z, Sun HQ, Wei SS, Li B, Feng Q, Zhu J, Zeng H, Zou QM, Wu C. Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection. Sci Rep 2015. [PMID: 26201558 PMCID: PMC4511869 DOI: 10.1038/srep12371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
No vaccine against methicillin-resistant Staphylococcus aureus (MRSA) has been currently approved for use in humans. Staphylococcus enterotoxin B (SEB) is one of the most potent MRSA exotoxins. In the present study, we evaluated the efficacy and immunologic mechanisms of an SEB multiple B-cell epitope vaccine against MRSA infection. Synthetic overlapping peptide ELISA identified three novel B-cell immunodominant SEB epitopes (in addition to those previously known): SEB31–48, SEB133–150, and SEB193–210. Six B-cell immunodominant epitopes (amino acid residues 31–48, 97–114, 133–150, 193–210, 205–222, and 247–261) were sufficient to induce robust IgG1/IgG2b-specific protective responses against MRSA infection. Therefore, we constructed a recombinant MRSA SEB-specific multiple B-cell epitope vaccine Polypeptides by combining the six SEB immunodominant epitopes and demonstrated its ability to induce a robust SEB-specific IgG1 response to MRSA, as well as a Th2-directing isotype response. Moreover, Polypeptides-induced antisera stimulated synergetic opsonophagocytosis killing of MRSA. Most importantly, Polypeptides was more effective at clearing the bacteria in MRSA-infected mice than the whole SEB antigen, and was able to successfully protect mice from infection by various clinical MRSA isolates. Altogether, these results support further evaluation of the SEB multiple B-cell epitope-vaccine to address MRSA infection in humans.
Collapse
Affiliation(s)
- Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - He-Qiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Shan-Shan Wei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Qiang Feng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Jiang Zhu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
27
|
Reddy PN, Paul S, Sripathy MH, Batra HV. Evaluation of recombinant SEA-TSST fusion toxoid for protection against superantigen induced toxicity in mouse model. Toxicon 2015; 103:106-13. [PMID: 26091873 DOI: 10.1016/j.toxicon.2015.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
Treatment of Staphylococcus aureus infections has become complicated owing to growing antibiotic resistance mechanisms and due to the multitude of virulence factors secreted by this organism. Failures with traditional monovalent vaccines or toxoids have brought a shift towards the use of multivalent formulas and neutralizing antibodies to combat and prevent range of staphylococcal infections. In this study, we evaluated the efficacy of a fusion protein (r-ET) comprising truncated regions of staphylococcal enterotoxin A (SEA) and toxic shock syndrome toxin (TSST-1) in generating neutralizing antibodies against superantigen induced toxicity in murine model. Serum antibodies showed specific reactivity to both SEA and TSST-1 native toxins. Hyperimmune serum from immunized animals protected cultured splenocytes from non-specific superantigen induced proliferation completely. Passive antibody administration prevented tissue damage from acute inflammation associated with superantigen challenge from S. aureus cell free culture supernatants. Approximately 80% and 50% of actively and passively immunized mice respectively were protected from lethal dose against S. aureus toxin challenge. This study revealed that r-ET protein is non-toxic and a strong immunogen which generated neutralizing antibodies and memory immune response against superantigen induced toxic effects in mice model.
Collapse
Affiliation(s)
| | - Soumya Paul
- Department of Microbiology, Defence Food Research Laboratory, Mysore 570011, India
| | - Murali H Sripathy
- Department of Microbiology, Defence Food Research Laboratory, Mysore 570011, India
| | - Harsh Vardhan Batra
- Department of Microbiology, Defence Food Research Laboratory, Mysore 570011, India.
| |
Collapse
|
28
|
Diamant E, Torgeman A, Ozeri E, Zichel R. Monoclonal Antibody Combinations that Present Synergistic Neutralizing Activity: A Platform for Next-Generation Anti-Toxin Drugs. Toxins (Basel) 2015; 7:1854-81. [PMID: 26035486 PMCID: PMC4488679 DOI: 10.3390/toxins7061854] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Monoclonal antibodies (MAbs) are among the fastest-growing therapeutics and are being developed for a broad range of indications, including the neutralization of toxins, bacteria and viruses. Nevertheless, MAbs potency is still relatively low when compared to conventional polyclonal Ab preparations. Moreover, the efficacy of an individual neutralizing MAb may significantly be hampered by the potential absence or modification of its target epitope in a mutant or subtype of the infectious agent. These limitations of individual neutralizing MAbs can be overcome by using oligoclonal combinations of several MAbs with different specificities to the target antigen. Studies conducted in our lab and by others show that such combined MAb preparation may present substantial synergy in its potency over the calculated additive potency of its individual MAb components. Moreover, oligoclonal preparation is expected to be better suited to compensating for reduced efficacy due to epitope variation. In this review, the synergistic neutralization properties of combined oligoclonal Ab preparations are described. The effect of Ab affinity, autologous Fc fraction, and targeting a critical number of epitopes, as well as the unexpected contribution of non-neutralizing clones to the synergistic neutralizing effect are presented and discussed.
