1
|
Baysal AÇ, Kıymaz YÇ, Şahin NÖ, Bakır M. Investigation of Long Noncoding RNA-NRAV and Long Noncoding RNA-Lethe Expression in Crimean-Congo Hemorrhagic Fever. J Med Virol 2024; 96:e70142. [PMID: 39719892 DOI: 10.1002/jmv.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic infectious disease caused by the CCHF virus, a member of the Bunyavirales order and the Orthonairoviridae family. The exact pathogenesis is not fully understood. Long noncoding RNAs (lncRNAs) are RNAs that are shown to play a role in various pathological processes of viral diseases. NRAV and Lethe are two well-known lncRNAs. Although previous studies have shown that NRAV and Lethe play important roles in the pathogenesis of viral infections, their role in CCHF is unknown. This study aimed to evaluate the expression levels of NRAV and Lethe in patients with CCHFV. Eighty patients diagnosed with CCHF were included, and RNA was extracted from their blood samples. The expression of NRAV and Lethe was measured using quantitative real-time polymerase chain reaction (qPCR). Patients were divided into three groups based on severity score, which was mild, moderate, and severe, and into two groups (survivors and non-survivors). The expression levels of NRAV and Lethe were compared between these groups. Of the patients, 49 (61.25%) were male, 31 (38.75%) were female, and the mean age was 38.62 ± 19.28 years. No differences in age or gender were found between the groups. It was shown that NRAV expression was 21.86 times higher in the severe patient group compared to the moderate group and 22.74 times higher than in the mild group, statistically significant. When comparing fatal cases with survivors, NRAV expression levels were found to be 9.2 times higher in fatal cases. Lethe levels were 3 times lower in moderately severe cases compared to mild cases, but this difference was not statistically significant. In conclusion, our study suggests that NRAV may be a lncRNA involved in the pathogenesis of CCHFV.
Collapse
Affiliation(s)
- Ayşenur Çömez Baysal
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yasemin Çakır Kıymaz
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Nil Özbilum Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mehmet Bakır
- Infectious Diseases and Clinical Microbiology Clinic, Sivas Medicana Hospital, Sivas, Turkey
| |
Collapse
|
2
|
Tan S, Tang H, Wang Y, Xie P, Li H, Zhang Z, Zhou J. Tumor cell-derived exosomes regulate macrophage polarization: Emerging directions in the study of tumor genesis and development. Heliyon 2023; 9:e19296. [PMID: 37662730 PMCID: PMC10474436 DOI: 10.1016/j.heliyon.2023.e19296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
As an extracellular vesicle, exosomes play an important role in intercellular information transmission, delivering cargos of the parent cell, such as RNA, DNA, proteins, and lipids, activating different signaling pathways in the target cell and regulating inflammation, angiogenesis, and tumor progression. In particular, exosomes secreted by tumor cells can change the function of surrounding cells, creating a microenvironment conducive to tumor growth and metastasis. For example, after macrophages phagocytose exosomes and accept their cargos, they activate macrophage polarization-related signaling pathways and polarize macrophages into M1 or M2 types to exert antitumor or protumor functions. Currently, the study of exosomes affecting the polarization of macrophages has attracted increasing attention. Therefore, this paper reviews relevant studies in this field to better understand the mechanism of exosome-induced macrophage polarization and provide evidence for exploring novel targets for tumor therapy and new diagnostic markers in the future.
Collapse
Affiliation(s)
- Siyuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haodong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yang Wang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Peng Xie
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| |
Collapse
|
3
|
Liu S, Liu S, Yu Z, Zhou W, Zheng M, Gu R, Hong J, Yang Z, Chi X, Guo G, Li X, Chen N, Huang S, Wang S, Chen JL. STAT3 regulates antiviral immunity by suppressing excessive interferon signaling. Cell Rep 2023; 42:112806. [PMID: 37440406 DOI: 10.1016/j.celrep.2023.112806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This study identifies interleukin-6 (IL-6)-independent phosphorylation of STAT3 Y705 at the early stage of infection with several viruses, including influenza A virus (IAV). Such activation of STAT3 is dependent on the retinoic acid-induced gene I/mitochondrial antiviral-signaling protein/spleen tyrosine kinase (RIG-I/MAVS/Syk) axis and critical for antiviral immunity. We generate STAT3Y705F/+ knockin mice that display a remarkably suppressed antiviral response to IAV infection, as evidenced by impaired expression of several antiviral genes, severe lung tissue injury, and poor survival compared with wild-type animals. Mechanistically, STAT3 Y705 phosphorylation restrains IAV pathogenesis by repressing excessive production of interferons (IFNs). Blocking phosphorylation significantly augments the expression of type I and III IFNs, potentiating the virulence of IAV in mice. Importantly, knockout of IFNAR1 or IFNLR1 in STAT3Y705F/+ mice protects the animals from lung injury and reduces viral load. The results indicate that activation of STAT3 by Y705 phosphorylation is vital for establishment of effective antiviral immunity by suppressing excessive IFN signaling induced by viral infection.
Collapse
Affiliation(s)
- Shasha Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siya Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziding Yu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenzhuo Zhou
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meichun Zheng
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongrong Gu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinxuan Hong
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Yang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojuan Chi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guijie Guo
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Li
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Song Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|
4
|
Malekshahi A, Alamdary A, Safarzadeh A, Khavandegar A, Nikoo HR, Safavi M, Ajorloo M, Bahavar A, Ajorloo M. Potential roles of core and core+1 proteins during the chronic phase of hepatitis C virus infection. Future Virol 2023. [DOI: 10.2217/fvl-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The HCV Core protein is a multifunctional protein that interacts with many viral and cellular proteins. In addition to the encapsidation of the viral genome, it can disturb various cellular pathways and impede antiviral cellular responses such as interferon (IFN) production. The Core protein can also disrupt the functions of immune cells against HCV. The Core protein helps viral infection persistency by interfering with apoptosis. The Core+1 protein plays a significant role in inducing chronic HCV infection through diverse mechanisms. We review some of the mechanisms by which Core and Core+1 proteins facilitate HCV infection to chronic infection. These proteins could be considered for designing more sufficient treatments and effective vaccines against HCV.
Collapse
Affiliation(s)
- Asra Malekshahi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ashkan Alamdary
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Safarzadeh
- Department of Biology, University of Padova, Padova, Italy
| | - Armin Khavandegar
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahshid Safavi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Mobina Ajorloo
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefeh Bahavar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Ajorloo
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
5
|
Abdelhamed W, El-Kassas M. Hepatocellular carcinoma and hepatitis C virus treatments: The bold and the beautiful. J Viral Hepat 2023; 30:148-159. [PMID: 36461645 DOI: 10.1111/jvh.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
The occurrence of hepatocellular carcinoma (HCC) is one of the most serious complications of hepatitis C virus (HCV) infection. Recently, effective antiviral medications have made sustained viral response (SVR) or cure a realistic therapeutic goal for most chronic HCV patients. Given HCV's tumorigenic propensity, it is not surprising that achieving SVR is helpful in preventing HCC. This review briefly summarizes and discusses the existing evidence on the relationship between hepatic carcinogenesis and viral eradication by antivirals, which is mainly divided into interferon-based and direct-acting antivirals (DAAs) based therapy. DAAs have changed the treatment landscape of chronic HCV, reaching high rates of SVR even in patients with advanced cirrhosis, with few contraindications and little side effects. Although some early reports suggested that DAA treatment increased the chance of HCC occurrence, more subsequent observational studies have refuted this theory. The probability of HCC recurrence after HCV eradication appears to be decreasing over time following SVR. Despite virological suppression/cure, individuals with liver cirrhosis are still at risk of HCC and should be monitored. There is a considerable need for markers/scores to predict the long-term risk of HCC in patients with HCV-related liver disease who attain SVR with direct-acting antivirals.
Collapse
Affiliation(s)
- Walaa Abdelhamed
- Endemic Medicine Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
6
|
Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracellular vesicles modulate innate immune responses to affect tumor progression. Front Immunol 2022; 13:1045624. [PMID: 36405712 PMCID: PMC9667034 DOI: 10.3389/fimmu.2022.1045624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 04/23/2024] Open
Abstract
Immune cells are capable of influencing tumor progression in the tumor microenvironment (TME). Meanwhile, one mechanism by which tumor modulate immune cells function is through extracellular vesicles (EVs), which are cell-derived extracellular membrane vesicles. EVs can act as mediators of intercellular communication and can deliver nucleic acids, proteins, lipids, and other signaling molecules between cells. In recent years, studies have found that EVs play a crucial role in the communication between tumor cells and immune cells. Innate immunity is the first-line response of the immune system against tumor progression. Therefore, tumor cell-derived EVs (TDEVs) which modulate the functional change of innate immune cells serve important functions in the context of tumor progression. Emerging evidence has shown that TDEVs dually enhance or suppress innate immunity through various pathways. This review aims to summarize the influence of TDEVs on macrophages, dendritic cells, neutrophils, and natural killer cells. We also summarize their further effects on the progression of tumors, which may provide new ideas for developing novel tumor therapies targeting EVs.
