1
|
Agudo-Ibáñez L, Morante M, García-Gutiérrez L, Quintanilla A, Rodríguez J, Muñoz A, León J, Crespo P. ERK2 stimulates MYC transcription by anchoring CDK9 to the MYC promoter in a kinase activity-independent manner. Sci Signal 2023; 16:eadg4193. [PMID: 37463244 DOI: 10.1126/scisignal.adg4193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
The transcription factor MYC regulates cell proliferation, transformation, and survival in response to growth factor signaling that is mediated in part by the kinase activity of ERK2. Because ERK2 can also bind to DNA to modify gene expression, we investigated whether it more directly regulates MYC transcription. We identified ERK2 binding sites in the MYC promoter and detected ERK2 at the promoter in various serum-stimulated cell types. Expression of nuclear-localized ERK2 constructs in serum-starved cells revealed that ERK2 in the nucleus-regardless of its kinase activity-increased MYC mRNA expression and MYC protein abundance. ERK2 bound to the promoter through its amino-terminal insert domain and to the cyclin-dependent kinase CDK9 (which activates RNA polymerase II) through its carboxyl-terminal conserved docking domain. Both interactions were essential for ERK2-induced MYC expression, and depleting ERK impaired CDK9 occupancy and RNA polymerase II progression at the MYC promoter. Artificially tethering CDK9 to the MYC promoter by fusing it to the ERK2 insert domain was sufficient to stimulate MYC expression in serum-starved cells. Our findings demonstrate a role for ERK2 at the MYC promoter acting as a kinase-independent anchor for the recruitment of CDK9 to promote MYC expression.
Collapse
Affiliation(s)
- Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Javier Rodríguez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 2809, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 2809, Spain
| |
Collapse
|
2
|
Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. Int J Mol Sci 2023; 24:ijms24065086. [PMID: 36982162 PMCID: PMC10049280 DOI: 10.3390/ijms24065086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Collapse
|
3
|
Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 2020; 9:180239. [PMID: 30836866 PMCID: PMC6451366 DOI: 10.1098/rsob.180239] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK), a ubiquitously occurring RNA-binding protein (RBP), can interact with numerous nucleic acids and various proteins and is involved in a number of cellular functions including transcription, translation, splicing, chromatin remodelling, etc. Through its abundant biological functions, hnRNPK has been implicated in cellular events including proliferation, differentiation, apoptosis, DNA damage repair and the stress and immune responses. Thus, it is critical to understand the mechanism of hnRNPK regulation and its downstream effects on cancer and other diseases. A number of recent studies have highlighted that several post-translational modifications (PTMs) possibly play an important role in modulating hnRNPK function. Phosphorylation is the most widely occurring PTM in hnRNPK. For example, in vivo analyses of sites such as S116 and S284 illustrate the purpose of PTM of hnRNPK in altering its subcellular localization and its ability to bind target nucleic acids or proteins. Other PTMs such as methylation, ubiquitination, sumoylation, glycosylation and proteolytic cleavage are increasingly implicated in the regulation of DNA repair, cellular stresses and tumour growth. In this review, we describe the PTMs that impact upon hnRNPK function on gene expression programmes and different disease states. This knowledge is key in allowing us to better understand the mechanism of hnRNPK regulation.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Wei Wu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Qiu Han
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Cencen Li
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| |
Collapse
|
4
|
Long ME, Gong KQ, Eddy WE, Volk JS, Morrell ED, Mikacenic C, West TE, Skerrett SJ, Charron J, Liles WC, Manicone AM. MEK1 regulates pulmonary macrophage inflammatory responses and resolution of acute lung injury. JCI Insight 2019; 4:132377. [PMID: 31801908 PMCID: PMC6962022 DOI: 10.1172/jci.insight.132377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
The MEK1/2-ERK1/2 pathway has been implicated in regulating the inflammatory response to lung injury and infection, and pharmacologic MEK1/2 inhibitor compounds are reported to reduce detrimental inflammation in multiple animal models of disease, in part through modulation of leukocyte responses. However, the specific contribution of myeloid MEK1 in regulating acute lung injury (ALI) and its resolution remain unknown. Here, the role of myeloid Mek1 was investigated in a murine model of LPS-induced ALI (LPS-ALI) by genetic deletion using the Cre-floxed system (LysMCre × Mekfl), and human alveolar macrophages from healthy volunteers and patients with acute respiratory distress syndrome (ARDS) were obtained to assess activation of the MEK1/2-ERK1/2 pathway. Myeloid Mek1 deletion results in a failure to resolve LPS-ALI, and alveolar macrophages lacking MEK1 had increased activation of MEK2 and the downstream target ERK1/2 on day 4 of LPS-ALI. The clinical significance of these findings is supported by increased activation of the MEK1/2-ERK1/2 pathway in alveolar macrophages from patients with ARDS compared with alveolar macrophages from healthy volunteers. This study reveals a critical role for myeloid MEK1 in promoting resolution of LPS-ALI and controlling the duration of macrophage proinflammatory responses.