Collapse
Affiliation(s)
- Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Eyal Ozeri
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| |
Collapse
|
29
|
Broadly neutralizing anti-influenza virus antibodies: enhancement of neutralizing potency in polyclonal mixtures and IgA backbones. J Virol 2015; 89:3610-8. [PMID: 25589655 DOI: 10.1128/jvi.03099-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Current influenza virus vaccines rely upon the accurate prediction of circulating virus strains months in advance of the actual influenza season in order to allow time for vaccine manufacture. Unfortunately, mismatches occur frequently, and even when perfect matches are achieved, suboptimal vaccine efficacy leaves several high-risk populations vulnerable to infection. However, the recent discovery of broadly neutralizing antibodies that target the hemagglutinin (HA) stalk domain has renewed hope that the development of "universal" influenza virus vaccines may be within reach. Here, we examine the functions of influenza A virus hemagglutinin stalk-binding antibodies in an endogenous setting, i.e., as polyclonal preparations isolated from human sera. Relative to monoclonal antibodies that bind to the HA head domain, the neutralization potency of monoclonal stalk-binding antibodies was vastly inferior in vitro but was enhanced by several orders of magnitude in the polyclonal context. Furthermore, we demonstrated a surprising enhancement in IgA-mediated HA stalk neutralization relative to that achieved by antibodies of IgG isotypes. Mechanistically, this could be explained in two ways. Identical variable regions consistently neutralized virus more potently when in an IgA backbone compared to an IgG backbone. In addition, HA-specific memory B cells isolated from human peripheral blood were more likely to be stalk specific when secreting antibodies of IgA isotypes compared to those secreting IgG. Taken together, our data provide strong evidence that HA stalk-binding antibodies perform optimally when in a polyclonal context and that the targeted elicitation of HA stalk-specific IgA should be an important consideration during "universal" influenza virus vaccine design. IMPORTANCE Influenza viruses remain one of the most worrisome global public health threats due to their capacity to cause pandemics. While seasonal vaccines fail to protect against the emergence of pandemic strains, a new class of broadly neutralizing antibodies has been recently discovered and may be the key to developing a "universal" influenza virus vaccine. While much has been learned about the biology of these antibodies, most studies have focused only on monoclonal antibodies of IgG subtypes. However, the study of monoclonal antibodies often fails to capture the complexity of antibody functions that occur during natural polyclonal responses. Here, we provide the first detailed analyses of the biological activity of these antibodies in polyclonal contexts, comparing both IgG and IgA isotypes isolated from human donors. The striking differences observed in the functional properties of broadly neutralizing antibodies in polyclonal contexts will be essential for guiding design of "universal" influenza virus vaccines and therapeutics.
Collapse
|
30
|
Dutta K, Varshney AK, Franklin MC, Goger M, Wang X, Fries BC. Mechanisms mediating enhanced neutralization efficacy of staphylococcal enterotoxin B by combinations of monoclonal antibodies. J Biol Chem 2015; 290:6715-30. [PMID: 25572397 DOI: 10.1074/jbc.m114.630715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations.
Collapse
Affiliation(s)
- Kaushik Dutta
- From the New York Structural Biology Center, New York, New York 10027,
| | - Avanish K Varshney
- the Department of Medicine and Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11790, and the Department of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Michael Goger
- From the New York Structural Biology Center, New York, New York 10027
| | - Xiaobo Wang
- the Department of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Bettina C Fries
- the Department of Medicine and Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11790, and the Department of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
31
|
Xia T, Liang S, Wang H, Hu S, Sun Y, Yu X, Han J, Li J, Guo S, Dai J, Lou Z, Guo Y. Structural basis for the neutralization and specificity of Staphylococcal enterotoxin B against its MHC Class II binding site. MAbs 2014; 6:119-29. [PMID: 24423621 DOI: 10.4161/mabs.27106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody-antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2's binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.