Collapse
Affiliation(s)
- Siqi Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Sun
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Raha M. Dastgheyb
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zhigang Li
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Inhibition of the IFN-α JAK/STAT Pathway by MERS-CoV and SARS-CoV-1 Proteins in Human Epithelial Cells. Viruses 2022; 14:v14040667. [PMID: 35458397 PMCID: PMC9032603 DOI: 10.3390/v14040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Coronaviruses (CoVs) have caused several global outbreaks with relatively high mortality rates, including Middle East Respiratory Syndrome coronavirus (MERS)-CoV, which emerged in 2012, and Severe Acute Respiratory Syndrome (SARS)-CoV-1, which appeared in 2002. The recent emergence of SARS-CoV-2 highlights the need for immediate and greater understanding of the immune evasion mechanisms used by CoVs. Interferon (IFN)-α is the body's natural antiviral agent, but its Janus kinase/signal transducer and activators of transcription (JAK/STAT) signalling pathway is often antagonized by viruses, thereby preventing the upregulation of essential IFN stimulated genes (ISGs). Therapeutic IFN-α has disappointingly weak clinical responses in MERS-CoV and SARS-CoV-1 infected patients, indicating that these CoVs inhibit the IFN-α JAK/STAT pathway. Here we show that in lung alveolar A549 epithelial cells expression of MERS-CoV-nsp2 and SARS-CoV-1-nsp14, but not MERS-CoV-nsp5, increased basal levels of total and phosphorylated STAT1 & STAT2 protein, but reduced IFN-α-mediated phosphorylation of STAT1-3 and induction of MxA. While MERS-CoV-nsp2 and SARS-CoV-1-nsp14 similarly increased basal levels of STAT1 and STAT2 in bronchial BEAS-2B epithelial cells, unlike in A549 cells, they did not enhance basal pSTAT1 nor pSTAT2. However, both viral proteins reduced IFN-α-mediated induction of pSTAT1-3 and ISGs (MxA, ISG15 and PKR) in BEAS-2B cells. Furthermore, even though IFN-α-mediated induction of pSTAT1-3 was not affected by MERS-CoV-nsp5 expression in BEAS-2B cells, downstream ISG induction was reduced, revealing that MERS-CoV-nsp5 may use an alternative mechanism to reduce antiviral ISG induction in this cell line. Indeed, we subsequently discovered that all three viral proteins inhibited STAT1 nuclear translocation in BEAS-2B cells, unveiling another layer of inhibition by which these viral proteins suppress responses to Type 1 IFNs. While these observations highlight cell line-specific differences in the immune evasion effects of MERS-CoV and SARS-CoV-1 proteins, they also demonstrate the broad spectrum of immune evasion strategies these deadly coronaviruses use to stunt antiviral responses to Type IFN.
Collapse
|
8
|
Zaki MYW, Fathi AM, Samir S, Eldafashi N, William KY, Nazmy MH, Fathy M, Gill US, Shetty S. Innate and Adaptive Immunopathogeneses in Viral Hepatitis; Crucial Determinants of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:1255. [PMID: 35267563 PMCID: PMC8909759 DOI: 10.3390/cancers14051255] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Viral hepatitis B (HBV) and hepatitis C (HCV) infections remain the most common risk factors for the development of hepatocellular carcinoma (HCC), and their heterogeneous distribution influences the global prevalence of this common type of liver cancer. Typical hepatitis infection elicits various immune responses within the liver microenvironment, and viral persistence induces chronic liver inflammation and carcinogenesis. HBV is directly mutagenic but can also cause low-grade liver inflammation characterized by episodes of intermittent high-grade liver inflammation, liver fibrosis, and cirrhosis, which can progress to decompensated liver disease and HCC. Equally, the absence of key innate and adaptive immune responses in chronic HCV infection dampens viral eradication and induces an exhausted and immunosuppressive liver niche that favors HCC development and progression. The objectives of this review are to (i) discuss the epidemiological pattern of HBV and HCV infections, (ii) understand the host immune response to acute and chronic viral hepatitis, and (iii) explore the link between this diseased immune environment and the development and progression of HCC in preclinical models and HCC patients.
Collapse
Affiliation(s)
- Marco Y. W. Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahmed M. Fathi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Samara Samir
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Nardeen Eldafashi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Kerolis Y. William
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
| | - Maiiada Hassan Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Upkar S. Gill
- Barts Liver Centre, Centre for Immunobiology, Barts & The London School of Medicine & Dentistry, QMUL, London E1 2AT, UK;
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Alhetheel AF. Impact of Hepatitis C Virus Infection of Peripheral Blood Mononuclear Cells on the Immune System. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.810231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C is a worldwide liver disease caused by hepatitis C virus (HCV) infection. The virus causes acute and chronic liver inflammation, and it is transmitted mainly by exposure to contaminated blood. HCV is capable of infecting hepatocytes and peripheral blood mononuclear cells, causing complications and disease progression. This mini review provides an overview of HCV infection, including details on the virological aspects, infection of the immune cells, and its impact on the immune system.
Collapse
|
10
|
Aruna V, Sneha A, Harshitha DS. Hepatocellular carcinoma—An updated review. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA 2022:11-31. [DOI: 10.1016/b978-0-323-98806-3.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Akutsu N, Sasaki S, Matsui T, Akashi H, Yonezawa K, Ishigami K, Tsujisaki M, Isshiki H, Yawata A, Yamaoka S, Ban T, Adachi T, Nakahara S, Takagi H, Nakachi K, Tanaka K, Hirano T, Yamamoto I, Kaneto H, Wagatsuma K, Numata Y, Nakase H. Association of the Low-density Lipoprotein Cholesterol/High-density Lipoprotein Cholesterol Ratio with Glecaprevir-pibrentasvir Treatment. Intern Med 2021; 60:3369-3376. [PMID: 34024854 PMCID: PMC8627811 DOI: 10.2169/internalmedicine.7098-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective The change in serum lipid levels by direct-acting antiviral (DAA) treatment for chronic hepatitis C varies depending on the type of DAA. How the lipid level changes induced by glecaprevir-pibrentasvir (G/P) treatment contribute to the clinical outcome remains unclear. We conducted a prospective observational study to evaluate the effectiveness of G/P treatment and the lipid level changes. Methods The primary endpoint was a sustained virologic response at 12 weeks (SVR12). The total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) levels and LDL-C/HDL-C (L/H) ratio were measured every two weeks. Patients This study included 101 patients. Seventeen cases of liver cirrhosis and nine cases of DAA retreatment were registered. The G/P treatment period was 8 weeks in 74 cases and 12 weeks in 27 cases. Results SVR12 was evaluated in 96 patients. The rate of achievement of SVR12 in the evaluable cases was 100%. We found significantly elevated TC and LDL-C levels over the observation period compared to baseline. The serum levels of HDL-C did not change during treatment but were significantly increased after treatment compared to baseline. The L/H ratio was significantly increased two weeks after the start of treatment but returned to the baseline after treatment. Conclusion The primary endpoint of the SVR12 achievement rate was 100%. G/P treatment changed the serum lipid levels. Specifically, the TC and LDL-C levels increased during and after treatment, and the HDL-C levels increased after treatment. G/P treatment may be associated with a reduced thrombotic risk. Therefore, validation in large trials is recommended.
Collapse
Affiliation(s)
- Noriyuki Akutsu
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Japan
| | - Shigeru Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Japan
| | - Takeshi Matsui
- Department of Gastroenterology, Teine Keijinkai Hospital, Japan
| | - Hirofumi Akashi
- Department of Internal Medicine, Saiseikai Otaru Hospital, Japan
| | - Kazuhiko Yonezawa
- Department of Gastroenterology, Kushiro City General Hospital, Japan
| | - Keisuke Ishigami
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Japan
| | | | - Hiroyuki Isshiki
- Department of Gastroenterology, Hakodate Goryoukaku Hospital, Japan
| | - Atsushi Yawata
- Department of Gastroenterology, Hakodate Goryoukaku Hospital, Japan
| | - Satoshi Yamaoka
- Department of Gastroenterology, Sapporo Satozuka Hospital, Japan
| | - Toshihiro Ban
- Department of Gastroenterology, Sapporo Shirakabadai Hospital, Japan
| | - Takeya Adachi
- Department of Gastroenterology, JR Sapporo Hospital, Japan
| | - Seiya Nakahara
- Department of Gastroenterology, Sapporo Teishinkai Hospital, Japan
| | - Hideyasu Takagi
- Department of Gastroenterology, Sapporo Teishinkai Hospital, Japan
| | - Kohei Nakachi
- Department of Medical Oncology, Tochigi Cancer Center, Japan
| | - Katsunori Tanaka
- Department of Gastroenterology, Sapporo Gekakinen Hospital, Japan
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Japan
| | - Itaru Yamamoto
- Department of Gastroenterology, Obihiro Kyokai Hospital, Japan
| | - Hiroyuki Kaneto
- Department of Gastroenterology, Muroran City General Hospital, Japan
| | - Kohei Wagatsuma
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Japan
| | - Yasunao Numata
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
12
|
Zhou Z, Xie Y, Wu C, Nan Y. The Hepatitis E Virus Open Reading Frame 2 Protein: Beyond Viral Capsid. Front Microbiol 2021; 12:739124. [PMID: 34690982 PMCID: PMC8529240 DOI: 10.3389/fmicb.2021.739124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen causing hepatitis in both human and animal hosts, which is responsible for acute hepatitis E outbreaks worldwide. The 7.2 kb genome of the HEV encodes three well-defined open reading frames (ORFs), where the ORF2 translation product acts as the major virion component to form the viral capsid. In recent years, besides forming the capsid, more functions have been revealed for the HEV-ORF2 protein, and it appears that HEV-ORF2 plays multiple functions in both viral replication and pathogenesis. In this review, we systematically summarize the recent research advances regarding the function of the HEV-ORF2 protein such as application in the development of a vaccine, regulation of the innate immune response and cellular signaling, involvement in host tropism and participation in HEV pathogenesis as a novel secretory factor. Progress in understanding more of the function of HEV-ORF2 protein beyond the capsid protein would contribute to improved control and treatment of HEV infection.
Collapse
Affiliation(s)
- Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yinqian Xie
- Shaanxi Animal Disease Prevention and Control Center, Xi’an, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
13
|
Wang Q, Xin Q, Shang W, Wan W, Xiao G, Zhang LK. Activation of the STAT3 Signaling Pathway by the RNA-Dependent RNA Polymerase Protein of Arenavirus. Viruses 2021; 13:v13060976. [PMID: 34070281 PMCID: PMC8225222 DOI: 10.3390/v13060976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Arenaviruses cause chronic and asymptomatic infections in their natural host, rodents, and several arenaviruses cause severe hemorrhagic fever that has a high mortality in infected humans, seriously threatening public health. There are currently no FDA-licensed drugs available against arenaviruses; therefore, it is important to develop novel antiviral strategies to combat them, which would be facilitated by a detailed understanding of the interactions between the viruses and their hosts. To this end, we performed a transcriptomic analysis on cells infected with arenavirus lymphocytic choriomeningitis virus (LCMV), a neglected human pathogen with clinical significance, and found that the signal transducer and activator of transcription 3 (STAT3) signaling pathway was activated. A further investigation indicated that STAT3 could be activated by the RNA-dependent RNA polymerase L protein (Lp) of LCMV. Our functional analysis found that STAT3 cannot affect LCMV multiplication in A549 cells. We also found that STAT3 was activated by the Lp of Mopeia virus and Junin virus, suggesting that this activation may be conserved across certain arenaviruses. Our study explored the interactions between arenaviruses and STAT3, which may help us to better understand the molecular and cell biology of arenaviruses.