Collapse
Affiliation(s)
- Matthew E. Long
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ke-Qin Gong
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - William E. Eddy
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joseph S. Volk
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Eric D. Morrell
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Carmen Mikacenic
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - T. Eoin West
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shawn J. Skerrett
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jean Charron
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - W. Conrad Liles
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anne M. Manicone
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Bomsztyk K, Wang Y. Genome-bound enzymes as epigenetic drug targets in cancer. Epigenomics 2019; 11:1463-1467. [PMID: 31536377 DOI: 10.2217/epi-2019-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, WA 98109, USA.,Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.,Paul G Allen School of Computer Science & Engineering, University of Washington, WA 98195, USA
| |
Collapse
|
6
|
Bomsztyk K, Mar D, Wang Y, Denisenko O, Ware C, Frazar CD, Blattler A, Maxwell AD, MacConaghy BE, Matula TJ. PIXUL-ChIP: integrated high-throughput sample preparation and analytical platform for epigenetic studies. Nucleic Acids Res 2019; 47:e69. [PMID: 30927002 PMCID: PMC6614803 DOI: 10.1093/nar/gkz222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) is the most widely used approach for identification of genome-associated proteins and their modifications. We have previously introduced a microplate-based ChIP platform, Matrix ChIP, where the entire ChIP procedure is done on the same plate without sample transfers. Compared to conventional ChIP protocols, the Matrix ChIP assay is faster and has increased throughput. However, even with microplate ChIP assays, sample preparation and chromatin fragmentation (which is required to map genomic locations) remains a major bottleneck. We have developed a novel technology (termed 'PIXUL') utilizing an array of ultrasound transducers for simultaneous shearing of samples in standard 96-well microplates. We integrated PIXUL with Matrix ChIP ('PIXUL-ChIP'), that allows for fast, reproducible, low-cost and high-throughput sample preparation and ChIP analysis of 96 samples (cell culture or tissues) in one day. Further, we demonstrated that chromatin prepared using PIXUL can be used in an existing ChIP-seq workflow. Thus, the high-throughput capacity of PIXUL-ChIP provides the means to carry out ChIP-qPCR or ChIP-seq experiments involving dozens of samples. Given the complexity of epigenetic processes, the use of PIXUL-ChIP will advance our understanding of these processes in health and disease, as well as facilitate screening of epigenetic drugs.
Collapse
Affiliation(s)
- Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- To whom correspondence should be addressed. Tel. +1 206 616 7949;
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, WA 98109, USA
| | - Yuliang Wang
- UW Medicine South Lake Union, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, WA 98109, USA
| | - Carol Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Christian D Frazar
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Brian E MacConaghy
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Thomas J Matula
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
He D, Huang C, Zhou Q, Liu D, Xiong L, Xiang H, Ma G, Zhang Z. HnRNPK/miR-223/FBXW7 feedback cascade promotes pancreatic cancer cell growth and invasion. Oncotarget 2017; 8:20165-20178. [PMID: 28423622 PMCID: PMC5386752 DOI: 10.18632/oncotarget.15529] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Several studies have identified miR-223 critically involved in various types of cancer, including pancreatic ductal adenocarcinoma (PDAC). However, its action and regulatory mechanisms in PDAC remains largely unclear. In this study, we found that the expression levels of miR-223 were increased in clinical samples with PDAC (81.6%). The upregulation of miR-223 increases the proliferation, migration, and invasive abilities of PDAC cells in vitro and in vivo. Mechanistically, miR-223 directly targeted FBXW7 and overexpression of FBXW7 reverted miR-223- induced drastic proliferation in PDAC cells. Interestingly, miR-223 promoter was found to form a coprecipitable complex with hnRNPK, and siRNA knockdown of hnRNPK in PDAC cells reduced the levels of miR-223. These results show that hnRNPK is a cellular protein that binds and affects the accumulation of miR-223 in PDAC. Furthermore, FBXW7 interacts with hnRNPK and promotes its degradation, which requires phosphorylation of hnRNPK at threonine 1695 by GSK3. Consistently, we observed an inverse expression pattern between FBXW7 and miR-223, whereas a positive expression pattern between miR-223 and hnRNPK was found in human PDAC tissues. These data unveiled an important new miR-223/FBXW7/HnRNPK feedback cascade in human PDAC.