Collapse
Affiliation(s)
- Tian Xia
- International Joint Cancer Institute; Second Military Medical University; Shanghai, P.R. China; College of Pharmacy; Liaocheng University; Liaocheng, P.R. China
| | - Shuaiyi Liang
- Laboratory of Structural Biology and MOE Laboratory of Protein Science; School of Medicine and Life Science; Tsinghua University; Beijing, P.R. China
| | - Huajing Wang
- International Joint Cancer Institute; Second Military Medical University; Shanghai, P.R. China; State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering and Antibody; Shanghai, P.R. China
| | - Shi Hu
- International Joint Cancer Institute; Second Military Medical University; Shanghai, P.R. China; State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering and Antibody; Shanghai, P.R. China
| | - Yuna Sun
- National Laboratory of Macromolecules; Institute of Biophysics; Chinese Academy of Science; Beijing, P.R. China
| | - Xiaojie Yu
- International Joint Cancer Institute; Second Military Medical University; Shanghai, P.R. China; State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering and Antibody; Shanghai, P.R. China
| | - Jun Han
- College of Pharmacy; Liaocheng University; Liaocheng, P.R. China
| | - Jun Li
- College of Pharmacy; Liaocheng University; Liaocheng, P.R. China
| | - Shangjing Guo
- College of Pharmacy; Liaocheng University; Liaocheng, P.R. China
| | - Jianxin Dai
- International Joint Cancer Institute; Second Military Medical University; Shanghai, P.R. China; State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering and Antibody; Shanghai, P.R. China; College of Pharmacy; Liaocheng University; Liaocheng, P.R. China
| | - Zhiyong Lou
- Laboratory of Structural Biology and MOE Laboratory of Protein Science; School of Medicine and Life Science; Tsinghua University; Beijing, P.R. China
| | - Yajun Guo
- International Joint Cancer Institute; Second Military Medical University; Shanghai, P.R. China; State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering and Antibody; Shanghai, P.R. China; College of Pharmacy; Liaocheng University; Liaocheng, P.R. China
| |
Collapse
|
32
|
Abstract
Once an infection by a toxin-producing bacterium is well established, therapies such as antibiotics that target bacterial growth may have little impact on the ultimate patient outcome. In such cases, toxin-neutralizing antibodies offer an opportunity to block key virulence factors. New work by A. K. Varshney, X. Wang, J. L. Aguilar, M. D. Scharff, and B. C. Fries [mBio 5(3):e01007-14, 2014, doi:10.1128/mBio.01007-14] highlights the role of the antibody isotype in determining the efficacy of toxin-neutralizing antibodies in vivo. Varshney et al. examined the role of antibody isotype for protection in murine models of staphylococcal enterotoxin B (SEB)-induced lethal shock and sepsis produced by SEB-producing Staphylococcus aureus. Murine antibodies of the IgG2a isotype were more protective than antibodies of the IgG1 and IgG2b isotypes that have identical variable regions and binding activity. These results add to the complexity inherent in the selection and optimization of antibodies for anti-infective passive immunization and emphasize the need to use relevant in vivo models to evaluate potential therapeutic monoclonal antibodies.
Collapse
|
33
|
Varshney AK, Wang X, Aguilar JL, Scharff MD, Fries BC. Isotype switching increases efficacy of antibody protection against staphylococcal enterotoxin B-induced lethal shock and Staphylococcus aureus sepsis in mice. mBio 2014; 5:e01007-14. [PMID: 24917594 PMCID: PMC4056548 DOI: 10.1128/mbio.01007-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Staphylococcal enterotoxin B (SEB) is a potent toxin that is produced by Staphylococcus aureus strains and is classified as a category B select agent. We have previously shown that monoclonal antibody (MAb) 20B1, a murine anti-SEB IgG1, successfully treats SEB-induced lethal shock (SEBILS) and bacteremia that is caused by SEB-producing S. aureus. In this study, we have generated two isotype switch variants of the original IgG1 MAb 20B1, an IgG2a and IgG2b, both bearing the same variable region sequence, and compared their neutralizing and protective activity in in vitro and in vivo assays, respectively. All 3 isotypes demonstrated comparable affinity to SEB and comparable 50% inhibitory concentrations (IC50s) in T cell proliferation assays. In vivo, however, the IgG2a isotype variant of 20B1 exhibited significantly greater protection than IgG1 or IgG2b in murine SEB intoxication and S. aureus sepsis models. Protection was associated with downmodulation of inflammatory host response. Our data demonstrate that changing the isotype of already protective MAbs, without affecting their antigen specificity or sensitivity, can result in an enhancement of their protective ability. Isotype selection, therefore, should be carefully considered in the development of toxin-neutralizing MAbs and the design of antibody therapeutics. IMPORTANCE The purpose of this study was to enhance the protective efficacy of an existing, protective monoclonal antibody against staphylococcal enterotoxin B. Using two in vivo mouse models, our study demonstrates that the protective efficacy of a monoclonal antibody may be improved by inducing an isotype switch at the Fc region of an antibody, without altering the antigen specificity or sensitivity of the antibody. The development of therapeutic MAbs with higher efficacy may allow for the achievement of equal therapeutic benefit with a lower dosage. In turn, the use of lower doses may reduce the cost of these therapies, while reducing the potential for adverse side effects.