Collapse
Affiliation(s)
- Qingxing Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Xin
- UMR754, Viral Infections and Comparative Pathology, 50 Avenue Tony Garnier, CEDEX 07, 69366 Lyon, France;
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
| | - Weiwei Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (G.X.); (L.-K.Z.)
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (G.X.); (L.-K.Z.)
| |
Collapse
|
14
|
Liou JW, Mani H, Yen JH, Hsu HJ, Chang CC. Hepatitis C virus core protein: Not just a nucleocapsid building block, but an immunity and inflammation modulator. Tzu Chi Med J 2021; 34:139-147. [PMID: 35465281 PMCID: PMC9020238 DOI: 10.4103/tcmj.tcmj_97_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/12/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Coevolution occurs between viruses and their hosts. The hosts need to evolve means to eliminate pathogenic virus infections, and the viruses, for their own survival and multiplication, have to develop mechanisms to escape clearance by hosts. Hepatitis C virus (HCV) of Flaviviridae is a pathogen which infects human liver and causes hepatitis, a condition of liver inflammation. Unlike most of the other flaviviruses, HCV has an excellent ability to evade host immunity to establish chronic infection. The persistent liver infection leads to chronic hepatitis, liver cirrhosis, hepatocellular carcinoma (HCC), as well as extrahepatic HCV-related diseases. HCV genomic RNA only expresses 10 proteins, many of which bear functions, in addition to those involved in HCV life cycle, for assisting the virus to develop its persistency. HCV core protein is a structural protein which encapsulates HCV genomic RNA and assembles into nucleocapsids. The core protein is also found to exert functions to affect host inflammation and immune responses by altering a variety of host pathways. This paper reviews the studies regarding the HCV core protein-induced alterations of host immunity and inflammatory responses, as well as the involvements of the HCV core protein in pro- and anti-inflammatory cytokine stimulations, host cellular transcription, lipid metabolism, cell apoptosis, cell proliferations, immune cell differentiations, oxidative stress, and hepatocyte steatosis, which leads to liver fibrosis, cirrhosis, and HCC. Implications of roles played by the HCV core protein in therapeutic resistance are also discussed.
Collapse
|
15
|
The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis. Viruses 2020; 12:v12121364. [PMID: 33260407 PMCID: PMC7761224 DOI: 10.3390/v12121364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) is a major public health problem. HCV is a hepatotropic and lymphotropic virus that leads to hepatocellular carcinoma (HCC) and lymphoproliferative disorders such as cryoglobulinemic vasculitis (CV) and non-Hodgkin's lymphoma (NHL). The molecular mechanisms by which HCV induces these diseases are not fully understood. MicroRNAs (miRNAs) are small non-coding molecules that negatively regulate post-transcriptional gene expression by decreasing their target gene expression. We will attempt to summarize the current knowledge on the role of miRNAs in the HCV life cycle, HCV-related HCC, and lymphoproliferative disorders, focusing on both the functional effects of their deregulation as well as on their putative role as biomarkers, based on association analyses. We will also provide original new data regarding the miR 17-92 cluster in chronically infected HCV patients with and without lymphoproliferative disorders who underwent antiviral therapy. All of the cluster members were significantly upregulated in CV patients compared to patients without CV and significantly decreased in those who achieved vasculitis clinical remission after viral eradication. To conclude, miRNAs play an important role in HCV infection and related oncogenic processes, but their molecular pathways are not completely clear. In some cases, they may be potential therapeutic targets or non-invasive biomarkers of tumor progression.
Collapse
|
16
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
17
|
Ghosh S, Chakraborty J, Goswami A, Bhowmik S, Roy S, Ghosh A, Dokania S, Kumari P, Datta S, Chowdhury A, Bhattacharyya SN, Chatterjee R, Banerjee S. A novel microRNA boosts hyper-β-oxidation of fatty acids in liver by impeding CEP350-mediated sequestration of PPARα and thus restricts chronic hepatitis C. RNA Biol 2020; 17:1352-1363. [PMID: 32507013 DOI: 10.1080/15476286.2020.1768353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Imbalance in lipid metabolism induces steatosis in liver during Chronic hepatitis C (CHC). Contribution of microRNAs in regulating lipid homoeostasis and liver disease progression is well established using small RNA-transcriptome data. Owing to the complexity in the development of liver diseases, the existence and functional importance of yet undiscovered regulatory miRNAs in disease pathogenesis was explored in this study using the unmapped sequences of the transcriptome data of HCV-HCC liver tissues following miRDeep2.pl pipeline. MicroRNA-c12 derived from the first intron of LGR5 of chromosome 12 was identified as one of the miRNA like sequences retrieved in this analysis that showed human specific origin. Northern blot hybridization has proved its existence in the hepatic cell line. Enrichment of premiR-c12 in dicer-deficient cells and miR-c12 in Ago2-RISC complex clearly suggested that it followed canonical miRNA biogenesis pathway and accomplished its regulatory function. Expression of this miRNA was quite low in CHC tissues than normal liver implying HCV-proteins might be regulating its biogenesis. Promoter scanning and ChIP analysis further revealed that under expression of p53 and hyper-methylation of STAT3 binding site upon HCV infection restricted its expression in CHC tissues. Centrosomal protein 350 (CEP350), which sequestered PPARα, was identified as one of the targets of miR-c12 using Miranda and validated by luciferase assay/western blot analysis. Furthermore, reduced triglyceride accumulation and enhanced PPARα mediated transcription of β-oxidation genes upon restoration of miR-c12 in liver cells suggested its role in lipid catabolism. Thus this study is reporting miR-c12 for the first time and showed its' protective role during chronic HCV infection.
Collapse
Affiliation(s)
- Suchandrima Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Joyeeta Chakraborty
- Human Genetics Unit, Indian Statistical Institute , Kolkata, Human Genetics Unit, India
| | - Avijit Goswami
- Department of Molecular Genetics, Indian Institute of Chemical Biology , Kolkata, India
| | - Sayantani Bhowmik
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Susree Roy
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Amit Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Sakshi Dokania
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Priyanka Kumari
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | | | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute , Kolkata, Human Genetics Unit, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| |
Collapse
|
18
|
Nii T, Bungo T, Isobe N, Yoshimura Y. Intestinal inflammation induced by dextran sodium sulphate causes liver inflammation and lipid metabolism disfunction in laying hens. Poult Sci 2020; 99:1663-1677. [PMID: 32111331 PMCID: PMC7587789 DOI: 10.1016/j.psj.2019.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Gut inflammation caused by various factors including microbial infection leads to disorder of absorption of dietary nutrients and decrease in egg production in laying hens. We hypothesized that intestinal inflammation may affect egg production in laying hens through its impact on liver function. Dextran sodium sulphate (DSS) is known to induce intestinal inflammation in mammals, but whether it also induces inflammation in laying hens is not known. The goal of this study was to assess whether oral administration of DSS is a useful model of intestinal inflammation in laying hens and to characterize the effects of intestinal inflammation on egg production using this model. White Leghorn hens (350-day old) were administrated with or without 0.9 g of DSS/kg BW in drinking water for 5 D (n = 8, each). All laid eggs were collected, and their whole and eggshell weights were recorded. Blood was collected every day and used for biochemical analysis. Liver and intestinal tissues (duodenum, jejunum, ileum, cecum, cecal-tonsil, and colon) were collected 1 D after the final treatment. These tissue samples were used for histological analysis and PCR analysis. Oral administration of DSS in laying hens caused 1) histological disintegration of the cecal mucosal epithelium and increased monocyte/macrophage infiltration and IL-1β, IL-6, CXCLi2, IL-10, and TGFβ-4 gene expression; 2) decreased egg production; 3) increased leukocyte infiltration and IL-1β, CXCLi2, and IL-10 expression in association with a high frequency of lipopolysaccharide-positive cells in the liver; and 4) decreased expression of genes related to lipid synthesis, lipoprotein uptake, and yolk precursor production. These results suggested that oral administration of DSS is a useful method for inducing intestinal inflammation in laying hens, and intestinal inflammation may reduce egg production by disrupting egg yolk precursor production in association with liver inflammation.
Collapse
Affiliation(s)
- T Nii
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | - T Bungo
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - N Isobe
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Y Yoshimura
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
19
|
Lin F, Yin HB, Li XY, Zhu GM, He WY, Gou X. Bladder cancer cell‑secreted exosomal miR‑21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int J Oncol 2019; 56:151-164. [PMID: 31814034 PMCID: PMC6910194 DOI: 10.3892/ijo.2019.4933] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Tumour-associated macrophages (TAMs) compose a major component of the tumour microenvironment and form in this microenvironment prior to cancer metastasis. However, the detailed mechanisms of TAM remodelling in the context of bladder cancer have not been clearly defined. The present study collected exosomes from the conditioned medium of human bladder T24 cancer cells. The effects of macrophages treated with exosomes derived from T24 cells on bladder cancer cell migration and invasion were analysed by Transwell assays. The expression levels of endogenous and exosomal microRNA-21 (miR-21) were examined by reverse transcription-quantitative PCR, while the expression level of the target protein was analysed by western blot analysis. Luciferase reporter plasmids and mutants were used to confirm direct targeting. The effects of miR-21 on bladder cancer cell migration and invasion were analysed by Transwell and Matrigel assays following miR-21 transfection. It was identified that exosomes derived from bladder cancer cells polarized THP-1 cell-derived macrophages into the M2 phenotype, and TAM-mediated pro-migratory and pro-invasive activity was determined. Moreover, it was found that miR-21 was highly expressed in exosomes derived from bladder cancer cells as well as in macrophages treated with exosomes. In addition, macrophages transfected with miR-21 exhibited M2 polarization and promoted T24 cell migratory and invasive ability. Mechanistically, exosomal miR-21 derived from bladder cancer cells inhibited phosphatase and tensin homolog activation of the PI3K/AKT signalling pathway in macrophages and enhanced STAT3 expression to promote M2 phenotypic polarization. The present results suggest that exosomal miR-21 can promote cancer progression by polarizing TAMs.