Collapse
Affiliation(s)
- D He
- Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101, China
| | - Cheng Huang
- Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101, China.,Guangdong Medical University Graduate School, Zhanjiang, Guangdong, 524001, China
| | - Qingxin Zhou
- Department of Gastrointestinal Oncology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Dawei Liu
- Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101, China.,Guangdong Medical University Graduate School, Zhanjiang, Guangdong, 524001, China
| | - Longhui Xiong
- Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101, China
| | - Hongxia Xiang
- Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101, China
| | - Guangnian Ma
- Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101, China
| | - Zhiyong Zhang
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Baseline MAPK signaling activity confers intrinsic radioresistance to KRAS-mutant colorectal carcinoma cells by rapid upregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K). Cancer Lett 2017; 385:160-167. [DOI: 10.1016/j.canlet.2016.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
|
9
|
Mikula M, Skrzypczak M, Goryca K, Paczkowska K, Ledwon JK, Statkiewicz M, Kulecka M, Grzelak M, Dabrowska M, Kuklinska U, Karczmarski J, Rumienczyk I, Jastrzebski K, Miaczynska M, Ginalski K, Bomsztyk K, Ostrowski J. Genome-wide co-localization of active EGFR and downstream ERK pathway kinases mirrors mitogen-inducible RNA polymerase 2 genomic occupancy. Nucleic Acids Res 2016; 44:10150-10164. [PMID: 27587583 PMCID: PMC5137434 DOI: 10.1093/nar/gkw763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/20/2023] Open
Abstract
Genome-wide mechanisms that coordinate expression of subsets of functionally related genes are largely unknown. Recent studies show that receptor tyrosine kinases and components of signal transduction cascades including the extracellular signal-regulated protein kinase (ERK), once thought to act predominantly in the vicinity of plasma membrane and in the cytoplasm, can be recruited to chromatin encompassing transcribed genes. Genome-wide distribution of these transducers and their relationship to transcribing RNA polymerase II (Pol2) could provide new insights about co-regulation of functionally related gene subsets. Chromatin immunoprecipitations (ChIP) followed by deep sequencing, ChIP-Seq, revealed that genome-wide binding of epidermal growth factor receptor, EGFR and ERK pathway components at EGF-responsive genes was highly correlated with characteristic mitogen-induced Pol2-profile. Endosomes play a role in intracellular trafficking of proteins including their nuclear import. Immunofluorescence revealed that EGF-activated EGFR, MEK1/2 and ERK1/2 co-localize on endosomes. Perturbation of endosome internalization process, through the depletion of AP2M1 protein, resulted in decreased number of the EGFR containing endosomes and inhibition of Pol2, EGFR/ERK recruitment to EGR1 gene. Thus, mitogen-induced co-recruitment of EGFR/ERK components to subsets of genes, a kinase module possibly pre-assembled on endosome to synchronize their nuclear import, could coordinate genome-wide transcriptional events to ensure effective cell proliferation.
Collapse
Affiliation(s)
- M Mikula
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - M Skrzypczak
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - K Goryca
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - K Paczkowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - J K Ledwon
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - M Statkiewicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - M Kulecka
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - M Grzelak
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - M Dabrowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - U Kuklinska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - J Karczmarski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - I Rumienczyk
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - K Jastrzebski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - M Miaczynska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - K Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - K Bomsztyk
- University of Washington, Department of Medicine, 850 Republican Street, Seattle, WA, USA
| | - J Ostrowski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland.,Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| |
Collapse
|
10
|
McReynolds AC, Karra AS, Li Y, Lopez ED, Turjanski AG, Dioum E, Lorenz K, Zaganjor E, Stippec S, McGlynn K, Earnest S, Cobb MH. Phosphorylation or Mutation of the ERK2 Activation Loop Alters Oligonucleotide Binding. Biochemistry 2016; 55:1909-17. [PMID: 26950759 DOI: 10.1021/acs.biochem.6b00096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly. ERK2 is activated by the upstream kinases MEK1/2, which phosphorylate both tyrosine 185 and threonine 183. ERK2 requires phosphorylation on both sites to be fully active. Some additional ERK2 phosphorylation sites have also been reported, including threonine 188. It has been suggested that this phospho form has distinct properties. We detected some ERK2 phosphorylated on T188 in bacterial preparations of ERK2 by mass spectrometry and further demonstrate that phosphomimetic substitution of this ERK2 residue impairs its kinase activity toward well-defined substrates and also affects its DNA binding. We used electrophoretic mobility shift assays with oligonucleotides derived from the insulin gene promoter and other regions to examine effects of phosphorylation and mutations on the binding of ERK2 to DNA. We show that ERK2 can bind oligonucleotides directly. Phosphorylation and mutations alter DNA binding and support the idea that signaling functions may be influenced through an alternate phosphorylation site.