Collapse
Affiliation(s)
| | | | - Jorge L Aguilar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Matthew D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
34
|
Detection and measurement of staphylococcal enterotoxin-like K (SEl-K) secretion by Staphylococcus aureus clinical isolates. J Clin Microbiol 2014; 52:2536-43. [PMID: 24808237 DOI: 10.1128/jcm.00387-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Staphylococcal enterotoxin-like K (SEl-K) is a potent mitogen that elicits T-cell proliferation and cytokine production at very low concentrations. However, unlike the classical enterotoxins SEB and toxic shock syndrome toxin 1 (TSST-1), the gene for SEl-K is commonly present in more than half of all Staphylococcus aureus clinical isolates and is present in almost all USA300 community-acquired methicillin-resistant S. aureus (CA-MRSA) isolates. Sequencing of the sel-k gene in over 20 clinical isolates and comparative analysis with all 14 published sel-k sequences indicate that there are at least 6 variants of the sel-k gene, including one that is conserved among all examined USA300 strains. Additionally, we have developed a highly sensitive enzyme-linked immunosorbent assay (ELISA) that specifically detects and measures SEl-K protein in culture supernatants and biological fluids. Quantification of in vitro SEl-K secretion by various S. aureus isolates using this novel capture ELISA revealed detectable amounts of SEl-K secretion by all isolates, with the highest secretion levels being exhibited by MRSA strains that coexpress SEB. In vivo secretion was measured in a murine thigh abscess model, where similar levels of SEl-K accumulation were noted regardless of whether the infecting strain exhibited high or low secretion of SEl-K in vitro. We conclude that SEl-K is commonly expressed in the setting of staphylococcal infection, in significant amounts. SEl-K should be further explored as a target for passive immunotherapy against complicated S. aureus infection.
Collapse
|
35
|
Varshney AK, Wang X, MacIntyre J, Zollner RS, Kelleher K, Kovalenko OV, Pechuan X, Byrne FR, Fries BC. Humanized staphylococcal enterotoxin B (SEB)-specific monoclonal antibodies protect from SEB intoxication and Staphylococcus aureus infections alone or as adjunctive therapy with vancomycin. J Infect Dis 2014; 210:973-81. [PMID: 24803533 DOI: 10.1093/infdis/jiu198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Staphylococcal enterotoxin B (SEB), a potential biological warfare agent, is a potent superantigen that contributes to the virulence of methicillin-resistant Staphylococcus aureus (MRSA), which is a major health threat in the United States. Efforts to develop toxin-neutralizing antibodies as adjunctive therapies are justified, given the high mortality and frequent failure of therapy despite available antibiotics. METHODS Murine SEB-specific mAb 20B1 was humanized, and treatment benefits of Hu-1.6/1.1 and Hu-1.4/1.1 variants were investigated in mice in an SEB intoxication model, as well as in sepsis and deep-tissue infection models. RESULTS Hu-1.6/1.1 and Hu-1.4/1.1 protected mice against SEB-induced lethal shock. Hu-1.6/1.1 also enhanced survival of mice that developed fatal sepsis after challenge with a SEB-producing MRSA strain. Combined treatment of Hu-1.6/1.1 with vancomycin further increased survival and altered cytokine responses, compared with monotherapy with either monoclonal antibody or vancomycin alone. Efficacy was also demonstrated in the deep-tissue infection model, where Hu-1.4/1.1 bound to SEB in vivo and decreased abscess formation, as well as proinflammatory cytokine levels. CONCLUSIONS SEB-neutralizing mAb 20B1 was successfully humanized. The mAb affects outcome by modulating the proinflammatory host response in both the sepsis and the intoxication models, which justifies further development.