Collapse
Affiliation(s)
- Fan Lin
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hu-Bin Yin
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin-Yuan Li
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gong-Min Zhu
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei-Yang He
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
20
|
Hepatic Stress Response in HCV Infection Promotes STAT3-Mediated Inhibition of HNF4A- miR-122 Feedback Loop in Liver Fibrosis and Cancer Progression. Cancers (Basel) 2019; 11:cancers11101407. [PMID: 31547152 PMCID: PMC6827087 DOI: 10.3390/cancers11101407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection compromises the natural defense mechanisms of the liver leading to a progressive end stage disease such as cirrhosis and hepatocellular carcinoma (HCC). The hepatic stress response generated due to viral replication in the endoplasmic reticulum (ER) undergoes a stepwise transition from adaptive to pro-survival signaling to improve host cell survival and liver disease progression. The minute details of hepatic pro-survival unfolded protein response (UPR) signaling that contribute to HCC development in cirrhosis are unknown. This study shows that the UPR sensor, the protein kinase RNA-like ER kinase (PERK), mediates the pro-survival signaling through nuclear factor erythroid 2-related factor 2 (NRF2)-mediated signal transducer and activator of transcription 3 (STAT3) activation in a persistent HCV infection model of Huh-7.5 liver cells. The NRF2-mediated STAT3 activation in persistently infected HCV cell culture model resulted in the decreased expression of hepatocyte nuclear factor 4 alpha (HNF4A), a major liver-specific transcription factor. The stress-induced inhibition of HNF4A expression resulted in a significant reduction of liver-specific microRNA-122 (miR-122) transcription. It was found that the reversal of hepatic adaptive pro-survival signaling and restoration of miR-122 level was more efficient by interferon (IFN)-based antiviral treatment than direct-acting antivirals (DAAs). To test whether miR-122 levels could be utilized as a biomarker of hepatic adaptive stress response in HCV infection, serum miR-122 level was measured among healthy controls, and chronic HCV patients with or without cirrhosis. Our data show that serum miR-122 expression level remained undetectable in most of the patients with cirrhosis (stage IV fibrosis), suggesting that the pro-survival UPR signaling increases the risk of HCC through STAT3-mediated suppression of miR-122. In conclusion, our data indicate that hepatic pro-survival UPR signaling suppresses the liver-specific HNF4A and its downstream target miR-122 in cirrhosis. These results provide an explanation as to why cirrhosis is a risk factor for the development of HCC in chronic HCV infection.
Collapse
|
21
|
Chernykh ER, Oleynik EA, Leplina OY, Starostina NM, Ostanin AA. Dendritic cells in the pathogenesis of viral hepatitis C. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-2-239-252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Song Y, Yang X, Shen Y, Wang Y, Xia X, Zhang AM. STAT3 signaling pathway plays importantly genetic and functional roles in HCV infection. Mol Genet Genomic Med 2019; 7:e821. [PMID: 31219249 PMCID: PMC6687657 DOI: 10.1002/mgg3.821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection is an extensive health problem, which leads to serious liver diseases. Host genetic polymorphisms were associated with HCV infection, progression, and treatment effect of patients. Signal transducers and activators of transcription 3 (STAT3) signaling pathway was important to HCV infection, but no genetic association was studied between STAT3 signaling pathway and HCV infection. Methods To investigate the genetic and functional roles of the STAT3 signaling pathway, we collected 394 HCV patients and 395 normal controls to genotype 25 signal nucleotide polymorphisms (SNPs) of six genes (Interleukin 6 [IL6, OMIM 147620], Interleukin 6 receptor [IL6R, OMIM 147880], Hepatocyte nuclear factor 1 alpha [HNF1A, OMIM 142410], Hepatocyte nuclear factor 4 alpha [HNF4A, OMIM 600281], STAT3 [OMIM 102582], and ATP binding cassette subfamily C member 2 [ABCC2, OMIM 601107]). Then expression level of these genes were analyzed in HCV infected cells with or without IL6 transfection. Results Our results identified that the SNPs in STAT3 signaling pathway were associated with HCV infection or biochemical features of Yunnan HCV patients. Genotype AA of rs4075015 (IL6R) and GG of rs3212172 (HNF4A) increased the risk of HCV infection (p = 0.024 and 0.029), but the genotype AA of rs7553796 (IL6R) played a protective role in HCV infection (p = 0.0008). High‐density lipoprotein cholesterol (HDL‐C) and Glutamyl transpeptidase (GGT) level were associated with genotypes of rs4845617 (IL6R, p = 0.045) and rs1053023 (STAT3, p = 0.034), respectively. Cell assays suggested that IL6 transfection could suppress HCV proliferation. RNA and protein levels of the IL6R, HNF1A, STAT3, and ABCC2 genes significantly increased after HCV infection. Conclusion We identified STAT3 signaling pathway influenced HCV infection and biochemical characteristics of HCV patients through genetic and functional aspects.
Collapse
Affiliation(s)
- Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Molecular Medicine Center of Yunnan Province, Kunming, China
| | - Xianyao Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunsong Shen
- Molecular Medicine Center of Yunnan Province, Kunming, China
| | - Yiqian Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Molecular Medicine Center of Yunnan Province, Kunming, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Molecular Medicine Center of Yunnan Province, Kunming, China
| |
Collapse
|
23
|
Ahmed F, Ibrahim A, Cooper CL, Kumar A, Crawley AM. Chronic Hepatitis C Virus Infection Impairs M1 Macrophage Differentiation and Contributes to CD8 + T-Cell Dysfunction. Cells 2019; 8:E374. [PMID: 31027182 PMCID: PMC6523920 DOI: 10.3390/cells8040374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection causes generalized CD8+ T cell impairment, not limited to HCV-specific CD8+ T-cells. Liver-infiltrating monocyte-derived macrophages (MDMs) contribute to the local micro-environment and can interact with and influence cells routinely trafficking through the liver, including CD8+ T-cells. MDMs can be polarized into M1 (classically activated) and M2a, M2b, and M2c (alternatively activated) phenotypes that perform pro- and anti-inflammatory functions, respectively. The impact of chronic HCV infection on MDM subset functions is not known. Our results show that M1 cells generated from chronic HCV patients acquire M2 characteristics, such as increased CD86 expression and IL-10 secretion, compared to uninfected controls. In contrast, M2 subsets from HCV-infected individuals acquired M1-like features by secreting more IL-12 and IFN-γ. The severity of liver disease was also associated with altered macrophage subset differentiation. In co-cultures with autologous CD8+ T-cells from controls, M1 macrophages alone significantly increased CD8+ T cell IFN-γ expression in a cytokine-independent and cell-contact-dependent manner. However, M1 macrophages from HCV-infected individuals significantly decreased IFN-γ expression in CD8+ T-cells. Therefore, altered M1 macrophage differentiation in chronic HCV infection may contribute to observed CD8+ T-cell dysfunction. Understanding the immunological perturbations in chronic HCV infection will lead to the identification of therapeutic targets to restore immune function in HCV+ individuals, and aid in the mitigation of associated negative clinical outcomes.
Collapse
Affiliation(s)
- Faria Ahmed
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Andrea Ibrahim
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Curtis L Cooper
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada.
- Public Health and Preventative Medicine, School of Epidemiology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 5Z3, Canada.
| | - Ashok Kumar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
- Department of Pathology, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Angela M Crawley
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada.
- Department of Biology, Faculty of Science, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
24
|
Hetta HF, Zahran AM, Mansor SG, Abdel-Malek MO, Mekky MA, Abbas WA. Frequency and Implications of myeloid-derived suppressor cells and lymphocyte subsets in Egyptian patients with hepatitis C virus-related hepatocellular carcinoma. J Med Virol 2019; 91:1319-1328. [PMID: 30761547 DOI: 10.1002/jmv.25428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/26/2019] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Myeloid-derived suppressor cells (MDSCs) play a pivotal role in tumor immunity and induction of immune tolerance to a variety of antitumor effectors, including T lymphocytes. Herein, we tried to evaluate the frequency and clinical significance of MDSCs and different lymphocyte subsets in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). METHODS Four groups were enrolled; chronic HCV (CHC; n = 40), HCV-related liver cirrhosis (n = 40), HCV-related HCC (HCV-HCC; n = 75), and healthy control group (n = 20). The percentage of peripheral lymphocytes subsets and total MDSCs with their main two subsets; monocytic (M-MDSCs) and granulocytic (G-MDSCs) was evaluated by flow cytometry. RESULTS The frequency of total MSDCs and M-MDSCs was significantly elevated in HCV-HCC especially patients with advanced stage HCC compared with those with early-stage HCC. The frequency of total MSDCs and M-MDSCs was positively correlated with ALT, AFP, and HCV viral load and negatively correlated with CD8+ T-cell frequency. CD4 + T cells were significantly decreased in HCV-HCC patients. The frequency of CD4 + T cells and CD8 + T cells was negatively correlated with AFP and AST, but not with albumin or HCV viral load. CONCLUSION Taken together, our data suggest that MDSCs, M-MDSCs, and lymphocyte subsets are associated with the development and progression of HCV-related HCC.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Shima G Mansor
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Mohamed O Abdel-Malek
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Wael A Abbas
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
25
|
Chang Z, Wang Y, Zhou X, Long JE. STAT3 roles in viral infection: antiviral or proviral? Future Virol 2018; 13:557-574. [PMID: 32201498 PMCID: PMC7079998 DOI: 10.2217/fvl-2018-0033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which can be activated by cytokines, growth factor receptors, and nonreceptor-like tyrosine kinase. An activated STAT3 translocates into the nucleus and combines with DNA to regulate the expression of target genes involved in cell proliferation, differentiation, apoptosis and metastasis. Recent studies have shown that STAT3 plays important roles in viral infection and pathogenesis. STAT3 exhibits a proviral function in several viral infections, including those of HBV, HCV, HSV-1, varicella zoster virus, human CMV and measles virus. However, in some circumstances, STAT3 has an antiviral function in other viral infections, such as enterovirus 71, severe acute respiratory syndrome coronavirus and human metapneumovirus. This review summarizes the roles of STAT3 in viral infection and pathogenesis, and briefly discusses the molecular mechanisms involved in these processes.