Collapse
Affiliation(s)
- Andrea C McReynolds
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Aroon S Karra
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yan Li
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland 20824, United States
| | - Elias Daniel Lopez
- Laboratory of Structural Bioinformatics, Department of Chemical Biology, University of Buenos Aires , Buenos Aires, Argentina
| | - Adrian G Turjanski
- Laboratory of Structural Bioinformatics, Department of Chemical Biology, University of Buenos Aires , Buenos Aires, Argentina
| | - Elhadji Dioum
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Dortmund, Germany
| | - Elma Zaganjor
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Steve Stippec
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Kathleen McGlynn
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Svetlana Earnest
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Melanie H Cobb
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
11
|
Mar D, Gharib SA, Zager RA, Johnson A, Denisenko O, Bomsztyk K. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int 2015; 88:734-44. [PMID: 26061546 PMCID: PMC4589440 DOI: 10.1038/ki.2015.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/17/2022]
Abstract
Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). As epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study 20 key permissive and repressive epigenetic histone marks at transcriptionally induced Tnf, Ngal, Kim-1, and Icam-1 genes in mouse models of AKI; unilateral renal ischemia/reperfusion, lipopolysaccharide (LPS), and their synergistically injurious combination. Results revealed unexpected heterogeneity of transcriptional and epigenetic responses. Tnf and Ngal were transcriptionally upregulated in response to both treatments individually, and to combination treatment. Kim-1 was induced by ischemia/reperfusion and Icam-1 by LPS only. Epigenetic alterations at these genes exhibited distinct time-dependent changes that shared some similarities, such as reduction in repressive histone modifications, and also had major ischemia/reperfusion versus endotoxin differences. Thus, diversity of changes at AKI genes in response to different insults indicates involvement of several epigenetic pathways. This could be exploited pharmacologically through rational-drug design to alter the course and improve clinical outcomes of this syndrome.
Collapse
Affiliation(s)
- Daniel Mar
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| | - Sina A. Gharib
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
- Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | - Richard A. Zager
- the Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Ali Johnson
- the Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Oleg Denisenko
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| | - Karol Bomsztyk
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Chung BM, Arutyunov A, Ilagan E, Yao N, Wills-Karp M, Coulombe PA. Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes. ACTA ACUST UNITED AC 2015; 208:613-27. [PMID: 25713416 PMCID: PMC4347647 DOI: 10.1083/jcb.201408026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interaction between K17 and hnRNP K regulates CXCR3 signaling in an RSK-dependent fashion to promote epithelial tumor cell growth and invasion. High levels of the intermediate filament keratin 17 (K17) correlate with a poor prognosis for several types of epithelial tumors. However, the causal relationship and underlying mechanisms remain undefined. A recent study suggested that K17 promotes skin tumorigenesis by fostering a specific type of inflammation. We report here that K17 interacts with the RNA-binding protein hnRNP K, which has also been implicated in cancer. K17 is required for the cytoplasmic localization of hnRNP K and for its role in regulating the expression of multiple pro-inflammatory mRNAs. Among these are the CXCR3 ligands CXCL9, CXCL10, and CXCL11, which together form a signaling axis with an established role in tumorigenesis. The K17–hnRNP K partnership is regulated by the ser/thr kinase RSK and required for CXCR3-dependent tumor cell growth and invasion. These findings functionally integrate K17, hnRNP K, and gene expression along with RSK and CXCR3 signaling in a keratinocyte-autonomous axis and provide a potential basis for their implication in tumorigenesis.