Collapse
Affiliation(s)
| | - Xiaobo Wang
- Department of Medicine Department of Microbiology and Immunology
| | | | | | | | | | - Ximo Pechuan
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx
| | - Fergus R Byrne
- Pfizer Centers for Therapeutic Innovation, New York, New York
| | - Bettina C Fries
- Department of Medicine Department of Microbiology and Immunology
| |
Collapse
|
36
|
Diago-Navarro E, Chen L, Passet V, Burack S, Ulacia-Hernando A, Kodiyanplakkal RP, Levi MH, Brisse S, Kreiswirth BN, Fries BC. Carbapenem-resistant Klebsiella pneumoniae exhibit variability in capsular polysaccharide and capsule associated virulence traits. J Infect Dis 2014; 210:803-13. [PMID: 24634498 DOI: 10.1093/infdis/jiu157] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Novel therapies are urgently needed to treat carbapenem-resistant Klebsiella pneumoniae (CR-Kp)-mediated infection, which constitute a major health threat in the United States. In order to assess if it is feasible to develop anticapsular antibodies as a potential novel therapy, it is crucial to first systematically characterize capsular polysaccharide (CPS) and virulence traits in these strains. METHODS Forty CR-Kp were genotyped by pulsed field gel electrophoresis, multilocus sequence typing (MLST), and molecular capsule typing (C-patterns and wzi sequencing). Their biofilm formation, serum resistance, macrophage-mediated killing, and virulence in Galleria mellonella were compared. MAb (1C9) was generated by co-immunization with 2 CPSs, and cross-reactivity was investigated. RESULTS MLST assigned 80% of CR-Kp isolates to the ST258-clone. Molecular capsule typing identified new C-patterns, including C200/wzi-154, which was widely represented and associated with blaKPC-3-bearing strains. Heterogeneity was detected in biofilm formation and macrophage-mediated killing. Differences in serum resistance correlated with virulence in G. mellonella. ST258 strains carrying blaKPC-3 were less virulent than those with blaKPC-2. MAb 1C9 cross-reacted with 58% of CR-Kp CPSs. CONCLUSIONS CR-Kp ST258 strains exhibit variability of virulence-associated traits. Differences were associated with the type of KPC gene and CPS. Identification of cross-reacting anti-CPS mAbs encourages their development as adjunctive therapy.
Collapse
Affiliation(s)
- Elizabeth Diago-Navarro
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Liang Chen
- Public Health Research Institute Tuberculosis Center, NJMS-Rutgers University, Newark, New Jersey
| | - Virginie Passet
- Institut Pasteur, Microbial Evolutionary Genomics CNRS, UMR3525, Paris, France
| | - Seth Burack
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Amaia Ulacia-Hernando
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Rosy Priya Kodiyanplakkal
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Michael H Levi
- Department of Clinical Microbiology Montefiore Medical Center, Bronx, New York
| | - Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics CNRS, UMR3525, Paris, France
| | - Barry N Kreiswirth
- Public Health Research Institute Tuberculosis Center, NJMS-Rutgers University, Newark, New Jersey
| | - Bettina C Fries
- Department of Medicine Infectious Disease Division Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
37
|
Chow SK, Smith C, MacCarthy T, Pohl MA, Bergman A, Casadevall A. Disease-enhancing antibodies improve the efficacy of bacterial toxin-neutralizing antibodies. Cell Host Microbe 2014; 13:417-28. [PMID: 23601104 DOI: 10.1016/j.chom.2013.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 02/13/2013] [Indexed: 12/25/2022]
Abstract
During infection, humoral immunity produces a polyclonal response with various immunoglobulins recognizing different epitopes within the microbe or toxin. Despite this diverse response, the biological activity of an antibody (Ab) is usually assessed by the action of a monoclonal population. We demonstrate that a combination of monoclonal antibodies (mAbs) that are individually disease enhancing or neutralizing to Bacillus anthracis protective antigen (PA), a component of anthrax toxin, results in significantly augmented protection against the toxin. This boosted protection is Fc gamma receptor (FcγR) dependent and involves the formation of stoichiometrically defined mAb-PA complexes that requires immunoglobulin bivalence and simultaneous interaction between PA and the two mAbs. The formation of these mAb-PA complexes inhibits PA oligomerization, resulting in protection. These data suggest that functional assessments of single Abs may inaccurately predict how the same Abs will operate in polyclonal preparations and imply that potentially therapeutic mAbs may be overlooked in single Ab screens.