Collapse
Affiliation(s)
- Zhangmei Chang
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Kunshan Center For Disease Control & Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Kunshan Center For Disease Control & Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, PR China
| | - Yan Wang
- Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China
| | - Xin Zhou
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China
| |
Collapse
|
26
|
Su CY, Fu XL, Duan W, Yu PW, Zhao YL. High density of CD68+ tumor-associated macrophages predicts a poor prognosis in gastric cancer mediated by IL-6 expression. Oncol Lett 2018; 15:6217-6224. [PMID: 29616104 PMCID: PMC5876426 DOI: 10.3892/ol.2018.8119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 01/10/2018] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to explore the potential role of cluster of differentiation CD68+ tumor-associated macrophages (TAMs) induced by interleukin (IL)-6 in the progression of gastric cancer (GC) and patient prognosis. The expression levels of IL-6 and CD68 were detected by immunohistochemical staining in 60 samples of tumor and non-tumor gastric tissues. CD14+ monocytes were isolated from peripheral blood mononuclear cells and stimulated with macrophage colony stimulation factor (M-CSF) and IL-6, and the expression levels of IL-10, IL-12, vascular endothelial growth factor (VEGF)-C and transforming growth factor (TGF)-β were measured by reverse transcription polymerase chain reaction and ELISA. The GC MGC-803 cell line was co-cultured with monocytes stimulated by M-CSF and IL-6 and the invasion ability of the MGC-803 was evaluated by Transwell analysis. The levels of STAT3, P-STAT3 and interferon-regulatory factor 4 (IRF4) in the monocytes stimulated by M-CSF and IL-6 were detected by western blotting. The results demonstrated that the frequencies of IL-6+ macrophages (Mφs) and CD68+ Mφs were significantly higher in tumor regions compared with the corresponding non-tumor regions of GC tissues. Kaplan-Meier analysis revealed that the densities of tumor-infiltrating CD68+ or IL-6+ Mφs were inversely associated with the overall survival rates of the patients. In vitro, the expression levels of IL-10, VEGF-C and TGF-β significantly increased in CD14+ monocytes subsequent to M-CSF and IL-6 stimulation. The invasion abilities of MGC-803 were increased by the monocytes stimulated with M-CSF and IL-6. The levels of STAT3, P-STAT3 and IRF4 proteins increased in the monocytes stimulated by M-CSF and IL-6. In conclusion, the results from the present study suggest that a high density of CD68+ TAMs predicts a poor prognosis in GC. IL-6 may polarize the Mφs and promote tumor invasion through the IL-6/STAT3/IRF4 signaling pathway.
Collapse
Affiliation(s)
- Chong-Yu Su
- Department of General Surgery and Center of Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiao-Long Fu
- Department of General Surgery and Center of Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wei Duan
- Department of General Surgery and Center of Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Pei-Wu Yu
- Department of General Surgery and Center of Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
27
|
Wang Y, Li Y. MiR-29c inhibits HCV replication via activation of type I IFN response by targeting STAT3 in JFH-1-infected Huh7 cells. RSC Adv 2018; 8:8164-8172. [PMID: 35542013 PMCID: PMC9078521 DOI: 10.1039/c7ra12815k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/13/2018] [Indexed: 01/05/2023] Open
Abstract
Background: MiR-29c, a member of the miR-29 family, has been recognized to play an important role in hepatitis C virus (HCV) infection. However, the underlying molecular mechanism of miR-29c involved in HCV replication is not fully understood. Methods: RT-qPCR assay was used to detect the expression pattern of miR-29c and signal transducer and activator of transcription 3 (STAT3) mRNA in JFH-1-infected Huh7 cells. HCV replication was evaluated by the expression of HCV RNA, non-structural protein 5A (NS5A) and non-structural protein 3 (NS3). Dual-Luciferase Reporter assay was applied to search for the candidate target mRNAs of miR-29c. Western blot assay was performed to detect the protein level of double-stranded RNA-dependent protein kinase R (PKR), (2'-5')-oligoadenylate synthetase (OAS) and interferon regulatory transcription factor 1 (IRF1). Results: miR-29c expression was down-regulated, and STAT3 mRNA and protein expressions were up-regulated in JFH-1-infected Huh7 cells. MiR-29c overexpression or STAT3 knockdown repressed HCV replication, while miR-29c depletion or STAT3 upregulation promoted HCV replication. Additionally, STAT3 was a direct target of miR-29c, and miR-29c suppressed STAT3 protein expression in Huh7 cells. Moreover, STAT3 overexpression reversed miR-29c-mediated suppression on HCV replication. Furthermore, the anti-miR-29c-mediated inhibitory effect on type I IFN response was abated following STAT3 knockdown. Conclusions: miR-29c might repress HCV infection via promoting type I IFN response by targeting STAT3 in JFH-1-infected Huh7 cells, offering a promising avenue for HCV treatment.
Collapse
Affiliation(s)
- Yanjing Wang
- Department of Infectious Disease, Huaihe Hospital of Henan University No. 115 West Road, Gulou District Kaifeng 475000 China +86-13633784192
| | - Yuanyuan Li
- Department of Infectious Disease, Huaihe Hospital of Henan University No. 115 West Road, Gulou District Kaifeng 475000 China +86-13633784192
| |
Collapse
|
28
|
Dai CY, Tsai YS, Chou WW, Liu T, Huang CF, Wang SC, Tsai PC, Yeh ML, Hsieh MY, Huang CI, Vanson Liu SY, Huang JF, Chuang WL, Yu ML. The IL-6/STAT3 pathway upregulates microRNA-125b expression in hepatitis C virus infection. Oncotarget 2018; 9:11291-11302. [PMID: 29541414 PMCID: PMC5834265 DOI: 10.18632/oncotarget.24129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIMS MicroRNA-125b (miR-125b) has been found to regulate inflammation and acts as an oncogene in many cancers. The mechanisms of miR-125b expression during hepatitis C virus (HCV) infection remain to be clarified. The present study aims to identify the factors that might regulate miR-125b expression in HCV infection. RESULTS High expression of miR-125b was found to correlate with HCV infection in replicon cells and in sera from HCV-infected patients, whereas the miR-125b inhibitor reduced HCV gene expression. The interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway plays an inducible effect on miR-125b gene expression. STAT3 siRNA or inhibitor could reduce HCV replication. MATERIALS AND METHODS HCV replicon cells Con1 (type 1b) and Huh7/Ava5 (type 1b) were treated with 17-hydroxy-jolkinolide B (HJB) or STAT3 siRNA. Cell viability assay and Renilla Luciferase Assay were used. Fragments of the miR-125b-1 promoter were constructed for the luciferase reporter assay. PSMB8, PSMB9, miR-125b-1, and miR-125b-2 expression was determined using TaqMan® Gene Expression Assays. Western blot analysis was performed to assess protein abundance. CONCLUSIONS This study elucidates a novel pathway for miR-125b in the pathogenesis of chronic HCV infection and suggests it as a possible target for treating HCV infection.
Collapse
Affiliation(s)
- Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Wen Chou
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tawei Liu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chi Wang
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Yin Vanson Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Naseem S, Hussain T, Manzoor S. Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev 2018; 39:36-45. [PMID: 29361380 DOI: 10.1016/j.cytogfr.2018.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Liver pathologies (fibrosis, cirrhosis, alcoholic, non-alcoholic diseases and hepatocellular carcinoma) represent one of the most common causes of death worldwide. A number of genetic and environmental factors contribute to the development of liver diseases. Interleukin-6 (IL-6) is a pleiotropic cytokine, exerting variety of effects on inflammation, liver regeneration, and defence against infections by regulating adaptive immunity. Due to its high abundance in inflammatory settings, IL-6 is often viewed as a detrimental cytokine. However, accumulating evidence supports the view that IL-6 has a beneficial impact in numerous liver pathologies, due to its roles in liver regeneration and in promoting an anti-inflammatory response in certain conditions. IL-6 promotes proliferation, angiogenesis and metabolism, and downregulates apoptosis and oxidative stress; together these functions are critical for mediating hepatoprotection. IL-6 is also an important regulator of adaptive immunity where it induces T cell differentiation and regulates autoimmunity. It can augment antiviral adaptive immune responses and mitigate exhaustion of T cells during chronic infection. This review focuses on studies that present IL-6 as a key factor in regulating liver regeneration and in supporting effector immune functions and suggests that these functions of IL-6 can be exploited in treatment strategies for liver pathologies.
Collapse
Affiliation(s)
- Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Tabinda Hussain
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
30
|
Lu R, Zhang YG, Sun J. STAT3 activation in infection and infection-associated cancer. Mol Cell Endocrinol 2017; 451:80-87. [PMID: 28223148 PMCID: PMC5469714 DOI: 10.1016/j.mce.2017.02.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/23/2022]
Abstract
The Janus kinase/signal transducers and activators for transcription (JAK/STAT) pathway plays crucial roles in regulating apoptosis, proliferation, differentiation, and the inflammatory response. The JAK/STAT families are composed of four JAK family members and seven STAT family members. STAT3 plays a key role in inducing and maintaining a pro-carcinogenic inflammatory microenvironment. Recent evidence suggests that STAT3 regulates diverse biological functions in pathogenesis of diseases, such as infection and cancer. In the current review, we will summarize the research progress of STAT3 activation in infection and cancers. We highlight our recent study on the novel role of STAT3 in Salmonella infection-associated colon cancer. Infection with bacterial AvrA-expressing Salmonella activates the STAT3 pathway, which induces the β-catenin signals and enhances colonic tumorigenesis. STAT3 may be a promising target in developing prevention and treatment for infectious diseases and infection-associated cancers.