Collapse
Affiliation(s)
- Byung Min Chung
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Artem Arutyunov
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Erika Ilagan
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Nu Yao
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Marsha Wills-Karp
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| |
Collapse
|
13
|
Rodríguez-Cazorla E, Ripoll JJ, Andújar A, Bailey LJ, Martínez-Laborda A, Yanofsky MF, Vera A. K-homology nuclear ribonucleoproteins regulate floral organ identity and determinacy in arabidopsis. PLoS Genet 2015; 11:e1004983. [PMID: 25658099 PMCID: PMC4450054 DOI: 10.1371/journal.pgen.1004983] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional control is nowadays considered a main checking point for correct gene regulation during development, and RNA binding proteins actively participate in this process. Arabidopsis thaliana FLOWERING LOCUS WITH KH DOMAINS (FLK) and PEPPER (PEP) genes encode RNA-binding proteins that contain three K-homology (KH)-domain, the typical configuration of Poly(C)-binding ribonucleoproteins (PCBPs). We previously demonstrated that FLK and PEP interact to regulate FLOWERING LOCUS C (FLC), a central repressor of flowering time. Now we show that FLK and PEP also play an important role in the maintenance of the C-function during floral organ identity by post-transcriptionally regulating the MADS-box floral homeotic gene AGAMOUS (AG). Previous studies have indicated that the KH-domain containing protein HEN4, in concert with the CCCH-type RNA binding protein HUA1 and the RPR-type protein HUA2, facilitates maturation of the AG pre-mRNA. In this report we show that FLK and PEP genetically interact with HEN4, HUA1, and HUA2, and that the FLK and PEP proteins physically associate with HUA1 and HEN4. Taken together, these data suggest that HUA1, HEN4, PEP and FLK are components of the same post-transcriptional regulatory module that ensures normal processing of the AG pre-mRNA. Our data better delineates the roles of PEP in plant development and, for the first time, links FLK to a morphogenetic process. Unlike animals, angiosperms (flowering plants) lack a germline that is set-aside early in embryo development. Contrariwise, reproductive success relies on the formation of flowers during adult life, which provide the germ cells and the means for fertilization. Therefore, timing of flowering and flower organ morphogenesis are critical developmental operations that must be finely regulated and coordinated to complete reproduction. Arabidopsis thaliana FLOWERING LOCUS WITH KH DOMAINS (FLK) and PEPPER (PEP) encode two KH-domain RNA-binding proteins phylogenetically related to human proteins characterized by their high developmental versatility. FLK and PEP modulate the mRNA expression of the MADS-box gene FLOWERING LOCUS C, key in flowering control. In this work we have found that FLK and PEP also play a pivotal role in flower organogenesis by post-transcriptionally regulating the MADS-box floral organ identity gene AGAMOUS (AG). Interestingly, FLK and PEP physically interact with proteins involved in AG pre-mRNA processing to secure correct AG function in the floral meristem and flower. Taken together, our results reveal the existence of a post-transcriptional regulatory activity controlling key master genes for floral timing and flower morphogenesis, which might be instrumental for coordinating both developmental phases.
Collapse
Affiliation(s)
| | - Juan José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Alfonso Andújar
- Área de Genética, Universidad Miguel Hernández, Campus de Sant Joan d’Alacant, Sant Joan d’Alacant, Alicante, Spain
| | - Lindsay J. Bailey
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Antonio Martínez-Laborda
- Área de Genética, Universidad Miguel Hernández, Campus de Sant Joan d’Alacant, Sant Joan d’Alacant, Alicante, Spain
| | - Martin F. Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Antonio Vera
- Área de Genética, Universidad Miguel Hernández, Campus de Sant Joan d’Alacant, Sant Joan d’Alacant, Alicante, Spain
- * E-mail:
| |
Collapse
|
14
|
Thompson PJ, Dulberg V, Moon KM, Foster LJ, Chen C, Karimi MM, Lorincz MC. hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells. PLoS Genet 2015; 11:e1004933. [PMID: 25611934 PMCID: PMC4303303 DOI: 10.1371/journal.pgen.1004933] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 01/23/2023] Open
Abstract
Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. Retroelements, including endogenous retroviruses (ERVs), pose a significant threat to genome stability. In mouse embryonic stem (ES) cells, the enzyme SETDB1 safeguards the genome against transcription of specific ERVs by depositing a repressive mark H3K9 trimethylation (H3K9me3). Although SETDB1 is recruited to ERVs by its binding partner KAP1, the molecular basis of this silencing pathway is not clear. Using biochemical and genetic approaches, we identified hnRNP K as a novel component of this silencing pathway that facilitates the recruitment of SETDB1 to ERVs to promote their repression. HnRNP K binds to ERV sequences via KAP1 and subsequently promotes SETDB1 binding. Together, our results reveal a novel function for hnRNP K in transcriptional silencing of ERVs and demonstrate a new regulatory mechanism governing the deposition of H3K9me3 by SETDB1 in ES cells.