Collapse
Affiliation(s)
- Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zhao Z, Li B, Sun HQ, Zhang JY, Wang YL, Chen L, Hu J, He YF, Zeng H, Zou QM, Wu C. Fine-mapping of immunodominant linear B-cell epitopes of the Staphylococcus aureus SEB antigen using short overlapping peptides. PLoS One 2014; 9:e90445. [PMID: 24599257 PMCID: PMC3943954 DOI: 10.1371/journal.pone.0090445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/31/2014] [Indexed: 01/06/2023] Open
Abstract
Staphylococcal enterotoxin B (SEB) is one of the most potent Staphylococcus aureus exotoxins (SEs). Due to its conserved sequence and stable structure, SEB might be a good candidate antigen for MRSA vaccines. Although cellular immune responses to SEB are well-characterized, much less is known regarding SEB-specific humoral immune responses, particularly regarding detailed epitope mapping. In this study, we utilized a recombinant nontoxic mutant of SEB (rSEB) and an AlPO4 adjuvant to immunize BALB/c mice and confirmed that rSEB can induce a high antibody level and effective immune protection against MRSA infection. Next, the antisera of immunized mice were collected, and linear B cell epitopes within SEB were finely mapped using a series of overlapping synthetic peptides. Three immunodominant B cell epitopes of SEB were screened by ELISA, including a novel epitope, SEB205-222, and two known epitopes, SEB97–114 and SEB247-261. Using truncated peptides, an ELISA was performed with peptide-KLH antisera, and the core sequence of the three immunodominant B cell epitopes were verified as SEB97-112, SEB207-222, and SEB247-257. In vitro, all of the immunodominant epitope-specific antisera (anti-SEB97-112, anti-SEB207-222 and anti-SEB247-257) were observed to inhibit SEB-induced T cell mitogenesis and cytokine production from splenic lymphocytes of BALB/c mice. The homology analysis indicated that SEB97–112 and SEB207-222 were well-conserved among different Staphylococcus aureus strains. The 3D crystal structure of SEB indicated that SEB97–112 was in the loop region inside SEB, whereas SEB207-222 and SEB247-257 were in the β-slice region outside SEB. In summary, the fine-mapping of linear B-cell epitopes of the SEB antigen in this study will be useful to understand anti-SEB immunity against MRSA infection further and will be helpful to optimize MRSA vaccine designs that are based on the SEB antigen.
Collapse
Affiliation(s)
- Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - He-Qiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Jin-Yong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi-Lin Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Jian Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Ya-Fei He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail: (CW); (Q-MZ)
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail: (CW); (Q-MZ)
| |
Collapse
|
39
|
Abstract
SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.
Collapse
|
40
|
Krakauer T. Update on staphylococcal superantigen-induced signaling pathways and therapeutic interventions. Toxins (Basel) 2013; 5:1629-54. [PMID: 24064719 PMCID: PMC3798877 DOI: 10.3390/toxins5091629] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) and related bacterial toxins cause diseases in humans and laboratory animals ranging from food poisoning, acute lung injury to toxic shock. These superantigens bind directly to the major histocompatibility complex class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in rapid hyper-activation of the host immune system. In addition to TCR and co-stimulatory signals, proinflammatory mediators activate signaling pathways culminating in cell-stress response, activation of NFκB and mammalian target of rapamycin (mTOR). This article presents a concise review of superantigen-activated signaling pathways and focuses on the therapeutic challenges against bacterial superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702 5011, USA.
| |
Collapse
|
41
|
Varshney AK, Wang X, Scharff MD, MacIntyre J, Zollner RS, Kovalenko OV, Martinez LR, Byrne FR, Fries BC. Staphylococcal Enterotoxin B-specific monoclonal antibody 20B1 successfully treats diverse Staphylococcus aureus infections. J Infect Dis 2013; 208:2058-66. [PMID: 23922375 DOI: 10.1093/infdis/jit421] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) has become a major health threat in the United States. Staphylococcal enterotoxin B (SEB) is a potent superantigen that contributes to its virulence. High mortality and frequent failure of therapy despite available antibiotics have stimulated research efforts to develop adjunctive therapies. METHODS Treatment benefits of SEB-specific monoclonal antibody (mAb) 20B1 were investigated in mice in sepsis, superficial skin, and deep-tissue infection models. RESULTS Mice challenged with a SEB-producing MRSA strain developed fatal sepsis, extensive tissue skin infection, and abscess-forming deep-seeded thigh muscle infection. Animals preimmunized against SEB or treated passively with mAb 20B1 exhibited enhanced survival in the sepsis model, whereas decrease of bacterial burden was observed in the superficial skin and deep-tissue models. mAb 20B1 bound to SEB in the infected tissue and decreased abscess formation and proinflammatory cytokine levels, lymphocyte proliferation, and neutrophil recruitment. CONCLUSIONS mAb 20B1, an SEB-neutralizing mAb, is effective against MRSA infection. mAb 20B1 protects against lethal sepsis and reduces skin tissue invasion and deep-abscess formation. The mAb penetrates well into the abscess and binds to SEB. It affects the outcome of S. aureus infection by modulating the host's proinflammatory immune response.