Collapse
Affiliation(s)
- Rong Lu
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Sui Y, Frey B, Wang Y, Billeskov R, Kulkarni S, McKinnon K, Rourke T, Fritts L, Miller CJ, Berzofsky JA. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog 2017; 13:e1006395. [PMID: 28498847 PMCID: PMC5448820 DOI: 10.1371/journal.ppat.1006395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/30/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs), which suppress anti-tumor or anti-viral immune responses, are expanded in the peripheral blood and tissues of patients/animals with cancer or viral infectious diseases. We here show that in chronic SIV infection of Indian rhesus macaques, the frequency of MDSCs in the bone marrow (BM) was paradoxically and unexpectedly decreased, but increased in peripheral blood. Reduction of BM MDSCs was found in both CD14+MDSC and Lin-CD15+MDSC subsets. The reduction of MDSCs correlated with high plasma viral loads and low CD4+ T cell counts, suggesting that depletion of BM MDSCs was associated with SIV/AIDS disease progression. Of note, in SHIVSF162P4-infected macaques, which naturally control viral replication within a few months of infection, the frequency of MDSCs in the bone marrow was unchanged. To investigate the mechanisms by which BM MDSCs were reduced during chronic SIV infection, we tested several hypotheses: depletion due to viral infection, alterations in MDSC trafficking, and/or poor MDSC replenishment. We found that the possible mobilization of MDSCs from BM to peripheral tissues and the slow self-replenishment of MDSCs in the BM, along with the viral infection-induced depletion, all contribute to the observed BM MDSC reduction. We first demonstrate MDSC SIV infection in vivo. Correlation between BM CD14+MDSC reduction and CD8+ T cell activation in tissues is consistent with decreased immune suppression by MDSCs. Thus, depletion of BM MDSCs may contribute to the pathologic immune activation during chronic SIV infection and by extension HIV infection. Both cancer and infectious diseases including HIV/AIDS lead to the accumulation of myeloid-derived suppressor cells (MDSCs), which can effectively suppress anti-tumor and anti-viral T cell responses to dampen protective immunity. Using a macaque model, we found unexpectedly that the MDSCs in bone marrow (BM) decreased after chronic simian immunodeficiency virus (SIV) infection compared with healthy controls. This was in sharp contrast to the general increase of MDSCs observed in BM during cancer and other infectious/inflammatory diseases, and also contrary to the MDSC expansion in HIV/SIV-infected PBMCs. We further demonstrated that the loss of MDSCs in the bone marrow was associated with the progression to AIDS disease. Investigating the mechanisms by which the MDSCs were decreased in the SIV-infected bone marrow, we found that the possible mobilization of MDSCs from bone marrow to peripheral tissues and the slow self-replenishment of MDSCs in the bone marrow, along with the viral infection-induced depletion, all contribute to the observed bone marrow MDSC reduction. Indeed, this is the first demonstration to our knowledge of SIV infection of MDSCs in vivo. Because of the suppressive nature of the MDSCs, the CD8+ T cells might not be effective in killing the virally infected MDSCs. It is tempting to speculate that MDSCs may constitute latent reservoirs. Overall, our data showed that MDSCs act as a double-edged sword in HIV/SIV-infection, and the decrease of MDSCs in bone marrow after SIV infection could serve as an indicator of immune regulatory exhaustion and also contribute to the observed immune hyperactivation seen in HIV/AIDS.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YS); (JAB)
| | - Blake Frey
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Yichuan Wang
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rolf Billeskov
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Shweta Kulkarni
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Katherine McKinnon
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tracy Rourke
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Linda Fritts
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Jay A. Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YS); (JAB)
| |
Collapse
|
32
|
Fernández-Ponce C, Dominguez-Villar M, Muñoz-Miranda JP, Arbulo-Echevarria MM, Litrán R, Aguado E, García-Cozar F. Immune modulation by the hepatitis C virus core protein. J Viral Hepat 2017; 24:350-356. [PMID: 28092420 DOI: 10.1111/jvh.12675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is currently the most important cause of chronic viral hepatitis in the world and one of the most frequent indications for liver transplantation. HCV uses different strategies to evade the innate and adaptive immune response, and this evasion plays a key role in determining viral persistence. Several HCV viral proteins have been described as immune modulators. In this review, we will focus on the effect of HCV nucleocapsid core protein in the function of immune cells and its correlation with the findings observed in HCV chronically infected patients. Effects on immune cell function related to both extracellular and intracellular HCV core localization will be considered. This review provides an updated perspective on the mechanisms involved in HCV evasion related to one single HCV protein, which could become a key tool in the development of new antiviral strategies able to control and/or eradicate HCV infection.
Collapse
Affiliation(s)
- C Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - M Dominguez-Villar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain.,Department of Neurology, Human Translational Immunology Program, Yale School of Medicine, 300 George St. 353D, New Haven, 06520, CT
| | - J P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - M M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - R Litrán
- Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Cádiz, Spain
| | - E Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - F García-Cozar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| |
Collapse
|
33
|
Li D, Hurria A. Age, hepatitis C virus infection, and the risk of cancer: Unlocking a complex puzzle of interactions. Cancer 2017; 123:1086-1088. [PMID: 28117891 DOI: 10.1002/cncr.30554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/13/2016] [Indexed: 12/09/2022]
Affiliation(s)
- Daneng Li
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Arti Hurria
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| |
Collapse
|
34
|
Zhai N, Li H, Song H, Yang Y, Cui A, Li T, Niu J, Crispe IN, Su L, Tu Z. Hepatitis C Virus Induces MDSCs-Like Monocytes through TLR2/PI3K/AKT/STAT3 Signaling. PLoS One 2017; 12:e0170516. [PMID: 28114346 PMCID: PMC5256909 DOI: 10.1371/journal.pone.0170516] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS Recent studies reveal the accumulation of myeloid derived suppressor cells (MDSCs) in human peripheral blood mononuclear cells (PBMCs) following HCV infection, which may facilitate and maintain HCV persistent infection. The mechanisms by which HCV induces MDSCs are poorly understood. In the present study, we investigated the mechanisms by which HCV induces MDSCs that lead to suppression of T cell proliferation and expansion of CD4+Foxp3+ regulatory T cells. METHODS Purified monocytes from healthy donors were cultured with HCV core protein (HCVc) or cell culture-derived HCV virions (HCVcc), and characterized the phenotype and function of these monocytes by flow cytometry, quantitative PCR, ELISA and western blot assays. In addition, peripheral blood from healthy donors and chronic HCV infected patients was collected, and MDSCs and CD4+CD25+CD127- regulatory T cells were analyzed by flow cytometry. RESULTS Both HCVc and HCVcc induced expression of IDO1, PD-L1 and IL-10, and significantly down-regulated HLA-DR expression in human monocytes. HCVc-treated monocytes triggered CD4+Foxp3+ Tregs expansion, and inhibited autologous CD4+ T cell activation in an IDO1-dependent fashion. Our results showed that HCV virions or HCV core proteins induced MDSC-like suppressive monocytes via the TLR2/PI3K/AKT/STAT3 signaling pathway. Monocytes derived from patients with chronic HCV infection displayed MDSCs characteristics. Moreover, the percentages of CD14+ MDSCs and CD4+CD25+CD127- Tregs in chronic HCV infected patients were significantly higher than healthy individuals, and the frequency of MDSCs correlated with CD4+CD25+CD127- Tregs. CONCLUSIONS HCV induced MDSC-like suppressive monocytes through TLR2/PI3K/AKT/STAT3 signaling pathway to induce CD4+Foxp3+ regulatory T cells and inhibit autologous CD4+ T cell activation. It will be of interest to test whether antagonizing suppressive functions of MDSCs could enhance immune responses and virus control in chronic HCV infection.
Collapse
Affiliation(s)
- Naicui Zhai
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China
| | - Haijun Li
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China
| | - Yang Yang
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China
| | - An Cui
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China
| | - Tianyang Li
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatobiliary and Pancreatic Diseases, the First Hospital of Jilin University, Changchun, China
| | - Ian Nicholas Crispe
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China.,Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Lishan Su
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zhengkun Tu
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, China.,Department of Hepatobiliary and Pancreatic Diseases, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
O'Connor MA, Rastad JL, Green WR. The Role of Myeloid-Derived Suppressor Cells in Viral Infection. Viral Immunol 2017; 30:82-97. [PMID: 28051364 DOI: 10.1089/vim.2016.0125] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that are well described as potent immune regulatory cells during human cancer and murine tumor models. Reports of MDSCs during viral infections remain limited, and their association with immunomodulation of viral diseases is still being defined. Here, we provide an overview of MDSCs or MDSC-like cells identified during viral infections, including murine viral models and human viral diseases. Understanding the similarities and/or differences of virally induced versus tumor-derived MDSCs will be important for designing future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Megan A O'Connor
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - Jessica L Rastad
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - William R Green
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire.,2 Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth, Lebanon , New Hampshire
| |
Collapse
|
36
|
Ren JP, Wang L, Zhao J, Wang L, Ning SB, El Gazzar M, Moorman JP, Yao ZQ. Decline of miR-124 in myeloid cells promotes regulatory T-cell development in hepatitis C virus infection. Immunology 2016; 150:213-220. [PMID: 27753084 DOI: 10.1111/imm.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) and microRNAs (miRNAs) contribute to attenuating immune responses during chronic viral infection; however, the precise mechanisms underlying their suppressive activities remain incompletely understood. We have recently shown marked expansion of MDSCs that promote regulatory T (Treg) cell development in patients with chronic hepatitis C virus (HCV) infection. Here we further investigated whether the HCV-induced expansion of MDSCs and Treg cells is regulated by an miRNA-mediated mechanism. The RNA array analysis revealed that six miRNAs were up-regulated and six miRNAs were down-regulated significantly in myeloid cells during HCV infection. Real-time RT-PCR confirmed the down-regulation of miR-124 in MDSCs from HCV patients. Bioinformatic analysis suggested that miR-124 may be involved in the regulation of signal transducer and activator of transcription 3 (STAT-3), which was overexpressed in MDSCs from HCV patients. Notably, silencing of STAT-3 significantly increased the miR-124 expression, whereas reconstituting miR-124 decreased the levels of STAT-3, as well as interleukin-10 and transforming growth factor-β, which were overexpressed in MDCSs, and reduced the frequencies of Foxp3+ Treg cells that were developed during chronic HCV infection. These results suggest that reciprocal regulation of miR-124 and STAT-3 in MDSCs promotes Treg cell development, thus uncovering a novel mechanism for the expansion of MDSC and Treg cells during HCV infection.