Collapse
Affiliation(s)
- Peter J. Thompson
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vered Dulberg
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Chen
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad M. Karimi
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C. Lorincz
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein implicated in RNA metabolism. Here, we investigated the role of hnRNP K in synapse function. We demonstrated that hnRNP K regulates dendritic spine density and long-term potentiation (LTP) in cultured hippocampal neurons from embryonic rats. LTP requires the extracellular signal-regulated kinase (ERK)1/2-mediated phosphorylation and cytoplasmic accumulation of hnRNP K. Moreover, hnRNP K knockdown prevents ERK cascade activation and GluA1-S845 phosphorylation and surface delivery, which are essential steps for LTP. These findings establish hnRNP K as a new critical regulator of synaptic transmission and plasticity in hippocampal neurons.
Collapse
|
16
|
Bomsztyk K, Flanagin S, Mar D, Mikula M, Johnson A, Zager R, Denisenko O. Synchronous recruitment of epigenetic modifiers to endotoxin synergistically activated Tnf-α gene in acute kidney injury. PLoS One 2013; 8:e70322. [PMID: 23936185 PMCID: PMC3728219 DOI: 10.1371/journal.pone.0070322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As a consequence of acute kidney injury (AKI), proximal tubular cells hyperrespond to endotoxin (lipopolysaccharide, LPS) by exaggerated renal Tnf-α Production. This LPS hyperresponsiveness is transcriptionally mediated. The epigenetic pathways that control these responses are unknown. METHODS/FINDINGS We applied multiplex chromatin immunoprecipitation platform (Matrix ChIP) to explore epigenetic pathways that underlie endotoxin hyperresponsiveness in the setting of preceding unilateral renal ischemia/reperfusion (I/R) in mouse AKI model. Endotoxin exposure after I/R resulted in enhanced transcription, manifested by hyperresponsive recruitment of RNA polymerase II (Pol II) at the Tnf-α gene. At this locus, LPS but not I/R increased levels of Pol II C-terminal domain (CTD) phosho-serine2 &5 and induced dephosphorylation of the transcription-repressive histone H4 phospho-serine-1. In contrast, I/R but not LPS increased the transcription-permissive histone phosphorylation (H3 phospho-serine-10, H3.3 phospho-serine-31) at the Tnf-α gene. In agreement with these observations, I/R but not LPS increased activity of cognate kinases (Erk1/2, Msk1/2 and Aurora A) at the Tnf-α locus. Cross-talk of histone phosphorylation and acetylation synergize to active gene expression. I/R and LPS increased histone acetylation. (H3K9/14Ac, H4K5/8/12/16Ac, H2KA5Ac, H2BK4/7Ac). Levels of some histone acetyltransferases at this gene (PCAF and MOF) were increased by I/R but not by LPS, while others were induced by either I/R or LPS and exhibited endotoxin hyperresponsive patterns (GCN5, CBP and p300). The adaptor protein 14-3-3 couples histone phosphorylation with acetylation, and tethers chromatin modifiers/transcription elongation factors to target genes. Both I/R and LPS increased levels of 14-3-3 and several chromatin/transcription modifiers (BRD4, BRG1, HP-1γ and IKKα) at the Tnf-α gene, all exhibiting endotoxin hyperresponsive recruitment patterns similar to Pol II. CONCLUSIONS Our results suggest that I/R and LPS differentially trigger phosphorylation (Pol II and histone) and acetylation (histone) epigenetic pathways that interact at the Tnf-α gene to generate endotoxin hyperresponse in AKI.