Collapse
|
42
|
Hudson LC, Seabolt BS, Odle J, Bost KL, Stahl CH, Piller KJ. Sublethal staphylococcal enterotoxin B challenge model in pigs to evaluate protection following immunization with a soybean-derived vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:24-32. [PMID: 23114702 PMCID: PMC3535777 DOI: 10.1128/cvi.00526-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/24/2012] [Indexed: 11/20/2022]
Abstract
In an effort to develop a sustainable platform for manufacturing protein-based vaccine candidates, we expressed a triple mutant of staphylococcal enterotoxin B carrying the L45R, Y89A, and Y94A modifications in transgenic soybean seeds (soy-mSEB). Soy-mSEB possessed no detectable superantigen activity in vitro. We found that this soybean-derived, nontoxic mutant of SEB could be stably expressed, stored in seeds for extended periods at room temperature without degradation, and easily purified from contaminating soy proteins. Vaccination of pigs with purified soy-mSEB, or the identical triple mutant expressed in Escherichia coli (E. coli-mSEB), resulted in high antibody titers against the native toxin in immunized animals. In fact, titers were indistinguishable regardless of the immunogen used, demonstrating the equivalence of soy-mSEB and E. coli-mSEB vaccinations. Antisera from either immunized group were able to block native SEB superantigen activity in an in vitro neutralization assay. Similar results were obtained when immunized animals were challenged with a sublethal dose of native toxin. Significant reductions in toxin-induced serum cytokine levels were observed in soy-mSEB- and E. coli-mSEB-immunized pigs compared to control animals. The reductions in SEB-induced cytokine responses were similar regardless of the immunogen used for vaccination. Surprisingly, however, some clinical symptoms, such as prostration, lethargy, emesis, and/or diarrhea, were still observed in all immunized animals. These studies demonstrate the potential for soybean-derived proteins as a platform technology for sustainable vaccine manufacturing and the usefulness of a sublethal challenge model in pigs for evaluating the efficacy of potential SEB vaccine candidates.
Collapse
Affiliation(s)
- Laura C. Hudson
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- SoyMeds, Inc., Davidson, North Carolina, USA
| | - Brynn S. Seabolt
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth L. Bost
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- SoyMeds, Inc., Davidson, North Carolina, USA
| | - Chad H. Stahl
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth J. Piller
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- SoyMeds, Inc., Davidson, North Carolina, USA
| |
Collapse
|
43
|
Krakauer T. PI3K/Akt/mTOR, a pathway less recognized for staphylococcal superantigen-induced toxicity. Toxins (Basel) 2012; 4:1343-66. [PMID: 23202320 PMCID: PMC3509712 DOI: 10.3390/toxins4111343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 12/27/2022] Open
Abstract
Immunostimulating staphylococcal enterotoxin B (SEB) and related superantigenic toxins cause diseases in humans and laboratory animals by activating cells of the immune system. These toxins bind directly to the major histocompatibility complex (MHC) class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in hyperactivation of both T lymphocytes and monocytes/macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. The well-explored signal transduction pathways for SEB-induced toxicity downstream from TCR/MHC ligation and interaction of cell surface co-stimulatory molecules include the mitogen-activated protein kinase cascades and cytokine receptor signaling, culminating in NFκB activation. Independently, IL-2, IFNγ, and chemokines from activated T cells signal via the phosphoinositide 3-kinase (PI3K), the serine/threonine kinases, Akt and mammalian target of rapamycin (mTOR) pathways. This article reviews the signaling molecules induced by superantigens in the activation of PI3K/Akt/mTOR pathways leading to staphylococcal superantigen-induced toxicity and updates potential therapeutics against superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
44
|
Chow SK, Casadevall A. Monoclonal antibodies and toxins--a perspective on function and isotype. Toxins (Basel) 2012; 4:430-54. [PMID: 22822456 PMCID: PMC3398419 DOI: 10.3390/toxins4060430] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.