Collapse
Affiliation(s)
- Jun P Ren
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Lin Wang
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Centre for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Zhao
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Ling Wang
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Shun B Ning
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mohamed El Gazzar
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jonathan P Moorman
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, USA
| | - Zhi Q Yao
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, USA
| |
Collapse
|
37
|
Kong L, Zhou Y, Bu H, Lv T, Shi Y, Yang J. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. J Exp Clin Cancer Res 2016; 35:131. [PMID: 27589954 PMCID: PMC5009700 DOI: 10.1186/s13046-016-0412-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/25/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is associated with inflammation, and roughly 30 % of the global population shows serological evidence of current or past infection with hepatitis B or hepatitis C virus. Resident hepatic macrophages, known as Kupffer cells (KCs), are considered as the specific tumor-associated macrophages (TAMs) of HCC, and can produce various cytokines-most importantly interleukin (IL)-6-to promote tumorigenesis of HCC. However, the roles of KCs and IL-6 in carcinogenesis in the liver are still unclear. METHODS We analyzed leukocyte-related peripheral blood data of 192 patients and constructed a mouse model in which the bone marrow was cleared out by irradiation and reconstructed using bone marrow donated from IL-6-deficient mice to further elucidate the hepatic pathological changes in response to toxic challenge and oncogenic gene mutation. RESULTS Peripheral monocyte counts and serum IL-6 levels were significantly higher in patients with HCC than in those without HCC. In addition, there was a significant difference in the levels of IL-6 among individuals with different histopathological grades. In mice with selective IL-6 ablation in monocytes/KCs, we observed decreased toxic liver injury, inflammatory infiltration, and systemic inflammation. In Mdr2-deficient mice, which spontaneously developed HCC, the loss of IL-6 in monocytes/KCs resulted in inhibition of IL-6/signal transducer and activator of transcription 3 signaling, decreased serum IL-6 levels, and delayed tumorigenesis. CONCLUSIONS Our findings demonstrate that increased TAM-derived IL-6 had an amplifying effect on the inflammation response, thereby promoting the occurrence and development of HCC.
Collapse
Affiliation(s)
- Lingxiang Kong
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yongjie Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, 610041 China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, 610041 China
| | - Tao Lv
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yujun Shi
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jiayin Yang
- Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
38
|
Hepatocarcinogenesis associated with hepatitis B, delta and C viruses. Curr Opin Virol 2016; 20:1-10. [PMID: 27504999 DOI: 10.1016/j.coviro.2016.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Globally, over half a billion people are persistently infected with hepatitis B (HBV) and/or hepatitis C viruses. Chronic HBV and HCV infection frequently lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Co-infections with hepatitis delta virus (HDV), a subviral satellite requiring HBV for its propagation, accelerates the progression of liver disease toward HCC. The mechanisms by which these viruses cause malignant transformation, culminating in HCC, remain incompletely understood, partially due to the lack of adequate experimental models for dissecting these complex disease processes in vivo.
Collapse
|
39
|
Ren JP, Zhao J, Dai J, Griffin JWD, Wang L, Wu XY, Morrison ZD, Li GY, El Gazzar M, Ning SB, Moorman JP, Yao ZQ. Hepatitis C virus-induced myeloid-derived suppressor cells regulate T-cell differentiation and function via the signal transducer and activator of transcription 3 pathway. Immunology 2016; 148:377-86. [PMID: 27149428 DOI: 10.1111/imm.12616] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
T cells play a pivotal role in controlling viral infection; however, the precise mechanisms responsible for regulating T-cell differentiation and function during infections are incompletely understood. In this study, we demonstrated an expansion of myeloid-derived suppressor cells (MDSCs), in particular the monocytic MDSCs (M-MDSCs; CD14(+) CD33(+) CD11b(+) HLA-DR(-/low) ), in patients with chronic hepatitis C virus (HCV) infection. Notably, HCV-induced M-MDSCs express high levels of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and interleukin-10 (IL-10) compared with healthy subjects. Blocking STAT3 signalling reduced HCV-mediated M-MDSC expansion and decreased IL-10 expression. Importantly, we observed a significant increase in the numbers of CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells following incubation of healthy peripheral blood mononuclear cells (PBMCs) with MDSCs derived from HCV-infected patients or treated with HCV core protein. In addition, depletion of MDSCs from PBMCs led to a significant reduction of Foxp3(+) Treg cells developed during chronic HCV infection. Moreover, depletion of MDSCs from PBMCs significantly increased interferon-γ production by CD4(+) T effector (Teff) cells derived from HCV patients. These results suggest that HCV-induced MDSCs promote Treg cell development and inhibit Teff cell function, suggesting a novel mechanism for T-cell regulation and a new strategy for immunotherapy against human viral diseases.
Collapse
Affiliation(s)
- Jun P Ren
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jun Dai
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jeddidiah W D Griffin
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Xiao Y Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zheng D Morrison
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Guang Y Li
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Shun B Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, USA
| |
Collapse
|
40
|
Song X, Yao Z, Yang J, Zhang Z, Deng Y, Li M, Ma C, Yang L, Gao X, Li W, Liu J, Wei L. HCV core protein binds to gC1qR to induce A20 expression and inhibit cytokine production through MAPKs and NF-κB signaling pathways. Oncotarget 2016; 7:33796-808. [PMID: 27183919 PMCID: PMC5085119 DOI: 10.18632/oncotarget.9304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 01/17/2023] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by a strong propensity toward chronicity. During chronic HCV infection, HCV core protein is implicated in deregulating cytokine expression that associates with chronic inflammation. A20 is known as a powerful suppressor in cytokine signaling, in this study, we explored the A20 expression in macrophages induced by HCV core protein and the involved signaling pathways. Results demonstrated that HCV core protein induced A20 expression in macrophages. Silencing A20 significantly enhanced the secretion of IL-6, IL-1β and TGF-β1, but not IL-8 and TNF. Additionally, HCV core protein interacted with gC1qR, but not TLR2, TLR3 and TLR4 in pull-down assay. Silencing gC1qR abrogated core-induced A20 expression. Furthermore, HCV core protein activated MAPK, NF-κB and PI3K/AKT pathways in macrophages. Inhibition of P38, JNK and NF-κB but not ERK and AKT activities greatly reduced the A20 expression. In conclusion, the study suggests that HCV core protein ligates gC1qR to induce A20 expression in macrophages via P38, JNK and NF-κB signaling pathways, which leads to a low-grade chronic inflammation during HCV infection. It represents a novel mechanism by which HCV usurps the host for persistence.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Jianling Yang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhengzheng Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lijuan Yang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Departments of Internal Medicine and Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| |
Collapse
|
41
|
Heat Shock Protein 72 Antagonizes STAT3 Signaling to Inhibit Fibroblast Accumulation in Renal Fibrogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:816-28. [DOI: 10.1016/j.ajpath.2015.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/05/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
|
42
|
Li M, Wang W, Jin R, Zhang T, Li N, Han Q, Wei P, Liu Z. Differential association of STAT3 and HK-II expression in hepatitis B virus- and hepatitis C virus-related hepatocellular carcinoma. J Med Virol 2016; 88:1552-9. [PMID: 26889748 DOI: 10.1002/jmv.24498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 12/14/2022]
Abstract
STAT3 and hexokinase II (HK-II) are involved in viral infection and carcinogenesis of various cancers including hepatocellular carcinoma (HCC). The roles of STAT3 and HK-II in hepatitis B virus (HBV)- and hepatitis C virus (HCV)-related HCC remain largely unclear. This study examined STAT3 and HK-II expression in HBV- and HCV-related HCC, HBV-related liver fibrosis, and normal control liver by using tissue microarray and immunohistochemical method. Results showed that STAT3 expression in HBV-related HCC, HCV-related HCC, and HBV-related liver fibrosis was significantly higher than in control liver (P < 0.001, P = 0.016, and P = 0.005, respectively) and had no significant differences between these three diseased liver tissues. The HK-II expression in HBV-related HCC was significantly higher than that in HCV-related HCC, HBV-related liver fibrosis, and control liver (P = 0.007, P = 0.029, and P = 0.008, respectively) but had no significant elevation in and no significant differences between HCV-related HCC, HBV-related liver fibrosis, and control liver. The HK-II expression was significantly correlated to STAT3 expression in HBV-related HCC (P = 0.022), but no correlation was observed in HCV-related HCC, HBV-related liver fibrosis, and control liver. In conclusion, STAT3 expression is upregulated in both HBV- and HCV-related HCC, while HK-II is predominantly upregulated and correlated to STAT3 in HBV-related HCC. These differential expression and association may suggest the distinct roles of STAT3 and HK-II in hepatocarcinogenesis of HBV and HCV infection. Studies are needed to confirm the relationship of STAT3 and HK-II and to examine the underlying mechanisms. J. Med. Virol. 88:1552-1559, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Man Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Department of Internal Medicine, The Second Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| | - Weihua Wang
- Department of Pharmacogenomics, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Rui Jin
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tieying Zhang
- Department of Internal Medicine, The Second Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ping Wei
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
43
|
Goh CC, Roggerson KM, Lee HC, Golden-Mason L, Rosen HR, Hahn YS. Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1. THE JOURNAL OF IMMUNOLOGY 2016; 196:2283-92. [PMID: 26826241 DOI: 10.4049/jimmunol.1501881] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
The hepatitis C virus (HCV) infects ∼ 200 million people worldwide. The majority of infected individuals develop persistent infection, resulting in chronic inflammation and liver disease, including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms, including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular, IFN-γ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However, NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study, we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-γ, with no effect on granzyme B production or cell viability. Importantly, this suppression of NK cell-derived IFN-γ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-γ production was reversed by l-arginine supplementation, consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses, further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver.
Collapse
Affiliation(s)
- Celeste C Goh
- Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Krystal M Roggerson
- Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Hai-Chon Lee
- Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; Wide River Institute of Immunology, Seoul National University, Gangwon 25159, Korea; and
| | - Lucy Golden-Mason
- Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Hugo R Rosen
- Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Young S Hahn
- Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;
| |
Collapse
|
44
|
Pang X, Song H, Zhang Q, Tu Z, Niu J. Hepatitis C virus regulates the production of monocytic myeloid-derived suppressor cells from peripheral blood mononuclear cells through PI3K pathway and autocrine signaling. Clin Immunol 2016; 164:57-64. [PMID: 26821305 DOI: 10.1016/j.clim.2016.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major liver disease that ultimately develops into chronic hepatitis. Consequently, such patients are predisposed to serious complications, such as hepatocellular carcinoma. In HCV-infected patients, impaired T-cell responses are associated with persistent infection. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in suppressing T-cell responses. In this study, we investigated the capacity and mechanism through which HCV transforms CD14+ monocytes into monocytic (Mo)-MDSCs. We showed that HCV core protein promotes CD14+ monocytes to develop a CD14+HLA-DR/low phenotype with upregulated indoleamine 2,3-dioxygenase (IDO) expression and suppressed T-cell proliferation. Importantly, HCV-induced Mo-MDSC production was attributed to the PI3K pathway via induction of IL-10 and TNF-α secretion. This process could be reversed by polyinosinic:polycytidylic acid (polyI:C) treatment. In conclusion, our results suggest that HCV regulates Mo-MDSC production from monocytes through the PI3K pathway and autocrine cytokines. The latter can serve as effective targets for novel HCV therapies.