Collapse
Affiliation(s)
- Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Mikula M, Bomsztyk K, Goryca K, Chojnowski K, Ostrowski J. Heterogeneous nuclear ribonucleoprotein (HnRNP) K genome-wide binding survey reveals its role in regulating 3'-end RNA processing and transcription termination at the early growth response 1 (EGR1) gene through XRN2 exonuclease. J Biol Chem 2013; 288:24788-98. [PMID: 23857582 DOI: 10.1074/jbc.m113.496679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid-binding protein that acts as a docking platform integrating signal transduction pathways to nucleic acid-related processes. Given that hnRNPK could be involved in other steps that compose gene expression the definition of its genome-wide occupancy is important to better understand its role in transcription and co-transcriptional processes. Here, we used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to analyze the genome-wide hnRNPK-DNA interaction in colon cancer cell line HCT116. 9.1/3.6 and 7.0/3.4 million tags were sequenced/mapped, then 1809 and 642 hnRNPK binding sites were detected in quiescent and 30-min serum-stimulated cells, respectively. The inspection of sequencing tracks revealed inducible hnRNPK recruitment along a number of immediate early gene loci, including EGR1 and ZFP36, with the highest densities present at the transcription termination sites. Strikingly, hnRNPK knockdown with siRNA resulted in increased pre-RNA levels transcribed downstream of the EGR1 polyadenylation (A) site suggesting altered 3'-end pre-RNA degradation. Further ChIP survey of hnRNPK knockdown uncovered decreased recruitment of the 5'-3' exonuclease XRN2 along EGR1 and downstream of the poly(A) signal without altering RNA polymerase II density at these sites. Immunoprecipitation of hnRNPK and XRN2 from intact and RNase A-treated nuclear extracts followed by shotgun mass spectrometry revealed the presence of hnRNPK and XRN2 in the same complexes along with other spliceosome-related proteins. Our data suggest that hnRNPK may play a role in recruitment of XRN2 to gene loci thus regulating coupling 3'-end pre-mRNA processing to transcription termination.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
18
|
Gao R, Yu Y, Inoue A, Widodo N, Kaul SC, Wadhwa R. Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) promotes tumor metastasis by induction of genes involved in extracellular matrix, cell movement, and angiogenesis. J Biol Chem 2013; 288:15046-56. [PMID: 23564449 DOI: 10.1074/jbc.m113.466136] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cancer is a leading cause of death and still awaits effective therapies. Rapid industrialization has contributed to increase in incidence of cancer. One of the reasons why most of the cancers fail therapy is due to their metastatic property. Hence identification of factors leading to metastasis is highly important to design effective and novel anti-cancer therapeutics. In our earlier study (Inoue, A., Sawata, S. Y., Taira, K., and Wadhwa, R. (2007) Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. Proc. Natl. Acad. Sci. U.S.A. 104, 8983-8988), we had reported that the involvement of heterogeneous nuclear ribonucleoprotein K (hnRNP-K) in metastasis. Here, we established hnRNP-K-overexpressing and -underexpressing derivative cell lines and examined their proliferation and metastatic properties in vitro and in vivo. Whereas hnRNP-K compromised cells showed delayed tumor growth, its overexpression resulted in enhanced malignancy and metastasis. Molecular basis of the hnRNP-K induced malignant and metastatic phenotypes was dissected by cDNA microarray and pathway analyses. We found that the hnRNP-K regulates extracellular matrix, cell motility, and angiogenesis pathways. Involvement of the selected genes (Cck, Mmp-3, Ptgs2, and Ctgf) and pathways was validated by gene-specific expression analysis. Our results demonstrated that the hnRNP-K is a potential target for metastasis therapy.
Collapse
Affiliation(s)
- Ran Gao
- National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Klein AM, Zaganjor E, Cobb MH. Chromatin-tethered MAPKs. Curr Opin Cell Biol 2013; 25:272-7. [PMID: 23434067 DOI: 10.1016/j.ceb.2013.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 01/15/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that are essential nodes in many cellular regulatory circuits including those that take place on DNA. Most members of the four MAPK subgroups that exist in canonical three kinase cascades-extracellular signal-regulated kinases 1 and 2 (ERK1/2), ERK5, c-Jun N-terminal kinases (JNK1-3), and p38 (α, β, γ, and δ) families-have been shown to perform regulatory functions on chromatin. This review offers a brief update on the variety of processes that involve MAPKs and available mechanisms garnered in the last two years.
Collapse
Affiliation(s)
- Aileen M Klein
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, United States
| | | | | |
Collapse
|
20
|
Li T, Zhao H, Hung GC, Han J, Tsai S, Li B, Zhang J, Puri RK, Lo SC. Differentially expressed genes and pathways induced by organophosphates in human neuroblastoma cells. Exp Biol Med (Maywood) 2013; 237:1413-23. [PMID: 23354400 DOI: 10.1258/ebm.2012.012178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organophosphates (OPs) are toxic chemicals commonly used as pesticides and herbicides. Some OPs are highly toxic to humans and have been used in warfare and terrorist attacks. In order to elucidate the molecular mechanisms of injury caused by OPs, the differentially expressed genes were analyzed in human SK-N-SH neuroblastoma cells induced by three OPs. The SK-N-SH cells were treated with one of the three OPs, chlorpyrifos, dichlorvos or methamidophos at LC20 (high-dose), the concentration causing 20% cell death, as well as 1/20 of LC20 (low-dose), a sub-lethal concentration with no detectable cell death, for 24 h. The genome-wide gene changes were identified by Agilent Microarray System, and analyzed by microarray analysis tools. The analysis revealed neuroblastoma cells treated with the high doses of all three OPs markedly activated cell apoptosis and inhibited cell growth and proliferation genes, which would most likely lead to the process of cell death. Interestingly, the analysis also revealed significant decrease in expressions of many genes in a specific spliceosome pathway in cells treated with the low doses of all three different OPs. The change of spliceosome pathway may represent an important mechanism of injury in neuronal cells exposed to low doses of various OPs. In addition to unraveling a potentially different form of OP pathogenesis, this finding could provide a new diagnostic marker in assessing OP-associated injury in cells or tissues. In addition, these results could also contribute to the development of new prevention and/or therapeutic regimens against OP toxicity.