Collapse
Affiliation(s)
- Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-718-430-2811; Fax: +1-718-430-8711
| |
Collapse
|
45
|
High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1012-8. [PMID: 22573737 DOI: 10.1128/cvi.00081-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The importance of neutralizing antibody in protection against influenza virus is well established, but the role of the early antibody response during the initial stage of infection in affecting the severity of disease is unknown. The 2009 influenza pandemic provided a unique opportunity for study because most patients lacked preexisting neutralizing antibody. In this study, we compared the antibody responses of 52 patients with severe or mild disease, using sera collected at admission. A microneutralization (MN) assay was used to detect neutralizing antibody. We also developed an enzyme-linked immunosorbent assay (ELISA) which detects both neutralizing and nonneutralizing antibodies against viral antigens from a split-virion inactivated monovalent influenza virus vaccine. While the MN titers were not significantly different between the two groups (P = 0.764), the ELISA titer and ELISA/MN titer ratio were significantly higher for patients with severe disease than for those with mild disease (P = 0.004 and P = 0.011, respectively). This finding suggested that in patients with severe disease, a larger proportion of serum antibodies were antibodies with no detectable neutralizing activity. The antibody avidity was also significantly higher in patients with severe disease than in those with mild disease (P < 0.05). Among patients with severe disease, those who required positive pressure ventilation (PPV) had significantly higher ELISA titers than those who did not require PPV (P < 0.05). Multivariate analysis showed that the ELISA titer and antibody avidity were independently associated with severe disease. Higher titers of nonneutralizing antibody with higher avidity at the early stage of influenza virus infection may be associated with worse clinical severity and poorer outcomes.
Collapse
|
46
|
Cheung GYC, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets 2012; 16:601-12. [PMID: 22530584 DOI: 10.1517/14728222.2012.682573] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The pandemic human pathogen, Staphylococcus aureus, displays high levels of antibiotic resistance and is a major cause of hospital- and community-associated infections. S. aureus disease manifestation is to a great extent due to the production of a large arsenal of virulence factors, which include a series of secreted toxins. Antibodies to S. aureus toxins are found in people who are infected or asymptomatically colonized with S. aureus. Immunotherapies consisting of neutralizing anti-toxin antibodies could provide immediate aid to patients with impaired immune systems or in advanced stages of disease. AREAS COVERED Important S. aureus toxins, their roles in pathogenesis, rationales for selecting S. aureus toxins for immunization efforts, and caveats associated with monoclonal antibody-based passive immunization are discussed. This review will focus on hyper-virulent community-associated methicillin-resistant S. aureus because of their recent surge and clinical importance. EXPERT OPINION Antibodies against genome-encoded toxins may be more broadly applicable than those directed against toxins found only in a sub-population of S. aureus isolates. Furthermore, there is substantial functional redundancy among S. aureus toxins. Thus, an optimal anti-S. aureus formulation may consist of multiple antibodies directed against a series of key S. aureus genome-encoded toxins.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Laboratory of Human Bacterial Pathogenesis, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
47
|
Abstract
The view that immunoglobulins function largely by potentiating neutralization, cytotoxicity or phagocytosis is being replaced by a new synthesis whereby antibodies participate in all aspects of the immune response, from protecting the host at the earliest time of encounter with a microbe to later challenges. Perhaps the most transformative concept is that immunoglobulins manifest emergent properties, from their structure and function as individual molecules to their interactions with microbial targets and the host immune system. Given that emergent properties are neither reducible to first principles nor predictable, there is a need for new conceptual approaches for understanding antibody function and mechanisms of antibody immunity.
Collapse
|
48
|
Chimeric anti-staphylococcal enterotoxin B antibodies and lovastatin act synergistically to provide in vivo protection against lethal doses of SEB. PLoS One 2011; 6:e27203. [PMID: 22102880 PMCID: PMC3216929 DOI: 10.1371/journal.pone.0027203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) is one of a family of toxins secreted by Staphylococcus aureus that act as superantigens, activating a large fraction of the T-cell population and inducing production of high levels of inflammatory cytokines that can cause toxic shock syndrome (TSS) and death. Extracellular engagement of the TCR of T-cells and class II MHC of antigen presenting cells by SEB triggers the activation of many intracellular signaling processes. We engineered chimeric antibodies to block the extracellular engagement of cellular receptors by SEB and used a statin to inhibit intracellular signaling. Chimeric human-mouse antibodies directed against different neutralizing epitopes of SEB synergistically inhibited its activation of human T-cells in vitro. In the in vivo model of lethal toxic shock syndrome (TSS) in HLA-DR3 transgenic mice, two of these antibodies conferred significant partial protection when administered individually, but offered complete protection in a synergistic manner when given together. Similarly, in vivo, lovastatin alone conferred only partial protection from TSS similar to single anti-SEB antibodies. However, used in combination with one chimeric neutralizing anti-SEB antibody, lovastatin provided complete protection against lethal TSS in HLA-DR3 transgenic mice. These experiments demonstrate that in vivo protection against lethal doses of SEB can be achieved by a statin of proven clinical safety and chimeric human-mouse antibodies, agents now widely used and known to be of low immunogenicity in human hosts.
Collapse
|