Collapse
Affiliation(s)
- Xiaoli Pang
- Department of Pediatric Gastroenterology, the First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Hongxiao Song
- Translational Medicine Research Institute, the First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Qianqian Zhang
- Department of Hepatology, the First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Zhengkun Tu
- Translational Medicine Research Institute, the First Hospital, Jilin University, Changchun 130021, Jilin, China.
| | - Junqi Niu
- Department of Hepatology, the First Hospital, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
45
|
Hepatitis C virus core protein interacts with Snail and histone deacetylases to promote the metastasis of hepatocellular carcinoma. Oncogene 2015; 35:3626-35. [PMID: 26549030 DOI: 10.1038/onc.2015.428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
Abstract
Downregulation of E-cadherin by the transcriptional repressor Snail is associated with acquisition of metastatic potential. Although hepatitis C virus (HCV) core protein has been implicated in hepatocarcinogenesis, it is unclear whether Snail is involved in HCV core-induced dysregulation of E-cadherin. Herein, we investigated the mechanism by which HCV core induces E-cadherin repression and the role of Snail in HCV core-mediated invasiveness and metastasis. We found that HCV infection, especially HCV core expression, effectively induced the epithelial-mesenchymal transition (EMT) in hepatoma cells by repressing E-cadherin. HCV core interacted with Snail and enhanced its binding to the E-box in the promoter region of E-cadherin, leading to decreased E-cadherin promoter activity. We found that HCV core, Snail, and the histone deacetylases HDAC1/HDAC2 formed a co-repressor complex at the E-cadherin promoter. Moreover, HCV core was shown to stabilize Snail through activation of the PI3K/Akt/GSK3β pathway. Silencing Snail expression restored E-cadherin expression and inhibited HCV core-promoted tumor growth and distant lung metastasis in vivo. Collectively, these results demonstrated that HCV core induced EMT by interacting with the transcriptional repressor complex Snail/HDACs at the E-cadherin promoter, which led to E-cadherin repression and increased invasiveness of hepatoma cells. These findings increase understanding of factors regulating metastasis in hepatoma and may ultimately lead to the development of novel treatment strategies for HCV-associated hepatocellular carcinoma.
Collapse
|
46
|
Sachdeva M, Chawla YK, Arora SK. Dendritic cells: The warriors upfront-turned defunct in chronic hepatitis C infection. World J Hepatol 2015; 7:2202-2208. [PMID: 26380045 PMCID: PMC4561774 DOI: 10.4254/wjh.v7.i19.2202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection causes tremendous morbidity and mortality with over 170 million people infected worldwide. HCV gives rise to a sustained, chronic disease in the majority of infected individuals owing to a failure of the host immune system to clear the virus. In general, an adequate immune response is elicited by an efficient antigen presentation by dendritic cells (DCs), the cells that connect innate and adaptive immune system to generate a specific immune response against a pathogen. However, HCV seems to dysregulate the activity of DCs, making them less proficient antigen presenting cells for the optimal stimulation of virus-specific T cells, hence interfering with an optimal anti-viral immune response. There are discordant reports on the functional status of DCs in chronic HCV infection (CHC), from no phenotypic or functional defects to abnormal functions of DCs. Furthermore, the molecular mechanisms behind the impairment of DC function are even so not completely elucidated during CHC. Understanding the mechanisms of immune dysfunction would help in devising strategies for better management of the disease at the immunological level and help to predict the prognosis of the disease in the patients receiving antiviral therapy. In this review, we have discussed the outcomes of the interaction of DCs with HCV and the mechanisms of DC impairment during HCV infection with its adverse effects on the immune response in the infected host.
Collapse
|
47
|
Xiong Y, Jia M, Yuan J, Zhang C, Zhu Y, Kuang X, Lan L, Wang X. STAT3‑regulated long non‑coding RNAs lnc‑7SK and lnc‑IGF2‑AS promote hepatitis C virus replication. Mol Med Rep 2015; 12:6738-44. [PMID: 26328522 PMCID: PMC4626162 DOI: 10.3892/mmr.2015.4278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/31/2015] [Indexed: 12/16/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) are a class of RNAs that do not code protein but are important in diverse biological processes. In previous years, with the application of high‑throughput sequencing, a large number of lncRNAs associated with virus infections have been identified and intensively investigated, however, there are few studies examining the association between lncRNAs and HCV replication. Previous studies have demonstrated that signal transducer and activator of transcription 3 (STAT3) is activated by the hepatitis C virus (HCV) and in turn increases the replication of HCV. However, the detailed molecular mechanism is only partially understood. In the present study, using human lncRNA polymerase chain reaction (PCR) arrays, it was identified that lnc‑IGF2‑AS, lnc‑7SK, lnc‑SChLAP1 and lnc‑SRA1 are upregulated by STAT3. In addition, among these four lncRNAs, only lnc‑IGF2‑AS and lnc‑7SK were involved in HCV replication. Transfection of siRNA lnc‑7SK and siRNA lnc‑IGF2‑AS partially inhibited the replication of HCV in Huh7 cells. Data also indicated that when transfected with siRNA lnc‑7SK and siRNA lnc‑IGF2‑AS, the expression of phosphatidylinositol 4‑phosphate (PI4P), which was identified to be associated with HCV replication, was reduced. Thus, the present study identified two new types of lncRNAs, lnc‑IGF2‑AS and lnc‑7SK, which can be upregulated by STAT3 and are involved in HCV replication by regulating PI4P.
Collapse
Affiliation(s)
- Yulin Xiong
- Key Laboratory of Infectious Disease Research, Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ming Jia
- Key Laboratory of Infectious Disease Research, Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jing Yuan
- Key Laboratory of Infectious Disease Research, Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Changjiang Zhang
- Key Laboratory of Infectious Disease Research, Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yan Zhu
- Key Laboratory of Infectious Disease Research, Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuemei Kuang
- Key Laboratory of Infectious Disease Research, Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Lin Lan
- Key Laboratory of Infectious Disease Research, Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaohong Wang
- Key Laboratory of Infectious Disease Research, Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
48
|
Uraki S, Tameda M, Sugimoto K, Shiraki K, Takei Y, Nobori T, Ito M. Substitution in Amino Acid 70 of Hepatitis C Virus Core Protein Changes the Adipokine Profile via Toll-Like Receptor 2/4 Signaling. PLoS One 2015; 10:e0131346. [PMID: 26121241 PMCID: PMC4487891 DOI: 10.1371/journal.pone.0131346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/01/2015] [Indexed: 12/28/2022] Open
Abstract
Background & Aims It has been suggested that amino acid (aa) substitution at position 70 from arginine (70R) to glutamine (70Q) in the genotype 1b hepatitis C virus (HCV) core protein is associated with insulin resistance and worse prognosis. However, the precise mechanism is still unclear. The aim of this study was to investigate the impact of the substitution at position 70 in HCV core protein on adipokine production by murine and human adipocytes. Methods The influence of treatment with HCV core protein (70R or 70Q) on adipokine production by both 3T3-L1 and human adipocytes were examined with real-time PCR and enzyme-linked immunosorbent assay (ELISA), and triglyceride content was also analyzed. The effects of toll-like receptor (TLR)2/4 inhibition on IL-6 production by 3T3-L1 induced by HCV core protein were examined. Results IL-6 production was significantly increased and adiponectin production was reduced without a change in triglyceride content by treatment with 70Q compared to 70R core protein in both murine and human adipocytes. IL-6 induction of 3T3-L1 cells treated by 70Q HCV core protein was significantly inhibited with anti-TLR2 antibody by 42%, and by TLR4 inhibitor by 40%. Conclusions Our study suggests that extracellular HCV core protein with substitution at position 70 enhanced IL-6 production and reduced adiponectin production from visceral adipose tissue, which can cause insulin resistance, hepatic steatosis, and ultimately development of HCC.
Collapse
Affiliation(s)
- Satoko Uraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | - Masahiko Tameda
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Kazushi Sugimoto
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
- * E-mail:
| | - Katsuya Shiraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Tsutomu Nobori
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
| | - Masaaki Ito
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| |
Collapse
|
49
|
Abstract
Signal transducer and activators of transcription-3 (STAT3) regulates diverse biological functions including cell growth, differentiation, and apoptosis. In addition, STAT3 plays a key role in regulating host immune and inflammatory responses and in the pathogenesis of many cancers. Several studies reported differential regulation of STAT3 in a range of viral infections. Interestingly, STAT3 appears to direct seemingly contradictory responses and both pro- and antiviral roles of STAT3 have been described. This review summarized the currently known functions of STAT3 in the regulation of viral replication and pathogenesis of viral infections. Some of the key unanswered questions and the gap in our current understanding of the role of STAT3 in viral pathogenesis are discussed.
Collapse
|
50
|
Abstract
Hepatitis C virus (HCV) is a leading etiology of hepatocellular carcinoma (HCC). The interaction of HCV with its human host is complex and multilayered; stemming in part from the fact that HCV is a RNA virus with no ability to integrate in the host's genome. Direct and indirect mechanisms of HCV-induced HCC include activation of multiple host pathways such as liver fibrogenic pathways, cellular and survival pathways, interaction with the immune and metabolic systems. Host factors also play a major role in HCV-induced HCC as evidenced by genomic studies identifying polymorphisms in immune, metabolic, and growth signaling systems associated with increased risk of HCC. Despite highly effective direct-acting antiviral agents, the morbidity and incidence of liver-related complications of HCV, including HCC, is likely to persist in the near future. Clinical markers to selectively identify HCV subjects at higher risk of developing HCC have been reported however they require further validation, especially in subjects who have experienced sustained virological response. Molecular biomarkers allowing further refinement of HCC risk are starting to be implemented in clinical platforms, allowing objective stratification of risk and leading to individualized therapy and surveillance for HCV individuals. Another role for molecular biomarker-based stratification could be enrichment of HCC chemoprevention clinical trials leading to smaller sample size, shorter trial duration, and reduced costs.
Collapse
Affiliation(s)
- Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|