Collapse
Affiliation(s)
- Tianwei Li
- Tissue Safety Laboratory Program, Center for Biologics Evaluation and Research, Food and Drug Administration, NIH Building 29B, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
22
|
Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the Epstein-Barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. PLoS One 2012; 7:e42106. [PMID: 22879910 PMCID: PMC3411732 DOI: 10.1371/journal.pone.0042106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/02/2012] [Indexed: 12/31/2022] Open
Abstract
The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.
Collapse
|
23
|
Marie M, Hafner S, Moratille S, Vaigot P, Mine S, Rigaud O, Martin MT. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation. Int J Radiat Biol 2012; 88:688-93. [PMID: 22732006 PMCID: PMC3477890 DOI: 10.3109/09553002.2012.706358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose Fibroblast growth factor 2 (FGF2) is a well-known survival factor. However, its role in DNA repair is poorly documented. The present study was designed to investigate in epidermoid carcinoma cells the potential role of FGF2 in DNA repair. Materials and methods The side population (SP) with cancer stem cell-like properties and the main population (MP) were isolated from human A431 squamous carcinoma cells. Radiation-induced DNA damage and repair were assessed using the alkaline comet assay. FGF2 expression was quantified by enzyme linked immunosorbent assay (ELISA). Results SP cells exhibited rapid repair of radiation induced DNA damage and a high constitutive level of nuclear FGF2. Blocking FGF2 signaling abrogated the rapid DNA repair. In contrast, in MP cells, a slower repair of damage was associated with low basal expression of FGF2. Moreover, the addition of exogenous FGF2 accelerated DNA repair in MP cells. When irradiated, SP cells secreted FGF2, whereas MP cells did not. Conclusions FGF2 was found to mediate DNA repair in epidermoid carcinoma cells. We postulate that carcinoma stem cells would be intrinsically primed to rapidly repair DNA damage by a high constitutive level of nuclear FGF2. In contrast, the main population with a low FGF2 content exhibits a lower repair rate which can be increased by exogenous FGF2.
Collapse
Affiliation(s)
- Mélanie Marie
- CEA, iRCM, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Evry, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Yu J, Feng Q, Ruan Y, Komers R, Kiviat N, Bomsztyk K. Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays. BMC Mol Biol 2011; 12:49. [PMID: 22098709 PMCID: PMC3247195 DOI: 10.1186/1471-2199-12-49] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/18/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP) and methylated DNA (MeDIP) represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions in vivo and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription. RESULTS To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease. CONCLUSION The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation to pursue mechanistic, functional and diagnostic information at genes of interest in health and disease.
Collapse
Affiliation(s)
- Jingjing Yu
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
26
|
Farooqi AA, Waseem S, Riaz AM, Dilawar BA, Mukhtar S, Minhaj S, Waseem MS, Daniel S, Malik BA, Nawaz A, Bhatti S. PDGF: the nuts and bolts of signalling toolbox. Tumour Biol 2011; 32:1057-70. [PMID: 21769672 DOI: 10.1007/s13277-011-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/07/2011] [Indexed: 12/16/2022] Open
Abstract
PDGF is a growth factor and is extensively involved in multi-dimensional cellular dynamics. It switches on a plethora of molecules other than its classical pathway. It is engaged in various transitions of development; however, if the unleashed potentials lead astray, it brings forth tumourigenesis. Conventionally, it has been assumed that the components of this signalling pathway show fidelity and act with a high degree of autonomy. However, as illustrated by the PDGF signal transduction, reinterpretation of recent data suggests that machinery is often shared between multiple pathways, and other components crosstalk to each other through multiple mechanisms. It is important to note that metastatic cascade is an intricate process that we have only begun to understand in recent years. Many of the early steps of this PDGF cascade are not readily targetable in the clinic. In this review, we will unravel the paradoxes with reference to mitrons and cellular plasticity and discuss how disruption of signalling cascade triggers cellular proliferation phase transition and metastasis. We will also focus on the therapeutic interventions to counteract resultant molecular disorders.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, 1 km defence road, Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|